blob: 07f342db6701f1084cf53d6c6455db0e00787c33 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* ngene.c: nGene PCIe bridge driver
*
* Copyright (C) 2005-2007 Micronas
*
* Copyright (C) 2008-2009 Ralph Metzler <rjkm@metzlerbros.de>
* Modifications for new nGene firmware,
* support for EEPROM-copying,
* support for new dual DVB-S2 card prototype
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/poll.h>
#include <linux/io.h>
#include <asm/div64.h>
#include <linux/pci.h>
#include <linux/timer.h>
#include <linux/byteorder/generic.h>
#include <linux/firmware.h>
#include <linux/vmalloc.h>
#include "ngene.h"
static int one_adapter;
module_param(one_adapter, int, 0444);
MODULE_PARM_DESC(one_adapter, "Use only one adapter.");
static int shutdown_workaround;
module_param(shutdown_workaround, int, 0644);
MODULE_PARM_DESC(shutdown_workaround, "Activate workaround for shutdown problem with some chipsets.");
static int debug;
module_param(debug, int, 0444);
MODULE_PARM_DESC(debug, "Print debugging information.");
DVB_DEFINE_MOD_OPT_ADAPTER_NR(adapter_nr);
#define ngwriteb(dat, adr) writeb((dat), dev->iomem + (adr))
#define ngwritel(dat, adr) writel((dat), dev->iomem + (adr))
#define ngwriteb(dat, adr) writeb((dat), dev->iomem + (adr))
#define ngreadl(adr) readl(dev->iomem + (adr))
#define ngreadb(adr) readb(dev->iomem + (adr))
#define ngcpyto(adr, src, count) memcpy_toio(dev->iomem + (adr), (src), (count))
#define ngcpyfrom(dst, adr, count) memcpy_fromio((dst), dev->iomem + (adr), (count))
/****************************************************************************/
/* nGene interrupt handler **************************************************/
/****************************************************************************/
static void event_tasklet(struct tasklet_struct *t)
{
struct ngene *dev = from_tasklet(dev, t, event_tasklet);
while (dev->EventQueueReadIndex != dev->EventQueueWriteIndex) {
struct EVENT_BUFFER Event =
dev->EventQueue[dev->EventQueueReadIndex];
dev->EventQueueReadIndex =
(dev->EventQueueReadIndex + 1) & (EVENT_QUEUE_SIZE - 1);
if ((Event.UARTStatus & 0x01) && (dev->TxEventNotify))
dev->TxEventNotify(dev, Event.TimeStamp);
if ((Event.UARTStatus & 0x02) && (dev->RxEventNotify))
dev->RxEventNotify(dev, Event.TimeStamp,
Event.RXCharacter);
}
}
static void demux_tasklet(struct tasklet_struct *t)
{
struct ngene_channel *chan = from_tasklet(chan, t, demux_tasklet);
struct device *pdev = &chan->dev->pci_dev->dev;
struct SBufferHeader *Cur = chan->nextBuffer;
spin_lock_irq(&chan->state_lock);
while (Cur->ngeneBuffer.SR.Flags & 0x80) {
if (chan->mode & NGENE_IO_TSOUT) {
u32 Flags = chan->DataFormatFlags;
if (Cur->ngeneBuffer.SR.Flags & 0x20)
Flags |= BEF_OVERFLOW;
if (chan->pBufferExchange) {
if (!chan->pBufferExchange(chan,
Cur->Buffer1,
chan->Capture1Length,
Cur->ngeneBuffer.SR.
Clock, Flags)) {
/*
We didn't get data
Clear in service flag to make sure we
get called on next interrupt again.
leave fill/empty (0x80) flag alone
to avoid hardware running out of
buffers during startup, we hold only
in run state ( the source may be late
delivering data )
*/
if (chan->HWState == HWSTATE_RUN) {
Cur->ngeneBuffer.SR.Flags &=
~0x40;
break;
/* Stop processing stream */
}
} else {
/* We got a valid buffer,
so switch to run state */
chan->HWState = HWSTATE_RUN;
}
} else {
dev_err(pdev, "OOPS\n");
if (chan->HWState == HWSTATE_RUN) {
Cur->ngeneBuffer.SR.Flags &= ~0x40;
break; /* Stop processing stream */
}
}
if (chan->AudioDTOUpdated) {
dev_info(pdev, "Update AudioDTO = %d\n",
chan->AudioDTOValue);
Cur->ngeneBuffer.SR.DTOUpdate =
chan->AudioDTOValue;
chan->AudioDTOUpdated = 0;
}
} else {
if (chan->HWState == HWSTATE_RUN) {
u32 Flags = chan->DataFormatFlags;
IBufferExchange *exch1 = chan->pBufferExchange;
IBufferExchange *exch2 = chan->pBufferExchange2;
if (Cur->ngeneBuffer.SR.Flags & 0x01)
Flags |= BEF_EVEN_FIELD;
if (Cur->ngeneBuffer.SR.Flags & 0x20)
Flags |= BEF_OVERFLOW;
spin_unlock_irq(&chan->state_lock);
if (exch1)
exch1(chan, Cur->Buffer1,
chan->Capture1Length,
Cur->ngeneBuffer.SR.Clock,
Flags);
if (exch2)
exch2(chan, Cur->Buffer2,
chan->Capture2Length,
Cur->ngeneBuffer.SR.Clock,
Flags);
spin_lock_irq(&chan->state_lock);
} else if (chan->HWState != HWSTATE_STOP)
chan->HWState = HWSTATE_RUN;
}
Cur->ngeneBuffer.SR.Flags = 0x00;
Cur = Cur->Next;
}
chan->nextBuffer = Cur;
spin_unlock_irq(&chan->state_lock);
}
static irqreturn_t irq_handler(int irq, void *dev_id)
{
struct ngene *dev = (struct ngene *)dev_id;
struct device *pdev = &dev->pci_dev->dev;
u32 icounts = 0;
irqreturn_t rc = IRQ_NONE;
u32 i = MAX_STREAM;
u8 *tmpCmdDoneByte;
if (dev->BootFirmware) {
icounts = ngreadl(NGENE_INT_COUNTS);
if (icounts != dev->icounts) {
ngwritel(0, FORCE_NMI);
dev->cmd_done = 1;
wake_up(&dev->cmd_wq);
dev->icounts = icounts;
rc = IRQ_HANDLED;
}
return rc;
}
ngwritel(0, FORCE_NMI);
spin_lock(&dev->cmd_lock);
tmpCmdDoneByte = dev->CmdDoneByte;
if (tmpCmdDoneByte &&
(*tmpCmdDoneByte ||
(dev->ngenetohost[0] == 1 && dev->ngenetohost[1] != 0))) {
dev->CmdDoneByte = NULL;
dev->cmd_done = 1;
wake_up(&dev->cmd_wq);
rc = IRQ_HANDLED;
}
spin_unlock(&dev->cmd_lock);
if (dev->EventBuffer->EventStatus & 0x80) {
u8 nextWriteIndex =
(dev->EventQueueWriteIndex + 1) &
(EVENT_QUEUE_SIZE - 1);
if (nextWriteIndex != dev->EventQueueReadIndex) {
dev->EventQueue[dev->EventQueueWriteIndex] =
*(dev->EventBuffer);
dev->EventQueueWriteIndex = nextWriteIndex;
} else {
dev_err(pdev, "event overflow\n");
dev->EventQueueOverflowCount += 1;
dev->EventQueueOverflowFlag = 1;
}
dev->EventBuffer->EventStatus &= ~0x80;
tasklet_schedule(&dev->event_tasklet);
rc = IRQ_HANDLED;
}
while (i > 0) {
i--;
spin_lock(&dev->channel[i].state_lock);
/* if (dev->channel[i].State>=KSSTATE_RUN) { */
if (dev->channel[i].nextBuffer) {
if ((dev->channel[i].nextBuffer->
ngeneBuffer.SR.Flags & 0xC0) == 0x80) {
dev->channel[i].nextBuffer->
ngeneBuffer.SR.Flags |= 0x40;
tasklet_schedule(
&dev->channel[i].demux_tasklet);
rc = IRQ_HANDLED;
}
}
spin_unlock(&dev->channel[i].state_lock);
}
/* Request might have been processed by a previous call. */
return IRQ_HANDLED;
}
/****************************************************************************/
/* nGene command interface **************************************************/
/****************************************************************************/
static void dump_command_io(struct ngene *dev)
{
struct device *pdev = &dev->pci_dev->dev;
u8 buf[8], *b;
ngcpyfrom(buf, HOST_TO_NGENE, 8);
dev_err(pdev, "host_to_ngene (%04x): %*ph\n", HOST_TO_NGENE, 8, buf);
ngcpyfrom(buf, NGENE_TO_HOST, 8);
dev_err(pdev, "ngene_to_host (%04x): %*ph\n", NGENE_TO_HOST, 8, buf);
b = dev->hosttongene;
dev_err(pdev, "dev->hosttongene (%p): %*ph\n", b, 8, b);
b = dev->ngenetohost;
dev_err(pdev, "dev->ngenetohost (%p): %*ph\n", b, 8, b);
}
static int ngene_command_mutex(struct ngene *dev, struct ngene_command *com)
{
struct device *pdev = &dev->pci_dev->dev;
int ret;
u8 *tmpCmdDoneByte;
dev->cmd_done = 0;
if (com->cmd.hdr.Opcode == CMD_FWLOAD_PREPARE) {
dev->BootFirmware = 1;
dev->icounts = ngreadl(NGENE_INT_COUNTS);
ngwritel(0, NGENE_COMMAND);
ngwritel(0, NGENE_COMMAND_HI);
ngwritel(0, NGENE_STATUS);
ngwritel(0, NGENE_STATUS_HI);
ngwritel(0, NGENE_EVENT);
ngwritel(0, NGENE_EVENT_HI);
} else if (com->cmd.hdr.Opcode == CMD_FWLOAD_FINISH) {
u64 fwio = dev->PAFWInterfaceBuffer;
ngwritel(fwio & 0xffffffff, NGENE_COMMAND);
ngwritel(fwio >> 32, NGENE_COMMAND_HI);
ngwritel((fwio + 256) & 0xffffffff, NGENE_STATUS);
ngwritel((fwio + 256) >> 32, NGENE_STATUS_HI);
ngwritel((fwio + 512) & 0xffffffff, NGENE_EVENT);
ngwritel((fwio + 512) >> 32, NGENE_EVENT_HI);
}
memcpy(dev->FWInterfaceBuffer, com->cmd.raw8, com->in_len + 2);
if (dev->BootFirmware)
ngcpyto(HOST_TO_NGENE, com->cmd.raw8, com->in_len + 2);
spin_lock_irq(&dev->cmd_lock);
tmpCmdDoneByte = dev->ngenetohost + com->out_len;
if (!com->out_len)
tmpCmdDoneByte++;
*tmpCmdDoneByte = 0;
dev->ngenetohost[0] = 0;
dev->ngenetohost[1] = 0;
dev->CmdDoneByte = tmpCmdDoneByte;
spin_unlock_irq(&dev->cmd_lock);
/* Notify 8051. */
ngwritel(1, FORCE_INT);
ret = wait_event_timeout(dev->cmd_wq, dev->cmd_done == 1, 2 * HZ);
if (!ret) {
/*ngwritel(0, FORCE_NMI);*/
dev_err(pdev, "Command timeout cmd=%02x prev=%02x\n",
com->cmd.hdr.Opcode, dev->prev_cmd);
dump_command_io(dev);
return -1;
}
if (com->cmd.hdr.Opcode == CMD_FWLOAD_FINISH)
dev->BootFirmware = 0;
dev->prev_cmd = com->cmd.hdr.Opcode;
if (!com->out_len)
return 0;
memcpy(com->cmd.raw8, dev->ngenetohost, com->out_len);
return 0;
}
int ngene_command(struct ngene *dev, struct ngene_command *com)
{
int result;
mutex_lock(&dev->cmd_mutex);
result = ngene_command_mutex(dev, com);
mutex_unlock(&dev->cmd_mutex);
return result;
}
static int ngene_command_load_firmware(struct ngene *dev,
u8 *ngene_fw, u32 size)
{
#define FIRSTCHUNK (1024)
u32 cleft;
struct ngene_command com;
com.cmd.hdr.Opcode = CMD_FWLOAD_PREPARE;
com.cmd.hdr.Length = 0;
com.in_len = 0;
com.out_len = 0;
ngene_command(dev, &com);
cleft = (size + 3) & ~3;
if (cleft > FIRSTCHUNK) {
ngcpyto(PROGRAM_SRAM + FIRSTCHUNK, ngene_fw + FIRSTCHUNK,
cleft - FIRSTCHUNK);
cleft = FIRSTCHUNK;
}
ngcpyto(DATA_FIFO_AREA, ngene_fw, cleft);
memset(&com, 0, sizeof(struct ngene_command));
com.cmd.hdr.Opcode = CMD_FWLOAD_FINISH;
com.cmd.hdr.Length = 4;
com.cmd.FWLoadFinish.Address = DATA_FIFO_AREA;
com.cmd.FWLoadFinish.Length = (unsigned short)cleft;
com.in_len = 4;
com.out_len = 0;
return ngene_command(dev, &com);
}
static int ngene_command_config_buf(struct ngene *dev, u8 config)
{
struct ngene_command com;
com.cmd.hdr.Opcode = CMD_CONFIGURE_BUFFER;
com.cmd.hdr.Length = 1;
com.cmd.ConfigureBuffers.config = config;
com.in_len = 1;
com.out_len = 0;
if (ngene_command(dev, &com) < 0)
return -EIO;
return 0;
}
static int ngene_command_config_free_buf(struct ngene *dev, u8 *config)
{
struct ngene_command com;
com.cmd.hdr.Opcode = CMD_CONFIGURE_FREE_BUFFER;
com.cmd.hdr.Length = 6;
memcpy(&com.cmd.ConfigureBuffers.config, config, 6);
com.in_len = 6;
com.out_len = 0;
if (ngene_command(dev, &com) < 0)
return -EIO;
return 0;
}
int ngene_command_gpio_set(struct ngene *dev, u8 select, u8 level)
{
struct ngene_command com;
com.cmd.hdr.Opcode = CMD_SET_GPIO_PIN;
com.cmd.hdr.Length = 1;
com.cmd.SetGpioPin.select = select | (level << 7);
com.in_len = 1;
com.out_len = 0;
return ngene_command(dev, &com);
}
/*
02000640 is sample on rising edge.
02000740 is sample on falling edge.
02000040 is ignore "valid" signal
0: FD_CTL1 Bit 7,6 must be 0,1
7 disable(fw controlled)
6 0-AUX,1-TS
5 0-par,1-ser
4 0-lsb/1-msb
3,2 reserved
1,0 0-no sync, 1-use ext. start, 2-use 0x47, 3-both
1: FD_CTL2 has 3-valid must be hi, 2-use valid, 1-edge
2: FD_STA is read-only. 0-sync
3: FD_INSYNC is number of 47s to trigger "in sync".
4: FD_OUTSYNC is number of 47s to trigger "out of sync".
5: FD_MAXBYTE1 is low-order of bytes per packet.
6: FD_MAXBYTE2 is high-order of bytes per packet.
7: Top byte is unused.
*/
/****************************************************************************/
static u8 TSFeatureDecoderSetup[8 * 5] = {
0x42, 0x00, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00,
0x40, 0x06, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00, /* DRXH */
0x71, 0x07, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00, /* DRXHser */
0x72, 0x00, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00, /* S2ser */
0x40, 0x07, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00, /* LGDT3303 */
};
/* Set NGENE I2S Config to 16 bit packed */
static u8 I2SConfiguration[] = {
0x00, 0x10, 0x00, 0x00,
0x80, 0x10, 0x00, 0x00,
};
static u8 SPDIFConfiguration[10] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
/* Set NGENE I2S Config to transport stream compatible mode */
static u8 TS_I2SConfiguration[4] = { 0x3E, 0x18, 0x00, 0x00 };
static u8 TS_I2SOutConfiguration[4] = { 0x80, 0x04, 0x00, 0x00 };
static u8 ITUDecoderSetup[4][16] = {
{0x1c, 0x13, 0x01, 0x68, 0x3d, 0x90, 0x14, 0x20, /* SDTV */
0x00, 0x00, 0x01, 0xb0, 0x9c, 0x00, 0x00, 0x00},
{0x9c, 0x03, 0x23, 0xC0, 0x60, 0x0E, 0x13, 0x00,
0x00, 0x00, 0x00, 0x01, 0xB0, 0x00, 0x00, 0x00},
{0x9f, 0x00, 0x23, 0xC0, 0x60, 0x0F, 0x13, 0x00, /* HDTV 1080i50 */
0x00, 0x00, 0x00, 0x01, 0xB0, 0x00, 0x00, 0x00},
{0x9c, 0x01, 0x23, 0xC0, 0x60, 0x0E, 0x13, 0x00, /* HDTV 1080i60 */
0x00, 0x00, 0x00, 0x01, 0xB0, 0x00, 0x00, 0x00},
};
/*
* 50 48 60 gleich
* 27p50 9f 00 22 80 42 69 18 ...
* 27p60 93 00 22 80 82 69 1c ...
*/
/* Maxbyte to 1144 (for raw data) */
static u8 ITUFeatureDecoderSetup[8] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x78, 0x04, 0x00
};
void FillTSBuffer(void *Buffer, int Length, u32 Flags)
{
u32 *ptr = Buffer;
memset(Buffer, TS_FILLER, Length);
while (Length > 0) {
if (Flags & DF_SWAP32)
*ptr = 0x471FFF10;
else
*ptr = 0x10FF1F47;
ptr += (188 / 4);
Length -= 188;
}
}
static void flush_buffers(struct ngene_channel *chan)
{
u8 val;
do {
msleep(1);
spin_lock_irq(&chan->state_lock);
val = chan->nextBuffer->ngeneBuffer.SR.Flags & 0x80;
spin_unlock_irq(&chan->state_lock);
} while (val);
}
static void clear_buffers(struct ngene_channel *chan)
{
struct SBufferHeader *Cur = chan->nextBuffer;
do {
memset(&Cur->ngeneBuffer.SR, 0, sizeof(Cur->ngeneBuffer.SR));
if (chan->mode & NGENE_IO_TSOUT)
FillTSBuffer(Cur->Buffer1,
chan->Capture1Length,
chan->DataFormatFlags);
Cur = Cur->Next;
} while (Cur != chan->nextBuffer);
if (chan->mode & NGENE_IO_TSOUT) {
chan->nextBuffer->ngeneBuffer.SR.DTOUpdate =
chan->AudioDTOValue;
chan->AudioDTOUpdated = 0;
Cur = chan->TSIdleBuffer.Head;
do {
memset(&Cur->ngeneBuffer.SR, 0,
sizeof(Cur->ngeneBuffer.SR));
FillTSBuffer(Cur->Buffer1,
chan->Capture1Length,
chan->DataFormatFlags);
Cur = Cur->Next;
} while (Cur != chan->TSIdleBuffer.Head);
}
}
static int ngene_command_stream_control(struct ngene *dev, u8 stream,
u8 control, u8 mode, u8 flags)
{
struct device *pdev = &dev->pci_dev->dev;
struct ngene_channel *chan = &dev->channel[stream];
struct ngene_command com;
u16 BsUVI = ((stream & 1) ? 0x9400 : 0x9300);
u16 BsSDI = ((stream & 1) ? 0x9600 : 0x9500);
u16 BsSPI = ((stream & 1) ? 0x9800 : 0x9700);
u16 BsSDO = 0x9B00;
memset(&com, 0, sizeof(com));
com.cmd.hdr.Opcode = CMD_CONTROL;
com.cmd.hdr.Length = sizeof(struct FW_STREAM_CONTROL) - 2;
com.cmd.StreamControl.Stream = stream | (control ? 8 : 0);
if (chan->mode & NGENE_IO_TSOUT)
com.cmd.StreamControl.Stream |= 0x07;
com.cmd.StreamControl.Control = control |
(flags & SFLAG_ORDER_LUMA_CHROMA);
com.cmd.StreamControl.Mode = mode;
com.in_len = sizeof(struct FW_STREAM_CONTROL);
com.out_len = 0;
dev_dbg(pdev, "Stream=%02x, Control=%02x, Mode=%02x\n",
com.cmd.StreamControl.Stream, com.cmd.StreamControl.Control,
com.cmd.StreamControl.Mode);
chan->Mode = mode;
if (!(control & 0x80)) {
spin_lock_irq(&chan->state_lock);
if (chan->State == KSSTATE_RUN) {
chan->State = KSSTATE_ACQUIRE;
chan->HWState = HWSTATE_STOP;
spin_unlock_irq(&chan->state_lock);
if (ngene_command(dev, &com) < 0)
return -1;
/* clear_buffers(chan); */
flush_buffers(chan);
return 0;
}
spin_unlock_irq(&chan->state_lock);
return 0;
}
if (mode & SMODE_AUDIO_CAPTURE) {
com.cmd.StreamControl.CaptureBlockCount =
chan->Capture1Length / AUDIO_BLOCK_SIZE;
com.cmd.StreamControl.Buffer_Address = chan->RingBuffer.PAHead;
} else if (mode & SMODE_TRANSPORT_STREAM) {
com.cmd.StreamControl.CaptureBlockCount =
chan->Capture1Length / TS_BLOCK_SIZE;
com.cmd.StreamControl.MaxLinesPerField =
chan->Capture1Length / TS_BLOCK_SIZE;
com.cmd.StreamControl.Buffer_Address =
chan->TSRingBuffer.PAHead;
if (chan->mode & NGENE_IO_TSOUT) {
com.cmd.StreamControl.BytesPerVBILine =
chan->Capture1Length / TS_BLOCK_SIZE;
com.cmd.StreamControl.Stream |= 0x07;
}
} else {
com.cmd.StreamControl.BytesPerVideoLine = chan->nBytesPerLine;
com.cmd.StreamControl.MaxLinesPerField = chan->nLines;
com.cmd.StreamControl.MinLinesPerField = 100;
com.cmd.StreamControl.Buffer_Address = chan->RingBuffer.PAHead;
if (mode & SMODE_VBI_CAPTURE) {
com.cmd.StreamControl.MaxVBILinesPerField =
chan->nVBILines;
com.cmd.StreamControl.MinVBILinesPerField = 0;
com.cmd.StreamControl.BytesPerVBILine =
chan->nBytesPerVBILine;
}
if (flags & SFLAG_COLORBAR)
com.cmd.StreamControl.Stream |= 0x04;
}
spin_lock_irq(&chan->state_lock);
if (mode & SMODE_AUDIO_CAPTURE) {
chan->nextBuffer = chan->RingBuffer.Head;
if (mode & SMODE_AUDIO_SPDIF) {
com.cmd.StreamControl.SetupDataLen =
sizeof(SPDIFConfiguration);
com.cmd.StreamControl.SetupDataAddr = BsSPI;
memcpy(com.cmd.StreamControl.SetupData,
SPDIFConfiguration, sizeof(SPDIFConfiguration));
} else {
com.cmd.StreamControl.SetupDataLen = 4;
com.cmd.StreamControl.SetupDataAddr = BsSDI;
memcpy(com.cmd.StreamControl.SetupData,
I2SConfiguration +
4 * dev->card_info->i2s[stream], 4);
}
} else if (mode & SMODE_TRANSPORT_STREAM) {
chan->nextBuffer = chan->TSRingBuffer.Head;
if (stream >= STREAM_AUDIOIN1) {
if (chan->mode & NGENE_IO_TSOUT) {
com.cmd.StreamControl.SetupDataLen =
sizeof(TS_I2SOutConfiguration);
com.cmd.StreamControl.SetupDataAddr = BsSDO;
memcpy(com.cmd.StreamControl.SetupData,
TS_I2SOutConfiguration,
sizeof(TS_I2SOutConfiguration));
} else {
com.cmd.StreamControl.SetupDataLen =
sizeof(TS_I2SConfiguration);
com.cmd.StreamControl.SetupDataAddr = BsSDI;
memcpy(com.cmd.StreamControl.SetupData,
TS_I2SConfiguration,
sizeof(TS_I2SConfiguration));
}
} else {
com.cmd.StreamControl.SetupDataLen = 8;
com.cmd.StreamControl.SetupDataAddr = BsUVI + 0x10;
memcpy(com.cmd.StreamControl.SetupData,
TSFeatureDecoderSetup +
8 * dev->card_info->tsf[stream], 8);
}
} else {
chan->nextBuffer = chan->RingBuffer.Head;
com.cmd.StreamControl.SetupDataLen =
16 + sizeof(ITUFeatureDecoderSetup);
com.cmd.StreamControl.SetupDataAddr = BsUVI;
memcpy(com.cmd.StreamControl.SetupData,
ITUDecoderSetup[chan->itumode], 16);
memcpy(com.cmd.StreamControl.SetupData + 16,
ITUFeatureDecoderSetup, sizeof(ITUFeatureDecoderSetup));
}
clear_buffers(chan);
chan->State = KSSTATE_RUN;
if (mode & SMODE_TRANSPORT_STREAM)
chan->HWState = HWSTATE_RUN;
else
chan->HWState = HWSTATE_STARTUP;
spin_unlock_irq(&chan->state_lock);
if (ngene_command(dev, &com) < 0)
return -1;
return 0;
}
void set_transfer(struct ngene_channel *chan, int state)
{
struct device *pdev = &chan->dev->pci_dev->dev;
u8 control = 0, mode = 0, flags = 0;
struct ngene *dev = chan->dev;
int ret;
/*
dev_info(pdev, "st %d\n", state);
msleep(100);
*/
if (state) {
if (chan->running) {
dev_info(pdev, "already running\n");
return;
}
} else {
if (!chan->running) {
dev_info(pdev, "already stopped\n");
return;
}
}
if (dev->card_info->switch_ctrl)
dev->card_info->switch_ctrl(chan, 1, state ^ 1);
if (state) {
spin_lock_irq(&chan->state_lock);
/* dev_info(pdev, "lock=%08x\n",
ngreadl(0x9310)); */
dvb_ringbuffer_flush(&dev->tsout_rbuf);
control = 0x80;
if (chan->mode & (NGENE_IO_TSIN | NGENE_IO_TSOUT)) {
chan->Capture1Length = 512 * 188;
mode = SMODE_TRANSPORT_STREAM;
}
if (chan->mode & NGENE_IO_TSOUT) {
chan->pBufferExchange = tsout_exchange;
/* 0x66666666 = 50MHz *2^33 /250MHz */
chan->AudioDTOValue = 0x80000000;
chan->AudioDTOUpdated = 1;
}
if (chan->mode & NGENE_IO_TSIN)
chan->pBufferExchange = tsin_exchange;
spin_unlock_irq(&chan->state_lock);
}
/* else dev_info(pdev, "lock=%08x\n",
ngreadl(0x9310)); */
mutex_lock(&dev->stream_mutex);
ret = ngene_command_stream_control(dev, chan->number,
control, mode, flags);
mutex_unlock(&dev->stream_mutex);
if (!ret)
chan->running = state;
else
dev_err(pdev, "%s %d failed\n", __func__, state);
if (!state) {
spin_lock_irq(&chan->state_lock);
chan->pBufferExchange = NULL;
dvb_ringbuffer_flush(&dev->tsout_rbuf);
spin_unlock_irq(&chan->state_lock);
}
}
/****************************************************************************/
/* nGene hardware init and release functions ********************************/
/****************************************************************************/
static void free_ringbuffer(struct ngene *dev, struct SRingBufferDescriptor *rb)
{
struct SBufferHeader *Cur = rb->Head;
u32 j;
if (!Cur)
return;
for (j = 0; j < rb->NumBuffers; j++, Cur = Cur->Next) {
if (Cur->Buffer1)
dma_free_coherent(&dev->pci_dev->dev,
rb->Buffer1Length, Cur->Buffer1,
Cur->scList1->Address);
if (Cur->Buffer2)
dma_free_coherent(&dev->pci_dev->dev,
rb->Buffer2Length, Cur->Buffer2,
Cur->scList2->Address);
}
if (rb->SCListMem)
dma_free_coherent(&dev->pci_dev->dev, rb->SCListMemSize,
rb->SCListMem, rb->PASCListMem);
dma_free_coherent(&dev->pci_dev->dev, rb->MemSize, rb->Head,
rb->PAHead);
}
static void free_idlebuffer(struct ngene *dev,
struct SRingBufferDescriptor *rb,
struct SRingBufferDescriptor *tb)
{
int j;
struct SBufferHeader *Cur = tb->Head;
if (!rb->Head)
return;
free_ringbuffer(dev, rb);
for (j = 0; j < tb->NumBuffers; j++, Cur = Cur->Next) {
Cur->Buffer2 = NULL;
Cur->scList2 = NULL;
Cur->ngeneBuffer.Address_of_first_entry_2 = 0;
Cur->ngeneBuffer.Number_of_entries_2 = 0;
}
}
static void free_common_buffers(struct ngene *dev)
{
u32 i;
struct ngene_channel *chan;
for (i = STREAM_VIDEOIN1; i < MAX_STREAM; i++) {
chan = &dev->channel[i];
free_idlebuffer(dev, &chan->TSIdleBuffer, &chan->TSRingBuffer);
free_ringbuffer(dev, &chan->RingBuffer);
free_ringbuffer(dev, &chan->TSRingBuffer);
}
if (dev->OverflowBuffer)
dma_free_coherent(&dev->pci_dev->dev, OVERFLOW_BUFFER_SIZE,
dev->OverflowBuffer, dev->PAOverflowBuffer);
if (dev->FWInterfaceBuffer)
dma_free_coherent(&dev->pci_dev->dev, 4096,
dev->FWInterfaceBuffer,
dev->PAFWInterfaceBuffer);
}
/****************************************************************************/
/* Ring buffer handling *****************************************************/
/****************************************************************************/
static int create_ring_buffer(struct pci_dev *pci_dev,
struct SRingBufferDescriptor *descr, u32 NumBuffers)
{
dma_addr_t tmp;
struct SBufferHeader *Head;
u32 i;
u32 MemSize = SIZEOF_SBufferHeader * NumBuffers;
u64 PARingBufferHead;
u64 PARingBufferCur;
u64 PARingBufferNext;
struct SBufferHeader *Cur, *Next;
descr->Head = NULL;
descr->MemSize = 0;
descr->PAHead = 0;
descr->NumBuffers = 0;
if (MemSize < 4096)
MemSize = 4096;
Head = dma_alloc_coherent(&pci_dev->dev, MemSize, &tmp, GFP_KERNEL);
PARingBufferHead = tmp;
if (!Head)
return -ENOMEM;
PARingBufferCur = PARingBufferHead;
Cur = Head;
for (i = 0; i < NumBuffers - 1; i++) {
Next = (struct SBufferHeader *)
(((u8 *) Cur) + SIZEOF_SBufferHeader);
PARingBufferNext = PARingBufferCur + SIZEOF_SBufferHeader;
Cur->Next = Next;
Cur->ngeneBuffer.Next = PARingBufferNext;
Cur = Next;
PARingBufferCur = PARingBufferNext;
}
/* Last Buffer points back to first one */
Cur->Next = Head;
Cur->ngeneBuffer.Next = PARingBufferHead;
descr->Head = Head;
descr->MemSize = MemSize;
descr->PAHead = PARingBufferHead;
descr->NumBuffers = NumBuffers;
return 0;
}
static int AllocateRingBuffers(struct pci_dev *pci_dev,
dma_addr_t of,
struct SRingBufferDescriptor *pRingBuffer,
u32 Buffer1Length, u32 Buffer2Length)
{
dma_addr_t tmp;
u32 i, j;
u32 SCListMemSize = pRingBuffer->NumBuffers
* ((Buffer2Length != 0) ? (NUM_SCATTER_GATHER_ENTRIES * 2) :
NUM_SCATTER_GATHER_ENTRIES)
* sizeof(struct HW_SCATTER_GATHER_ELEMENT);
u64 PASCListMem;
struct HW_SCATTER_GATHER_ELEMENT *SCListEntry;
u64 PASCListEntry;
struct SBufferHeader *Cur;
void *SCListMem;
if (SCListMemSize < 4096)
SCListMemSize = 4096;
SCListMem = dma_alloc_coherent(&pci_dev->dev, SCListMemSize, &tmp,
GFP_KERNEL);
PASCListMem = tmp;
if (SCListMem == NULL)
return -ENOMEM;
pRingBuffer->SCListMem = SCListMem;
pRingBuffer->PASCListMem = PASCListMem;
pRingBuffer->SCListMemSize = SCListMemSize;
pRingBuffer->Buffer1Length = Buffer1Length;
pRingBuffer->Buffer2Length = Buffer2Length;
SCListEntry = SCListMem;
PASCListEntry = PASCListMem;
Cur = pRingBuffer->Head;
for (i = 0; i < pRingBuffer->NumBuffers; i += 1, Cur = Cur->Next) {
u64 PABuffer;
void *Buffer = dma_alloc_coherent(&pci_dev->dev,
Buffer1Length, &tmp, GFP_KERNEL);
PABuffer = tmp;
if (Buffer == NULL)
return -ENOMEM;
Cur->Buffer1 = Buffer;
SCListEntry->Address = PABuffer;
SCListEntry->Length = Buffer1Length;
Cur->scList1 = SCListEntry;
Cur->ngeneBuffer.Address_of_first_entry_1 = PASCListEntry;
Cur->ngeneBuffer.Number_of_entries_1 =
NUM_SCATTER_GATHER_ENTRIES;
SCListEntry += 1;
PASCListEntry += sizeof(struct HW_SCATTER_GATHER_ELEMENT);
#if NUM_SCATTER_GATHER_ENTRIES > 1
for (j = 0; j < NUM_SCATTER_GATHER_ENTRIES - 1; j += 1) {
SCListEntry->Address = of;
SCListEntry->Length = OVERFLOW_BUFFER_SIZE;
SCListEntry += 1;
PASCListEntry +=
sizeof(struct HW_SCATTER_GATHER_ELEMENT);
}
#endif
if (!Buffer2Length)
continue;
Buffer = dma_alloc_coherent(&pci_dev->dev, Buffer2Length,
&tmp, GFP_KERNEL);
PABuffer = tmp;
if (Buffer == NULL)
return -ENOMEM;
Cur->Buffer2 = Buffer;
SCListEntry->Address = PABuffer;
SCListEntry->Length = Buffer2Length;
Cur->scList2 = SCListEntry;
Cur->ngeneBuffer.Address_of_first_entry_2 = PASCListEntry;
Cur->ngeneBuffer.Number_of_entries_2 =
NUM_SCATTER_GATHER_ENTRIES;
SCListEntry += 1;
PASCListEntry += sizeof(struct HW_SCATTER_GATHER_ELEMENT);
#if NUM_SCATTER_GATHER_ENTRIES > 1
for (j = 0; j < NUM_SCATTER_GATHER_ENTRIES - 1; j++) {
SCListEntry->Address = of;
SCListEntry->Length = OVERFLOW_BUFFER_SIZE;
SCListEntry += 1;
PASCListEntry +=
sizeof(struct HW_SCATTER_GATHER_ELEMENT);
}
#endif
}
return 0;
}
static int FillTSIdleBuffer(struct SRingBufferDescriptor *pIdleBuffer,
struct SRingBufferDescriptor *pRingBuffer)
{
/* Copy pointer to scatter gather list in TSRingbuffer
structure for buffer 2
Load number of buffer
*/
u32 n = pRingBuffer->NumBuffers;
/* Point to first buffer entry */
struct SBufferHeader *Cur = pRingBuffer->Head;
int i;
/* Loop through all buffer and set Buffer 2 pointers to TSIdlebuffer */
for (i = 0; i < n; i++) {
Cur->Buffer2 = pIdleBuffer->Head->Buffer1;
Cur->scList2 = pIdleBuffer->Head->scList1;
Cur->ngeneBuffer.Address_of_first_entry_2 =
pIdleBuffer->Head->ngeneBuffer.
Address_of_first_entry_1;
Cur->ngeneBuffer.Number_of_entries_2 =
pIdleBuffer->Head->ngeneBuffer.Number_of_entries_1;
Cur = Cur->Next;
}
return 0;
}
static u32 RingBufferSizes[MAX_STREAM] = {
RING_SIZE_VIDEO,
RING_SIZE_VIDEO,
RING_SIZE_AUDIO,
RING_SIZE_AUDIO,
RING_SIZE_AUDIO,
};
static u32 Buffer1Sizes[MAX_STREAM] = {
MAX_VIDEO_BUFFER_SIZE,
MAX_VIDEO_BUFFER_SIZE,
MAX_AUDIO_BUFFER_SIZE,
MAX_AUDIO_BUFFER_SIZE,
MAX_AUDIO_BUFFER_SIZE
};
static u32 Buffer2Sizes[MAX_STREAM] = {
MAX_VBI_BUFFER_SIZE,
MAX_VBI_BUFFER_SIZE,
0,
0,
0
};
static int AllocCommonBuffers(struct ngene *dev)
{
int status = 0, i;
dev->FWInterfaceBuffer = dma_alloc_coherent(&dev->pci_dev->dev, 4096,
&dev->PAFWInterfaceBuffer,
GFP_KERNEL);
if (!dev->FWInterfaceBuffer)
return -ENOMEM;
dev->hosttongene = dev->FWInterfaceBuffer;
dev->ngenetohost = dev->FWInterfaceBuffer + 256;
dev->EventBuffer = dev->FWInterfaceBuffer + 512;
dev->OverflowBuffer = dma_alloc_coherent(&dev->pci_dev->dev,
OVERFLOW_BUFFER_SIZE,
&dev->PAOverflowBuffer, GFP_KERNEL);
if (!dev->OverflowBuffer)
return -ENOMEM;
for (i = STREAM_VIDEOIN1; i < MAX_STREAM; i++) {
int type = dev->card_info->io_type[i];
dev->channel[i].State = KSSTATE_STOP;
if (type & (NGENE_IO_TV | NGENE_IO_HDTV | NGENE_IO_AIN)) {
status = create_ring_buffer(dev->pci_dev,
&dev->channel[i].RingBuffer,
RingBufferSizes[i]);
if (status < 0)
break;
if (type & (NGENE_IO_TV | NGENE_IO_AIN)) {
status = AllocateRingBuffers(dev->pci_dev,
dev->
PAOverflowBuffer,
&dev->channel[i].
RingBuffer,
Buffer1Sizes[i],
Buffer2Sizes[i]);
if (status < 0)
break;
} else if (type & NGENE_IO_HDTV) {
status = AllocateRingBuffers(dev->pci_dev,
dev->
PAOverflowBuffer,
&dev->channel[i].
RingBuffer,
MAX_HDTV_BUFFER_SIZE,
0);
if (status < 0)
break;
}
}
if (type & (NGENE_IO_TSIN | NGENE_IO_TSOUT)) {
status = create_ring_buffer(dev->pci_dev,
&dev->channel[i].
TSRingBuffer, RING_SIZE_TS);
if (status < 0)
break;
status = AllocateRingBuffers(dev->pci_dev,
dev->PAOverflowBuffer,
&dev->channel[i].
TSRingBuffer,
MAX_TS_BUFFER_SIZE, 0);
if (status)
break;
}
if (type & NGENE_IO_TSOUT) {
status = create_ring_buffer(dev->pci_dev,
&dev->channel[i].
TSIdleBuffer, 1);
if (status < 0)
break;
status = AllocateRingBuffers(dev->pci_dev,
dev->PAOverflowBuffer,
&dev->channel[i].
TSIdleBuffer,
MAX_TS_BUFFER_SIZE, 0);
if (status)
break;
FillTSIdleBuffer(&dev->channel[i].TSIdleBuffer,
&dev->channel[i].TSRingBuffer);
}
}
return status;
}
static void ngene_release_buffers(struct ngene *dev)
{
if (dev->iomem)
iounmap(dev->iomem);
free_common_buffers(dev);
vfree(dev->tsout_buf);
vfree(dev->tsin_buf);
vfree(dev->ain_buf);
vfree(dev->vin_buf);
vfree(dev);
}
static int ngene_get_buffers(struct ngene *dev)
{
if (AllocCommonBuffers(dev))
return -ENOMEM;
if (dev->card_info->io_type[4] & NGENE_IO_TSOUT) {
dev->tsout_buf = vmalloc(TSOUT_BUF_SIZE);
if (!dev->tsout_buf)
return -ENOMEM;
dvb_ringbuffer_init(&dev->tsout_rbuf,
dev->tsout_buf, TSOUT_BUF_SIZE);
}
if (dev->card_info->io_type[2]&NGENE_IO_TSIN) {
dev->tsin_buf = vmalloc(TSIN_BUF_SIZE);
if (!dev->tsin_buf)
return -ENOMEM;
dvb_ringbuffer_init(&dev->tsin_rbuf,
dev->tsin_buf, TSIN_BUF_SIZE);
}
if (dev->card_info->io_type[2] & NGENE_IO_AIN) {
dev->ain_buf = vmalloc(AIN_BUF_SIZE);
if (!dev->ain_buf)
return -ENOMEM;
dvb_ringbuffer_init(&dev->ain_rbuf, dev->ain_buf, AIN_BUF_SIZE);
}
if (dev->card_info->io_type[0] & NGENE_IO_HDTV) {
dev->vin_buf = vmalloc(VIN_BUF_SIZE);
if (!dev->vin_buf)
return -ENOMEM;
dvb_ringbuffer_init(&dev->vin_rbuf, dev->vin_buf, VIN_BUF_SIZE);
}
dev->iomem = ioremap(pci_resource_start(dev->pci_dev, 0),
pci_resource_len(dev->pci_dev, 0));
if (!dev->iomem)
return -ENOMEM;
return 0;
}
static void ngene_init(struct ngene *dev)
{
struct device *pdev = &dev->pci_dev->dev;
int i;
tasklet_setup(&dev->event_tasklet, event_tasklet);
memset_io(dev->iomem + 0xc000, 0x00, 0x220);
memset_io(dev->iomem + 0xc400, 0x00, 0x100);
for (i = 0; i < MAX_STREAM; i++) {
dev->channel[i].dev = dev;
dev->channel[i].number = i;
}
dev->fw_interface_version = 0;
ngwritel(0, NGENE_INT_ENABLE);
dev->icounts = ngreadl(NGENE_INT_COUNTS);
dev->device_version = ngreadl(DEV_VER) & 0x0f;
dev_info(pdev, "Device version %d\n", dev->device_version);
}
static int ngene_load_firm(struct ngene *dev)
{
struct device *pdev = &dev->pci_dev->dev;
u32 size;
const struct firmware *fw = NULL;
u8 *ngene_fw;
char *fw_name;
int err, version;
version = dev->card_info->fw_version;
switch (version) {
default:
case 15:
version = 15;
size = 23466;
fw_name = "ngene_15.fw";
dev->cmd_timeout_workaround = true;
break;
case 16:
size = 23498;
fw_name = "ngene_16.fw";
dev->cmd_timeout_workaround = true;
break;
case 17:
size = 24446;
fw_name = "ngene_17.fw";
dev->cmd_timeout_workaround = true;
break;
case 18:
size = 0;
fw_name = "ngene_18.fw";
break;
}
if (request_firmware(&fw, fw_name, &dev->pci_dev->dev) < 0) {
dev_err(pdev, "Could not load firmware file %s.\n", fw_name);
dev_info(pdev, "Copy %s to your hotplug directory!\n",
fw_name);
return -1;
}
if (size == 0)
size = fw->size;
if (size != fw->size) {
dev_err(pdev, "Firmware %s has invalid size!", fw_name);
err = -1;
} else {
dev_info(pdev, "Loading firmware file %s.\n", fw_name);
ngene_fw = (u8 *) fw->data;
err = ngene_command_load_firmware(dev, ngene_fw, size);
}
release_firmware(fw);
return err;
}
static void ngene_stop(struct ngene *dev)
{
mutex_destroy(&dev->cmd_mutex);
i2c_del_adapter(&(dev->channel[0].i2c_adapter));
i2c_del_adapter(&(dev->channel[1].i2c_adapter));
ngwritel(0, NGENE_INT_ENABLE);
ngwritel(0, NGENE_COMMAND);
ngwritel(0, NGENE_COMMAND_HI);
ngwritel(0, NGENE_STATUS);
ngwritel(0, NGENE_STATUS_HI);
ngwritel(0, NGENE_EVENT);
ngwritel(0, NGENE_EVENT_HI);
free_irq(dev->pci_dev->irq, dev);
#ifdef CONFIG_PCI_MSI
if (dev->msi_enabled)
pci_disable_msi(dev->pci_dev);
#endif
}
static int ngene_buffer_config(struct ngene *dev)
{
int stat;
if (dev->card_info->fw_version >= 17) {
u8 tsin12_config[6] = { 0x60, 0x60, 0x00, 0x00, 0x00, 0x00 };
u8 tsin1234_config[6] = { 0x30, 0x30, 0x00, 0x30, 0x30, 0x00 };
u8 tsio1235_config[6] = { 0x30, 0x30, 0x00, 0x28, 0x00, 0x38 };
u8 *bconf = tsin12_config;
if (dev->card_info->io_type[2]&NGENE_IO_TSIN &&
dev->card_info->io_type[3]&NGENE_IO_TSIN) {
bconf = tsin1234_config;
if (dev->card_info->io_type[4]&NGENE_IO_TSOUT &&
dev->ci.en)
bconf = tsio1235_config;
}
stat = ngene_command_config_free_buf(dev, bconf);
} else {
int bconf = BUFFER_CONFIG_4422;
if (dev->card_info->io_type[3] == NGENE_IO_TSIN)
bconf = BUFFER_CONFIG_3333;
stat = ngene_command_config_buf(dev, bconf);
}
return stat;
}
static int ngene_start(struct ngene *dev)
{
int stat;
int i;
pci_set_master(dev->pci_dev);
ngene_init(dev);
stat = request_irq(dev->pci_dev->irq, irq_handler,
IRQF_SHARED, "nGene",
(void *)dev);
if (stat < 0)
return stat;
init_waitqueue_head(&dev->cmd_wq);
init_waitqueue_head(&dev->tx_wq);
init_waitqueue_head(&dev->rx_wq);
mutex_init(&dev->cmd_mutex);
mutex_init(&dev->stream_mutex);
sema_init(&dev->pll_mutex, 1);
mutex_init(&dev->i2c_switch_mutex);
spin_lock_init(&dev->cmd_lock);
for (i = 0; i < MAX_STREAM; i++)
spin_lock_init(&dev->channel[i].state_lock);
ngwritel(1, TIMESTAMPS);
ngwritel(1, NGENE_INT_ENABLE);
stat = ngene_load_firm(dev);
if (stat < 0)
goto fail;
#ifdef CONFIG_PCI_MSI
/* enable MSI if kernel and card support it */
if (pci_msi_enabled() && dev->card_info->msi_supported) {
struct device *pdev = &dev->pci_dev->dev;
unsigned long flags;
ngwritel(0, NGENE_INT_ENABLE);
free_irq(dev->pci_dev->irq, dev);
stat = pci_enable_msi(dev->pci_dev);
if (stat) {
dev_info(pdev, "MSI not available\n");
flags = IRQF_SHARED;
} else {
flags = 0;
dev->msi_enabled = true;
}
stat = request_irq(dev->pci_dev->irq, irq_handler,
flags, "nGene", dev);
if (stat < 0)
goto fail2;
ngwritel(1, NGENE_INT_ENABLE);
}
#endif
stat = ngene_i2c_init(dev, 0);
if (stat < 0)
goto fail;
stat = ngene_i2c_init(dev, 1);
if (stat < 0)
goto fail;
return 0;
fail:
ngwritel(0, NGENE_INT_ENABLE);
free_irq(dev->pci_dev->irq, dev);
#ifdef CONFIG_PCI_MSI
fail2:
if (dev->msi_enabled)
pci_disable_msi(dev->pci_dev);
#endif
return stat;
}
/****************************************************************************/
/****************************************************************************/
/****************************************************************************/
static void release_channel(struct ngene_channel *chan)
{
struct dvb_demux *dvbdemux = &chan->demux;
struct ngene *dev = chan->dev;
if (chan->running)
set_transfer(chan, 0);
tasklet_kill(&chan->demux_tasklet);
if (chan->ci_dev) {
dvb_unregister_device(chan->ci_dev);
chan->ci_dev = NULL;
}
if (chan->fe2)
dvb_unregister_frontend(chan->fe2);
if (chan->fe) {
dvb_unregister_frontend(chan->fe);
/* release I2C client (tuner) if needed */
if (chan->i2c_client_fe) {
dvb_module_release(chan->i2c_client[0]);
chan->i2c_client[0] = NULL;
}
dvb_frontend_detach(chan->fe);
chan->fe = NULL;
}
if (chan->has_demux) {
dvb_net_release(&chan->dvbnet);
dvbdemux->dmx.close(&dvbdemux->dmx);
dvbdemux->dmx.remove_frontend(&dvbdemux->dmx,
&chan->hw_frontend);
dvbdemux->dmx.remove_frontend(&dvbdemux->dmx,
&chan->mem_frontend);
dvb_dmxdev_release(&chan->dmxdev);
dvb_dmx_release(&chan->demux);
chan->has_demux = false;
}
if (chan->has_adapter) {
dvb_unregister_adapter(&dev->adapter[chan->number]);
chan->has_adapter = false;
}
}
static int init_channel(struct ngene_channel *chan)
{
int ret = 0, nr = chan->number;
struct dvb_adapter *adapter = NULL;
struct dvb_demux *dvbdemux = &chan->demux;
struct ngene *dev = chan->dev;
struct ngene_info *ni = dev->card_info;
int io = ni->io_type[nr];
tasklet_setup(&chan->demux_tasklet, demux_tasklet);
chan->users = 0;
chan->type = io;
chan->mode = chan->type; /* for now only one mode */
chan->i2c_client_fe = 0; /* be sure this is set to zero */
if (io & NGENE_IO_TSIN) {
chan->fe = NULL;
if (ni->demod_attach[nr]) {
ret = ni->demod_attach[nr](chan);
if (ret < 0)
goto err;
}
if (chan->fe && ni->tuner_attach[nr]) {
ret = ni->tuner_attach[nr](chan);
if (ret < 0)
goto err;
}
}
if (!dev->ci.en && (io & NGENE_IO_TSOUT))
return 0;
if (io & (NGENE_IO_TSIN | NGENE_IO_TSOUT)) {
if (nr >= STREAM_AUDIOIN1)
chan->DataFormatFlags = DF_SWAP32;
if (nr == 0 || !one_adapter || dev->first_adapter == NULL) {
adapter = &dev->adapter[nr];
ret = dvb_register_adapter(adapter, "nGene",
THIS_MODULE,
&chan->dev->pci_dev->dev,
adapter_nr);
if (ret < 0)
goto err;
if (dev->first_adapter == NULL)
dev->first_adapter = adapter;
chan->has_adapter = true;
} else
adapter = dev->first_adapter;
}
if (dev->ci.en && (io & NGENE_IO_TSOUT)) {
dvb_ca_en50221_init(adapter, dev->ci.en, 0, 1);
set_transfer(chan, 1);
chan->dev->channel[2].DataFormatFlags = DF_SWAP32;
set_transfer(&chan->dev->channel[2], 1);
dvb_register_device(adapter, &chan->ci_dev,
&ngene_dvbdev_ci, (void *) chan,
DVB_DEVICE_SEC, 0);
if (!chan->ci_dev)
goto err;
}
if (chan->fe) {
if (dvb_register_frontend(adapter, chan->fe) < 0)
goto err;
chan->has_demux = true;
}
if (chan->fe2) {
if (dvb_register_frontend(adapter, chan->fe2) < 0)
goto err;
if (chan->fe) {
chan->fe2->tuner_priv = chan->fe->tuner_priv;
memcpy(&chan->fe2->ops.tuner_ops,
&chan->fe->ops.tuner_ops,
sizeof(struct dvb_tuner_ops));
}
}
if (chan->has_demux) {
ret = my_dvb_dmx_ts_card_init(dvbdemux, "SW demux",
ngene_start_feed,
ngene_stop_feed, chan);
ret = my_dvb_dmxdev_ts_card_init(&chan->dmxdev, &chan->demux,
&chan->hw_frontend,
&chan->mem_frontend, adapter);
ret = dvb_net_init(adapter, &chan->dvbnet, &chan->demux.dmx);
}
return ret;
err:
if (chan->fe) {
dvb_frontend_detach(chan->fe);
chan->fe = NULL;
}
release_channel(chan);
return 0;
}
static int init_channels(struct ngene *dev)
{
int i, j;
for (i = 0; i < MAX_STREAM; i++) {
dev->channel[i].number = i;
if (init_channel(&dev->channel[i]) < 0) {
for (j = i - 1; j >= 0; j--)
release_channel(&dev->channel[j]);
return -1;
}
}
return 0;
}
static const struct cxd2099_cfg cxd_cfgtmpl = {
.bitrate = 62000,
.polarity = 0,
.clock_mode = 0,
};
static void cxd_attach(struct ngene *dev)
{
struct device *pdev = &dev->pci_dev->dev;
struct ngene_ci *ci = &dev->ci;
struct cxd2099_cfg cxd_cfg = cxd_cfgtmpl;
struct i2c_client *client;
int ret;
u8 type;
/* check for CXD2099AR presence before attaching */
ret = ngene_port_has_cxd2099(&dev->channel[0].i2c_adapter, &type);
if (!ret) {
dev_dbg(pdev, "No CXD2099AR found\n");
return;
}
if (type != 1) {
dev_warn(pdev, "CXD2099AR is uninitialized!\n");
return;
}
cxd_cfg.en = &ci->en;
client = dvb_module_probe("cxd2099", NULL,
&dev->channel[0].i2c_adapter,
0x40, &cxd_cfg);
if (!client)
goto err;
ci->dev = dev;
dev->channel[0].i2c_client[0] = client;
return;
err:
dev_err(pdev, "CXD2099AR attach failed\n");
return;
}
static void cxd_detach(struct ngene *dev)
{
struct ngene_ci *ci = &dev->ci;
dvb_ca_en50221_release(ci->en);
dvb_module_release(dev->channel[0].i2c_client[0]);
dev->channel[0].i2c_client[0] = NULL;
ci->en = NULL;
}
/***********************************/
/* workaround for shutdown failure */
/***********************************/
static void ngene_unlink(struct ngene *dev)
{
struct ngene_command com;
com.cmd.hdr.Opcode = CMD_MEM_WRITE;
com.cmd.hdr.Length = 3;
com.cmd.MemoryWrite.address = 0x910c;
com.cmd.MemoryWrite.data = 0xff;
com.in_len = 3;
com.out_len = 1;
mutex_lock(&dev->cmd_mutex);
ngwritel(0, NGENE_INT_ENABLE);
ngene_command_mutex(dev, &com);
mutex_unlock(&dev->cmd_mutex);
}
void ngene_shutdown(struct pci_dev *pdev)
{
struct ngene *dev = pci_get_drvdata(pdev);
if (!dev || !shutdown_workaround)
return;
dev_info(&pdev->dev, "shutdown workaround...\n");
ngene_unlink(dev);
pci_disable_device(pdev);
}
/****************************************************************************/
/* device probe/remove calls ************************************************/
/****************************************************************************/
void ngene_remove(struct pci_dev *pdev)
{
struct ngene *dev = pci_get_drvdata(pdev);
int i;
tasklet_kill(&dev->event_tasklet);
for (i = MAX_STREAM - 1; i >= 0; i--)
release_channel(&dev->channel[i]);
if (dev->ci.en)
cxd_detach(dev);
ngene_stop(dev);
ngene_release_buffers(dev);
pci_disable_device(pdev);
}
int ngene_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
{
struct ngene *dev;
int stat = 0;
if (pci_enable_device(pci_dev) < 0)
return -ENODEV;
dev = vzalloc(sizeof(struct ngene));
if (dev == NULL) {
stat = -ENOMEM;
goto fail0;
}
dev->pci_dev = pci_dev;
dev->card_info = (struct ngene_info *)id->driver_data;
dev_info(&pci_dev->dev, "Found %s\n", dev->card_info->name);
pci_set_drvdata(pci_dev, dev);
/* Alloc buffers and start nGene */
stat = ngene_get_buffers(dev);
if (stat < 0)
goto fail1;
stat = ngene_start(dev);
if (stat < 0)
goto fail1;
cxd_attach(dev);
stat = ngene_buffer_config(dev);
if (stat < 0)
goto fail1;
dev->i2c_current_bus = -1;
/* Register DVB adapters and devices for both channels */
stat = init_channels(dev);
if (stat < 0)
goto fail2;
return 0;
fail2:
ngene_stop(dev);
fail1:
ngene_release_buffers(dev);
fail0:
pci_disable_device(pci_dev);
return stat;
}