blob: 9316a726195cc00f949eba5915f5e18339d341f6 [file] [log] [blame]
/*
* Copyright 2019 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#define SWSMU_CODE_LAYER_L2
#include <linux/firmware.h>
#include "amdgpu.h"
#include "amdgpu_smu.h"
#include "atomfirmware.h"
#include "amdgpu_atomfirmware.h"
#include "amdgpu_atombios.h"
#include "smu_v13_0.h"
#include "smu13_driver_if_aldebaran.h"
#include "soc15_common.h"
#include "atom.h"
#include "power_state.h"
#include "aldebaran_ppt.h"
#include "smu_v13_0_pptable.h"
#include "aldebaran_ppsmc.h"
#include "nbio/nbio_7_4_offset.h"
#include "nbio/nbio_7_4_sh_mask.h"
#include "thm/thm_11_0_2_offset.h"
#include "thm/thm_11_0_2_sh_mask.h"
#include "amdgpu_xgmi.h"
#include <linux/pci.h>
#include "amdgpu_ras.h"
#include "smu_cmn.h"
#include "mp/mp_13_0_2_offset.h"
/*
* DO NOT use these for err/warn/info/debug messages.
* Use dev_err, dev_warn, dev_info and dev_dbg instead.
* They are more MGPU friendly.
*/
#undef pr_err
#undef pr_warn
#undef pr_info
#undef pr_debug
#define to_amdgpu_device(x) (container_of(x, struct amdgpu_device, pm.smu_i2c))
#define ALDEBARAN_FEA_MAP(smu_feature, aldebaran_feature) \
[smu_feature] = {1, (aldebaran_feature)}
#define FEATURE_MASK(feature) (1ULL << feature)
#define SMC_DPM_FEATURE ( \
FEATURE_MASK(FEATURE_DATA_CALCULATIONS) | \
FEATURE_MASK(FEATURE_DPM_GFXCLK_BIT) | \
FEATURE_MASK(FEATURE_DPM_UCLK_BIT) | \
FEATURE_MASK(FEATURE_DPM_SOCCLK_BIT) | \
FEATURE_MASK(FEATURE_DPM_FCLK_BIT) | \
FEATURE_MASK(FEATURE_DPM_LCLK_BIT) | \
FEATURE_MASK(FEATURE_DPM_XGMI_BIT) | \
FEATURE_MASK(FEATURE_DPM_VCN_BIT))
/* possible frequency drift (1Mhz) */
#define EPSILON 1
#define smnPCIE_ESM_CTRL 0x111003D0
static const struct smu_temperature_range smu13_thermal_policy[] =
{
{-273150, 99000, 99000, -273150, 99000, 99000, -273150, 99000, 99000},
{ 120000, 120000, 120000, 120000, 120000, 120000, 120000, 120000, 120000},
};
static const struct cmn2asic_msg_mapping aldebaran_message_map[SMU_MSG_MAX_COUNT] = {
MSG_MAP(TestMessage, PPSMC_MSG_TestMessage, 0),
MSG_MAP(GetSmuVersion, PPSMC_MSG_GetSmuVersion, 1),
MSG_MAP(GetDriverIfVersion, PPSMC_MSG_GetDriverIfVersion, 1),
MSG_MAP(EnableAllSmuFeatures, PPSMC_MSG_EnableAllSmuFeatures, 0),
MSG_MAP(DisableAllSmuFeatures, PPSMC_MSG_DisableAllSmuFeatures, 0),
MSG_MAP(GetEnabledSmuFeaturesLow, PPSMC_MSG_GetEnabledSmuFeaturesLow, 0),
MSG_MAP(GetEnabledSmuFeaturesHigh, PPSMC_MSG_GetEnabledSmuFeaturesHigh, 0),
MSG_MAP(SetDriverDramAddrHigh, PPSMC_MSG_SetDriverDramAddrHigh, 1),
MSG_MAP(SetDriverDramAddrLow, PPSMC_MSG_SetDriverDramAddrLow, 1),
MSG_MAP(SetToolsDramAddrHigh, PPSMC_MSG_SetToolsDramAddrHigh, 0),
MSG_MAP(SetToolsDramAddrLow, PPSMC_MSG_SetToolsDramAddrLow, 0),
MSG_MAP(TransferTableSmu2Dram, PPSMC_MSG_TransferTableSmu2Dram, 1),
MSG_MAP(TransferTableDram2Smu, PPSMC_MSG_TransferTableDram2Smu, 0),
MSG_MAP(UseDefaultPPTable, PPSMC_MSG_UseDefaultPPTable, 0),
MSG_MAP(SetSystemVirtualDramAddrHigh, PPSMC_MSG_SetSystemVirtualDramAddrHigh, 0),
MSG_MAP(SetSystemVirtualDramAddrLow, PPSMC_MSG_SetSystemVirtualDramAddrLow, 0),
MSG_MAP(SetSoftMinByFreq, PPSMC_MSG_SetSoftMinByFreq, 0),
MSG_MAP(SetSoftMaxByFreq, PPSMC_MSG_SetSoftMaxByFreq, 0),
MSG_MAP(SetHardMinByFreq, PPSMC_MSG_SetHardMinByFreq, 0),
MSG_MAP(SetHardMaxByFreq, PPSMC_MSG_SetHardMaxByFreq, 0),
MSG_MAP(GetMinDpmFreq, PPSMC_MSG_GetMinDpmFreq, 0),
MSG_MAP(GetMaxDpmFreq, PPSMC_MSG_GetMaxDpmFreq, 0),
MSG_MAP(GetDpmFreqByIndex, PPSMC_MSG_GetDpmFreqByIndex, 1),
MSG_MAP(SetWorkloadMask, PPSMC_MSG_SetWorkloadMask, 1),
MSG_MAP(GetVoltageByDpm, PPSMC_MSG_GetVoltageByDpm, 0),
MSG_MAP(GetVoltageByDpmOverdrive, PPSMC_MSG_GetVoltageByDpmOverdrive, 0),
MSG_MAP(SetPptLimit, PPSMC_MSG_SetPptLimit, 0),
MSG_MAP(GetPptLimit, PPSMC_MSG_GetPptLimit, 1),
MSG_MAP(PrepareMp1ForUnload, PPSMC_MSG_PrepareMp1ForUnload, 0),
MSG_MAP(GfxDeviceDriverReset, PPSMC_MSG_GfxDriverReset, 0),
MSG_MAP(RunDcBtc, PPSMC_MSG_RunDcBtc, 0),
MSG_MAP(DramLogSetDramAddrHigh, PPSMC_MSG_DramLogSetDramAddrHigh, 0),
MSG_MAP(DramLogSetDramAddrLow, PPSMC_MSG_DramLogSetDramAddrLow, 0),
MSG_MAP(DramLogSetDramSize, PPSMC_MSG_DramLogSetDramSize, 0),
MSG_MAP(GetDebugData, PPSMC_MSG_GetDebugData, 0),
MSG_MAP(WaflTest, PPSMC_MSG_WaflTest, 0),
MSG_MAP(SetMemoryChannelEnable, PPSMC_MSG_SetMemoryChannelEnable, 0),
MSG_MAP(SetNumBadHbmPagesRetired, PPSMC_MSG_SetNumBadHbmPagesRetired, 0),
MSG_MAP(DFCstateControl, PPSMC_MSG_DFCstateControl, 0),
MSG_MAP(GetGmiPwrDnHyst, PPSMC_MSG_GetGmiPwrDnHyst, 0),
MSG_MAP(SetGmiPwrDnHyst, PPSMC_MSG_SetGmiPwrDnHyst, 0),
MSG_MAP(GmiPwrDnControl, PPSMC_MSG_GmiPwrDnControl, 0),
MSG_MAP(EnterGfxoff, PPSMC_MSG_EnterGfxoff, 0),
MSG_MAP(ExitGfxoff, PPSMC_MSG_ExitGfxoff, 0),
MSG_MAP(SetExecuteDMATest, PPSMC_MSG_SetExecuteDMATest, 0),
MSG_MAP(EnableDeterminism, PPSMC_MSG_EnableDeterminism, 0),
MSG_MAP(DisableDeterminism, PPSMC_MSG_DisableDeterminism, 0),
MSG_MAP(SetUclkDpmMode, PPSMC_MSG_SetUclkDpmMode, 0),
MSG_MAP(GfxDriverResetRecovery, PPSMC_MSG_GfxDriverResetRecovery, 0),
};
static const struct cmn2asic_mapping aldebaran_clk_map[SMU_CLK_COUNT] = {
CLK_MAP(GFXCLK, PPCLK_GFXCLK),
CLK_MAP(SCLK, PPCLK_GFXCLK),
CLK_MAP(SOCCLK, PPCLK_SOCCLK),
CLK_MAP(FCLK, PPCLK_FCLK),
CLK_MAP(UCLK, PPCLK_UCLK),
CLK_MAP(MCLK, PPCLK_UCLK),
CLK_MAP(DCLK, PPCLK_DCLK),
CLK_MAP(VCLK, PPCLK_VCLK),
CLK_MAP(LCLK, PPCLK_LCLK),
};
static const struct cmn2asic_mapping aldebaran_feature_mask_map[SMU_FEATURE_COUNT] = {
ALDEBARAN_FEA_MAP(SMU_FEATURE_DPM_PREFETCHER_BIT, FEATURE_DATA_CALCULATIONS),
ALDEBARAN_FEA_MAP(SMU_FEATURE_DPM_GFXCLK_BIT, FEATURE_DPM_GFXCLK_BIT),
ALDEBARAN_FEA_MAP(SMU_FEATURE_DPM_UCLK_BIT, FEATURE_DPM_UCLK_BIT),
ALDEBARAN_FEA_MAP(SMU_FEATURE_DPM_SOCCLK_BIT, FEATURE_DPM_SOCCLK_BIT),
ALDEBARAN_FEA_MAP(SMU_FEATURE_DPM_FCLK_BIT, FEATURE_DPM_FCLK_BIT),
ALDEBARAN_FEA_MAP(SMU_FEATURE_DPM_LCLK_BIT, FEATURE_DPM_LCLK_BIT),
ALDEBARAN_FEA_MAP(SMU_FEATURE_XGMI_BIT, FEATURE_DPM_XGMI_BIT),
ALDEBARAN_FEA_MAP(SMU_FEATURE_DS_GFXCLK_BIT, FEATURE_DS_GFXCLK_BIT),
ALDEBARAN_FEA_MAP(SMU_FEATURE_DS_SOCCLK_BIT, FEATURE_DS_SOCCLK_BIT),
ALDEBARAN_FEA_MAP(SMU_FEATURE_DS_LCLK_BIT, FEATURE_DS_LCLK_BIT),
ALDEBARAN_FEA_MAP(SMU_FEATURE_DS_FCLK_BIT, FEATURE_DS_FCLK_BIT),
ALDEBARAN_FEA_MAP(SMU_FEATURE_DS_UCLK_BIT, FEATURE_DS_UCLK_BIT),
ALDEBARAN_FEA_MAP(SMU_FEATURE_GFX_SS_BIT, FEATURE_GFX_SS_BIT),
ALDEBARAN_FEA_MAP(SMU_FEATURE_VCN_PG_BIT, FEATURE_DPM_VCN_BIT),
ALDEBARAN_FEA_MAP(SMU_FEATURE_RSMU_SMN_CG_BIT, FEATURE_RSMU_SMN_CG_BIT),
ALDEBARAN_FEA_MAP(SMU_FEATURE_WAFL_CG_BIT, FEATURE_WAFL_CG_BIT),
ALDEBARAN_FEA_MAP(SMU_FEATURE_PPT_BIT, FEATURE_PPT_BIT),
ALDEBARAN_FEA_MAP(SMU_FEATURE_TDC_BIT, FEATURE_TDC_BIT),
ALDEBARAN_FEA_MAP(SMU_FEATURE_APCC_PLUS_BIT, FEATURE_APCC_PLUS_BIT),
ALDEBARAN_FEA_MAP(SMU_FEATURE_APCC_DFLL_BIT, FEATURE_APCC_DFLL_BIT),
ALDEBARAN_FEA_MAP(SMU_FEATURE_FUSE_CG_BIT, FEATURE_FUSE_CG_BIT),
ALDEBARAN_FEA_MAP(SMU_FEATURE_MP1_CG_BIT, FEATURE_MP1_CG_BIT),
ALDEBARAN_FEA_MAP(SMU_FEATURE_SMUIO_CG_BIT, FEATURE_SMUIO_CG_BIT),
ALDEBARAN_FEA_MAP(SMU_FEATURE_THM_CG_BIT, FEATURE_THM_CG_BIT),
ALDEBARAN_FEA_MAP(SMU_FEATURE_CLK_CG_BIT, FEATURE_CLK_CG_BIT),
ALDEBARAN_FEA_MAP(SMU_FEATURE_FW_CTF_BIT, FEATURE_FW_CTF_BIT),
ALDEBARAN_FEA_MAP(SMU_FEATURE_THERMAL_BIT, FEATURE_THERMAL_BIT),
ALDEBARAN_FEA_MAP(SMU_FEATURE_OUT_OF_BAND_MONITOR_BIT, FEATURE_OUT_OF_BAND_MONITOR_BIT),
ALDEBARAN_FEA_MAP(SMU_FEATURE_XGMI_PER_LINK_PWR_DWN_BIT,FEATURE_XGMI_PER_LINK_PWR_DWN),
ALDEBARAN_FEA_MAP(SMU_FEATURE_DF_CSTATE_BIT, FEATURE_DF_CSTATE),
};
static const struct cmn2asic_mapping aldebaran_table_map[SMU_TABLE_COUNT] = {
TAB_MAP(PPTABLE),
TAB_MAP(AVFS_PSM_DEBUG),
TAB_MAP(AVFS_FUSE_OVERRIDE),
TAB_MAP(PMSTATUSLOG),
TAB_MAP(SMU_METRICS),
TAB_MAP(DRIVER_SMU_CONFIG),
TAB_MAP(I2C_COMMANDS),
};
static const uint8_t aldebaran_throttler_map[] = {
[THROTTLER_PPT0_BIT] = (SMU_THROTTLER_PPT0_BIT),
[THROTTLER_PPT1_BIT] = (SMU_THROTTLER_PPT1_BIT),
[THROTTLER_TDC_GFX_BIT] = (SMU_THROTTLER_TDC_GFX_BIT),
[THROTTLER_TDC_SOC_BIT] = (SMU_THROTTLER_TDC_SOC_BIT),
[THROTTLER_TDC_HBM_BIT] = (SMU_THROTTLER_TDC_MEM_BIT),
[THROTTLER_TEMP_GPU_BIT] = (SMU_THROTTLER_TEMP_GPU_BIT),
[THROTTLER_TEMP_MEM_BIT] = (SMU_THROTTLER_TEMP_MEM_BIT),
[THROTTLER_TEMP_VR_GFX_BIT] = (SMU_THROTTLER_TEMP_VR_GFX_BIT),
[THROTTLER_TEMP_VR_SOC_BIT] = (SMU_THROTTLER_TEMP_VR_SOC_BIT),
[THROTTLER_TEMP_VR_MEM_BIT] = (SMU_THROTTLER_TEMP_VR_MEM0_BIT),
[THROTTLER_APCC_BIT] = (SMU_THROTTLER_APCC_BIT),
};
static int aldebaran_tables_init(struct smu_context *smu)
{
struct smu_table_context *smu_table = &smu->smu_table;
struct smu_table *tables = smu_table->tables;
SMU_TABLE_INIT(tables, SMU_TABLE_PPTABLE, sizeof(PPTable_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_PMSTATUSLOG, SMU13_TOOL_SIZE,
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_SMU_METRICS, sizeof(SmuMetrics_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_I2C_COMMANDS, sizeof(SwI2cRequest_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
smu_table->metrics_table = kzalloc(sizeof(SmuMetrics_t), GFP_KERNEL);
if (!smu_table->metrics_table)
return -ENOMEM;
smu_table->metrics_time = 0;
smu_table->gpu_metrics_table_size = sizeof(struct gpu_metrics_v1_3);
smu_table->gpu_metrics_table = kzalloc(smu_table->gpu_metrics_table_size, GFP_KERNEL);
if (!smu_table->gpu_metrics_table) {
kfree(smu_table->metrics_table);
return -ENOMEM;
}
return 0;
}
static int aldebaran_allocate_dpm_context(struct smu_context *smu)
{
struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
smu_dpm->dpm_context = kzalloc(sizeof(struct smu_13_0_dpm_context),
GFP_KERNEL);
if (!smu_dpm->dpm_context)
return -ENOMEM;
smu_dpm->dpm_context_size = sizeof(struct smu_13_0_dpm_context);
smu_dpm->dpm_current_power_state = kzalloc(sizeof(struct smu_power_state),
GFP_KERNEL);
if (!smu_dpm->dpm_current_power_state)
return -ENOMEM;
smu_dpm->dpm_request_power_state = kzalloc(sizeof(struct smu_power_state),
GFP_KERNEL);
if (!smu_dpm->dpm_request_power_state)
return -ENOMEM;
return 0;
}
static int aldebaran_init_smc_tables(struct smu_context *smu)
{
int ret = 0;
ret = aldebaran_tables_init(smu);
if (ret)
return ret;
ret = aldebaran_allocate_dpm_context(smu);
if (ret)
return ret;
return smu_v13_0_init_smc_tables(smu);
}
static int aldebaran_get_allowed_feature_mask(struct smu_context *smu,
uint32_t *feature_mask, uint32_t num)
{
if (num > 2)
return -EINVAL;
/* pptable will handle the features to enable */
memset(feature_mask, 0xFF, sizeof(uint32_t) * num);
return 0;
}
static int aldebaran_set_default_dpm_table(struct smu_context *smu)
{
struct smu_13_0_dpm_context *dpm_context = smu->smu_dpm.dpm_context;
struct smu_13_0_dpm_table *dpm_table = NULL;
PPTable_t *pptable = smu->smu_table.driver_pptable;
int ret = 0;
/* socclk dpm table setup */
dpm_table = &dpm_context->dpm_tables.soc_table;
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
ret = smu_v13_0_set_single_dpm_table(smu,
SMU_SOCCLK,
dpm_table);
if (ret)
return ret;
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.socclk / 100;
dpm_table->dpm_levels[0].enabled = true;
dpm_table->min = dpm_table->dpm_levels[0].value;
dpm_table->max = dpm_table->dpm_levels[0].value;
}
/* gfxclk dpm table setup */
dpm_table = &dpm_context->dpm_tables.gfx_table;
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT)) {
/* in the case of gfxclk, only fine-grained dpm is honored */
dpm_table->count = 2;
dpm_table->dpm_levels[0].value = pptable->GfxclkFmin;
dpm_table->dpm_levels[0].enabled = true;
dpm_table->dpm_levels[1].value = pptable->GfxclkFmax;
dpm_table->dpm_levels[1].enabled = true;
dpm_table->min = dpm_table->dpm_levels[0].value;
dpm_table->max = dpm_table->dpm_levels[1].value;
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.gfxclk / 100;
dpm_table->dpm_levels[0].enabled = true;
dpm_table->min = dpm_table->dpm_levels[0].value;
dpm_table->max = dpm_table->dpm_levels[0].value;
}
/* memclk dpm table setup */
dpm_table = &dpm_context->dpm_tables.uclk_table;
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
ret = smu_v13_0_set_single_dpm_table(smu,
SMU_UCLK,
dpm_table);
if (ret)
return ret;
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.uclk / 100;
dpm_table->dpm_levels[0].enabled = true;
dpm_table->min = dpm_table->dpm_levels[0].value;
dpm_table->max = dpm_table->dpm_levels[0].value;
}
/* fclk dpm table setup */
dpm_table = &dpm_context->dpm_tables.fclk_table;
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_FCLK_BIT)) {
ret = smu_v13_0_set_single_dpm_table(smu,
SMU_FCLK,
dpm_table);
if (ret)
return ret;
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.fclk / 100;
dpm_table->dpm_levels[0].enabled = true;
dpm_table->min = dpm_table->dpm_levels[0].value;
dpm_table->max = dpm_table->dpm_levels[0].value;
}
return 0;
}
static int aldebaran_check_powerplay_table(struct smu_context *smu)
{
struct smu_table_context *table_context = &smu->smu_table;
struct smu_13_0_powerplay_table *powerplay_table =
table_context->power_play_table;
table_context->thermal_controller_type =
powerplay_table->thermal_controller_type;
return 0;
}
static int aldebaran_store_powerplay_table(struct smu_context *smu)
{
struct smu_table_context *table_context = &smu->smu_table;
struct smu_13_0_powerplay_table *powerplay_table =
table_context->power_play_table;
memcpy(table_context->driver_pptable, &powerplay_table->smc_pptable,
sizeof(PPTable_t));
return 0;
}
static int aldebaran_append_powerplay_table(struct smu_context *smu)
{
struct smu_table_context *table_context = &smu->smu_table;
PPTable_t *smc_pptable = table_context->driver_pptable;
struct atom_smc_dpm_info_v4_10 *smc_dpm_table;
int index, ret;
index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
smc_dpm_info);
ret = amdgpu_atombios_get_data_table(smu->adev, index, NULL, NULL, NULL,
(uint8_t **)&smc_dpm_table);
if (ret)
return ret;
dev_info(smu->adev->dev, "smc_dpm_info table revision(format.content): %d.%d\n",
smc_dpm_table->table_header.format_revision,
smc_dpm_table->table_header.content_revision);
if ((smc_dpm_table->table_header.format_revision == 4) &&
(smc_dpm_table->table_header.content_revision == 10))
memcpy(&smc_pptable->GfxMaxCurrent,
&smc_dpm_table->GfxMaxCurrent,
sizeof(*smc_dpm_table) - offsetof(struct atom_smc_dpm_info_v4_10, GfxMaxCurrent));
return 0;
}
static int aldebaran_setup_pptable(struct smu_context *smu)
{
int ret = 0;
/* VBIOS pptable is the first choice */
smu->smu_table.boot_values.pp_table_id = 0;
ret = smu_v13_0_setup_pptable(smu);
if (ret)
return ret;
ret = aldebaran_store_powerplay_table(smu);
if (ret)
return ret;
ret = aldebaran_append_powerplay_table(smu);
if (ret)
return ret;
ret = aldebaran_check_powerplay_table(smu);
if (ret)
return ret;
return ret;
}
static int aldebaran_run_btc(struct smu_context *smu)
{
int ret;
ret = smu_cmn_send_smc_msg(smu, SMU_MSG_RunDcBtc, NULL);
if (ret)
dev_err(smu->adev->dev, "RunDcBtc failed!\n");
return ret;
}
static int aldebaran_populate_umd_state_clk(struct smu_context *smu)
{
struct smu_13_0_dpm_context *dpm_context =
smu->smu_dpm.dpm_context;
struct smu_13_0_dpm_table *gfx_table =
&dpm_context->dpm_tables.gfx_table;
struct smu_13_0_dpm_table *mem_table =
&dpm_context->dpm_tables.uclk_table;
struct smu_13_0_dpm_table *soc_table =
&dpm_context->dpm_tables.soc_table;
struct smu_umd_pstate_table *pstate_table =
&smu->pstate_table;
pstate_table->gfxclk_pstate.min = gfx_table->min;
pstate_table->gfxclk_pstate.peak = gfx_table->max;
pstate_table->gfxclk_pstate.curr.min = gfx_table->min;
pstate_table->gfxclk_pstate.curr.max = gfx_table->max;
pstate_table->uclk_pstate.min = mem_table->min;
pstate_table->uclk_pstate.peak = mem_table->max;
pstate_table->uclk_pstate.curr.min = mem_table->min;
pstate_table->uclk_pstate.curr.max = mem_table->max;
pstate_table->socclk_pstate.min = soc_table->min;
pstate_table->socclk_pstate.peak = soc_table->max;
pstate_table->socclk_pstate.curr.min = soc_table->min;
pstate_table->socclk_pstate.curr.max = soc_table->max;
if (gfx_table->count > ALDEBARAN_UMD_PSTATE_GFXCLK_LEVEL &&
mem_table->count > ALDEBARAN_UMD_PSTATE_MCLK_LEVEL &&
soc_table->count > ALDEBARAN_UMD_PSTATE_SOCCLK_LEVEL) {
pstate_table->gfxclk_pstate.standard =
gfx_table->dpm_levels[ALDEBARAN_UMD_PSTATE_GFXCLK_LEVEL].value;
pstate_table->uclk_pstate.standard =
mem_table->dpm_levels[ALDEBARAN_UMD_PSTATE_MCLK_LEVEL].value;
pstate_table->socclk_pstate.standard =
soc_table->dpm_levels[ALDEBARAN_UMD_PSTATE_SOCCLK_LEVEL].value;
} else {
pstate_table->gfxclk_pstate.standard =
pstate_table->gfxclk_pstate.min;
pstate_table->uclk_pstate.standard =
pstate_table->uclk_pstate.min;
pstate_table->socclk_pstate.standard =
pstate_table->socclk_pstate.min;
}
return 0;
}
static int aldebaran_get_clk_table(struct smu_context *smu,
struct pp_clock_levels_with_latency *clocks,
struct smu_13_0_dpm_table *dpm_table)
{
int i, count;
count = (dpm_table->count > MAX_NUM_CLOCKS) ? MAX_NUM_CLOCKS : dpm_table->count;
clocks->num_levels = count;
for (i = 0; i < count; i++) {
clocks->data[i].clocks_in_khz =
dpm_table->dpm_levels[i].value * 1000;
clocks->data[i].latency_in_us = 0;
}
return 0;
}
static int aldebaran_freqs_in_same_level(int32_t frequency1,
int32_t frequency2)
{
return (abs(frequency1 - frequency2) <= EPSILON);
}
static bool aldebaran_is_primary(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
if (adev->smuio.funcs && adev->smuio.funcs->get_die_id)
return adev->smuio.funcs->get_die_id(adev) == 0;
return true;
}
static int aldebaran_get_smu_metrics_data(struct smu_context *smu,
MetricsMember_t member,
uint32_t *value)
{
struct smu_table_context *smu_table= &smu->smu_table;
SmuMetrics_t *metrics = (SmuMetrics_t *)smu_table->metrics_table;
int ret = 0;
mutex_lock(&smu->metrics_lock);
ret = smu_cmn_get_metrics_table_locked(smu,
NULL,
false);
if (ret) {
mutex_unlock(&smu->metrics_lock);
return ret;
}
switch (member) {
case METRICS_CURR_GFXCLK:
*value = metrics->CurrClock[PPCLK_GFXCLK];
break;
case METRICS_CURR_SOCCLK:
*value = metrics->CurrClock[PPCLK_SOCCLK];
break;
case METRICS_CURR_UCLK:
*value = metrics->CurrClock[PPCLK_UCLK];
break;
case METRICS_CURR_VCLK:
*value = metrics->CurrClock[PPCLK_VCLK];
break;
case METRICS_CURR_DCLK:
*value = metrics->CurrClock[PPCLK_DCLK];
break;
case METRICS_CURR_FCLK:
*value = metrics->CurrClock[PPCLK_FCLK];
break;
case METRICS_AVERAGE_GFXCLK:
*value = metrics->AverageGfxclkFrequency;
break;
case METRICS_AVERAGE_SOCCLK:
*value = metrics->AverageSocclkFrequency;
break;
case METRICS_AVERAGE_UCLK:
*value = metrics->AverageUclkFrequency;
break;
case METRICS_AVERAGE_GFXACTIVITY:
*value = metrics->AverageGfxActivity;
break;
case METRICS_AVERAGE_MEMACTIVITY:
*value = metrics->AverageUclkActivity;
break;
case METRICS_AVERAGE_SOCKETPOWER:
/* Valid power data is available only from primary die */
*value = aldebaran_is_primary(smu) ?
metrics->AverageSocketPower << 8 :
0;
break;
case METRICS_TEMPERATURE_EDGE:
*value = metrics->TemperatureEdge *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
break;
case METRICS_TEMPERATURE_HOTSPOT:
*value = metrics->TemperatureHotspot *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
break;
case METRICS_TEMPERATURE_MEM:
*value = metrics->TemperatureHBM *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
break;
case METRICS_TEMPERATURE_VRGFX:
*value = metrics->TemperatureVrGfx *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
break;
case METRICS_TEMPERATURE_VRSOC:
*value = metrics->TemperatureVrSoc *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
break;
case METRICS_TEMPERATURE_VRMEM:
*value = metrics->TemperatureVrMem *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
break;
case METRICS_THROTTLER_STATUS:
*value = metrics->ThrottlerStatus;
break;
default:
*value = UINT_MAX;
break;
}
mutex_unlock(&smu->metrics_lock);
return ret;
}
static int aldebaran_get_current_clk_freq_by_table(struct smu_context *smu,
enum smu_clk_type clk_type,
uint32_t *value)
{
MetricsMember_t member_type;
int clk_id = 0;
if (!value)
return -EINVAL;
clk_id = smu_cmn_to_asic_specific_index(smu,
CMN2ASIC_MAPPING_CLK,
clk_type);
if (clk_id < 0)
return -EINVAL;
switch (clk_id) {
case PPCLK_GFXCLK:
/*
* CurrClock[clk_id] can provide accurate
* output only when the dpm feature is enabled.
* We can use Average_* for dpm disabled case.
* But this is available for gfxclk/uclk/socclk/vclk/dclk.
*/
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT))
member_type = METRICS_CURR_GFXCLK;
else
member_type = METRICS_AVERAGE_GFXCLK;
break;
case PPCLK_UCLK:
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT))
member_type = METRICS_CURR_UCLK;
else
member_type = METRICS_AVERAGE_UCLK;
break;
case PPCLK_SOCCLK:
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT))
member_type = METRICS_CURR_SOCCLK;
else
member_type = METRICS_AVERAGE_SOCCLK;
break;
case PPCLK_VCLK:
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_VCN_PG_BIT))
member_type = METRICS_CURR_VCLK;
else
member_type = METRICS_AVERAGE_VCLK;
break;
case PPCLK_DCLK:
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_VCN_PG_BIT))
member_type = METRICS_CURR_DCLK;
else
member_type = METRICS_AVERAGE_DCLK;
break;
case PPCLK_FCLK:
member_type = METRICS_CURR_FCLK;
break;
default:
return -EINVAL;
}
return aldebaran_get_smu_metrics_data(smu,
member_type,
value);
}
static int aldebaran_print_clk_levels(struct smu_context *smu,
enum smu_clk_type type, char *buf)
{
int i, now, size = 0;
int ret = 0;
struct smu_umd_pstate_table *pstate_table = &smu->pstate_table;
struct pp_clock_levels_with_latency clocks;
struct smu_13_0_dpm_table *single_dpm_table;
struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
struct smu_13_0_dpm_context *dpm_context = NULL;
uint32_t display_levels;
uint32_t freq_values[3] = {0};
uint32_t min_clk, max_clk;
if (amdgpu_ras_intr_triggered())
return snprintf(buf, PAGE_SIZE, "unavailable\n");
dpm_context = smu_dpm->dpm_context;
switch (type) {
case SMU_OD_SCLK:
size = sprintf(buf, "%s:\n", "GFXCLK");
fallthrough;
case SMU_SCLK:
ret = aldebaran_get_current_clk_freq_by_table(smu, SMU_GFXCLK, &now);
if (ret) {
dev_err(smu->adev->dev, "Attempt to get current gfx clk Failed!");
return ret;
}
single_dpm_table = &(dpm_context->dpm_tables.gfx_table);
ret = aldebaran_get_clk_table(smu, &clocks, single_dpm_table);
if (ret) {
dev_err(smu->adev->dev, "Attempt to get gfx clk levels Failed!");
return ret;
}
display_levels = clocks.num_levels;
min_clk = pstate_table->gfxclk_pstate.curr.min;
max_clk = pstate_table->gfxclk_pstate.curr.max;
freq_values[0] = min_clk;
freq_values[1] = max_clk;
/* fine-grained dpm has only 2 levels */
if (now > min_clk && now < max_clk) {
display_levels = clocks.num_levels + 1;
freq_values[2] = max_clk;
freq_values[1] = now;
}
/*
* For DPM disabled case, there will be only one clock level.
* And it's safe to assume that is always the current clock.
*/
if (display_levels == clocks.num_levels) {
for (i = 0; i < clocks.num_levels; i++)
size += sprintf(
buf + size, "%d: %uMhz %s\n", i,
freq_values[i],
(clocks.num_levels == 1) ?
"*" :
(aldebaran_freqs_in_same_level(
freq_values[i], now) ?
"*" :
""));
} else {
for (i = 0; i < display_levels; i++)
size += sprintf(buf + size, "%d: %uMhz %s\n", i,
freq_values[i], i == 1 ? "*" : "");
}
break;
case SMU_OD_MCLK:
size = sprintf(buf, "%s:\n", "MCLK");
fallthrough;
case SMU_MCLK:
ret = aldebaran_get_current_clk_freq_by_table(smu, SMU_UCLK, &now);
if (ret) {
dev_err(smu->adev->dev, "Attempt to get current mclk Failed!");
return ret;
}
single_dpm_table = &(dpm_context->dpm_tables.uclk_table);
ret = aldebaran_get_clk_table(smu, &clocks, single_dpm_table);
if (ret) {
dev_err(smu->adev->dev, "Attempt to get memory clk levels Failed!");
return ret;
}
for (i = 0; i < clocks.num_levels; i++)
size += sprintf(buf + size, "%d: %uMhz %s\n",
i, clocks.data[i].clocks_in_khz / 1000,
(clocks.num_levels == 1) ? "*" :
(aldebaran_freqs_in_same_level(
clocks.data[i].clocks_in_khz / 1000,
now) ? "*" : ""));
break;
case SMU_SOCCLK:
ret = aldebaran_get_current_clk_freq_by_table(smu, SMU_SOCCLK, &now);
if (ret) {
dev_err(smu->adev->dev, "Attempt to get current socclk Failed!");
return ret;
}
single_dpm_table = &(dpm_context->dpm_tables.soc_table);
ret = aldebaran_get_clk_table(smu, &clocks, single_dpm_table);
if (ret) {
dev_err(smu->adev->dev, "Attempt to get socclk levels Failed!");
return ret;
}
for (i = 0; i < clocks.num_levels; i++)
size += sprintf(buf + size, "%d: %uMhz %s\n",
i, clocks.data[i].clocks_in_khz / 1000,
(clocks.num_levels == 1) ? "*" :
(aldebaran_freqs_in_same_level(
clocks.data[i].clocks_in_khz / 1000,
now) ? "*" : ""));
break;
case SMU_FCLK:
ret = aldebaran_get_current_clk_freq_by_table(smu, SMU_FCLK, &now);
if (ret) {
dev_err(smu->adev->dev, "Attempt to get current fclk Failed!");
return ret;
}
single_dpm_table = &(dpm_context->dpm_tables.fclk_table);
ret = aldebaran_get_clk_table(smu, &clocks, single_dpm_table);
if (ret) {
dev_err(smu->adev->dev, "Attempt to get fclk levels Failed!");
return ret;
}
for (i = 0; i < single_dpm_table->count; i++)
size += sprintf(buf + size, "%d: %uMhz %s\n",
i, single_dpm_table->dpm_levels[i].value,
(clocks.num_levels == 1) ? "*" :
(aldebaran_freqs_in_same_level(
clocks.data[i].clocks_in_khz / 1000,
now) ? "*" : ""));
break;
case SMU_VCLK:
ret = aldebaran_get_current_clk_freq_by_table(smu, SMU_VCLK, &now);
if (ret) {
dev_err(smu->adev->dev, "Attempt to get current vclk Failed!");
return ret;
}
single_dpm_table = &(dpm_context->dpm_tables.vclk_table);
ret = aldebaran_get_clk_table(smu, &clocks, single_dpm_table);
if (ret) {
dev_err(smu->adev->dev, "Attempt to get vclk levels Failed!");
return ret;
}
for (i = 0; i < single_dpm_table->count; i++)
size += sprintf(buf + size, "%d: %uMhz %s\n",
i, single_dpm_table->dpm_levels[i].value,
(clocks.num_levels == 1) ? "*" :
(aldebaran_freqs_in_same_level(
clocks.data[i].clocks_in_khz / 1000,
now) ? "*" : ""));
break;
case SMU_DCLK:
ret = aldebaran_get_current_clk_freq_by_table(smu, SMU_DCLK, &now);
if (ret) {
dev_err(smu->adev->dev, "Attempt to get current dclk Failed!");
return ret;
}
single_dpm_table = &(dpm_context->dpm_tables.dclk_table);
ret = aldebaran_get_clk_table(smu, &clocks, single_dpm_table);
if (ret) {
dev_err(smu->adev->dev, "Attempt to get dclk levels Failed!");
return ret;
}
for (i = 0; i < single_dpm_table->count; i++)
size += sprintf(buf + size, "%d: %uMhz %s\n",
i, single_dpm_table->dpm_levels[i].value,
(clocks.num_levels == 1) ? "*" :
(aldebaran_freqs_in_same_level(
clocks.data[i].clocks_in_khz / 1000,
now) ? "*" : ""));
break;
default:
break;
}
return size;
}
static int aldebaran_upload_dpm_level(struct smu_context *smu,
bool max,
uint32_t feature_mask,
uint32_t level)
{
struct smu_13_0_dpm_context *dpm_context =
smu->smu_dpm.dpm_context;
uint32_t freq;
int ret = 0;
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT) &&
(feature_mask & FEATURE_MASK(FEATURE_DPM_GFXCLK_BIT))) {
freq = dpm_context->dpm_tables.gfx_table.dpm_levels[level].value;
ret = smu_cmn_send_smc_msg_with_param(smu,
(max ? SMU_MSG_SetSoftMaxByFreq : SMU_MSG_SetSoftMinByFreq),
(PPCLK_GFXCLK << 16) | (freq & 0xffff),
NULL);
if (ret) {
dev_err(smu->adev->dev, "Failed to set soft %s gfxclk !\n",
max ? "max" : "min");
return ret;
}
}
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT) &&
(feature_mask & FEATURE_MASK(FEATURE_DPM_UCLK_BIT))) {
freq = dpm_context->dpm_tables.uclk_table.dpm_levels[level].value;
ret = smu_cmn_send_smc_msg_with_param(smu,
(max ? SMU_MSG_SetSoftMaxByFreq : SMU_MSG_SetSoftMinByFreq),
(PPCLK_UCLK << 16) | (freq & 0xffff),
NULL);
if (ret) {
dev_err(smu->adev->dev, "Failed to set soft %s memclk !\n",
max ? "max" : "min");
return ret;
}
}
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT) &&
(feature_mask & FEATURE_MASK(FEATURE_DPM_SOCCLK_BIT))) {
freq = dpm_context->dpm_tables.soc_table.dpm_levels[level].value;
ret = smu_cmn_send_smc_msg_with_param(smu,
(max ? SMU_MSG_SetSoftMaxByFreq : SMU_MSG_SetSoftMinByFreq),
(PPCLK_SOCCLK << 16) | (freq & 0xffff),
NULL);
if (ret) {
dev_err(smu->adev->dev, "Failed to set soft %s socclk !\n",
max ? "max" : "min");
return ret;
}
}
return ret;
}
static int aldebaran_force_clk_levels(struct smu_context *smu,
enum smu_clk_type type, uint32_t mask)
{
struct smu_13_0_dpm_context *dpm_context = smu->smu_dpm.dpm_context;
struct smu_13_0_dpm_table *single_dpm_table = NULL;
uint32_t soft_min_level, soft_max_level;
int ret = 0;
soft_min_level = mask ? (ffs(mask) - 1) : 0;
soft_max_level = mask ? (fls(mask) - 1) : 0;
switch (type) {
case SMU_SCLK:
single_dpm_table = &(dpm_context->dpm_tables.gfx_table);
if (soft_max_level >= single_dpm_table->count) {
dev_err(smu->adev->dev, "Clock level specified %d is over max allowed %d\n",
soft_max_level, single_dpm_table->count - 1);
ret = -EINVAL;
break;
}
ret = aldebaran_upload_dpm_level(smu,
false,
FEATURE_MASK(FEATURE_DPM_GFXCLK_BIT),
soft_min_level);
if (ret) {
dev_err(smu->adev->dev, "Failed to upload boot level to lowest!\n");
break;
}
ret = aldebaran_upload_dpm_level(smu,
true,
FEATURE_MASK(FEATURE_DPM_GFXCLK_BIT),
soft_max_level);
if (ret)
dev_err(smu->adev->dev, "Failed to upload dpm max level to highest!\n");
break;
case SMU_MCLK:
case SMU_SOCCLK:
case SMU_FCLK:
/*
* Should not arrive here since aldebaran does not
* support mclk/socclk/fclk softmin/softmax settings
*/
ret = -EINVAL;
break;
default:
break;
}
return ret;
}
static int aldebaran_get_thermal_temperature_range(struct smu_context *smu,
struct smu_temperature_range *range)
{
struct smu_table_context *table_context = &smu->smu_table;
struct smu_13_0_powerplay_table *powerplay_table =
table_context->power_play_table;
PPTable_t *pptable = smu->smu_table.driver_pptable;
if (!range)
return -EINVAL;
memcpy(range, &smu13_thermal_policy[0], sizeof(struct smu_temperature_range));
range->hotspot_crit_max = pptable->ThotspotLimit *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
range->hotspot_emergency_max = (pptable->ThotspotLimit + CTF_OFFSET_HOTSPOT) *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
range->mem_crit_max = pptable->TmemLimit *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
range->mem_emergency_max = (pptable->TmemLimit + CTF_OFFSET_MEM)*
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
range->software_shutdown_temp = powerplay_table->software_shutdown_temp;
return 0;
}
static int aldebaran_get_current_activity_percent(struct smu_context *smu,
enum amd_pp_sensors sensor,
uint32_t *value)
{
int ret = 0;
if (!value)
return -EINVAL;
switch (sensor) {
case AMDGPU_PP_SENSOR_GPU_LOAD:
ret = aldebaran_get_smu_metrics_data(smu,
METRICS_AVERAGE_GFXACTIVITY,
value);
break;
case AMDGPU_PP_SENSOR_MEM_LOAD:
ret = aldebaran_get_smu_metrics_data(smu,
METRICS_AVERAGE_MEMACTIVITY,
value);
break;
default:
dev_err(smu->adev->dev, "Invalid sensor for retrieving clock activity\n");
return -EINVAL;
}
return ret;
}
static int aldebaran_get_gpu_power(struct smu_context *smu, uint32_t *value)
{
if (!value)
return -EINVAL;
return aldebaran_get_smu_metrics_data(smu,
METRICS_AVERAGE_SOCKETPOWER,
value);
}
static int aldebaran_thermal_get_temperature(struct smu_context *smu,
enum amd_pp_sensors sensor,
uint32_t *value)
{
int ret = 0;
if (!value)
return -EINVAL;
switch (sensor) {
case AMDGPU_PP_SENSOR_HOTSPOT_TEMP:
ret = aldebaran_get_smu_metrics_data(smu,
METRICS_TEMPERATURE_HOTSPOT,
value);
break;
case AMDGPU_PP_SENSOR_EDGE_TEMP:
ret = aldebaran_get_smu_metrics_data(smu,
METRICS_TEMPERATURE_EDGE,
value);
break;
case AMDGPU_PP_SENSOR_MEM_TEMP:
ret = aldebaran_get_smu_metrics_data(smu,
METRICS_TEMPERATURE_MEM,
value);
break;
default:
dev_err(smu->adev->dev, "Invalid sensor for retrieving temp\n");
return -EINVAL;
}
return ret;
}
static int aldebaran_read_sensor(struct smu_context *smu,
enum amd_pp_sensors sensor,
void *data, uint32_t *size)
{
int ret = 0;
if (amdgpu_ras_intr_triggered())
return 0;
if (!data || !size)
return -EINVAL;
mutex_lock(&smu->sensor_lock);
switch (sensor) {
case AMDGPU_PP_SENSOR_MEM_LOAD:
case AMDGPU_PP_SENSOR_GPU_LOAD:
ret = aldebaran_get_current_activity_percent(smu,
sensor,
(uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_GPU_POWER:
ret = aldebaran_get_gpu_power(smu, (uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_HOTSPOT_TEMP:
case AMDGPU_PP_SENSOR_EDGE_TEMP:
case AMDGPU_PP_SENSOR_MEM_TEMP:
ret = aldebaran_thermal_get_temperature(smu, sensor,
(uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_GFX_MCLK:
ret = aldebaran_get_current_clk_freq_by_table(smu, SMU_UCLK, (uint32_t *)data);
/* the output clock frequency in 10K unit */
*(uint32_t *)data *= 100;
*size = 4;
break;
case AMDGPU_PP_SENSOR_GFX_SCLK:
ret = aldebaran_get_current_clk_freq_by_table(smu, SMU_GFXCLK, (uint32_t *)data);
*(uint32_t *)data *= 100;
*size = 4;
break;
case AMDGPU_PP_SENSOR_VDDGFX:
ret = smu_v13_0_get_gfx_vdd(smu, (uint32_t *)data);
*size = 4;
break;
default:
ret = -EOPNOTSUPP;
break;
}
mutex_unlock(&smu->sensor_lock);
return ret;
}
static int aldebaran_get_power_limit(struct smu_context *smu,
uint32_t *current_power_limit,
uint32_t *default_power_limit,
uint32_t *max_power_limit)
{
PPTable_t *pptable = smu->smu_table.driver_pptable;
uint32_t power_limit = 0;
int ret;
if (!smu_cmn_feature_is_enabled(smu, SMU_FEATURE_PPT_BIT))
return -EINVAL;
/* Valid power data is available only from primary die.
* For secondary die show the value as 0.
*/
if (aldebaran_is_primary(smu)) {
ret = smu_cmn_send_smc_msg(smu, SMU_MSG_GetPptLimit,
&power_limit);
if (ret) {
/* the last hope to figure out the ppt limit */
if (!pptable) {
dev_err(smu->adev->dev,
"Cannot get PPT limit due to pptable missing!");
return -EINVAL;
}
power_limit = pptable->PptLimit;
}
}
if (current_power_limit)
*current_power_limit = power_limit;
if (default_power_limit)
*default_power_limit = power_limit;
if (max_power_limit) {
if (pptable)
*max_power_limit = pptable->PptLimit;
}
return 0;
}
static int aldebaran_set_power_limit(struct smu_context *smu, uint32_t n)
{
/* Power limit can be set only through primary die */
if (aldebaran_is_primary(smu))
return smu_v13_0_set_power_limit(smu, n);
return -EINVAL;
}
static int aldebaran_system_features_control(struct smu_context *smu, bool enable)
{
int ret;
ret = smu_v13_0_system_features_control(smu, enable);
if (!ret && enable)
ret = aldebaran_run_btc(smu);
return ret;
}
static int aldebaran_set_performance_level(struct smu_context *smu,
enum amd_dpm_forced_level level)
{
struct smu_dpm_context *smu_dpm = &(smu->smu_dpm);
struct smu_13_0_dpm_context *dpm_context = smu_dpm->dpm_context;
struct smu_13_0_dpm_table *gfx_table =
&dpm_context->dpm_tables.gfx_table;
struct smu_umd_pstate_table *pstate_table = &smu->pstate_table;
/* Disable determinism if switching to another mode */
if ((smu_dpm->dpm_level == AMD_DPM_FORCED_LEVEL_PERF_DETERMINISM) &&
(level != AMD_DPM_FORCED_LEVEL_PERF_DETERMINISM)) {
smu_cmn_send_smc_msg(smu, SMU_MSG_DisableDeterminism, NULL);
pstate_table->gfxclk_pstate.curr.max = gfx_table->max;
}
switch (level) {
case AMD_DPM_FORCED_LEVEL_PERF_DETERMINISM:
return 0;
case AMD_DPM_FORCED_LEVEL_HIGH:
case AMD_DPM_FORCED_LEVEL_LOW:
case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
default:
break;
}
return smu_v13_0_set_performance_level(smu, level);
}
static int aldebaran_set_soft_freq_limited_range(struct smu_context *smu,
enum smu_clk_type clk_type,
uint32_t min,
uint32_t max)
{
struct smu_dpm_context *smu_dpm = &(smu->smu_dpm);
struct smu_13_0_dpm_context *dpm_context = smu_dpm->dpm_context;
struct smu_umd_pstate_table *pstate_table = &smu->pstate_table;
struct amdgpu_device *adev = smu->adev;
uint32_t min_clk;
uint32_t max_clk;
int ret = 0;
if (clk_type != SMU_GFXCLK && clk_type != SMU_SCLK)
return -EINVAL;
if ((smu_dpm->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL)
&& (smu_dpm->dpm_level != AMD_DPM_FORCED_LEVEL_PERF_DETERMINISM))
return -EINVAL;
if (smu_dpm->dpm_level == AMD_DPM_FORCED_LEVEL_MANUAL) {
if (min >= max) {
dev_err(smu->adev->dev,
"Minimum GFX clk should be less than the maximum allowed clock\n");
return -EINVAL;
}
if ((min == pstate_table->gfxclk_pstate.curr.min) &&
(max == pstate_table->gfxclk_pstate.curr.max))
return 0;
ret = smu_v13_0_set_soft_freq_limited_range(smu, SMU_GFXCLK,
min, max);
if (!ret) {
pstate_table->gfxclk_pstate.curr.min = min;
pstate_table->gfxclk_pstate.curr.max = max;
}
return ret;
}
if (smu_dpm->dpm_level == AMD_DPM_FORCED_LEVEL_PERF_DETERMINISM) {
if (!max || (max < dpm_context->dpm_tables.gfx_table.min) ||
(max > dpm_context->dpm_tables.gfx_table.max)) {
dev_warn(adev->dev,
"Invalid max frequency %d MHz specified for determinism\n", max);
return -EINVAL;
}
/* Restore default min/max clocks and enable determinism */
min_clk = dpm_context->dpm_tables.gfx_table.min;
max_clk = dpm_context->dpm_tables.gfx_table.max;
ret = smu_v13_0_set_soft_freq_limited_range(smu, SMU_GFXCLK, min_clk, max_clk);
if (!ret) {
usleep_range(500, 1000);
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_EnableDeterminism,
max, NULL);
if (ret) {
dev_err(adev->dev,
"Failed to enable determinism at GFX clock %d MHz\n", max);
} else {
pstate_table->gfxclk_pstate.curr.min = min_clk;
pstate_table->gfxclk_pstate.curr.max = max;
}
}
}
return ret;
}
static int aldebaran_usr_edit_dpm_table(struct smu_context *smu, enum PP_OD_DPM_TABLE_COMMAND type,
long input[], uint32_t size)
{
struct smu_dpm_context *smu_dpm = &(smu->smu_dpm);
struct smu_13_0_dpm_context *dpm_context = smu_dpm->dpm_context;
struct smu_umd_pstate_table *pstate_table = &smu->pstate_table;
uint32_t min_clk;
uint32_t max_clk;
int ret = 0;
/* Only allowed in manual or determinism mode */
if ((smu_dpm->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL)
&& (smu_dpm->dpm_level != AMD_DPM_FORCED_LEVEL_PERF_DETERMINISM))
return -EINVAL;
switch (type) {
case PP_OD_EDIT_SCLK_VDDC_TABLE:
if (size != 2) {
dev_err(smu->adev->dev, "Input parameter number not correct\n");
return -EINVAL;
}
if (input[0] == 0) {
if (input[1] < dpm_context->dpm_tables.gfx_table.min) {
dev_warn(smu->adev->dev, "Minimum GFX clk (%ld) MHz specified is less than the minimum allowed (%d) MHz\n",
input[1], dpm_context->dpm_tables.gfx_table.min);
pstate_table->gfxclk_pstate.custom.min =
pstate_table->gfxclk_pstate.curr.min;
return -EINVAL;
}
pstate_table->gfxclk_pstate.custom.min = input[1];
} else if (input[0] == 1) {
if (input[1] > dpm_context->dpm_tables.gfx_table.max) {
dev_warn(smu->adev->dev, "Maximum GFX clk (%ld) MHz specified is greater than the maximum allowed (%d) MHz\n",
input[1], dpm_context->dpm_tables.gfx_table.max);
pstate_table->gfxclk_pstate.custom.max =
pstate_table->gfxclk_pstate.curr.max;
return -EINVAL;
}
pstate_table->gfxclk_pstate.custom.max = input[1];
} else {
return -EINVAL;
}
break;
case PP_OD_RESTORE_DEFAULT_TABLE:
if (size != 0) {
dev_err(smu->adev->dev, "Input parameter number not correct\n");
return -EINVAL;
} else {
/* Use the default frequencies for manual and determinism mode */
min_clk = dpm_context->dpm_tables.gfx_table.min;
max_clk = dpm_context->dpm_tables.gfx_table.max;
return aldebaran_set_soft_freq_limited_range(smu, SMU_GFXCLK, min_clk, max_clk);
}
break;
case PP_OD_COMMIT_DPM_TABLE:
if (size != 0) {
dev_err(smu->adev->dev, "Input parameter number not correct\n");
return -EINVAL;
} else {
if (!pstate_table->gfxclk_pstate.custom.min)
pstate_table->gfxclk_pstate.custom.min =
pstate_table->gfxclk_pstate.curr.min;
if (!pstate_table->gfxclk_pstate.custom.max)
pstate_table->gfxclk_pstate.custom.max =
pstate_table->gfxclk_pstate.curr.max;
min_clk = pstate_table->gfxclk_pstate.custom.min;
max_clk = pstate_table->gfxclk_pstate.custom.max;
return aldebaran_set_soft_freq_limited_range(smu, SMU_GFXCLK, min_clk, max_clk);
}
break;
default:
return -ENOSYS;
}
return ret;
}
static bool aldebaran_is_dpm_running(struct smu_context *smu)
{
int ret;
uint32_t feature_mask[2];
unsigned long feature_enabled;
ret = smu_cmn_get_enabled_mask(smu, feature_mask, 2);
if (ret)
return false;
feature_enabled = (unsigned long)((uint64_t)feature_mask[0] |
((uint64_t)feature_mask[1] << 32));
return !!(feature_enabled & SMC_DPM_FEATURE);
}
static void aldebaran_fill_i2c_req(SwI2cRequest_t *req, bool write,
uint8_t address, uint32_t numbytes,
uint8_t *data)
{
int i;
req->I2CcontrollerPort = 0;
req->I2CSpeed = 2;
req->SlaveAddress = address;
req->NumCmds = numbytes;
for (i = 0; i < numbytes; i++) {
SwI2cCmd_t *cmd = &req->SwI2cCmds[i];
/* First 2 bytes are always write for lower 2b EEPROM address */
if (i < 2)
cmd->CmdConfig = CMDCONFIG_READWRITE_MASK;
else
cmd->CmdConfig = write ? CMDCONFIG_READWRITE_MASK : 0;
/* Add RESTART for read after address filled */
cmd->CmdConfig |= (i == 2 && !write) ? CMDCONFIG_RESTART_MASK : 0;
/* Add STOP in the end */
cmd->CmdConfig |= (i == (numbytes - 1)) ? CMDCONFIG_STOP_MASK : 0;
/* Fill with data regardless if read or write to simplify code */
cmd->ReadWriteData = data[i];
}
}
static int aldebaran_i2c_read_data(struct i2c_adapter *control,
uint8_t address,
uint8_t *data,
uint32_t numbytes)
{
uint32_t i, ret = 0;
SwI2cRequest_t req;
struct amdgpu_device *adev = to_amdgpu_device(control);
struct smu_table_context *smu_table = &adev->smu.smu_table;
struct smu_table *table = &smu_table->driver_table;
if (numbytes > MAX_SW_I2C_COMMANDS) {
dev_err(adev->dev, "numbytes requested %d is over max allowed %d\n",
numbytes, MAX_SW_I2C_COMMANDS);
return -EINVAL;
}
memset(&req, 0, sizeof(req));
aldebaran_fill_i2c_req(&req, false, address, numbytes, data);
mutex_lock(&adev->smu.mutex);
/* Now read data starting with that address */
ret = smu_cmn_update_table(&adev->smu, SMU_TABLE_I2C_COMMANDS, 0, &req,
true);
mutex_unlock(&adev->smu.mutex);
if (!ret) {
SwI2cRequest_t *res = (SwI2cRequest_t *)table->cpu_addr;
/* Assume SMU fills res.SwI2cCmds[i].Data with read bytes */
for (i = 0; i < numbytes; i++)
data[i] = res->SwI2cCmds[i].ReadWriteData;
dev_dbg(adev->dev, "aldebaran_i2c_read_data, address = %x, bytes = %d, data :",
(uint16_t)address, numbytes);
print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_NONE,
8, 1, data, numbytes, false);
} else
dev_err(adev->dev, "aldebaran_i2c_read_data - error occurred :%x", ret);
return ret;
}
static int aldebaran_i2c_write_data(struct i2c_adapter *control,
uint8_t address,
uint8_t *data,
uint32_t numbytes)
{
uint32_t ret;
SwI2cRequest_t req;
struct amdgpu_device *adev = to_amdgpu_device(control);
if (numbytes > MAX_SW_I2C_COMMANDS) {
dev_err(adev->dev, "numbytes requested %d is over max allowed %d\n",
numbytes, MAX_SW_I2C_COMMANDS);
return -EINVAL;
}
memset(&req, 0, sizeof(req));
aldebaran_fill_i2c_req(&req, true, address, numbytes, data);
mutex_lock(&adev->smu.mutex);
ret = smu_cmn_update_table(&adev->smu, SMU_TABLE_I2C_COMMANDS, 0, &req, true);
mutex_unlock(&adev->smu.mutex);
if (!ret) {
dev_dbg(adev->dev, "aldebaran_i2c_write(), address = %x, bytes = %d , data: ",
(uint16_t)address, numbytes);
print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_NONE,
8, 1, data, numbytes, false);
/*
* According to EEPROM spec there is a MAX of 10 ms required for
* EEPROM to flush internal RX buffer after STOP was issued at the
* end of write transaction. During this time the EEPROM will not be
* responsive to any more commands - so wait a bit more.
*/
msleep(10);
} else
dev_err(adev->dev, "aldebaran_i2c_write- error occurred :%x", ret);
return ret;
}
static int aldebaran_i2c_xfer(struct i2c_adapter *i2c_adap,
struct i2c_msg *msgs, int num)
{
uint32_t i, j, ret, data_size, data_chunk_size, next_eeprom_addr = 0;
uint8_t *data_ptr, data_chunk[MAX_SW_I2C_COMMANDS] = { 0 };
for (i = 0; i < num; i++) {
/*
* SMU interface allows at most MAX_SW_I2C_COMMANDS bytes of data at
* once and hence the data needs to be spliced into chunks and sent each
* chunk separately
*/
data_size = msgs[i].len - 2;
data_chunk_size = MAX_SW_I2C_COMMANDS - 2;
next_eeprom_addr = (msgs[i].buf[0] << 8 & 0xff00) | (msgs[i].buf[1] & 0xff);
data_ptr = msgs[i].buf + 2;
for (j = 0; j < data_size / data_chunk_size; j++) {
/* Insert the EEPROM dest addess, bits 0-15 */
data_chunk[0] = ((next_eeprom_addr >> 8) & 0xff);
data_chunk[1] = (next_eeprom_addr & 0xff);
if (msgs[i].flags & I2C_M_RD) {
ret = aldebaran_i2c_read_data(i2c_adap,
(uint8_t)msgs[i].addr,
data_chunk, MAX_SW_I2C_COMMANDS);
memcpy(data_ptr, data_chunk + 2, data_chunk_size);
} else {
memcpy(data_chunk + 2, data_ptr, data_chunk_size);
ret = aldebaran_i2c_write_data(i2c_adap,
(uint8_t)msgs[i].addr,
data_chunk, MAX_SW_I2C_COMMANDS);
}
if (ret) {
num = -EIO;
goto fail;
}
next_eeprom_addr += data_chunk_size;
data_ptr += data_chunk_size;
}
if (data_size % data_chunk_size) {
data_chunk[0] = ((next_eeprom_addr >> 8) & 0xff);
data_chunk[1] = (next_eeprom_addr & 0xff);
if (msgs[i].flags & I2C_M_RD) {
ret = aldebaran_i2c_read_data(i2c_adap,
(uint8_t)msgs[i].addr,
data_chunk, (data_size % data_chunk_size) + 2);
memcpy(data_ptr, data_chunk + 2, data_size % data_chunk_size);
} else {
memcpy(data_chunk + 2, data_ptr, data_size % data_chunk_size);
ret = aldebaran_i2c_write_data(i2c_adap,
(uint8_t)msgs[i].addr,
data_chunk, (data_size % data_chunk_size) + 2);
}
if (ret) {
num = -EIO;
goto fail;
}
}
}
fail:
return num;
}
static u32 aldebaran_i2c_func(struct i2c_adapter *adap)
{
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}
static const struct i2c_algorithm aldebaran_i2c_algo = {
.master_xfer = aldebaran_i2c_xfer,
.functionality = aldebaran_i2c_func,
};
static int aldebaran_i2c_control_init(struct smu_context *smu, struct i2c_adapter *control)
{
struct amdgpu_device *adev = to_amdgpu_device(control);
int res;
control->owner = THIS_MODULE;
control->class = I2C_CLASS_SPD;
control->dev.parent = &adev->pdev->dev;
control->algo = &aldebaran_i2c_algo;
snprintf(control->name, sizeof(control->name), "AMDGPU SMU");
res = i2c_add_adapter(control);
if (res)
DRM_ERROR("Failed to register hw i2c, err: %d\n", res);
return res;
}
static void aldebaran_i2c_control_fini(struct smu_context *smu, struct i2c_adapter *control)
{
i2c_del_adapter(control);
}
static void aldebaran_get_unique_id(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
SmuMetrics_t *metrics = smu->smu_table.metrics_table;
uint32_t upper32 = 0, lower32 = 0;
int ret;
mutex_lock(&smu->metrics_lock);
ret = smu_cmn_get_metrics_table_locked(smu, NULL, false);
if (ret)
goto out_unlock;
upper32 = metrics->PublicSerialNumUpper32;
lower32 = metrics->PublicSerialNumLower32;
out_unlock:
mutex_unlock(&smu->metrics_lock);
adev->unique_id = ((uint64_t)upper32 << 32) | lower32;
sprintf(adev->serial, "%016llx", adev->unique_id);
}
static bool aldebaran_is_baco_supported(struct smu_context *smu)
{
/* aldebaran is not support baco */
return false;
}
static int aldebaran_set_df_cstate(struct smu_context *smu,
enum pp_df_cstate state)
{
return smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_DFCstateControl, state, NULL);
}
static int aldebaran_allow_xgmi_power_down(struct smu_context *smu, bool en)
{
return smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_GmiPwrDnControl,
en ? 1 : 0,
NULL);
}
static const struct throttling_logging_label {
uint32_t feature_mask;
const char *label;
} logging_label[] = {
{(1U << THROTTLER_TEMP_MEM_BIT), "HBM"},
{(1U << THROTTLER_TEMP_VR_GFX_BIT), "VR of GFX rail"},
{(1U << THROTTLER_TEMP_VR_MEM_BIT), "VR of HBM rail"},
{(1U << THROTTLER_TEMP_VR_SOC_BIT), "VR of SOC rail"},
};
static void aldebaran_log_thermal_throttling_event(struct smu_context *smu)
{
int ret;
int throttler_idx, throtting_events = 0, buf_idx = 0;
struct amdgpu_device *adev = smu->adev;
uint32_t throttler_status;
char log_buf[256];
ret = aldebaran_get_smu_metrics_data(smu,
METRICS_THROTTLER_STATUS,
&throttler_status);
if (ret)
return;
memset(log_buf, 0, sizeof(log_buf));
for (throttler_idx = 0; throttler_idx < ARRAY_SIZE(logging_label);
throttler_idx++) {
if (throttler_status & logging_label[throttler_idx].feature_mask) {
throtting_events++;
buf_idx += snprintf(log_buf + buf_idx,
sizeof(log_buf) - buf_idx,
"%s%s",
throtting_events > 1 ? " and " : "",
logging_label[throttler_idx].label);
if (buf_idx >= sizeof(log_buf)) {
dev_err(adev->dev, "buffer overflow!\n");
log_buf[sizeof(log_buf) - 1] = '\0';
break;
}
}
}
dev_warn(adev->dev, "WARN: GPU thermal throttling temperature reached, expect performance decrease. %s.\n",
log_buf);
kgd2kfd_smi_event_throttle(smu->adev->kfd.dev, throttler_status);
}
static int aldebaran_get_current_pcie_link_speed(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
uint32_t esm_ctrl;
/* TODO: confirm this on real target */
esm_ctrl = RREG32_PCIE(smnPCIE_ESM_CTRL);
if ((esm_ctrl >> 15) & 0x1FFFF)
return (((esm_ctrl >> 8) & 0x3F) + 128);
return smu_v13_0_get_current_pcie_link_speed(smu);
}
static ssize_t aldebaran_get_gpu_metrics(struct smu_context *smu,
void **table)
{
struct smu_table_context *smu_table = &smu->smu_table;
struct gpu_metrics_v1_3 *gpu_metrics =
(struct gpu_metrics_v1_3 *)smu_table->gpu_metrics_table;
SmuMetrics_t metrics;
int i, ret = 0;
ret = smu_cmn_get_metrics_table(smu,
&metrics,
true);
if (ret)
return ret;
smu_cmn_init_soft_gpu_metrics(gpu_metrics, 1, 3);
gpu_metrics->temperature_edge = metrics.TemperatureEdge;
gpu_metrics->temperature_hotspot = metrics.TemperatureHotspot;
gpu_metrics->temperature_mem = metrics.TemperatureHBM;
gpu_metrics->temperature_vrgfx = metrics.TemperatureVrGfx;
gpu_metrics->temperature_vrsoc = metrics.TemperatureVrSoc;
gpu_metrics->temperature_vrmem = metrics.TemperatureVrMem;
gpu_metrics->average_gfx_activity = metrics.AverageGfxActivity;
gpu_metrics->average_umc_activity = metrics.AverageUclkActivity;
gpu_metrics->average_mm_activity = 0;
/* Valid power data is available only from primary die */
if (aldebaran_is_primary(smu)) {
gpu_metrics->average_socket_power = metrics.AverageSocketPower;
gpu_metrics->energy_accumulator =
(uint64_t)metrics.EnergyAcc64bitHigh << 32 |
metrics.EnergyAcc64bitLow;
} else {
gpu_metrics->average_socket_power = 0;
gpu_metrics->energy_accumulator = 0;
}
gpu_metrics->average_gfxclk_frequency = metrics.AverageGfxclkFrequency;
gpu_metrics->average_socclk_frequency = metrics.AverageSocclkFrequency;
gpu_metrics->average_uclk_frequency = metrics.AverageUclkFrequency;
gpu_metrics->average_vclk0_frequency = 0;
gpu_metrics->average_dclk0_frequency = 0;
gpu_metrics->current_gfxclk = metrics.CurrClock[PPCLK_GFXCLK];
gpu_metrics->current_socclk = metrics.CurrClock[PPCLK_SOCCLK];
gpu_metrics->current_uclk = metrics.CurrClock[PPCLK_UCLK];
gpu_metrics->current_vclk0 = metrics.CurrClock[PPCLK_VCLK];
gpu_metrics->current_dclk0 = metrics.CurrClock[PPCLK_DCLK];
gpu_metrics->throttle_status = metrics.ThrottlerStatus;
gpu_metrics->indep_throttle_status =
smu_cmn_get_indep_throttler_status(metrics.ThrottlerStatus,
aldebaran_throttler_map);
gpu_metrics->current_fan_speed = 0;
gpu_metrics->pcie_link_width =
smu_v13_0_get_current_pcie_link_width(smu);
gpu_metrics->pcie_link_speed =
aldebaran_get_current_pcie_link_speed(smu);
gpu_metrics->system_clock_counter = ktime_get_boottime_ns();
gpu_metrics->gfx_activity_acc = metrics.GfxBusyAcc;
gpu_metrics->mem_activity_acc = metrics.DramBusyAcc;
for (i = 0; i < NUM_HBM_INSTANCES; i++)
gpu_metrics->temperature_hbm[i] = metrics.TemperatureAllHBM[i];
gpu_metrics->firmware_timestamp = ((uint64_t)metrics.TimeStampHigh << 32) |
metrics.TimeStampLow;
*table = (void *)gpu_metrics;
return sizeof(struct gpu_metrics_v1_3);
}
static int aldebaran_mode2_reset(struct smu_context *smu)
{
u32 smu_version;
int ret = 0, index;
struct amdgpu_device *adev = smu->adev;
int timeout = 10;
smu_cmn_get_smc_version(smu, NULL, &smu_version);
index = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_MSG,
SMU_MSG_GfxDeviceDriverReset);
mutex_lock(&smu->message_lock);
if (smu_version >= 0x00441400) {
ret = smu_cmn_send_msg_without_waiting(smu, (uint16_t)index, SMU_RESET_MODE_2);
/* This is similar to FLR, wait till max FLR timeout */
msleep(100);
dev_dbg(smu->adev->dev, "restore config space...\n");
/* Restore the config space saved during init */
amdgpu_device_load_pci_state(adev->pdev);
dev_dbg(smu->adev->dev, "wait for reset ack\n");
while (ret == -ETIME && timeout) {
ret = smu_cmn_wait_for_response(smu);
/* Wait a bit more time for getting ACK */
if (ret == -ETIME) {
--timeout;
usleep_range(500, 1000);
continue;
}
if (ret != 1) {
dev_err(adev->dev, "failed to send mode2 message \tparam: 0x%08x response %#x\n",
SMU_RESET_MODE_2, ret);
goto out;
}
}
} else {
dev_err(adev->dev, "smu fw 0x%x does not support MSG_GfxDeviceDriverReset MSG\n",
smu_version);
}
if (ret == 1)
ret = 0;
out:
mutex_unlock(&smu->message_lock);
return ret;
}
static bool aldebaran_is_mode1_reset_supported(struct smu_context *smu)
{
#if 0
struct amdgpu_device *adev = smu->adev;
u32 smu_version;
uint32_t val;
/**
* PM FW version support mode1 reset from 68.07
*/
smu_cmn_get_smc_version(smu, NULL, &smu_version);
if ((smu_version < 0x00440700))
return false;
/**
* mode1 reset relies on PSP, so we should check if
* PSP is alive.
*/
val = RREG32_SOC15(MP0, 0, regMP0_SMN_C2PMSG_81);
return val != 0x0;
#endif
return true;
}
static bool aldebaran_is_mode2_reset_supported(struct smu_context *smu)
{
return true;
}
static int aldebaran_set_mp1_state(struct smu_context *smu,
enum pp_mp1_state mp1_state)
{
switch (mp1_state) {
case PP_MP1_STATE_UNLOAD:
return smu_cmn_set_mp1_state(smu, mp1_state);
default:
return 0;
}
}
static int aldebaran_smu_send_hbm_bad_page_num(struct smu_context *smu,
uint32_t size)
{
int ret = 0;
/* message SMU to update the bad page number on SMUBUS */
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetNumBadHbmPagesRetired, size, NULL);
if (ret)
dev_err(smu->adev->dev, "[%s] failed to message SMU to update HBM bad pages number\n",
__func__);
return ret;
}
static const struct pptable_funcs aldebaran_ppt_funcs = {
/* init dpm */
.get_allowed_feature_mask = aldebaran_get_allowed_feature_mask,
/* dpm/clk tables */
.set_default_dpm_table = aldebaran_set_default_dpm_table,
.populate_umd_state_clk = aldebaran_populate_umd_state_clk,
.get_thermal_temperature_range = aldebaran_get_thermal_temperature_range,
.print_clk_levels = aldebaran_print_clk_levels,
.force_clk_levels = aldebaran_force_clk_levels,
.read_sensor = aldebaran_read_sensor,
.set_performance_level = aldebaran_set_performance_level,
.get_power_limit = aldebaran_get_power_limit,
.is_dpm_running = aldebaran_is_dpm_running,
.get_unique_id = aldebaran_get_unique_id,
.init_microcode = smu_v13_0_init_microcode,
.load_microcode = smu_v13_0_load_microcode,
.fini_microcode = smu_v13_0_fini_microcode,
.init_smc_tables = aldebaran_init_smc_tables,
.fini_smc_tables = smu_v13_0_fini_smc_tables,
.init_power = smu_v13_0_init_power,
.fini_power = smu_v13_0_fini_power,
.check_fw_status = smu_v13_0_check_fw_status,
/* pptable related */
.setup_pptable = aldebaran_setup_pptable,
.get_vbios_bootup_values = smu_v13_0_get_vbios_bootup_values,
.check_fw_version = smu_v13_0_check_fw_version,
.write_pptable = smu_cmn_write_pptable,
.set_driver_table_location = smu_v13_0_set_driver_table_location,
.set_tool_table_location = smu_v13_0_set_tool_table_location,
.notify_memory_pool_location = smu_v13_0_notify_memory_pool_location,
.system_features_control = aldebaran_system_features_control,
.send_smc_msg_with_param = smu_cmn_send_smc_msg_with_param,
.send_smc_msg = smu_cmn_send_smc_msg,
.get_enabled_mask = smu_cmn_get_enabled_mask,
.feature_is_enabled = smu_cmn_feature_is_enabled,
.disable_all_features_with_exception = smu_cmn_disable_all_features_with_exception,
.set_power_limit = aldebaran_set_power_limit,
.init_max_sustainable_clocks = smu_v13_0_init_max_sustainable_clocks,
.enable_thermal_alert = smu_v13_0_enable_thermal_alert,
.disable_thermal_alert = smu_v13_0_disable_thermal_alert,
.set_xgmi_pstate = smu_v13_0_set_xgmi_pstate,
.register_irq_handler = smu_v13_0_register_irq_handler,
.set_azalia_d3_pme = smu_v13_0_set_azalia_d3_pme,
.get_max_sustainable_clocks_by_dc = smu_v13_0_get_max_sustainable_clocks_by_dc,
.baco_is_support= aldebaran_is_baco_supported,
.get_dpm_ultimate_freq = smu_v13_0_get_dpm_ultimate_freq,
.set_soft_freq_limited_range = aldebaran_set_soft_freq_limited_range,
.od_edit_dpm_table = aldebaran_usr_edit_dpm_table,
.set_df_cstate = aldebaran_set_df_cstate,
.allow_xgmi_power_down = aldebaran_allow_xgmi_power_down,
.log_thermal_throttling_event = aldebaran_log_thermal_throttling_event,
.get_pp_feature_mask = smu_cmn_get_pp_feature_mask,
.set_pp_feature_mask = smu_cmn_set_pp_feature_mask,
.get_gpu_metrics = aldebaran_get_gpu_metrics,
.mode1_reset_is_support = aldebaran_is_mode1_reset_supported,
.mode2_reset_is_support = aldebaran_is_mode2_reset_supported,
.mode1_reset = smu_v13_0_mode1_reset,
.set_mp1_state = aldebaran_set_mp1_state,
.mode2_reset = aldebaran_mode2_reset,
.wait_for_event = smu_v13_0_wait_for_event,
.i2c_init = aldebaran_i2c_control_init,
.i2c_fini = aldebaran_i2c_control_fini,
.send_hbm_bad_pages_num = aldebaran_smu_send_hbm_bad_page_num,
};
void aldebaran_set_ppt_funcs(struct smu_context *smu)
{
smu->ppt_funcs = &aldebaran_ppt_funcs;
smu->message_map = aldebaran_message_map;
smu->clock_map = aldebaran_clk_map;
smu->feature_map = aldebaran_feature_mask_map;
smu->table_map = aldebaran_table_map;
}