blob: 4657e99df0339ed3a94e8541b730b0727f4642af [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Author: Dan Scally <djrscally@gmail.com> */
#include <linux/acpi.h>
#include <linux/device.h>
#include <linux/pci.h>
#include <linux/property.h>
#include <media/v4l2-fwnode.h>
#include "cio2-bridge.h"
/*
* Extend this array with ACPI Hardware IDs of devices known to be working
* plus the number of link-frequencies expected by their drivers, along with
* the frequency values in hertz. This is somewhat opportunistic way of adding
* support for this for now in the hopes of a better source for the information
* (possibly some encoded value in the SSDB buffer that we're unaware of)
* becoming apparent in the future.
*
* Do not add an entry for a sensor that is not actually supported.
*/
static const struct cio2_sensor_config cio2_supported_sensors[] = {
/* Omnivision OV5693 */
CIO2_SENSOR_CONFIG("INT33BE", 0),
/* Omnivision OV2680 */
CIO2_SENSOR_CONFIG("OVTI2680", 0),
};
static const struct cio2_property_names prop_names = {
.clock_frequency = "clock-frequency",
.rotation = "rotation",
.bus_type = "bus-type",
.data_lanes = "data-lanes",
.remote_endpoint = "remote-endpoint",
.link_frequencies = "link-frequencies",
};
static int cio2_bridge_read_acpi_buffer(struct acpi_device *adev, char *id,
void *data, u32 size)
{
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
union acpi_object *obj;
acpi_status status;
int ret = 0;
status = acpi_evaluate_object(adev->handle, id, NULL, &buffer);
if (ACPI_FAILURE(status))
return -ENODEV;
obj = buffer.pointer;
if (!obj) {
dev_err(&adev->dev, "Couldn't locate ACPI buffer\n");
return -ENODEV;
}
if (obj->type != ACPI_TYPE_BUFFER) {
dev_err(&adev->dev, "Not an ACPI buffer\n");
ret = -ENODEV;
goto out_free_buff;
}
if (obj->buffer.length > size) {
dev_err(&adev->dev, "Given buffer is too small\n");
ret = -EINVAL;
goto out_free_buff;
}
memcpy(data, obj->buffer.pointer, obj->buffer.length);
out_free_buff:
kfree(buffer.pointer);
return ret;
}
static void cio2_bridge_create_fwnode_properties(
struct cio2_sensor *sensor,
struct cio2_bridge *bridge,
const struct cio2_sensor_config *cfg)
{
sensor->prop_names = prop_names;
sensor->local_ref[0] = SOFTWARE_NODE_REFERENCE(&sensor->swnodes[SWNODE_CIO2_ENDPOINT]);
sensor->remote_ref[0] = SOFTWARE_NODE_REFERENCE(&sensor->swnodes[SWNODE_SENSOR_ENDPOINT]);
sensor->dev_properties[0] = PROPERTY_ENTRY_U32(
sensor->prop_names.clock_frequency,
sensor->ssdb.mclkspeed);
sensor->dev_properties[1] = PROPERTY_ENTRY_U8(
sensor->prop_names.rotation,
sensor->ssdb.degree);
sensor->ep_properties[0] = PROPERTY_ENTRY_U32(
sensor->prop_names.bus_type,
V4L2_FWNODE_BUS_TYPE_CSI2_DPHY);
sensor->ep_properties[1] = PROPERTY_ENTRY_U32_ARRAY_LEN(
sensor->prop_names.data_lanes,
bridge->data_lanes,
sensor->ssdb.lanes);
sensor->ep_properties[2] = PROPERTY_ENTRY_REF_ARRAY(
sensor->prop_names.remote_endpoint,
sensor->local_ref);
if (cfg->nr_link_freqs > 0)
sensor->ep_properties[3] = PROPERTY_ENTRY_U64_ARRAY_LEN(
sensor->prop_names.link_frequencies,
cfg->link_freqs,
cfg->nr_link_freqs);
sensor->cio2_properties[0] = PROPERTY_ENTRY_U32_ARRAY_LEN(
sensor->prop_names.data_lanes,
bridge->data_lanes,
sensor->ssdb.lanes);
sensor->cio2_properties[1] = PROPERTY_ENTRY_REF_ARRAY(
sensor->prop_names.remote_endpoint,
sensor->remote_ref);
}
static void cio2_bridge_init_swnode_names(struct cio2_sensor *sensor)
{
snprintf(sensor->node_names.remote_port,
sizeof(sensor->node_names.remote_port),
SWNODE_GRAPH_PORT_NAME_FMT, sensor->ssdb.link);
snprintf(sensor->node_names.port,
sizeof(sensor->node_names.port),
SWNODE_GRAPH_PORT_NAME_FMT, 0); /* Always port 0 */
snprintf(sensor->node_names.endpoint,
sizeof(sensor->node_names.endpoint),
SWNODE_GRAPH_ENDPOINT_NAME_FMT, 0); /* And endpoint 0 */
}
static void cio2_bridge_create_connection_swnodes(struct cio2_bridge *bridge,
struct cio2_sensor *sensor)
{
struct software_node *nodes = sensor->swnodes;
cio2_bridge_init_swnode_names(sensor);
nodes[SWNODE_SENSOR_HID] = NODE_SENSOR(sensor->name,
sensor->dev_properties);
nodes[SWNODE_SENSOR_PORT] = NODE_PORT(sensor->node_names.port,
&nodes[SWNODE_SENSOR_HID]);
nodes[SWNODE_SENSOR_ENDPOINT] = NODE_ENDPOINT(
sensor->node_names.endpoint,
&nodes[SWNODE_SENSOR_PORT],
sensor->ep_properties);
nodes[SWNODE_CIO2_PORT] = NODE_PORT(sensor->node_names.remote_port,
&bridge->cio2_hid_node);
nodes[SWNODE_CIO2_ENDPOINT] = NODE_ENDPOINT(
sensor->node_names.endpoint,
&nodes[SWNODE_CIO2_PORT],
sensor->cio2_properties);
}
static void cio2_bridge_unregister_sensors(struct cio2_bridge *bridge)
{
struct cio2_sensor *sensor;
unsigned int i;
for (i = 0; i < bridge->n_sensors; i++) {
sensor = &bridge->sensors[i];
software_node_unregister_nodes(sensor->swnodes);
acpi_dev_put(sensor->adev);
}
}
static int cio2_bridge_connect_sensor(const struct cio2_sensor_config *cfg,
struct cio2_bridge *bridge,
struct pci_dev *cio2)
{
struct fwnode_handle *fwnode;
struct cio2_sensor *sensor;
struct acpi_device *adev;
int ret;
for_each_acpi_dev_match(adev, cfg->hid, NULL, -1) {
if (!adev->status.enabled) {
acpi_dev_put(adev);
continue;
}
if (bridge->n_sensors >= CIO2_NUM_PORTS) {
acpi_dev_put(adev);
dev_err(&cio2->dev, "Exceeded available CIO2 ports\n");
return -EINVAL;
}
sensor = &bridge->sensors[bridge->n_sensors];
sensor->adev = adev;
strscpy(sensor->name, cfg->hid, sizeof(sensor->name));
ret = cio2_bridge_read_acpi_buffer(adev, "SSDB",
&sensor->ssdb,
sizeof(sensor->ssdb));
if (ret)
goto err_put_adev;
if (sensor->ssdb.lanes > CIO2_MAX_LANES) {
dev_err(&adev->dev,
"Number of lanes in SSDB is invalid\n");
ret = -EINVAL;
goto err_put_adev;
}
cio2_bridge_create_fwnode_properties(sensor, bridge, cfg);
cio2_bridge_create_connection_swnodes(bridge, sensor);
ret = software_node_register_nodes(sensor->swnodes);
if (ret)
goto err_put_adev;
fwnode = software_node_fwnode(&sensor->swnodes[
SWNODE_SENSOR_HID]);
if (!fwnode) {
ret = -ENODEV;
goto err_free_swnodes;
}
adev->fwnode.secondary = fwnode;
dev_info(&cio2->dev, "Found supported sensor %s\n",
acpi_dev_name(adev));
bridge->n_sensors++;
}
return 0;
err_free_swnodes:
software_node_unregister_nodes(sensor->swnodes);
err_put_adev:
acpi_dev_put(sensor->adev);
return ret;
}
static int cio2_bridge_connect_sensors(struct cio2_bridge *bridge,
struct pci_dev *cio2)
{
unsigned int i;
int ret;
for (i = 0; i < ARRAY_SIZE(cio2_supported_sensors); i++) {
const struct cio2_sensor_config *cfg =
&cio2_supported_sensors[i];
ret = cio2_bridge_connect_sensor(cfg, bridge, cio2);
if (ret)
goto err_unregister_sensors;
}
return 0;
err_unregister_sensors:
cio2_bridge_unregister_sensors(bridge);
return ret;
}
int cio2_bridge_init(struct pci_dev *cio2)
{
struct device *dev = &cio2->dev;
struct fwnode_handle *fwnode;
struct cio2_bridge *bridge;
unsigned int i;
int ret;
bridge = kzalloc(sizeof(*bridge), GFP_KERNEL);
if (!bridge)
return -ENOMEM;
strscpy(bridge->cio2_node_name, CIO2_HID,
sizeof(bridge->cio2_node_name));
bridge->cio2_hid_node.name = bridge->cio2_node_name;
ret = software_node_register(&bridge->cio2_hid_node);
if (ret < 0) {
dev_err(dev, "Failed to register the CIO2 HID node\n");
goto err_free_bridge;
}
/*
* Map the lane arrangement, which is fixed for the IPU3 (meaning we
* only need one, rather than one per sensor). We include it as a
* member of the struct cio2_bridge rather than a global variable so
* that it survives if the module is unloaded along with the rest of
* the struct.
*/
for (i = 0; i < CIO2_MAX_LANES; i++)
bridge->data_lanes[i] = i + 1;
ret = cio2_bridge_connect_sensors(bridge, cio2);
if (ret || bridge->n_sensors == 0)
goto err_unregister_cio2;
dev_info(dev, "Connected %d cameras\n", bridge->n_sensors);
fwnode = software_node_fwnode(&bridge->cio2_hid_node);
if (!fwnode) {
dev_err(dev, "Error getting fwnode from cio2 software_node\n");
ret = -ENODEV;
goto err_unregister_sensors;
}
set_secondary_fwnode(dev, fwnode);
return 0;
err_unregister_sensors:
cio2_bridge_unregister_sensors(bridge);
err_unregister_cio2:
software_node_unregister(&bridge->cio2_hid_node);
err_free_bridge:
kfree(bridge);
return ret;
}