blob: 34b89464ae0224da0f83abaf6f7834e002b88039 [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright (C) 2021 Advanced Micro Devices, Inc.
*
* Authors: AMD
*/
#include "dcn303_init.h"
#include "dcn303_resource.h"
#include "dcn303_dccg.h"
#include "irq/dcn303/irq_service_dcn303.h"
#include "dcn30/dcn30_dio_link_encoder.h"
#include "dcn30/dcn30_dio_stream_encoder.h"
#include "dcn30/dcn30_dpp.h"
#include "dcn30/dcn30_dwb.h"
#include "dcn30/dcn30_hubbub.h"
#include "dcn30/dcn30_hubp.h"
#include "dcn30/dcn30_mmhubbub.h"
#include "dcn30/dcn30_mpc.h"
#include "dcn30/dcn30_opp.h"
#include "dcn30/dcn30_optc.h"
#include "dcn30/dcn30_resource.h"
#include "dcn20/dcn20_dsc.h"
#include "dcn20/dcn20_resource.h"
#include "dcn10/dcn10_resource.h"
#include "dc_link_ddc.h"
#include "dce/dce_abm.h"
#include "dce/dce_audio.h"
#include "dce/dce_aux.h"
#include "dce/dce_clock_source.h"
#include "dce/dce_hwseq.h"
#include "dce/dce_i2c_hw.h"
#include "dce/dce_panel_cntl.h"
#include "dce/dmub_abm.h"
#include "dce/dmub_psr.h"
#include "clk_mgr.h"
#include "hw_sequencer_private.h"
#include "reg_helper.h"
#include "resource.h"
#include "vm_helper.h"
#include "sienna_cichlid_ip_offset.h"
#include "dcn/dcn_3_0_3_offset.h"
#include "dcn/dcn_3_0_3_sh_mask.h"
#include "dcn/dpcs_3_0_3_offset.h"
#include "dcn/dpcs_3_0_3_sh_mask.h"
#include "nbio/nbio_2_3_offset.h"
#define DC_LOGGER_INIT(logger)
struct _vcs_dpi_ip_params_st dcn3_03_ip = {
.use_min_dcfclk = 0,
.clamp_min_dcfclk = 0,
.odm_capable = 1,
.gpuvm_enable = 1,
.hostvm_enable = 0,
.gpuvm_max_page_table_levels = 4,
.hostvm_max_page_table_levels = 4,
.hostvm_cached_page_table_levels = 0,
.pte_group_size_bytes = 2048,
.num_dsc = 2,
.rob_buffer_size_kbytes = 184,
.det_buffer_size_kbytes = 184,
.dpte_buffer_size_in_pte_reqs_luma = 64,
.dpte_buffer_size_in_pte_reqs_chroma = 34,
.pde_proc_buffer_size_64k_reqs = 48,
.dpp_output_buffer_pixels = 2560,
.opp_output_buffer_lines = 1,
.pixel_chunk_size_kbytes = 8,
.pte_enable = 1,
.max_page_table_levels = 2,
.pte_chunk_size_kbytes = 2, // ?
.meta_chunk_size_kbytes = 2,
.writeback_chunk_size_kbytes = 8,
.line_buffer_size_bits = 789504,
.is_line_buffer_bpp_fixed = 0, // ?
.line_buffer_fixed_bpp = 0, // ?
.dcc_supported = true,
.writeback_interface_buffer_size_kbytes = 90,
.writeback_line_buffer_buffer_size = 0,
.max_line_buffer_lines = 12,
.writeback_luma_buffer_size_kbytes = 12, // writeback_line_buffer_buffer_size = 656640
.writeback_chroma_buffer_size_kbytes = 8,
.writeback_chroma_line_buffer_width_pixels = 4,
.writeback_max_hscl_ratio = 1,
.writeback_max_vscl_ratio = 1,
.writeback_min_hscl_ratio = 1,
.writeback_min_vscl_ratio = 1,
.writeback_max_hscl_taps = 1,
.writeback_max_vscl_taps = 1,
.writeback_line_buffer_luma_buffer_size = 0,
.writeback_line_buffer_chroma_buffer_size = 14643,
.cursor_buffer_size = 8,
.cursor_chunk_size = 2,
.max_num_otg = 2,
.max_num_dpp = 2,
.max_num_wb = 1,
.max_dchub_pscl_bw_pix_per_clk = 4,
.max_pscl_lb_bw_pix_per_clk = 2,
.max_lb_vscl_bw_pix_per_clk = 4,
.max_vscl_hscl_bw_pix_per_clk = 4,
.max_hscl_ratio = 6,
.max_vscl_ratio = 6,
.hscl_mults = 4,
.vscl_mults = 4,
.max_hscl_taps = 8,
.max_vscl_taps = 8,
.dispclk_ramp_margin_percent = 1,
.underscan_factor = 1.11,
.min_vblank_lines = 32,
.dppclk_delay_subtotal = 46,
.dynamic_metadata_vm_enabled = true,
.dppclk_delay_scl_lb_only = 16,
.dppclk_delay_scl = 50,
.dppclk_delay_cnvc_formatter = 27,
.dppclk_delay_cnvc_cursor = 6,
.dispclk_delay_subtotal = 119,
.dcfclk_cstate_latency = 5.2, // SRExitTime
.max_inter_dcn_tile_repeaters = 8,
.max_num_hdmi_frl_outputs = 1,
.odm_combine_4to1_supported = false,
.xfc_supported = false,
.xfc_fill_bw_overhead_percent = 10.0,
.xfc_fill_constant_bytes = 0,
.gfx7_compat_tiling_supported = 0,
.number_of_cursors = 1,
};
struct _vcs_dpi_soc_bounding_box_st dcn3_03_soc = {
.clock_limits = {
{
.state = 0,
.dispclk_mhz = 1217.0,
.dppclk_mhz = 1217.0,
.phyclk_mhz = 810.0,
.phyclk_d18_mhz = 667.0,
.dscclk_mhz = 405.6,
},
},
.min_dcfclk = 500.0, /* TODO: set this to actual min DCFCLK */
.num_states = 1,
.sr_exit_time_us = 26.5,
.sr_enter_plus_exit_time_us = 31,
.urgent_latency_us = 4.0,
.urgent_latency_pixel_data_only_us = 4.0,
.urgent_latency_pixel_mixed_with_vm_data_us = 4.0,
.urgent_latency_vm_data_only_us = 4.0,
.urgent_out_of_order_return_per_channel_pixel_only_bytes = 4096,
.urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = 4096,
.urgent_out_of_order_return_per_channel_vm_only_bytes = 4096,
.pct_ideal_dram_sdp_bw_after_urgent_pixel_only = 80.0,
.pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = 60.0,
.pct_ideal_dram_sdp_bw_after_urgent_vm_only = 40.0,
.max_avg_sdp_bw_use_normal_percent = 60.0,
.max_avg_dram_bw_use_normal_percent = 40.0,
.writeback_latency_us = 12.0,
.max_request_size_bytes = 256,
.fabric_datapath_to_dcn_data_return_bytes = 64,
.dcn_downspread_percent = 0.5,
.downspread_percent = 0.38,
.dram_page_open_time_ns = 50.0,
.dram_rw_turnaround_time_ns = 17.5,
.dram_return_buffer_per_channel_bytes = 8192,
.round_trip_ping_latency_dcfclk_cycles = 156,
.urgent_out_of_order_return_per_channel_bytes = 4096,
.channel_interleave_bytes = 256,
.num_banks = 8,
.gpuvm_min_page_size_bytes = 4096,
.hostvm_min_page_size_bytes = 4096,
.dram_clock_change_latency_us = 404,
.dummy_pstate_latency_us = 5,
.writeback_dram_clock_change_latency_us = 23.0,
.return_bus_width_bytes = 64,
.dispclk_dppclk_vco_speed_mhz = 3650,
.xfc_bus_transport_time_us = 20, // ?
.xfc_xbuf_latency_tolerance_us = 4, // ?
.use_urgent_burst_bw = 1, // ?
.do_urgent_latency_adjustment = true,
.urgent_latency_adjustment_fabric_clock_component_us = 1.0,
.urgent_latency_adjustment_fabric_clock_reference_mhz = 1000,
};
static const struct dc_debug_options debug_defaults_drv = {
.disable_dmcu = true,
.force_abm_enable = false,
.timing_trace = false,
.clock_trace = true,
.disable_pplib_clock_request = true,
.pipe_split_policy = MPC_SPLIT_AVOID_MULT_DISP,
.force_single_disp_pipe_split = false,
.disable_dcc = DCC_ENABLE,
.vsr_support = true,
.performance_trace = false,
.max_downscale_src_width = 7680,/*upto 8K*/
.disable_pplib_wm_range = false,
.scl_reset_length10 = true,
.sanity_checks = false,
.underflow_assert_delay_us = 0xFFFFFFFF,
.dwb_fi_phase = -1, // -1 = disable,
.dmub_command_table = true,
.disable_idle_power_optimizations = false,
};
static const struct dc_debug_options debug_defaults_diags = {
.disable_dmcu = true,
.force_abm_enable = false,
.timing_trace = true,
.clock_trace = true,
.disable_dpp_power_gate = true,
.disable_hubp_power_gate = true,
.disable_clock_gate = true,
.disable_pplib_clock_request = true,
.disable_pplib_wm_range = true,
.disable_stutter = false,
.scl_reset_length10 = true,
.dwb_fi_phase = -1, // -1 = disable
.dmub_command_table = true,
.enable_tri_buf = true,
.disable_psr = true,
};
enum dcn303_clk_src_array_id {
DCN303_CLK_SRC_PLL0,
DCN303_CLK_SRC_PLL1,
DCN303_CLK_SRC_TOTAL
};
static const struct resource_caps res_cap_dcn303 = {
.num_timing_generator = 2,
.num_opp = 2,
.num_video_plane = 2,
.num_audio = 2,
.num_stream_encoder = 2,
.num_dwb = 1,
.num_ddc = 2,
.num_vmid = 16,
.num_mpc_3dlut = 1,
.num_dsc = 2,
};
static const struct dc_plane_cap plane_cap = {
.type = DC_PLANE_TYPE_DCN_UNIVERSAL,
.blends_with_above = true,
.blends_with_below = true,
.per_pixel_alpha = true,
.pixel_format_support = {
.argb8888 = true,
.nv12 = true,
.fp16 = true,
.p010 = false,
.ayuv = false,
},
.max_upscale_factor = {
.argb8888 = 16000,
.nv12 = 16000,
.fp16 = 16000
},
.max_downscale_factor = {
.argb8888 = 600,
.nv12 = 600,
.fp16 = 600
},
16,
16
};
/* NBIO */
#define NBIO_BASE_INNER(seg) \
NBIO_BASE__INST0_SEG ## seg
#define NBIO_BASE(seg) \
NBIO_BASE_INNER(seg)
#define NBIO_SR(reg_name)\
.reg_name = NBIO_BASE(mm ## reg_name ## _BASE_IDX) + \
mm ## reg_name
/* DCN */
#undef BASE_INNER
#define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg
#define BASE(seg) BASE_INNER(seg)
#define SR(reg_name)\
.reg_name = BASE(mm ## reg_name ## _BASE_IDX) + mm ## reg_name
#define SF(reg_name, field_name, post_fix)\
.field_name = reg_name ## __ ## field_name ## post_fix
#define SRI(reg_name, block, id)\
.reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + mm ## block ## id ## _ ## reg_name
#define SRI2(reg_name, block, id)\
.reg_name = BASE(mm ## reg_name ## _BASE_IDX) + mm ## reg_name
#define SRII(reg_name, block, id)\
.reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
mm ## block ## id ## _ ## reg_name
#define DCCG_SRII(reg_name, block, id)\
.block ## _ ## reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
mm ## block ## id ## _ ## reg_name
#define VUPDATE_SRII(reg_name, block, id)\
.reg_name[id] = BASE(mm ## reg_name ## _ ## block ## id ## _BASE_IDX) + \
mm ## reg_name ## _ ## block ## id
#define SRII_DWB(reg_name, temp_name, block, id)\
.reg_name[id] = BASE(mm ## block ## id ## _ ## temp_name ## _BASE_IDX) + \
mm ## block ## id ## _ ## temp_name
#define SRII_MPC_RMU(reg_name, block, id)\
.RMU##_##reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
mm ## block ## id ## _ ## reg_name
static const struct dcn_hubbub_registers hubbub_reg = {
HUBBUB_REG_LIST_DCN30(0)
};
static const struct dcn_hubbub_shift hubbub_shift = {
HUBBUB_MASK_SH_LIST_DCN30(__SHIFT)
};
static const struct dcn_hubbub_mask hubbub_mask = {
HUBBUB_MASK_SH_LIST_DCN30(_MASK)
};
#define vmid_regs(id)\
[id] = { DCN20_VMID_REG_LIST(id) }
static const struct dcn_vmid_registers vmid_regs[] = {
vmid_regs(0),
vmid_regs(1),
vmid_regs(2),
vmid_regs(3),
vmid_regs(4),
vmid_regs(5),
vmid_regs(6),
vmid_regs(7),
vmid_regs(8),
vmid_regs(9),
vmid_regs(10),
vmid_regs(11),
vmid_regs(12),
vmid_regs(13),
vmid_regs(14),
vmid_regs(15)
};
static const struct dcn20_vmid_shift vmid_shifts = {
DCN20_VMID_MASK_SH_LIST(__SHIFT)
};
static const struct dcn20_vmid_mask vmid_masks = {
DCN20_VMID_MASK_SH_LIST(_MASK)
};
static struct hubbub *dcn303_hubbub_create(struct dc_context *ctx)
{
int i;
struct dcn20_hubbub *hubbub3 = kzalloc(sizeof(struct dcn20_hubbub), GFP_KERNEL);
if (!hubbub3)
return NULL;
hubbub3_construct(hubbub3, ctx, &hubbub_reg, &hubbub_shift, &hubbub_mask);
for (i = 0; i < res_cap_dcn303.num_vmid; i++) {
struct dcn20_vmid *vmid = &hubbub3->vmid[i];
vmid->ctx = ctx;
vmid->regs = &vmid_regs[i];
vmid->shifts = &vmid_shifts;
vmid->masks = &vmid_masks;
}
return &hubbub3->base;
}
#define vpg_regs(id)\
[id] = { VPG_DCN3_REG_LIST(id) }
static const struct dcn30_vpg_registers vpg_regs[] = {
vpg_regs(0),
vpg_regs(1),
vpg_regs(2)
};
static const struct dcn30_vpg_shift vpg_shift = {
DCN3_VPG_MASK_SH_LIST(__SHIFT)
};
static const struct dcn30_vpg_mask vpg_mask = {
DCN3_VPG_MASK_SH_LIST(_MASK)
};
static struct vpg *dcn303_vpg_create(struct dc_context *ctx, uint32_t inst)
{
struct dcn30_vpg *vpg3 = kzalloc(sizeof(struct dcn30_vpg), GFP_KERNEL);
if (!vpg3)
return NULL;
vpg3_construct(vpg3, ctx, inst, &vpg_regs[inst], &vpg_shift, &vpg_mask);
return &vpg3->base;
}
#define afmt_regs(id)\
[id] = { AFMT_DCN3_REG_LIST(id) }
static const struct dcn30_afmt_registers afmt_regs[] = {
afmt_regs(0),
afmt_regs(1),
afmt_regs(2)
};
static const struct dcn30_afmt_shift afmt_shift = {
DCN3_AFMT_MASK_SH_LIST(__SHIFT)
};
static const struct dcn30_afmt_mask afmt_mask = {
DCN3_AFMT_MASK_SH_LIST(_MASK)
};
static struct afmt *dcn303_afmt_create(struct dc_context *ctx, uint32_t inst)
{
struct dcn30_afmt *afmt3 = kzalloc(sizeof(struct dcn30_afmt), GFP_KERNEL);
if (!afmt3)
return NULL;
afmt3_construct(afmt3, ctx, inst, &afmt_regs[inst], &afmt_shift, &afmt_mask);
return &afmt3->base;
}
#define audio_regs(id)\
[id] = { AUD_COMMON_REG_LIST(id) }
static const struct dce_audio_registers audio_regs[] = {
audio_regs(0),
audio_regs(1),
audio_regs(2),
audio_regs(3),
audio_regs(4),
audio_regs(5),
audio_regs(6)
};
#define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\
SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\
SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\
AUD_COMMON_MASK_SH_LIST_BASE(mask_sh)
static const struct dce_audio_shift audio_shift = {
DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT)
};
static const struct dce_audio_mask audio_mask = {
DCE120_AUD_COMMON_MASK_SH_LIST(_MASK)
};
static struct audio *dcn303_create_audio(struct dc_context *ctx, unsigned int inst)
{
return dce_audio_create(ctx, inst, &audio_regs[inst], &audio_shift, &audio_mask);
}
#define stream_enc_regs(id)\
[id] = { SE_DCN3_REG_LIST(id) }
static const struct dcn10_stream_enc_registers stream_enc_regs[] = {
stream_enc_regs(0),
stream_enc_regs(1)
};
static const struct dcn10_stream_encoder_shift se_shift = {
SE_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
};
static const struct dcn10_stream_encoder_mask se_mask = {
SE_COMMON_MASK_SH_LIST_DCN30(_MASK)
};
static struct stream_encoder *dcn303_stream_encoder_create(enum engine_id eng_id, struct dc_context *ctx)
{
struct dcn10_stream_encoder *enc1;
struct vpg *vpg;
struct afmt *afmt;
int vpg_inst;
int afmt_inst;
/* Mapping of VPG, AFMT, DME register blocks to DIO block instance */
if (eng_id <= ENGINE_ID_DIGE) {
vpg_inst = eng_id;
afmt_inst = eng_id;
} else
return NULL;
enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL);
vpg = dcn303_vpg_create(ctx, vpg_inst);
afmt = dcn303_afmt_create(ctx, afmt_inst);
if (!enc1 || !vpg || !afmt)
return NULL;
dcn30_dio_stream_encoder_construct(enc1, ctx, ctx->dc_bios, eng_id, vpg, afmt, &stream_enc_regs[eng_id],
&se_shift, &se_mask);
return &enc1->base;
}
#define clk_src_regs(index, pllid)\
[index] = { CS_COMMON_REG_LIST_DCN3_03(index, pllid) }
static const struct dce110_clk_src_regs clk_src_regs[] = {
clk_src_regs(0, A),
clk_src_regs(1, B)
};
static const struct dce110_clk_src_shift cs_shift = {
CS_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
};
static const struct dce110_clk_src_mask cs_mask = {
CS_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
};
static struct clock_source *dcn303_clock_source_create(struct dc_context *ctx, struct dc_bios *bios,
enum clock_source_id id, const struct dce110_clk_src_regs *regs, bool dp_clk_src)
{
struct dce110_clk_src *clk_src = kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL);
if (!clk_src)
return NULL;
if (dcn3_clk_src_construct(clk_src, ctx, bios, id, regs, &cs_shift, &cs_mask)) {
clk_src->base.dp_clk_src = dp_clk_src;
return &clk_src->base;
}
BREAK_TO_DEBUGGER();
return NULL;
}
static const struct dce_hwseq_registers hwseq_reg = {
HWSEQ_DCN303_REG_LIST()
};
static const struct dce_hwseq_shift hwseq_shift = {
HWSEQ_DCN303_MASK_SH_LIST(__SHIFT)
};
static const struct dce_hwseq_mask hwseq_mask = {
HWSEQ_DCN303_MASK_SH_LIST(_MASK)
};
static struct dce_hwseq *dcn303_hwseq_create(struct dc_context *ctx)
{
struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
if (hws) {
hws->ctx = ctx;
hws->regs = &hwseq_reg;
hws->shifts = &hwseq_shift;
hws->masks = &hwseq_mask;
}
return hws;
}
#define hubp_regs(id)\
[id] = { HUBP_REG_LIST_DCN30(id) }
static const struct dcn_hubp2_registers hubp_regs[] = {
hubp_regs(0),
hubp_regs(1)
};
static const struct dcn_hubp2_shift hubp_shift = {
HUBP_MASK_SH_LIST_DCN30(__SHIFT)
};
static const struct dcn_hubp2_mask hubp_mask = {
HUBP_MASK_SH_LIST_DCN30(_MASK)
};
static struct hubp *dcn303_hubp_create(struct dc_context *ctx, uint32_t inst)
{
struct dcn20_hubp *hubp2 = kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL);
if (!hubp2)
return NULL;
if (hubp3_construct(hubp2, ctx, inst, &hubp_regs[inst], &hubp_shift, &hubp_mask))
return &hubp2->base;
BREAK_TO_DEBUGGER();
kfree(hubp2);
return NULL;
}
#define dpp_regs(id)\
[id] = { DPP_REG_LIST_DCN30(id) }
static const struct dcn3_dpp_registers dpp_regs[] = {
dpp_regs(0),
dpp_regs(1)
};
static const struct dcn3_dpp_shift tf_shift = {
DPP_REG_LIST_SH_MASK_DCN30(__SHIFT)
};
static const struct dcn3_dpp_mask tf_mask = {
DPP_REG_LIST_SH_MASK_DCN30(_MASK)
};
static struct dpp *dcn303_dpp_create(struct dc_context *ctx, uint32_t inst)
{
struct dcn3_dpp *dpp = kzalloc(sizeof(struct dcn3_dpp), GFP_KERNEL);
if (!dpp)
return NULL;
if (dpp3_construct(dpp, ctx, inst, &dpp_regs[inst], &tf_shift, &tf_mask))
return &dpp->base;
BREAK_TO_DEBUGGER();
kfree(dpp);
return NULL;
}
#define opp_regs(id)\
[id] = { OPP_REG_LIST_DCN30(id) }
static const struct dcn20_opp_registers opp_regs[] = {
opp_regs(0),
opp_regs(1)
};
static const struct dcn20_opp_shift opp_shift = {
OPP_MASK_SH_LIST_DCN20(__SHIFT)
};
static const struct dcn20_opp_mask opp_mask = {
OPP_MASK_SH_LIST_DCN20(_MASK)
};
static struct output_pixel_processor *dcn303_opp_create(struct dc_context *ctx, uint32_t inst)
{
struct dcn20_opp *opp = kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL);
if (!opp) {
BREAK_TO_DEBUGGER();
return NULL;
}
dcn20_opp_construct(opp, ctx, inst, &opp_regs[inst], &opp_shift, &opp_mask);
return &opp->base;
}
#define optc_regs(id)\
[id] = { OPTC_COMMON_REG_LIST_DCN3_0(id) }
static const struct dcn_optc_registers optc_regs[] = {
optc_regs(0),
optc_regs(1)
};
static const struct dcn_optc_shift optc_shift = {
OPTC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
};
static const struct dcn_optc_mask optc_mask = {
OPTC_COMMON_MASK_SH_LIST_DCN30(_MASK)
};
static struct timing_generator *dcn303_timing_generator_create(struct dc_context *ctx, uint32_t instance)
{
struct optc *tgn10 = kzalloc(sizeof(struct optc), GFP_KERNEL);
if (!tgn10)
return NULL;
tgn10->base.inst = instance;
tgn10->base.ctx = ctx;
tgn10->tg_regs = &optc_regs[instance];
tgn10->tg_shift = &optc_shift;
tgn10->tg_mask = &optc_mask;
dcn30_timing_generator_init(tgn10);
return &tgn10->base;
}
static const struct dcn30_mpc_registers mpc_regs = {
MPC_REG_LIST_DCN3_0(0),
MPC_REG_LIST_DCN3_0(1),
MPC_OUT_MUX_REG_LIST_DCN3_0(0),
MPC_OUT_MUX_REG_LIST_DCN3_0(1),
MPC_RMU_GLOBAL_REG_LIST_DCN3AG,
MPC_RMU_REG_LIST_DCN3AG(0),
MPC_DWB_MUX_REG_LIST_DCN3_0(0),
};
static const struct dcn30_mpc_shift mpc_shift = {
MPC_COMMON_MASK_SH_LIST_DCN303(__SHIFT)
};
static const struct dcn30_mpc_mask mpc_mask = {
MPC_COMMON_MASK_SH_LIST_DCN303(_MASK)
};
static struct mpc *dcn303_mpc_create(struct dc_context *ctx, int num_mpcc, int num_rmu)
{
struct dcn30_mpc *mpc30 = kzalloc(sizeof(struct dcn30_mpc), GFP_KERNEL);
if (!mpc30)
return NULL;
dcn30_mpc_construct(mpc30, ctx, &mpc_regs, &mpc_shift, &mpc_mask, num_mpcc, num_rmu);
return &mpc30->base;
}
#define dsc_regsDCN20(id)\
[id] = { DSC_REG_LIST_DCN20(id) }
static const struct dcn20_dsc_registers dsc_regs[] = {
dsc_regsDCN20(0),
dsc_regsDCN20(1)
};
static const struct dcn20_dsc_shift dsc_shift = {
DSC_REG_LIST_SH_MASK_DCN20(__SHIFT)
};
static const struct dcn20_dsc_mask dsc_mask = {
DSC_REG_LIST_SH_MASK_DCN20(_MASK)
};
static struct display_stream_compressor *dcn303_dsc_create(struct dc_context *ctx, uint32_t inst)
{
struct dcn20_dsc *dsc = kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL);
if (!dsc) {
BREAK_TO_DEBUGGER();
return NULL;
}
dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask);
return &dsc->base;
}
#define dwbc_regs_dcn3(id)\
[id] = { DWBC_COMMON_REG_LIST_DCN30(id) }
static const struct dcn30_dwbc_registers dwbc30_regs[] = {
dwbc_regs_dcn3(0)
};
static const struct dcn30_dwbc_shift dwbc30_shift = {
DWBC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
};
static const struct dcn30_dwbc_mask dwbc30_mask = {
DWBC_COMMON_MASK_SH_LIST_DCN30(_MASK)
};
static bool dcn303_dwbc_create(struct dc_context *ctx, struct resource_pool *pool)
{
int i;
uint32_t pipe_count = pool->res_cap->num_dwb;
for (i = 0; i < pipe_count; i++) {
struct dcn30_dwbc *dwbc30 = kzalloc(sizeof(struct dcn30_dwbc), GFP_KERNEL);
if (!dwbc30) {
dm_error("DC: failed to create dwbc30!\n");
return false;
}
dcn30_dwbc_construct(dwbc30, ctx, &dwbc30_regs[i], &dwbc30_shift, &dwbc30_mask, i);
pool->dwbc[i] = &dwbc30->base;
}
return true;
}
#define mcif_wb_regs_dcn3(id)\
[id] = { MCIF_WB_COMMON_REG_LIST_DCN30(id) }
static const struct dcn30_mmhubbub_registers mcif_wb30_regs[] = {
mcif_wb_regs_dcn3(0)
};
static const struct dcn30_mmhubbub_shift mcif_wb30_shift = {
MCIF_WB_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
};
static const struct dcn30_mmhubbub_mask mcif_wb30_mask = {
MCIF_WB_COMMON_MASK_SH_LIST_DCN30(_MASK)
};
static bool dcn303_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool)
{
int i;
uint32_t pipe_count = pool->res_cap->num_dwb;
for (i = 0; i < pipe_count; i++) {
struct dcn30_mmhubbub *mcif_wb30 = kzalloc(sizeof(struct dcn30_mmhubbub), GFP_KERNEL);
if (!mcif_wb30) {
dm_error("DC: failed to create mcif_wb30!\n");
return false;
}
dcn30_mmhubbub_construct(mcif_wb30, ctx, &mcif_wb30_regs[i], &mcif_wb30_shift, &mcif_wb30_mask, i);
pool->mcif_wb[i] = &mcif_wb30->base;
}
return true;
}
#define aux_engine_regs(id)\
[id] = {\
AUX_COMMON_REG_LIST0(id), \
.AUXN_IMPCAL = 0, \
.AUXP_IMPCAL = 0, \
.AUX_RESET_MASK = DP_AUX0_AUX_CONTROL__AUX_RESET_MASK, \
}
static const struct dce110_aux_registers aux_engine_regs[] = {
aux_engine_regs(0),
aux_engine_regs(1)
};
static const struct dce110_aux_registers_shift aux_shift = {
DCN_AUX_MASK_SH_LIST(__SHIFT)
};
static const struct dce110_aux_registers_mask aux_mask = {
DCN_AUX_MASK_SH_LIST(_MASK)
};
static struct dce_aux *dcn303_aux_engine_create(struct dc_context *ctx, uint32_t inst)
{
struct aux_engine_dce110 *aux_engine = kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL);
if (!aux_engine)
return NULL;
dce110_aux_engine_construct(aux_engine, ctx, inst, SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
&aux_engine_regs[inst], &aux_mask, &aux_shift, ctx->dc->caps.extended_aux_timeout_support);
return &aux_engine->base;
}
#define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST(id) }
static const struct dce_i2c_registers i2c_hw_regs[] = {
i2c_inst_regs(1),
i2c_inst_regs(2)
};
static const struct dce_i2c_shift i2c_shifts = {
I2C_COMMON_MASK_SH_LIST_DCN2(__SHIFT)
};
static const struct dce_i2c_mask i2c_masks = {
I2C_COMMON_MASK_SH_LIST_DCN2(_MASK)
};
static struct dce_i2c_hw *dcn303_i2c_hw_create(struct dc_context *ctx, uint32_t inst)
{
struct dce_i2c_hw *dce_i2c_hw = kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL);
if (!dce_i2c_hw)
return NULL;
dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst, &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);
return dce_i2c_hw;
}
static const struct encoder_feature_support link_enc_feature = {
.max_hdmi_deep_color = COLOR_DEPTH_121212,
.max_hdmi_pixel_clock = 600000,
.hdmi_ycbcr420_supported = true,
.dp_ycbcr420_supported = true,
.fec_supported = true,
.flags.bits.IS_HBR2_CAPABLE = true,
.flags.bits.IS_HBR3_CAPABLE = true,
.flags.bits.IS_TPS3_CAPABLE = true,
.flags.bits.IS_TPS4_CAPABLE = true
};
#define link_regs(id, phyid)\
[id] = {\
LE_DCN3_REG_LIST(id), \
UNIPHY_DCN2_REG_LIST(phyid), \
SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \
}
static const struct dcn10_link_enc_registers link_enc_regs[] = {
link_regs(0, A),
link_regs(1, B)
};
static const struct dcn10_link_enc_shift le_shift = {
LINK_ENCODER_MASK_SH_LIST_DCN30(__SHIFT),
DPCS_DCN2_MASK_SH_LIST(__SHIFT)
};
static const struct dcn10_link_enc_mask le_mask = {
LINK_ENCODER_MASK_SH_LIST_DCN30(_MASK),
DPCS_DCN2_MASK_SH_LIST(_MASK)
};
#define aux_regs(id)\
[id] = { DCN2_AUX_REG_LIST(id) }
static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = {
aux_regs(0),
aux_regs(1)
};
#define hpd_regs(id)\
[id] = { HPD_REG_LIST(id) }
static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = {
hpd_regs(0),
hpd_regs(1)
};
static struct link_encoder *dcn303_link_encoder_create(const struct encoder_init_data *enc_init_data)
{
struct dcn20_link_encoder *enc20 = kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL);
if (!enc20)
return NULL;
dcn30_link_encoder_construct(enc20, enc_init_data, &link_enc_feature,
&link_enc_regs[enc_init_data->transmitter], &link_enc_aux_regs[enc_init_data->channel - 1],
&link_enc_hpd_regs[enc_init_data->hpd_source], &le_shift, &le_mask);
return &enc20->enc10.base;
}
static const struct dce_panel_cntl_registers panel_cntl_regs[] = {
{ DCN_PANEL_CNTL_REG_LIST() }
};
static const struct dce_panel_cntl_shift panel_cntl_shift = {
DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT)
};
static const struct dce_panel_cntl_mask panel_cntl_mask = {
DCE_PANEL_CNTL_MASK_SH_LIST(_MASK)
};
static struct panel_cntl *dcn303_panel_cntl_create(const struct panel_cntl_init_data *init_data)
{
struct dce_panel_cntl *panel_cntl = kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL);
if (!panel_cntl)
return NULL;
dce_panel_cntl_construct(panel_cntl, init_data, &panel_cntl_regs[init_data->inst],
&panel_cntl_shift, &panel_cntl_mask);
return &panel_cntl->base;
}
static void read_dce_straps(struct dc_context *ctx, struct resource_straps *straps)
{
generic_reg_get(ctx, mmDC_PINSTRAPS + BASE(mmDC_PINSTRAPS_BASE_IDX),
FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio);
}
static const struct resource_create_funcs res_create_funcs = {
.read_dce_straps = read_dce_straps,
.create_audio = dcn303_create_audio,
.create_stream_encoder = dcn303_stream_encoder_create,
.create_hwseq = dcn303_hwseq_create,
};
static const struct resource_create_funcs res_create_maximus_funcs = {
.read_dce_straps = NULL,
.create_audio = NULL,
.create_stream_encoder = NULL,
.create_hwseq = dcn303_hwseq_create,
};
static bool is_soc_bounding_box_valid(struct dc *dc)
{
uint32_t hw_internal_rev = dc->ctx->asic_id.hw_internal_rev;
if (ASICREV_IS_BEIGE_GOBY_P(hw_internal_rev))
return true;
return false;
}
static bool init_soc_bounding_box(struct dc *dc, struct resource_pool *pool)
{
struct _vcs_dpi_soc_bounding_box_st *loaded_bb = &dcn3_03_soc;
struct _vcs_dpi_ip_params_st *loaded_ip = &dcn3_03_ip;
DC_LOGGER_INIT(dc->ctx->logger);
if (!is_soc_bounding_box_valid(dc)) {
DC_LOG_ERROR("%s: not valid soc bounding box/n", __func__);
return false;
}
loaded_ip->max_num_otg = pool->pipe_count;
loaded_ip->max_num_dpp = pool->pipe_count;
loaded_ip->clamp_min_dcfclk = dc->config.clamp_min_dcfclk;
dcn20_patch_bounding_box(dc, loaded_bb);
if (dc->ctx->dc_bios->funcs->get_soc_bb_info) {
struct bp_soc_bb_info bb_info = { 0 };
if (dc->ctx->dc_bios->funcs->get_soc_bb_info(
dc->ctx->dc_bios, &bb_info) == BP_RESULT_OK) {
if (bb_info.dram_clock_change_latency_100ns > 0)
dcn3_03_soc.dram_clock_change_latency_us =
bb_info.dram_clock_change_latency_100ns * 10;
if (bb_info.dram_sr_enter_exit_latency_100ns > 0)
dcn3_03_soc.sr_enter_plus_exit_time_us =
bb_info.dram_sr_enter_exit_latency_100ns * 10;
if (bb_info.dram_sr_exit_latency_100ns > 0)
dcn3_03_soc.sr_exit_time_us =
bb_info.dram_sr_exit_latency_100ns * 10;
}
}
return true;
}
static void dcn303_resource_destruct(struct resource_pool *pool)
{
unsigned int i;
for (i = 0; i < pool->stream_enc_count; i++) {
if (pool->stream_enc[i] != NULL) {
if (pool->stream_enc[i]->vpg != NULL) {
kfree(DCN30_VPG_FROM_VPG(pool->stream_enc[i]->vpg));
pool->stream_enc[i]->vpg = NULL;
}
if (pool->stream_enc[i]->afmt != NULL) {
kfree(DCN30_AFMT_FROM_AFMT(pool->stream_enc[i]->afmt));
pool->stream_enc[i]->afmt = NULL;
}
kfree(DCN10STRENC_FROM_STRENC(pool->stream_enc[i]));
pool->stream_enc[i] = NULL;
}
}
for (i = 0; i < pool->res_cap->num_dsc; i++) {
if (pool->dscs[i] != NULL)
dcn20_dsc_destroy(&pool->dscs[i]);
}
if (pool->mpc != NULL) {
kfree(TO_DCN20_MPC(pool->mpc));
pool->mpc = NULL;
}
if (pool->hubbub != NULL) {
kfree(pool->hubbub);
pool->hubbub = NULL;
}
for (i = 0; i < pool->pipe_count; i++) {
if (pool->dpps[i] != NULL) {
kfree(TO_DCN20_DPP(pool->dpps[i]));
pool->dpps[i] = NULL;
}
if (pool->hubps[i] != NULL) {
kfree(TO_DCN20_HUBP(pool->hubps[i]));
pool->hubps[i] = NULL;
}
if (pool->irqs != NULL)
dal_irq_service_destroy(&pool->irqs);
}
for (i = 0; i < pool->res_cap->num_ddc; i++) {
if (pool->engines[i] != NULL)
dce110_engine_destroy(&pool->engines[i]);
if (pool->hw_i2cs[i] != NULL) {
kfree(pool->hw_i2cs[i]);
pool->hw_i2cs[i] = NULL;
}
if (pool->sw_i2cs[i] != NULL) {
kfree(pool->sw_i2cs[i]);
pool->sw_i2cs[i] = NULL;
}
}
for (i = 0; i < pool->res_cap->num_opp; i++) {
if (pool->opps[i] != NULL)
pool->opps[i]->funcs->opp_destroy(&pool->opps[i]);
}
for (i = 0; i < pool->res_cap->num_timing_generator; i++) {
if (pool->timing_generators[i] != NULL) {
kfree(DCN10TG_FROM_TG(pool->timing_generators[i]));
pool->timing_generators[i] = NULL;
}
}
for (i = 0; i < pool->res_cap->num_dwb; i++) {
if (pool->dwbc[i] != NULL) {
kfree(TO_DCN30_DWBC(pool->dwbc[i]));
pool->dwbc[i] = NULL;
}
if (pool->mcif_wb[i] != NULL) {
kfree(TO_DCN30_MMHUBBUB(pool->mcif_wb[i]));
pool->mcif_wb[i] = NULL;
}
}
for (i = 0; i < pool->audio_count; i++) {
if (pool->audios[i])
dce_aud_destroy(&pool->audios[i]);
}
for (i = 0; i < pool->clk_src_count; i++) {
if (pool->clock_sources[i] != NULL)
dcn20_clock_source_destroy(&pool->clock_sources[i]);
}
if (pool->dp_clock_source != NULL)
dcn20_clock_source_destroy(&pool->dp_clock_source);
for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) {
if (pool->mpc_lut[i] != NULL) {
dc_3dlut_func_release(pool->mpc_lut[i]);
pool->mpc_lut[i] = NULL;
}
if (pool->mpc_shaper[i] != NULL) {
dc_transfer_func_release(pool->mpc_shaper[i]);
pool->mpc_shaper[i] = NULL;
}
}
for (i = 0; i < pool->pipe_count; i++) {
if (pool->multiple_abms[i] != NULL)
dce_abm_destroy(&pool->multiple_abms[i]);
}
if (pool->psr != NULL)
dmub_psr_destroy(&pool->psr);
if (pool->dccg != NULL)
dcn_dccg_destroy(&pool->dccg);
if (pool->oem_device != NULL)
dal_ddc_service_destroy(&pool->oem_device);
}
static void dcn303_destroy_resource_pool(struct resource_pool **pool)
{
dcn303_resource_destruct(*pool);
kfree(*pool);
*pool = NULL;
}
static void dcn303_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts,
unsigned int *optimal_dcfclk,
unsigned int *optimal_fclk)
{
double bw_from_dram, bw_from_dram1, bw_from_dram2;
bw_from_dram1 = uclk_mts * dcn3_03_soc.num_chans *
dcn3_03_soc.dram_channel_width_bytes * (dcn3_03_soc.max_avg_dram_bw_use_normal_percent / 100);
bw_from_dram2 = uclk_mts * dcn3_03_soc.num_chans *
dcn3_03_soc.dram_channel_width_bytes * (dcn3_03_soc.max_avg_sdp_bw_use_normal_percent / 100);
bw_from_dram = (bw_from_dram1 < bw_from_dram2) ? bw_from_dram1 : bw_from_dram2;
if (optimal_fclk)
*optimal_fclk = bw_from_dram /
(dcn3_03_soc.fabric_datapath_to_dcn_data_return_bytes *
(dcn3_03_soc.max_avg_sdp_bw_use_normal_percent / 100));
if (optimal_dcfclk)
*optimal_dcfclk = bw_from_dram /
(dcn3_03_soc.return_bus_width_bytes * (dcn3_03_soc.max_avg_sdp_bw_use_normal_percent / 100));
}
void dcn303_update_bw_bounding_box(struct dc *dc, struct clk_bw_params *bw_params)
{
unsigned int i, j;
unsigned int num_states = 0;
unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0};
unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0};
unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0};
unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0};
unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {694, 875, 1000, 1200};
unsigned int num_dcfclk_sta_targets = 4;
unsigned int num_uclk_states;
if (dc->ctx->dc_bios->vram_info.num_chans)
dcn3_03_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans;
if (dc->ctx->dc_bios->vram_info.dram_channel_width_bytes)
dcn3_03_soc.dram_channel_width_bytes = dc->ctx->dc_bios->vram_info.dram_channel_width_bytes;
dcn3_03_soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
dc->dml.soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
if (bw_params->clk_table.entries[0].memclk_mhz) {
int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, max_phyclk_mhz = 0;
for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
}
if (!max_dcfclk_mhz)
max_dcfclk_mhz = dcn3_03_soc.clock_limits[0].dcfclk_mhz;
if (!max_dispclk_mhz)
max_dispclk_mhz = dcn3_03_soc.clock_limits[0].dispclk_mhz;
if (!max_dppclk_mhz)
max_dppclk_mhz = dcn3_03_soc.clock_limits[0].dppclk_mhz;
if (!max_phyclk_mhz)
max_phyclk_mhz = dcn3_03_soc.clock_limits[0].phyclk_mhz;
if (max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
dcfclk_sta_targets[num_dcfclk_sta_targets] = max_dcfclk_mhz;
num_dcfclk_sta_targets++;
} else if (max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
for (i = 0; i < num_dcfclk_sta_targets; i++) {
if (dcfclk_sta_targets[i] > max_dcfclk_mhz) {
dcfclk_sta_targets[i] = max_dcfclk_mhz;
break;
}
}
/* Update size of array since we "removed" duplicates */
num_dcfclk_sta_targets = i + 1;
}
num_uclk_states = bw_params->clk_table.num_entries;
/* Calculate optimal dcfclk for each uclk */
for (i = 0; i < num_uclk_states; i++) {
dcn303_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16,
&optimal_dcfclk_for_uclk[i], NULL);
if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz)
optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz;
}
/* Calculate optimal uclk for each dcfclk sta target */
for (i = 0; i < num_dcfclk_sta_targets; i++) {
for (j = 0; j < num_uclk_states; j++) {
if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) {
optimal_uclk_for_dcfclk_sta_targets[i] =
bw_params->clk_table.entries[j].memclk_mhz * 16;
break;
}
}
}
i = 0;
j = 0;
/* create the final dcfclk and uclk table */
while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) {
if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) {
dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
} else {
if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
dram_speed_mts[num_states++] =
bw_params->clk_table.entries[j++].memclk_mhz * 16;
} else {
j = num_uclk_states;
}
}
}
while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) {
dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
}
while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES &&
optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
}
dcn3_03_soc.num_states = num_states;
for (i = 0; i < dcn3_03_soc.num_states; i++) {
dcn3_03_soc.clock_limits[i].state = i;
dcn3_03_soc.clock_limits[i].dcfclk_mhz = dcfclk_mhz[i];
dcn3_03_soc.clock_limits[i].fabricclk_mhz = dcfclk_mhz[i];
dcn3_03_soc.clock_limits[i].dram_speed_mts = dram_speed_mts[i];
/* Fill all states with max values of all other clocks */
dcn3_03_soc.clock_limits[i].dispclk_mhz = max_dispclk_mhz;
dcn3_03_soc.clock_limits[i].dppclk_mhz = max_dppclk_mhz;
dcn3_03_soc.clock_limits[i].phyclk_mhz = max_phyclk_mhz;
dcn3_03_soc.clock_limits[i].dtbclk_mhz = dcn3_03_soc.clock_limits[0].dtbclk_mhz;
/* These clocks cannot come from bw_params, always fill from dcn3_03_soc[1] */
/* FCLK, PHYCLK_D18, SOCCLK, DSCCLK */
dcn3_03_soc.clock_limits[i].phyclk_d18_mhz = dcn3_03_soc.clock_limits[0].phyclk_d18_mhz;
dcn3_03_soc.clock_limits[i].socclk_mhz = dcn3_03_soc.clock_limits[0].socclk_mhz;
dcn3_03_soc.clock_limits[i].dscclk_mhz = dcn3_03_soc.clock_limits[0].dscclk_mhz;
}
/* re-init DML with updated bb */
dml_init_instance(&dc->dml, &dcn3_03_soc, &dcn3_03_ip, DML_PROJECT_DCN30);
if (dc->current_state)
dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_03_soc, &dcn3_03_ip, DML_PROJECT_DCN30);
}
}
static struct resource_funcs dcn303_res_pool_funcs = {
.destroy = dcn303_destroy_resource_pool,
.link_enc_create = dcn303_link_encoder_create,
.panel_cntl_create = dcn303_panel_cntl_create,
.validate_bandwidth = dcn30_validate_bandwidth,
.calculate_wm_and_dlg = dcn30_calculate_wm_and_dlg,
.update_soc_for_wm_a = dcn30_update_soc_for_wm_a,
.populate_dml_pipes = dcn30_populate_dml_pipes_from_context,
.acquire_idle_pipe_for_layer = dcn20_acquire_idle_pipe_for_layer,
.add_stream_to_ctx = dcn30_add_stream_to_ctx,
.add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource,
.remove_stream_from_ctx = dcn20_remove_stream_from_ctx,
.populate_dml_writeback_from_context = dcn30_populate_dml_writeback_from_context,
.set_mcif_arb_params = dcn30_set_mcif_arb_params,
.find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link,
.acquire_post_bldn_3dlut = dcn30_acquire_post_bldn_3dlut,
.release_post_bldn_3dlut = dcn30_release_post_bldn_3dlut,
.update_bw_bounding_box = dcn303_update_bw_bounding_box,
.patch_unknown_plane_state = dcn20_patch_unknown_plane_state,
};
static struct dc_cap_funcs cap_funcs = {
.get_dcc_compression_cap = dcn20_get_dcc_compression_cap
};
static const struct bios_registers bios_regs = {
NBIO_SR(BIOS_SCRATCH_3),
NBIO_SR(BIOS_SCRATCH_6)
};
static const struct dccg_registers dccg_regs = {
DCCG_REG_LIST_DCN3_03()
};
static const struct dccg_shift dccg_shift = {
DCCG_MASK_SH_LIST_DCN3_03(__SHIFT)
};
static const struct dccg_mask dccg_mask = {
DCCG_MASK_SH_LIST_DCN3_03(_MASK)
};
#define abm_regs(id)\
[id] = { ABM_DCN301_REG_LIST(id) }
static const struct dce_abm_registers abm_regs[] = {
abm_regs(0),
abm_regs(1)
};
static const struct dce_abm_shift abm_shift = {
ABM_MASK_SH_LIST_DCN30(__SHIFT)
};
static const struct dce_abm_mask abm_mask = {
ABM_MASK_SH_LIST_DCN30(_MASK)
};
static bool dcn303_resource_construct(
uint8_t num_virtual_links,
struct dc *dc,
struct resource_pool *pool)
{
int i;
struct dc_context *ctx = dc->ctx;
struct irq_service_init_data init_data;
struct ddc_service_init_data ddc_init_data;
ctx->dc_bios->regs = &bios_regs;
pool->res_cap = &res_cap_dcn303;
pool->funcs = &dcn303_res_pool_funcs;
/*************************************************
* Resource + asic cap harcoding *
*************************************************/
pool->underlay_pipe_index = NO_UNDERLAY_PIPE;
pool->pipe_count = pool->res_cap->num_timing_generator;
pool->mpcc_count = pool->res_cap->num_timing_generator;
dc->caps.max_downscale_ratio = 600;
dc->caps.i2c_speed_in_khz = 100;
dc->caps.i2c_speed_in_khz_hdcp = 5; /*1.4 w/a applied by derfault*/
dc->caps.max_cursor_size = 256;
dc->caps.min_horizontal_blanking_period = 80;
dc->caps.dmdata_alloc_size = 2048;
#if defined(CONFIG_DRM_AMD_DC_DCN)
dc->caps.mall_size_per_mem_channel = 4;
/* total size = mall per channel * num channels * 1024 * 1024 */
dc->caps.mall_size_total = dc->caps.mall_size_per_mem_channel *
dc->ctx->dc_bios->vram_info.num_chans *
1024 * 1024;
dc->caps.cursor_cache_size =
dc->caps.max_cursor_size * dc->caps.max_cursor_size * 8;
#endif
dc->caps.max_slave_planes = 1;
dc->caps.post_blend_color_processing = true;
dc->caps.force_dp_tps4_for_cp2520 = true;
dc->caps.extended_aux_timeout_support = true;
dc->caps.dmcub_support = true;
/* Color pipeline capabilities */
dc->caps.color.dpp.dcn_arch = 1;
dc->caps.color.dpp.input_lut_shared = 0;
dc->caps.color.dpp.icsc = 1;
dc->caps.color.dpp.dgam_ram = 0; // must use gamma_corr
dc->caps.color.dpp.dgam_rom_caps.srgb = 1;
dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1;
dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 1;
dc->caps.color.dpp.dgam_rom_caps.pq = 1;
dc->caps.color.dpp.dgam_rom_caps.hlg = 1;
dc->caps.color.dpp.post_csc = 1;
dc->caps.color.dpp.gamma_corr = 1;
dc->caps.color.dpp.dgam_rom_for_yuv = 0;
dc->caps.color.dpp.hw_3d_lut = 1;
dc->caps.color.dpp.ogam_ram = 1;
// no OGAM ROM on DCN3
dc->caps.color.dpp.ogam_rom_caps.srgb = 0;
dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0;
dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0;
dc->caps.color.dpp.ogam_rom_caps.pq = 0;
dc->caps.color.dpp.ogam_rom_caps.hlg = 0;
dc->caps.color.dpp.ocsc = 0;
dc->caps.color.mpc.gamut_remap = 1;
dc->caps.color.mpc.num_3dluts = pool->res_cap->num_mpc_3dlut; //3
dc->caps.color.mpc.ogam_ram = 1;
dc->caps.color.mpc.ogam_rom_caps.srgb = 0;
dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0;
dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0;
dc->caps.color.mpc.ogam_rom_caps.pq = 0;
dc->caps.color.mpc.ogam_rom_caps.hlg = 0;
dc->caps.color.mpc.ocsc = 1;
if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV)
dc->debug = debug_defaults_drv;
else
dc->debug = debug_defaults_diags;
// Init the vm_helper
if (dc->vm_helper)
vm_helper_init(dc->vm_helper, 16);
/*************************************************
* Create resources *
*************************************************/
/* Clock Sources for Pixel Clock*/
pool->clock_sources[DCN303_CLK_SRC_PLL0] =
dcn303_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL0,
&clk_src_regs[0], false);
pool->clock_sources[DCN303_CLK_SRC_PLL1] =
dcn303_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL1,
&clk_src_regs[1], false);
pool->clk_src_count = DCN303_CLK_SRC_TOTAL;
/* todo: not reuse phy_pll registers */
pool->dp_clock_source =
dcn303_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_ID_DP_DTO,
&clk_src_regs[0], true);
for (i = 0; i < pool->clk_src_count; i++) {
if (pool->clock_sources[i] == NULL) {
dm_error("DC: failed to create clock sources!\n");
BREAK_TO_DEBUGGER();
goto create_fail;
}
}
/* DCCG */
pool->dccg = dccg30_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask);
if (pool->dccg == NULL) {
dm_error("DC: failed to create dccg!\n");
BREAK_TO_DEBUGGER();
goto create_fail;
}
/* PP Lib and SMU interfaces */
init_soc_bounding_box(dc, pool);
/* DML */
dml_init_instance(&dc->dml, &dcn3_03_soc, &dcn3_03_ip, DML_PROJECT_DCN30);
/* IRQ */
init_data.ctx = dc->ctx;
pool->irqs = dal_irq_service_dcn303_create(&init_data);
if (!pool->irqs)
goto create_fail;
/* HUBBUB */
pool->hubbub = dcn303_hubbub_create(ctx);
if (pool->hubbub == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create hubbub!\n");
goto create_fail;
}
/* HUBPs, DPPs, OPPs and TGs */
for (i = 0; i < pool->pipe_count; i++) {
pool->hubps[i] = dcn303_hubp_create(ctx, i);
if (pool->hubps[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create hubps!\n");
goto create_fail;
}
pool->dpps[i] = dcn303_dpp_create(ctx, i);
if (pool->dpps[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create dpps!\n");
goto create_fail;
}
}
for (i = 0; i < pool->res_cap->num_opp; i++) {
pool->opps[i] = dcn303_opp_create(ctx, i);
if (pool->opps[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create output pixel processor!\n");
goto create_fail;
}
}
for (i = 0; i < pool->res_cap->num_timing_generator; i++) {
pool->timing_generators[i] = dcn303_timing_generator_create(ctx, i);
if (pool->timing_generators[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create tg!\n");
goto create_fail;
}
}
pool->timing_generator_count = i;
/* PSR */
pool->psr = dmub_psr_create(ctx);
if (pool->psr == NULL) {
dm_error("DC: failed to create psr!\n");
BREAK_TO_DEBUGGER();
goto create_fail;
}
/* ABM */
for (i = 0; i < pool->res_cap->num_timing_generator; i++) {
pool->multiple_abms[i] = dmub_abm_create(ctx, &abm_regs[i], &abm_shift, &abm_mask);
if (pool->multiple_abms[i] == NULL) {
dm_error("DC: failed to create abm for pipe %d!\n", i);
BREAK_TO_DEBUGGER();
goto create_fail;
}
}
/* MPC and DSC */
pool->mpc = dcn303_mpc_create(ctx, pool->mpcc_count, pool->res_cap->num_mpc_3dlut);
if (pool->mpc == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create mpc!\n");
goto create_fail;
}
for (i = 0; i < pool->res_cap->num_dsc; i++) {
pool->dscs[i] = dcn303_dsc_create(ctx, i);
if (pool->dscs[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create display stream compressor %d!\n", i);
goto create_fail;
}
}
/* DWB and MMHUBBUB */
if (!dcn303_dwbc_create(ctx, pool)) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create dwbc!\n");
goto create_fail;
}
if (!dcn303_mmhubbub_create(ctx, pool)) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create mcif_wb!\n");
goto create_fail;
}
/* AUX and I2C */
for (i = 0; i < pool->res_cap->num_ddc; i++) {
pool->engines[i] = dcn303_aux_engine_create(ctx, i);
if (pool->engines[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC:failed to create aux engine!!\n");
goto create_fail;
}
pool->hw_i2cs[i] = dcn303_i2c_hw_create(ctx, i);
if (pool->hw_i2cs[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC:failed to create hw i2c!!\n");
goto create_fail;
}
pool->sw_i2cs[i] = NULL;
}
/* Audio, Stream Encoders including HPO and virtual, MPC 3D LUTs */
if (!resource_construct(num_virtual_links, dc, pool,
(!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment) ?
&res_create_funcs : &res_create_maximus_funcs)))
goto create_fail;
/* HW Sequencer and Plane caps */
dcn303_hw_sequencer_construct(dc);
dc->caps.max_planes = pool->pipe_count;
for (i = 0; i < dc->caps.max_planes; ++i)
dc->caps.planes[i] = plane_cap;
dc->cap_funcs = cap_funcs;
if (dc->ctx->dc_bios->fw_info.oem_i2c_present) {
ddc_init_data.ctx = dc->ctx;
ddc_init_data.link = NULL;
ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id;
ddc_init_data.id.enum_id = 0;
ddc_init_data.id.type = OBJECT_TYPE_GENERIC;
pool->oem_device = dal_ddc_service_create(&ddc_init_data);
} else {
pool->oem_device = NULL;
}
return true;
create_fail:
dcn303_resource_destruct(pool);
return false;
}
struct resource_pool *dcn303_create_resource_pool(const struct dc_init_data *init_data, struct dc *dc)
{
struct resource_pool *pool = kzalloc(sizeof(struct resource_pool), GFP_KERNEL);
if (!pool)
return NULL;
if (dcn303_resource_construct(init_data->num_virtual_links, dc, pool))
return pool;
BREAK_TO_DEBUGGER();
kfree(pool);
return NULL;
}