| /* |
| * SPDX-License-Identifier: MIT |
| * |
| * Copyright © 2019 Intel Corporation |
| */ |
| |
| #include <linux/debugobjects.h> |
| |
| #include "gt/intel_context.h" |
| #include "gt/intel_engine_heartbeat.h" |
| #include "gt/intel_engine_pm.h" |
| #include "gt/intel_ring.h" |
| |
| #include "i915_drv.h" |
| #include "i915_active.h" |
| #include "i915_globals.h" |
| |
| /* |
| * Active refs memory management |
| * |
| * To be more economical with memory, we reap all the i915_active trees as |
| * they idle (when we know the active requests are inactive) and allocate the |
| * nodes from a local slab cache to hopefully reduce the fragmentation. |
| */ |
| static struct i915_global_active { |
| struct i915_global base; |
| struct kmem_cache *slab_cache; |
| } global; |
| |
| struct active_node { |
| struct rb_node node; |
| struct i915_active_fence base; |
| struct i915_active *ref; |
| u64 timeline; |
| }; |
| |
| #define fetch_node(x) rb_entry(READ_ONCE(x), typeof(struct active_node), node) |
| |
| static inline struct active_node * |
| node_from_active(struct i915_active_fence *active) |
| { |
| return container_of(active, struct active_node, base); |
| } |
| |
| #define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers) |
| |
| static inline bool is_barrier(const struct i915_active_fence *active) |
| { |
| return IS_ERR(rcu_access_pointer(active->fence)); |
| } |
| |
| static inline struct llist_node *barrier_to_ll(struct active_node *node) |
| { |
| GEM_BUG_ON(!is_barrier(&node->base)); |
| return (struct llist_node *)&node->base.cb.node; |
| } |
| |
| static inline struct intel_engine_cs * |
| __barrier_to_engine(struct active_node *node) |
| { |
| return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev); |
| } |
| |
| static inline struct intel_engine_cs * |
| barrier_to_engine(struct active_node *node) |
| { |
| GEM_BUG_ON(!is_barrier(&node->base)); |
| return __barrier_to_engine(node); |
| } |
| |
| static inline struct active_node *barrier_from_ll(struct llist_node *x) |
| { |
| return container_of((struct list_head *)x, |
| struct active_node, base.cb.node); |
| } |
| |
| #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS) |
| |
| static void *active_debug_hint(void *addr) |
| { |
| struct i915_active *ref = addr; |
| |
| return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref; |
| } |
| |
| static const struct debug_obj_descr active_debug_desc = { |
| .name = "i915_active", |
| .debug_hint = active_debug_hint, |
| }; |
| |
| static void debug_active_init(struct i915_active *ref) |
| { |
| debug_object_init(ref, &active_debug_desc); |
| } |
| |
| static void debug_active_activate(struct i915_active *ref) |
| { |
| lockdep_assert_held(&ref->tree_lock); |
| if (!atomic_read(&ref->count)) /* before the first inc */ |
| debug_object_activate(ref, &active_debug_desc); |
| } |
| |
| static void debug_active_deactivate(struct i915_active *ref) |
| { |
| lockdep_assert_held(&ref->tree_lock); |
| if (!atomic_read(&ref->count)) /* after the last dec */ |
| debug_object_deactivate(ref, &active_debug_desc); |
| } |
| |
| static void debug_active_fini(struct i915_active *ref) |
| { |
| debug_object_free(ref, &active_debug_desc); |
| } |
| |
| static void debug_active_assert(struct i915_active *ref) |
| { |
| debug_object_assert_init(ref, &active_debug_desc); |
| } |
| |
| #else |
| |
| static inline void debug_active_init(struct i915_active *ref) { } |
| static inline void debug_active_activate(struct i915_active *ref) { } |
| static inline void debug_active_deactivate(struct i915_active *ref) { } |
| static inline void debug_active_fini(struct i915_active *ref) { } |
| static inline void debug_active_assert(struct i915_active *ref) { } |
| |
| #endif |
| |
| static void |
| __active_retire(struct i915_active *ref) |
| { |
| struct rb_root root = RB_ROOT; |
| struct active_node *it, *n; |
| unsigned long flags; |
| |
| GEM_BUG_ON(i915_active_is_idle(ref)); |
| |
| /* return the unused nodes to our slabcache -- flushing the allocator */ |
| if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags)) |
| return; |
| |
| GEM_BUG_ON(rcu_access_pointer(ref->excl.fence)); |
| debug_active_deactivate(ref); |
| |
| /* Even if we have not used the cache, we may still have a barrier */ |
| if (!ref->cache) |
| ref->cache = fetch_node(ref->tree.rb_node); |
| |
| /* Keep the MRU cached node for reuse */ |
| if (ref->cache) { |
| /* Discard all other nodes in the tree */ |
| rb_erase(&ref->cache->node, &ref->tree); |
| root = ref->tree; |
| |
| /* Rebuild the tree with only the cached node */ |
| rb_link_node(&ref->cache->node, NULL, &ref->tree.rb_node); |
| rb_insert_color(&ref->cache->node, &ref->tree); |
| GEM_BUG_ON(ref->tree.rb_node != &ref->cache->node); |
| |
| /* Make the cached node available for reuse with any timeline */ |
| ref->cache->timeline = 0; /* needs cmpxchg(u64) */ |
| } |
| |
| spin_unlock_irqrestore(&ref->tree_lock, flags); |
| |
| /* After the final retire, the entire struct may be freed */ |
| if (ref->retire) |
| ref->retire(ref); |
| |
| /* ... except if you wait on it, you must manage your own references! */ |
| wake_up_var(ref); |
| |
| /* Finally free the discarded timeline tree */ |
| rbtree_postorder_for_each_entry_safe(it, n, &root, node) { |
| GEM_BUG_ON(i915_active_fence_isset(&it->base)); |
| kmem_cache_free(global.slab_cache, it); |
| } |
| } |
| |
| static void |
| active_work(struct work_struct *wrk) |
| { |
| struct i915_active *ref = container_of(wrk, typeof(*ref), work); |
| |
| GEM_BUG_ON(!atomic_read(&ref->count)); |
| if (atomic_add_unless(&ref->count, -1, 1)) |
| return; |
| |
| __active_retire(ref); |
| } |
| |
| static void |
| active_retire(struct i915_active *ref) |
| { |
| GEM_BUG_ON(!atomic_read(&ref->count)); |
| if (atomic_add_unless(&ref->count, -1, 1)) |
| return; |
| |
| if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) { |
| queue_work(system_unbound_wq, &ref->work); |
| return; |
| } |
| |
| __active_retire(ref); |
| } |
| |
| static inline struct dma_fence ** |
| __active_fence_slot(struct i915_active_fence *active) |
| { |
| return (struct dma_fence ** __force)&active->fence; |
| } |
| |
| static inline bool |
| active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb) |
| { |
| struct i915_active_fence *active = |
| container_of(cb, typeof(*active), cb); |
| |
| return cmpxchg(__active_fence_slot(active), fence, NULL) == fence; |
| } |
| |
| static void |
| node_retire(struct dma_fence *fence, struct dma_fence_cb *cb) |
| { |
| if (active_fence_cb(fence, cb)) |
| active_retire(container_of(cb, struct active_node, base.cb)->ref); |
| } |
| |
| static void |
| excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb) |
| { |
| if (active_fence_cb(fence, cb)) |
| active_retire(container_of(cb, struct i915_active, excl.cb)); |
| } |
| |
| static struct active_node *__active_lookup(struct i915_active *ref, u64 idx) |
| { |
| struct active_node *it; |
| |
| GEM_BUG_ON(idx == 0); /* 0 is the unordered timeline, rsvd for cache */ |
| |
| /* |
| * We track the most recently used timeline to skip a rbtree search |
| * for the common case, under typical loads we never need the rbtree |
| * at all. We can reuse the last slot if it is empty, that is |
| * after the previous activity has been retired, or if it matches the |
| * current timeline. |
| */ |
| it = READ_ONCE(ref->cache); |
| if (it) { |
| u64 cached = READ_ONCE(it->timeline); |
| |
| /* Once claimed, this slot will only belong to this idx */ |
| if (cached == idx) |
| return it; |
| |
| /* |
| * An unclaimed cache [.timeline=0] can only be claimed once. |
| * |
| * If the value is already non-zero, some other thread has |
| * claimed the cache and we know that is does not match our |
| * idx. If, and only if, the timeline is currently zero is it |
| * worth competing to claim it atomically for ourselves (for |
| * only the winner of that race will cmpxchg return the old |
| * value of 0). |
| */ |
| if (!cached && !cmpxchg64(&it->timeline, 0, idx)) |
| return it; |
| } |
| |
| BUILD_BUG_ON(offsetof(typeof(*it), node)); |
| |
| /* While active, the tree can only be built; not destroyed */ |
| GEM_BUG_ON(i915_active_is_idle(ref)); |
| |
| it = fetch_node(ref->tree.rb_node); |
| while (it) { |
| if (it->timeline < idx) { |
| it = fetch_node(it->node.rb_right); |
| } else if (it->timeline > idx) { |
| it = fetch_node(it->node.rb_left); |
| } else { |
| WRITE_ONCE(ref->cache, it); |
| break; |
| } |
| } |
| |
| /* NB: If the tree rotated beneath us, we may miss our target. */ |
| return it; |
| } |
| |
| static struct i915_active_fence * |
| active_instance(struct i915_active *ref, u64 idx) |
| { |
| struct active_node *node; |
| struct rb_node **p, *parent; |
| |
| node = __active_lookup(ref, idx); |
| if (likely(node)) |
| return &node->base; |
| |
| spin_lock_irq(&ref->tree_lock); |
| GEM_BUG_ON(i915_active_is_idle(ref)); |
| |
| parent = NULL; |
| p = &ref->tree.rb_node; |
| while (*p) { |
| parent = *p; |
| |
| node = rb_entry(parent, struct active_node, node); |
| if (node->timeline == idx) |
| goto out; |
| |
| if (node->timeline < idx) |
| p = &parent->rb_right; |
| else |
| p = &parent->rb_left; |
| } |
| |
| /* |
| * XXX: We should preallocate this before i915_active_ref() is ever |
| * called, but we cannot call into fs_reclaim() anyway, so use GFP_ATOMIC. |
| */ |
| node = kmem_cache_alloc(global.slab_cache, GFP_ATOMIC); |
| if (!node) |
| goto out; |
| |
| __i915_active_fence_init(&node->base, NULL, node_retire); |
| node->ref = ref; |
| node->timeline = idx; |
| |
| rb_link_node(&node->node, parent, p); |
| rb_insert_color(&node->node, &ref->tree); |
| |
| out: |
| WRITE_ONCE(ref->cache, node); |
| spin_unlock_irq(&ref->tree_lock); |
| |
| return &node->base; |
| } |
| |
| void __i915_active_init(struct i915_active *ref, |
| int (*active)(struct i915_active *ref), |
| void (*retire)(struct i915_active *ref), |
| unsigned long flags, |
| struct lock_class_key *mkey, |
| struct lock_class_key *wkey) |
| { |
| debug_active_init(ref); |
| |
| ref->flags = flags; |
| ref->active = active; |
| ref->retire = retire; |
| |
| spin_lock_init(&ref->tree_lock); |
| ref->tree = RB_ROOT; |
| ref->cache = NULL; |
| |
| init_llist_head(&ref->preallocated_barriers); |
| atomic_set(&ref->count, 0); |
| __mutex_init(&ref->mutex, "i915_active", mkey); |
| __i915_active_fence_init(&ref->excl, NULL, excl_retire); |
| INIT_WORK(&ref->work, active_work); |
| #if IS_ENABLED(CONFIG_LOCKDEP) |
| lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0); |
| #endif |
| } |
| |
| static bool ____active_del_barrier(struct i915_active *ref, |
| struct active_node *node, |
| struct intel_engine_cs *engine) |
| |
| { |
| struct llist_node *head = NULL, *tail = NULL; |
| struct llist_node *pos, *next; |
| |
| GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context); |
| |
| /* |
| * Rebuild the llist excluding our node. We may perform this |
| * outside of the kernel_context timeline mutex and so someone |
| * else may be manipulating the engine->barrier_tasks, in |
| * which case either we or they will be upset :) |
| * |
| * A second __active_del_barrier() will report failure to claim |
| * the active_node and the caller will just shrug and know not to |
| * claim ownership of its node. |
| * |
| * A concurrent i915_request_add_active_barriers() will miss adding |
| * any of the tasks, but we will try again on the next -- and since |
| * we are actively using the barrier, we know that there will be |
| * at least another opportunity when we idle. |
| */ |
| llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) { |
| if (node == barrier_from_ll(pos)) { |
| node = NULL; |
| continue; |
| } |
| |
| pos->next = head; |
| head = pos; |
| if (!tail) |
| tail = pos; |
| } |
| if (head) |
| llist_add_batch(head, tail, &engine->barrier_tasks); |
| |
| return !node; |
| } |
| |
| static bool |
| __active_del_barrier(struct i915_active *ref, struct active_node *node) |
| { |
| return ____active_del_barrier(ref, node, barrier_to_engine(node)); |
| } |
| |
| static bool |
| replace_barrier(struct i915_active *ref, struct i915_active_fence *active) |
| { |
| if (!is_barrier(active)) /* proto-node used by our idle barrier? */ |
| return false; |
| |
| /* |
| * This request is on the kernel_context timeline, and so |
| * we can use it to substitute for the pending idle-barrer |
| * request that we want to emit on the kernel_context. |
| */ |
| __active_del_barrier(ref, node_from_active(active)); |
| return true; |
| } |
| |
| int i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence) |
| { |
| struct i915_active_fence *active; |
| int err; |
| |
| /* Prevent reaping in case we malloc/wait while building the tree */ |
| err = i915_active_acquire(ref); |
| if (err) |
| return err; |
| |
| active = active_instance(ref, idx); |
| if (!active) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| if (replace_barrier(ref, active)) { |
| RCU_INIT_POINTER(active->fence, NULL); |
| atomic_dec(&ref->count); |
| } |
| if (!__i915_active_fence_set(active, fence)) |
| __i915_active_acquire(ref); |
| |
| out: |
| i915_active_release(ref); |
| return err; |
| } |
| |
| static struct dma_fence * |
| __i915_active_set_fence(struct i915_active *ref, |
| struct i915_active_fence *active, |
| struct dma_fence *fence) |
| { |
| struct dma_fence *prev; |
| |
| if (replace_barrier(ref, active)) { |
| RCU_INIT_POINTER(active->fence, fence); |
| return NULL; |
| } |
| |
| rcu_read_lock(); |
| prev = __i915_active_fence_set(active, fence); |
| if (prev) |
| prev = dma_fence_get_rcu(prev); |
| else |
| __i915_active_acquire(ref); |
| rcu_read_unlock(); |
| |
| return prev; |
| } |
| |
| static struct i915_active_fence * |
| __active_fence(struct i915_active *ref, u64 idx) |
| { |
| struct active_node *it; |
| |
| it = __active_lookup(ref, idx); |
| if (unlikely(!it)) { /* Contention with parallel tree builders! */ |
| spin_lock_irq(&ref->tree_lock); |
| it = __active_lookup(ref, idx); |
| spin_unlock_irq(&ref->tree_lock); |
| } |
| GEM_BUG_ON(!it); /* slot must be preallocated */ |
| |
| return &it->base; |
| } |
| |
| struct dma_fence * |
| __i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence) |
| { |
| /* Only valid while active, see i915_active_acquire_for_context() */ |
| return __i915_active_set_fence(ref, __active_fence(ref, idx), fence); |
| } |
| |
| struct dma_fence * |
| i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f) |
| { |
| /* We expect the caller to manage the exclusive timeline ordering */ |
| return __i915_active_set_fence(ref, &ref->excl, f); |
| } |
| |
| bool i915_active_acquire_if_busy(struct i915_active *ref) |
| { |
| debug_active_assert(ref); |
| return atomic_add_unless(&ref->count, 1, 0); |
| } |
| |
| static void __i915_active_activate(struct i915_active *ref) |
| { |
| spin_lock_irq(&ref->tree_lock); /* __active_retire() */ |
| if (!atomic_fetch_inc(&ref->count)) |
| debug_active_activate(ref); |
| spin_unlock_irq(&ref->tree_lock); |
| } |
| |
| int i915_active_acquire(struct i915_active *ref) |
| { |
| int err; |
| |
| if (i915_active_acquire_if_busy(ref)) |
| return 0; |
| |
| if (!ref->active) { |
| __i915_active_activate(ref); |
| return 0; |
| } |
| |
| err = mutex_lock_interruptible(&ref->mutex); |
| if (err) |
| return err; |
| |
| if (likely(!i915_active_acquire_if_busy(ref))) { |
| err = ref->active(ref); |
| if (!err) |
| __i915_active_activate(ref); |
| } |
| |
| mutex_unlock(&ref->mutex); |
| |
| return err; |
| } |
| |
| int i915_active_acquire_for_context(struct i915_active *ref, u64 idx) |
| { |
| struct i915_active_fence *active; |
| int err; |
| |
| err = i915_active_acquire(ref); |
| if (err) |
| return err; |
| |
| active = active_instance(ref, idx); |
| if (!active) { |
| i915_active_release(ref); |
| return -ENOMEM; |
| } |
| |
| return 0; /* return with active ref */ |
| } |
| |
| void i915_active_release(struct i915_active *ref) |
| { |
| debug_active_assert(ref); |
| active_retire(ref); |
| } |
| |
| static void enable_signaling(struct i915_active_fence *active) |
| { |
| struct dma_fence *fence; |
| |
| if (unlikely(is_barrier(active))) |
| return; |
| |
| fence = i915_active_fence_get(active); |
| if (!fence) |
| return; |
| |
| dma_fence_enable_sw_signaling(fence); |
| dma_fence_put(fence); |
| } |
| |
| static int flush_barrier(struct active_node *it) |
| { |
| struct intel_engine_cs *engine; |
| |
| if (likely(!is_barrier(&it->base))) |
| return 0; |
| |
| engine = __barrier_to_engine(it); |
| smp_rmb(); /* serialise with add_active_barriers */ |
| if (!is_barrier(&it->base)) |
| return 0; |
| |
| return intel_engine_flush_barriers(engine); |
| } |
| |
| static int flush_lazy_signals(struct i915_active *ref) |
| { |
| struct active_node *it, *n; |
| int err = 0; |
| |
| enable_signaling(&ref->excl); |
| rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) { |
| err = flush_barrier(it); /* unconnected idle barrier? */ |
| if (err) |
| break; |
| |
| enable_signaling(&it->base); |
| } |
| |
| return err; |
| } |
| |
| int __i915_active_wait(struct i915_active *ref, int state) |
| { |
| might_sleep(); |
| |
| /* Any fence added after the wait begins will not be auto-signaled */ |
| if (i915_active_acquire_if_busy(ref)) { |
| int err; |
| |
| err = flush_lazy_signals(ref); |
| i915_active_release(ref); |
| if (err) |
| return err; |
| |
| if (___wait_var_event(ref, i915_active_is_idle(ref), |
| state, 0, 0, schedule())) |
| return -EINTR; |
| } |
| |
| /* |
| * After the wait is complete, the caller may free the active. |
| * We have to flush any concurrent retirement before returning. |
| */ |
| flush_work(&ref->work); |
| return 0; |
| } |
| |
| static int __await_active(struct i915_active_fence *active, |
| int (*fn)(void *arg, struct dma_fence *fence), |
| void *arg) |
| { |
| struct dma_fence *fence; |
| |
| if (is_barrier(active)) /* XXX flush the barrier? */ |
| return 0; |
| |
| fence = i915_active_fence_get(active); |
| if (fence) { |
| int err; |
| |
| err = fn(arg, fence); |
| dma_fence_put(fence); |
| if (err < 0) |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| struct wait_barrier { |
| struct wait_queue_entry base; |
| struct i915_active *ref; |
| }; |
| |
| static int |
| barrier_wake(wait_queue_entry_t *wq, unsigned int mode, int flags, void *key) |
| { |
| struct wait_barrier *wb = container_of(wq, typeof(*wb), base); |
| |
| if (i915_active_is_idle(wb->ref)) { |
| list_del(&wq->entry); |
| i915_sw_fence_complete(wq->private); |
| kfree(wq); |
| } |
| |
| return 0; |
| } |
| |
| static int __await_barrier(struct i915_active *ref, struct i915_sw_fence *fence) |
| { |
| struct wait_barrier *wb; |
| |
| wb = kmalloc(sizeof(*wb), GFP_KERNEL); |
| if (unlikely(!wb)) |
| return -ENOMEM; |
| |
| GEM_BUG_ON(i915_active_is_idle(ref)); |
| if (!i915_sw_fence_await(fence)) { |
| kfree(wb); |
| return -EINVAL; |
| } |
| |
| wb->base.flags = 0; |
| wb->base.func = barrier_wake; |
| wb->base.private = fence; |
| wb->ref = ref; |
| |
| add_wait_queue(__var_waitqueue(ref), &wb->base); |
| return 0; |
| } |
| |
| static int await_active(struct i915_active *ref, |
| unsigned int flags, |
| int (*fn)(void *arg, struct dma_fence *fence), |
| void *arg, struct i915_sw_fence *barrier) |
| { |
| int err = 0; |
| |
| if (!i915_active_acquire_if_busy(ref)) |
| return 0; |
| |
| if (flags & I915_ACTIVE_AWAIT_EXCL && |
| rcu_access_pointer(ref->excl.fence)) { |
| err = __await_active(&ref->excl, fn, arg); |
| if (err) |
| goto out; |
| } |
| |
| if (flags & I915_ACTIVE_AWAIT_ACTIVE) { |
| struct active_node *it, *n; |
| |
| rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) { |
| err = __await_active(&it->base, fn, arg); |
| if (err) |
| goto out; |
| } |
| } |
| |
| if (flags & I915_ACTIVE_AWAIT_BARRIER) { |
| err = flush_lazy_signals(ref); |
| if (err) |
| goto out; |
| |
| err = __await_barrier(ref, barrier); |
| if (err) |
| goto out; |
| } |
| |
| out: |
| i915_active_release(ref); |
| return err; |
| } |
| |
| static int rq_await_fence(void *arg, struct dma_fence *fence) |
| { |
| return i915_request_await_dma_fence(arg, fence); |
| } |
| |
| int i915_request_await_active(struct i915_request *rq, |
| struct i915_active *ref, |
| unsigned int flags) |
| { |
| return await_active(ref, flags, rq_await_fence, rq, &rq->submit); |
| } |
| |
| static int sw_await_fence(void *arg, struct dma_fence *fence) |
| { |
| return i915_sw_fence_await_dma_fence(arg, fence, 0, |
| GFP_NOWAIT | __GFP_NOWARN); |
| } |
| |
| int i915_sw_fence_await_active(struct i915_sw_fence *fence, |
| struct i915_active *ref, |
| unsigned int flags) |
| { |
| return await_active(ref, flags, sw_await_fence, fence, fence); |
| } |
| |
| void i915_active_fini(struct i915_active *ref) |
| { |
| debug_active_fini(ref); |
| GEM_BUG_ON(atomic_read(&ref->count)); |
| GEM_BUG_ON(work_pending(&ref->work)); |
| mutex_destroy(&ref->mutex); |
| |
| if (ref->cache) |
| kmem_cache_free(global.slab_cache, ref->cache); |
| } |
| |
| static inline bool is_idle_barrier(struct active_node *node, u64 idx) |
| { |
| return node->timeline == idx && !i915_active_fence_isset(&node->base); |
| } |
| |
| static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx) |
| { |
| struct rb_node *prev, *p; |
| |
| if (RB_EMPTY_ROOT(&ref->tree)) |
| return NULL; |
| |
| GEM_BUG_ON(i915_active_is_idle(ref)); |
| |
| /* |
| * Try to reuse any existing barrier nodes already allocated for this |
| * i915_active, due to overlapping active phases there is likely a |
| * node kept alive (as we reuse before parking). We prefer to reuse |
| * completely idle barriers (less hassle in manipulating the llists), |
| * but otherwise any will do. |
| */ |
| if (ref->cache && is_idle_barrier(ref->cache, idx)) { |
| p = &ref->cache->node; |
| goto match; |
| } |
| |
| prev = NULL; |
| p = ref->tree.rb_node; |
| while (p) { |
| struct active_node *node = |
| rb_entry(p, struct active_node, node); |
| |
| if (is_idle_barrier(node, idx)) |
| goto match; |
| |
| prev = p; |
| if (node->timeline < idx) |
| p = READ_ONCE(p->rb_right); |
| else |
| p = READ_ONCE(p->rb_left); |
| } |
| |
| /* |
| * No quick match, but we did find the leftmost rb_node for the |
| * kernel_context. Walk the rb_tree in-order to see if there were |
| * any idle-barriers on this timeline that we missed, or just use |
| * the first pending barrier. |
| */ |
| for (p = prev; p; p = rb_next(p)) { |
| struct active_node *node = |
| rb_entry(p, struct active_node, node); |
| struct intel_engine_cs *engine; |
| |
| if (node->timeline > idx) |
| break; |
| |
| if (node->timeline < idx) |
| continue; |
| |
| if (is_idle_barrier(node, idx)) |
| goto match; |
| |
| /* |
| * The list of pending barriers is protected by the |
| * kernel_context timeline, which notably we do not hold |
| * here. i915_request_add_active_barriers() may consume |
| * the barrier before we claim it, so we have to check |
| * for success. |
| */ |
| engine = __barrier_to_engine(node); |
| smp_rmb(); /* serialise with add_active_barriers */ |
| if (is_barrier(&node->base) && |
| ____active_del_barrier(ref, node, engine)) |
| goto match; |
| } |
| |
| return NULL; |
| |
| match: |
| spin_lock_irq(&ref->tree_lock); |
| rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */ |
| if (p == &ref->cache->node) |
| WRITE_ONCE(ref->cache, NULL); |
| spin_unlock_irq(&ref->tree_lock); |
| |
| return rb_entry(p, struct active_node, node); |
| } |
| |
| int i915_active_acquire_preallocate_barrier(struct i915_active *ref, |
| struct intel_engine_cs *engine) |
| { |
| intel_engine_mask_t tmp, mask = engine->mask; |
| struct llist_node *first = NULL, *last = NULL; |
| struct intel_gt *gt = engine->gt; |
| |
| GEM_BUG_ON(i915_active_is_idle(ref)); |
| |
| /* Wait until the previous preallocation is completed */ |
| while (!llist_empty(&ref->preallocated_barriers)) |
| cond_resched(); |
| |
| /* |
| * Preallocate a node for each physical engine supporting the target |
| * engine (remember virtual engines have more than one sibling). |
| * We can then use the preallocated nodes in |
| * i915_active_acquire_barrier() |
| */ |
| GEM_BUG_ON(!mask); |
| for_each_engine_masked(engine, gt, mask, tmp) { |
| u64 idx = engine->kernel_context->timeline->fence_context; |
| struct llist_node *prev = first; |
| struct active_node *node; |
| |
| rcu_read_lock(); |
| node = reuse_idle_barrier(ref, idx); |
| rcu_read_unlock(); |
| if (!node) { |
| node = kmem_cache_alloc(global.slab_cache, GFP_KERNEL); |
| if (!node) |
| goto unwind; |
| |
| RCU_INIT_POINTER(node->base.fence, NULL); |
| node->base.cb.func = node_retire; |
| node->timeline = idx; |
| node->ref = ref; |
| } |
| |
| if (!i915_active_fence_isset(&node->base)) { |
| /* |
| * Mark this as being *our* unconnected proto-node. |
| * |
| * Since this node is not in any list, and we have |
| * decoupled it from the rbtree, we can reuse the |
| * request to indicate this is an idle-barrier node |
| * and then we can use the rb_node and list pointers |
| * for our tracking of the pending barrier. |
| */ |
| RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN)); |
| node->base.cb.node.prev = (void *)engine; |
| __i915_active_acquire(ref); |
| } |
| GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN)); |
| |
| GEM_BUG_ON(barrier_to_engine(node) != engine); |
| first = barrier_to_ll(node); |
| first->next = prev; |
| if (!last) |
| last = first; |
| intel_engine_pm_get(engine); |
| } |
| |
| GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers)); |
| llist_add_batch(first, last, &ref->preallocated_barriers); |
| |
| return 0; |
| |
| unwind: |
| while (first) { |
| struct active_node *node = barrier_from_ll(first); |
| |
| first = first->next; |
| |
| atomic_dec(&ref->count); |
| intel_engine_pm_put(barrier_to_engine(node)); |
| |
| kmem_cache_free(global.slab_cache, node); |
| } |
| return -ENOMEM; |
| } |
| |
| void i915_active_acquire_barrier(struct i915_active *ref) |
| { |
| struct llist_node *pos, *next; |
| unsigned long flags; |
| |
| GEM_BUG_ON(i915_active_is_idle(ref)); |
| |
| /* |
| * Transfer the list of preallocated barriers into the |
| * i915_active rbtree, but only as proto-nodes. They will be |
| * populated by i915_request_add_active_barriers() to point to the |
| * request that will eventually release them. |
| */ |
| llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) { |
| struct active_node *node = barrier_from_ll(pos); |
| struct intel_engine_cs *engine = barrier_to_engine(node); |
| struct rb_node **p, *parent; |
| |
| spin_lock_irqsave_nested(&ref->tree_lock, flags, |
| SINGLE_DEPTH_NESTING); |
| parent = NULL; |
| p = &ref->tree.rb_node; |
| while (*p) { |
| struct active_node *it; |
| |
| parent = *p; |
| |
| it = rb_entry(parent, struct active_node, node); |
| if (it->timeline < node->timeline) |
| p = &parent->rb_right; |
| else |
| p = &parent->rb_left; |
| } |
| rb_link_node(&node->node, parent, p); |
| rb_insert_color(&node->node, &ref->tree); |
| spin_unlock_irqrestore(&ref->tree_lock, flags); |
| |
| GEM_BUG_ON(!intel_engine_pm_is_awake(engine)); |
| llist_add(barrier_to_ll(node), &engine->barrier_tasks); |
| intel_engine_pm_put_delay(engine, 1); |
| } |
| } |
| |
| static struct dma_fence **ll_to_fence_slot(struct llist_node *node) |
| { |
| return __active_fence_slot(&barrier_from_ll(node)->base); |
| } |
| |
| void i915_request_add_active_barriers(struct i915_request *rq) |
| { |
| struct intel_engine_cs *engine = rq->engine; |
| struct llist_node *node, *next; |
| unsigned long flags; |
| |
| GEM_BUG_ON(!intel_context_is_barrier(rq->context)); |
| GEM_BUG_ON(intel_engine_is_virtual(engine)); |
| GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline); |
| |
| node = llist_del_all(&engine->barrier_tasks); |
| if (!node) |
| return; |
| /* |
| * Attach the list of proto-fences to the in-flight request such |
| * that the parent i915_active will be released when this request |
| * is retired. |
| */ |
| spin_lock_irqsave(&rq->lock, flags); |
| llist_for_each_safe(node, next, node) { |
| /* serialise with reuse_idle_barrier */ |
| smp_store_mb(*ll_to_fence_slot(node), &rq->fence); |
| list_add_tail((struct list_head *)node, &rq->fence.cb_list); |
| } |
| spin_unlock_irqrestore(&rq->lock, flags); |
| } |
| |
| /* |
| * __i915_active_fence_set: Update the last active fence along its timeline |
| * @active: the active tracker |
| * @fence: the new fence (under construction) |
| * |
| * Records the new @fence as the last active fence along its timeline in |
| * this active tracker, moving the tracking callbacks from the previous |
| * fence onto this one. Returns the previous fence (if not already completed), |
| * which the caller must ensure is executed before the new fence. To ensure |
| * that the order of fences within the timeline of the i915_active_fence is |
| * understood, it should be locked by the caller. |
| */ |
| struct dma_fence * |
| __i915_active_fence_set(struct i915_active_fence *active, |
| struct dma_fence *fence) |
| { |
| struct dma_fence *prev; |
| unsigned long flags; |
| |
| if (fence == rcu_access_pointer(active->fence)) |
| return fence; |
| |
| GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)); |
| |
| /* |
| * Consider that we have two threads arriving (A and B), with |
| * C already resident as the active->fence. |
| * |
| * A does the xchg first, and so it sees C or NULL depending |
| * on the timing of the interrupt handler. If it is NULL, the |
| * previous fence must have been signaled and we know that |
| * we are first on the timeline. If it is still present, |
| * we acquire the lock on that fence and serialise with the interrupt |
| * handler, in the process removing it from any future interrupt |
| * callback. A will then wait on C before executing (if present). |
| * |
| * As B is second, it sees A as the previous fence and so waits for |
| * it to complete its transition and takes over the occupancy for |
| * itself -- remembering that it needs to wait on A before executing. |
| * |
| * Note the strong ordering of the timeline also provides consistent |
| * nesting rules for the fence->lock; the inner lock is always the |
| * older lock. |
| */ |
| spin_lock_irqsave(fence->lock, flags); |
| prev = xchg(__active_fence_slot(active), fence); |
| if (prev) { |
| GEM_BUG_ON(prev == fence); |
| spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING); |
| __list_del_entry(&active->cb.node); |
| spin_unlock(prev->lock); /* serialise with prev->cb_list */ |
| } |
| list_add_tail(&active->cb.node, &fence->cb_list); |
| spin_unlock_irqrestore(fence->lock, flags); |
| |
| return prev; |
| } |
| |
| int i915_active_fence_set(struct i915_active_fence *active, |
| struct i915_request *rq) |
| { |
| struct dma_fence *fence; |
| int err = 0; |
| |
| /* Must maintain timeline ordering wrt previous active requests */ |
| rcu_read_lock(); |
| fence = __i915_active_fence_set(active, &rq->fence); |
| if (fence) /* but the previous fence may not belong to that timeline! */ |
| fence = dma_fence_get_rcu(fence); |
| rcu_read_unlock(); |
| if (fence) { |
| err = i915_request_await_dma_fence(rq, fence); |
| dma_fence_put(fence); |
| } |
| |
| return err; |
| } |
| |
| void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb) |
| { |
| active_fence_cb(fence, cb); |
| } |
| |
| struct auto_active { |
| struct i915_active base; |
| struct kref ref; |
| }; |
| |
| struct i915_active *i915_active_get(struct i915_active *ref) |
| { |
| struct auto_active *aa = container_of(ref, typeof(*aa), base); |
| |
| kref_get(&aa->ref); |
| return &aa->base; |
| } |
| |
| static void auto_release(struct kref *ref) |
| { |
| struct auto_active *aa = container_of(ref, typeof(*aa), ref); |
| |
| i915_active_fini(&aa->base); |
| kfree(aa); |
| } |
| |
| void i915_active_put(struct i915_active *ref) |
| { |
| struct auto_active *aa = container_of(ref, typeof(*aa), base); |
| |
| kref_put(&aa->ref, auto_release); |
| } |
| |
| static int auto_active(struct i915_active *ref) |
| { |
| i915_active_get(ref); |
| return 0; |
| } |
| |
| static void auto_retire(struct i915_active *ref) |
| { |
| i915_active_put(ref); |
| } |
| |
| struct i915_active *i915_active_create(void) |
| { |
| struct auto_active *aa; |
| |
| aa = kmalloc(sizeof(*aa), GFP_KERNEL); |
| if (!aa) |
| return NULL; |
| |
| kref_init(&aa->ref); |
| i915_active_init(&aa->base, auto_active, auto_retire, 0); |
| |
| return &aa->base; |
| } |
| |
| #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) |
| #include "selftests/i915_active.c" |
| #endif |
| |
| static void i915_global_active_shrink(void) |
| { |
| kmem_cache_shrink(global.slab_cache); |
| } |
| |
| static void i915_global_active_exit(void) |
| { |
| kmem_cache_destroy(global.slab_cache); |
| } |
| |
| static struct i915_global_active global = { { |
| .shrink = i915_global_active_shrink, |
| .exit = i915_global_active_exit, |
| } }; |
| |
| int __init i915_global_active_init(void) |
| { |
| global.slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN); |
| if (!global.slab_cache) |
| return -ENOMEM; |
| |
| i915_global_register(&global.base); |
| return 0; |
| } |