| // SPDX-License-Identifier: GPL-2.0 |
| /* Copyright(c) 1999 - 2018 Intel Corporation. */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/module.h> |
| #include <linux/types.h> |
| #include <linux/init.h> |
| #include <linux/pci.h> |
| #include <linux/vmalloc.h> |
| #include <linux/pagemap.h> |
| #include <linux/delay.h> |
| #include <linux/netdevice.h> |
| #include <linux/interrupt.h> |
| #include <linux/tcp.h> |
| #include <linux/ipv6.h> |
| #include <linux/slab.h> |
| #include <net/checksum.h> |
| #include <net/ip6_checksum.h> |
| #include <linux/ethtool.h> |
| #include <linux/if_vlan.h> |
| #include <linux/cpu.h> |
| #include <linux/smp.h> |
| #include <linux/pm_qos.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/aer.h> |
| #include <linux/prefetch.h> |
| #include <linux/suspend.h> |
| |
| #include "e1000.h" |
| |
| char e1000e_driver_name[] = "e1000e"; |
| |
| #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) |
| static int debug = -1; |
| module_param(debug, int, 0); |
| MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); |
| |
| static const struct e1000_info *e1000_info_tbl[] = { |
| [board_82571] = &e1000_82571_info, |
| [board_82572] = &e1000_82572_info, |
| [board_82573] = &e1000_82573_info, |
| [board_82574] = &e1000_82574_info, |
| [board_82583] = &e1000_82583_info, |
| [board_80003es2lan] = &e1000_es2_info, |
| [board_ich8lan] = &e1000_ich8_info, |
| [board_ich9lan] = &e1000_ich9_info, |
| [board_ich10lan] = &e1000_ich10_info, |
| [board_pchlan] = &e1000_pch_info, |
| [board_pch2lan] = &e1000_pch2_info, |
| [board_pch_lpt] = &e1000_pch_lpt_info, |
| [board_pch_spt] = &e1000_pch_spt_info, |
| [board_pch_cnp] = &e1000_pch_cnp_info, |
| }; |
| |
| struct e1000_reg_info { |
| u32 ofs; |
| char *name; |
| }; |
| |
| static const struct e1000_reg_info e1000_reg_info_tbl[] = { |
| /* General Registers */ |
| {E1000_CTRL, "CTRL"}, |
| {E1000_STATUS, "STATUS"}, |
| {E1000_CTRL_EXT, "CTRL_EXT"}, |
| |
| /* Interrupt Registers */ |
| {E1000_ICR, "ICR"}, |
| |
| /* Rx Registers */ |
| {E1000_RCTL, "RCTL"}, |
| {E1000_RDLEN(0), "RDLEN"}, |
| {E1000_RDH(0), "RDH"}, |
| {E1000_RDT(0), "RDT"}, |
| {E1000_RDTR, "RDTR"}, |
| {E1000_RXDCTL(0), "RXDCTL"}, |
| {E1000_ERT, "ERT"}, |
| {E1000_RDBAL(0), "RDBAL"}, |
| {E1000_RDBAH(0), "RDBAH"}, |
| {E1000_RDFH, "RDFH"}, |
| {E1000_RDFT, "RDFT"}, |
| {E1000_RDFHS, "RDFHS"}, |
| {E1000_RDFTS, "RDFTS"}, |
| {E1000_RDFPC, "RDFPC"}, |
| |
| /* Tx Registers */ |
| {E1000_TCTL, "TCTL"}, |
| {E1000_TDBAL(0), "TDBAL"}, |
| {E1000_TDBAH(0), "TDBAH"}, |
| {E1000_TDLEN(0), "TDLEN"}, |
| {E1000_TDH(0), "TDH"}, |
| {E1000_TDT(0), "TDT"}, |
| {E1000_TIDV, "TIDV"}, |
| {E1000_TXDCTL(0), "TXDCTL"}, |
| {E1000_TADV, "TADV"}, |
| {E1000_TARC(0), "TARC"}, |
| {E1000_TDFH, "TDFH"}, |
| {E1000_TDFT, "TDFT"}, |
| {E1000_TDFHS, "TDFHS"}, |
| {E1000_TDFTS, "TDFTS"}, |
| {E1000_TDFPC, "TDFPC"}, |
| |
| /* List Terminator */ |
| {0, NULL} |
| }; |
| |
| /** |
| * __ew32_prepare - prepare to write to MAC CSR register on certain parts |
| * @hw: pointer to the HW structure |
| * |
| * When updating the MAC CSR registers, the Manageability Engine (ME) could |
| * be accessing the registers at the same time. Normally, this is handled in |
| * h/w by an arbiter but on some parts there is a bug that acknowledges Host |
| * accesses later than it should which could result in the register to have |
| * an incorrect value. Workaround this by checking the FWSM register which |
| * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set |
| * and try again a number of times. |
| **/ |
| static void __ew32_prepare(struct e1000_hw *hw) |
| { |
| s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT; |
| |
| while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i) |
| udelay(50); |
| } |
| |
| void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val) |
| { |
| if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) |
| __ew32_prepare(hw); |
| |
| writel(val, hw->hw_addr + reg); |
| } |
| |
| /** |
| * e1000_regdump - register printout routine |
| * @hw: pointer to the HW structure |
| * @reginfo: pointer to the register info table |
| **/ |
| static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo) |
| { |
| int n = 0; |
| char rname[16]; |
| u32 regs[8]; |
| |
| switch (reginfo->ofs) { |
| case E1000_RXDCTL(0): |
| for (n = 0; n < 2; n++) |
| regs[n] = __er32(hw, E1000_RXDCTL(n)); |
| break; |
| case E1000_TXDCTL(0): |
| for (n = 0; n < 2; n++) |
| regs[n] = __er32(hw, E1000_TXDCTL(n)); |
| break; |
| case E1000_TARC(0): |
| for (n = 0; n < 2; n++) |
| regs[n] = __er32(hw, E1000_TARC(n)); |
| break; |
| default: |
| pr_info("%-15s %08x\n", |
| reginfo->name, __er32(hw, reginfo->ofs)); |
| return; |
| } |
| |
| snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]"); |
| pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]); |
| } |
| |
| static void e1000e_dump_ps_pages(struct e1000_adapter *adapter, |
| struct e1000_buffer *bi) |
| { |
| int i; |
| struct e1000_ps_page *ps_page; |
| |
| for (i = 0; i < adapter->rx_ps_pages; i++) { |
| ps_page = &bi->ps_pages[i]; |
| |
| if (ps_page->page) { |
| pr_info("packet dump for ps_page %d:\n", i); |
| print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, |
| 16, 1, page_address(ps_page->page), |
| PAGE_SIZE, true); |
| } |
| } |
| } |
| |
| /** |
| * e1000e_dump - Print registers, Tx-ring and Rx-ring |
| * @adapter: board private structure |
| **/ |
| static void e1000e_dump(struct e1000_adapter *adapter) |
| { |
| struct net_device *netdev = adapter->netdev; |
| struct e1000_hw *hw = &adapter->hw; |
| struct e1000_reg_info *reginfo; |
| struct e1000_ring *tx_ring = adapter->tx_ring; |
| struct e1000_tx_desc *tx_desc; |
| struct my_u0 { |
| __le64 a; |
| __le64 b; |
| } *u0; |
| struct e1000_buffer *buffer_info; |
| struct e1000_ring *rx_ring = adapter->rx_ring; |
| union e1000_rx_desc_packet_split *rx_desc_ps; |
| union e1000_rx_desc_extended *rx_desc; |
| struct my_u1 { |
| __le64 a; |
| __le64 b; |
| __le64 c; |
| __le64 d; |
| } *u1; |
| u32 staterr; |
| int i = 0; |
| |
| if (!netif_msg_hw(adapter)) |
| return; |
| |
| /* Print netdevice Info */ |
| if (netdev) { |
| dev_info(&adapter->pdev->dev, "Net device Info\n"); |
| pr_info("Device Name state trans_start\n"); |
| pr_info("%-15s %016lX %016lX\n", netdev->name, |
| netdev->state, dev_trans_start(netdev)); |
| } |
| |
| /* Print Registers */ |
| dev_info(&adapter->pdev->dev, "Register Dump\n"); |
| pr_info(" Register Name Value\n"); |
| for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl; |
| reginfo->name; reginfo++) { |
| e1000_regdump(hw, reginfo); |
| } |
| |
| /* Print Tx Ring Summary */ |
| if (!netdev || !netif_running(netdev)) |
| return; |
| |
| dev_info(&adapter->pdev->dev, "Tx Ring Summary\n"); |
| pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n"); |
| buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean]; |
| pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n", |
| 0, tx_ring->next_to_use, tx_ring->next_to_clean, |
| (unsigned long long)buffer_info->dma, |
| buffer_info->length, |
| buffer_info->next_to_watch, |
| (unsigned long long)buffer_info->time_stamp); |
| |
| /* Print Tx Ring */ |
| if (!netif_msg_tx_done(adapter)) |
| goto rx_ring_summary; |
| |
| dev_info(&adapter->pdev->dev, "Tx Ring Dump\n"); |
| |
| /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended) |
| * |
| * Legacy Transmit Descriptor |
| * +--------------------------------------------------------------+ |
| * 0 | Buffer Address [63:0] (Reserved on Write Back) | |
| * +--------------------------------------------------------------+ |
| * 8 | Special | CSS | Status | CMD | CSO | Length | |
| * +--------------------------------------------------------------+ |
| * 63 48 47 36 35 32 31 24 23 16 15 0 |
| * |
| * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload |
| * 63 48 47 40 39 32 31 16 15 8 7 0 |
| * +----------------------------------------------------------------+ |
| * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS | |
| * +----------------------------------------------------------------+ |
| * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN | |
| * +----------------------------------------------------------------+ |
| * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 |
| * |
| * Extended Data Descriptor (DTYP=0x1) |
| * +----------------------------------------------------------------+ |
| * 0 | Buffer Address [63:0] | |
| * +----------------------------------------------------------------+ |
| * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN | |
| * +----------------------------------------------------------------+ |
| * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 |
| */ |
| pr_info("Tl[desc] [address 63:0 ] [SpeCssSCmCsLen] [bi->dma ] leng ntw timestamp bi->skb <-- Legacy format\n"); |
| pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Context format\n"); |
| pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Data format\n"); |
| for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { |
| const char *next_desc; |
| tx_desc = E1000_TX_DESC(*tx_ring, i); |
| buffer_info = &tx_ring->buffer_info[i]; |
| u0 = (struct my_u0 *)tx_desc; |
| if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean) |
| next_desc = " NTC/U"; |
| else if (i == tx_ring->next_to_use) |
| next_desc = " NTU"; |
| else if (i == tx_ring->next_to_clean) |
| next_desc = " NTC"; |
| else |
| next_desc = ""; |
| pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p%s\n", |
| (!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' : |
| ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')), |
| i, |
| (unsigned long long)le64_to_cpu(u0->a), |
| (unsigned long long)le64_to_cpu(u0->b), |
| (unsigned long long)buffer_info->dma, |
| buffer_info->length, buffer_info->next_to_watch, |
| (unsigned long long)buffer_info->time_stamp, |
| buffer_info->skb, next_desc); |
| |
| if (netif_msg_pktdata(adapter) && buffer_info->skb) |
| print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, |
| 16, 1, buffer_info->skb->data, |
| buffer_info->skb->len, true); |
| } |
| |
| /* Print Rx Ring Summary */ |
| rx_ring_summary: |
| dev_info(&adapter->pdev->dev, "Rx Ring Summary\n"); |
| pr_info("Queue [NTU] [NTC]\n"); |
| pr_info(" %5d %5X %5X\n", |
| 0, rx_ring->next_to_use, rx_ring->next_to_clean); |
| |
| /* Print Rx Ring */ |
| if (!netif_msg_rx_status(adapter)) |
| return; |
| |
| dev_info(&adapter->pdev->dev, "Rx Ring Dump\n"); |
| switch (adapter->rx_ps_pages) { |
| case 1: |
| case 2: |
| case 3: |
| /* [Extended] Packet Split Receive Descriptor Format |
| * |
| * +-----------------------------------------------------+ |
| * 0 | Buffer Address 0 [63:0] | |
| * +-----------------------------------------------------+ |
| * 8 | Buffer Address 1 [63:0] | |
| * +-----------------------------------------------------+ |
| * 16 | Buffer Address 2 [63:0] | |
| * +-----------------------------------------------------+ |
| * 24 | Buffer Address 3 [63:0] | |
| * +-----------------------------------------------------+ |
| */ |
| pr_info("R [desc] [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] [bi->skb] <-- Ext Pkt Split format\n"); |
| /* [Extended] Receive Descriptor (Write-Back) Format |
| * |
| * 63 48 47 32 31 13 12 8 7 4 3 0 |
| * +------------------------------------------------------+ |
| * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS | |
| * | Checksum | Ident | | Queue | | Type | |
| * +------------------------------------------------------+ |
| * 8 | VLAN Tag | Length | Extended Error | Extended Status | |
| * +------------------------------------------------------+ |
| * 63 48 47 32 31 20 19 0 |
| */ |
| pr_info("RWB[desc] [ck ipid mrqhsh] [vl l0 ee es] [ l3 l2 l1 hs] [reserved ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n"); |
| for (i = 0; i < rx_ring->count; i++) { |
| const char *next_desc; |
| buffer_info = &rx_ring->buffer_info[i]; |
| rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i); |
| u1 = (struct my_u1 *)rx_desc_ps; |
| staterr = |
| le32_to_cpu(rx_desc_ps->wb.middle.status_error); |
| |
| if (i == rx_ring->next_to_use) |
| next_desc = " NTU"; |
| else if (i == rx_ring->next_to_clean) |
| next_desc = " NTC"; |
| else |
| next_desc = ""; |
| |
| if (staterr & E1000_RXD_STAT_DD) { |
| /* Descriptor Done */ |
| pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX ---------------- %p%s\n", |
| "RWB", i, |
| (unsigned long long)le64_to_cpu(u1->a), |
| (unsigned long long)le64_to_cpu(u1->b), |
| (unsigned long long)le64_to_cpu(u1->c), |
| (unsigned long long)le64_to_cpu(u1->d), |
| buffer_info->skb, next_desc); |
| } else { |
| pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX %016llX %p%s\n", |
| "R ", i, |
| (unsigned long long)le64_to_cpu(u1->a), |
| (unsigned long long)le64_to_cpu(u1->b), |
| (unsigned long long)le64_to_cpu(u1->c), |
| (unsigned long long)le64_to_cpu(u1->d), |
| (unsigned long long)buffer_info->dma, |
| buffer_info->skb, next_desc); |
| |
| if (netif_msg_pktdata(adapter)) |
| e1000e_dump_ps_pages(adapter, |
| buffer_info); |
| } |
| } |
| break; |
| default: |
| case 0: |
| /* Extended Receive Descriptor (Read) Format |
| * |
| * +-----------------------------------------------------+ |
| * 0 | Buffer Address [63:0] | |
| * +-----------------------------------------------------+ |
| * 8 | Reserved | |
| * +-----------------------------------------------------+ |
| */ |
| pr_info("R [desc] [buf addr 63:0 ] [reserved 63:0 ] [bi->dma ] [bi->skb] <-- Ext (Read) format\n"); |
| /* Extended Receive Descriptor (Write-Back) Format |
| * |
| * 63 48 47 32 31 24 23 4 3 0 |
| * +------------------------------------------------------+ |
| * | RSS Hash | | | | |
| * 0 +-------------------+ Rsvd | Reserved | MRQ RSS | |
| * | Packet | IP | | | Type | |
| * | Checksum | Ident | | | | |
| * +------------------------------------------------------+ |
| * 8 | VLAN Tag | Length | Extended Error | Extended Status | |
| * +------------------------------------------------------+ |
| * 63 48 47 32 31 20 19 0 |
| */ |
| pr_info("RWB[desc] [cs ipid mrq] [vt ln xe xs] [bi->skb] <-- Ext (Write-Back) format\n"); |
| |
| for (i = 0; i < rx_ring->count; i++) { |
| const char *next_desc; |
| |
| buffer_info = &rx_ring->buffer_info[i]; |
| rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); |
| u1 = (struct my_u1 *)rx_desc; |
| staterr = le32_to_cpu(rx_desc->wb.upper.status_error); |
| |
| if (i == rx_ring->next_to_use) |
| next_desc = " NTU"; |
| else if (i == rx_ring->next_to_clean) |
| next_desc = " NTC"; |
| else |
| next_desc = ""; |
| |
| if (staterr & E1000_RXD_STAT_DD) { |
| /* Descriptor Done */ |
| pr_info("%s[0x%03X] %016llX %016llX ---------------- %p%s\n", |
| "RWB", i, |
| (unsigned long long)le64_to_cpu(u1->a), |
| (unsigned long long)le64_to_cpu(u1->b), |
| buffer_info->skb, next_desc); |
| } else { |
| pr_info("%s[0x%03X] %016llX %016llX %016llX %p%s\n", |
| "R ", i, |
| (unsigned long long)le64_to_cpu(u1->a), |
| (unsigned long long)le64_to_cpu(u1->b), |
| (unsigned long long)buffer_info->dma, |
| buffer_info->skb, next_desc); |
| |
| if (netif_msg_pktdata(adapter) && |
| buffer_info->skb) |
| print_hex_dump(KERN_INFO, "", |
| DUMP_PREFIX_ADDRESS, 16, |
| 1, |
| buffer_info->skb->data, |
| adapter->rx_buffer_len, |
| true); |
| } |
| } |
| } |
| } |
| |
| /** |
| * e1000_desc_unused - calculate if we have unused descriptors |
| * @ring: pointer to ring struct to perform calculation on |
| **/ |
| static int e1000_desc_unused(struct e1000_ring *ring) |
| { |
| if (ring->next_to_clean > ring->next_to_use) |
| return ring->next_to_clean - ring->next_to_use - 1; |
| |
| return ring->count + ring->next_to_clean - ring->next_to_use - 1; |
| } |
| |
| /** |
| * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp |
| * @adapter: board private structure |
| * @hwtstamps: time stamp structure to update |
| * @systim: unsigned 64bit system time value. |
| * |
| * Convert the system time value stored in the RX/TXSTMP registers into a |
| * hwtstamp which can be used by the upper level time stamping functions. |
| * |
| * The 'systim_lock' spinlock is used to protect the consistency of the |
| * system time value. This is needed because reading the 64 bit time |
| * value involves reading two 32 bit registers. The first read latches the |
| * value. |
| **/ |
| static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter, |
| struct skb_shared_hwtstamps *hwtstamps, |
| u64 systim) |
| { |
| u64 ns; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&adapter->systim_lock, flags); |
| ns = timecounter_cyc2time(&adapter->tc, systim); |
| spin_unlock_irqrestore(&adapter->systim_lock, flags); |
| |
| memset(hwtstamps, 0, sizeof(*hwtstamps)); |
| hwtstamps->hwtstamp = ns_to_ktime(ns); |
| } |
| |
| /** |
| * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp |
| * @adapter: board private structure |
| * @status: descriptor extended error and status field |
| * @skb: particular skb to include time stamp |
| * |
| * If the time stamp is valid, convert it into the timecounter ns value |
| * and store that result into the shhwtstamps structure which is passed |
| * up the network stack. |
| **/ |
| static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status, |
| struct sk_buff *skb) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u64 rxstmp; |
| |
| if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) || |
| !(status & E1000_RXDEXT_STATERR_TST) || |
| !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) |
| return; |
| |
| /* The Rx time stamp registers contain the time stamp. No other |
| * received packet will be time stamped until the Rx time stamp |
| * registers are read. Because only one packet can be time stamped |
| * at a time, the register values must belong to this packet and |
| * therefore none of the other additional attributes need to be |
| * compared. |
| */ |
| rxstmp = (u64)er32(RXSTMPL); |
| rxstmp |= (u64)er32(RXSTMPH) << 32; |
| e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp); |
| |
| adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP; |
| } |
| |
| /** |
| * e1000_receive_skb - helper function to handle Rx indications |
| * @adapter: board private structure |
| * @netdev: pointer to netdev struct |
| * @staterr: descriptor extended error and status field as written by hardware |
| * @vlan: descriptor vlan field as written by hardware (no le/be conversion) |
| * @skb: pointer to sk_buff to be indicated to stack |
| **/ |
| static void e1000_receive_skb(struct e1000_adapter *adapter, |
| struct net_device *netdev, struct sk_buff *skb, |
| u32 staterr, __le16 vlan) |
| { |
| u16 tag = le16_to_cpu(vlan); |
| |
| e1000e_rx_hwtstamp(adapter, staterr, skb); |
| |
| skb->protocol = eth_type_trans(skb, netdev); |
| |
| if (staterr & E1000_RXD_STAT_VP) |
| __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag); |
| |
| napi_gro_receive(&adapter->napi, skb); |
| } |
| |
| /** |
| * e1000_rx_checksum - Receive Checksum Offload |
| * @adapter: board private structure |
| * @status_err: receive descriptor status and error fields |
| * @skb: socket buffer with received data |
| **/ |
| static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, |
| struct sk_buff *skb) |
| { |
| u16 status = (u16)status_err; |
| u8 errors = (u8)(status_err >> 24); |
| |
| skb_checksum_none_assert(skb); |
| |
| /* Rx checksum disabled */ |
| if (!(adapter->netdev->features & NETIF_F_RXCSUM)) |
| return; |
| |
| /* Ignore Checksum bit is set */ |
| if (status & E1000_RXD_STAT_IXSM) |
| return; |
| |
| /* TCP/UDP checksum error bit or IP checksum error bit is set */ |
| if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) { |
| /* let the stack verify checksum errors */ |
| adapter->hw_csum_err++; |
| return; |
| } |
| |
| /* TCP/UDP Checksum has not been calculated */ |
| if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) |
| return; |
| |
| /* It must be a TCP or UDP packet with a valid checksum */ |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| adapter->hw_csum_good++; |
| } |
| |
| static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i) |
| { |
| struct e1000_adapter *adapter = rx_ring->adapter; |
| struct e1000_hw *hw = &adapter->hw; |
| |
| __ew32_prepare(hw); |
| writel(i, rx_ring->tail); |
| |
| if (unlikely(i != readl(rx_ring->tail))) { |
| u32 rctl = er32(RCTL); |
| |
| ew32(RCTL, rctl & ~E1000_RCTL_EN); |
| e_err("ME firmware caused invalid RDT - resetting\n"); |
| schedule_work(&adapter->reset_task); |
| } |
| } |
| |
| static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i) |
| { |
| struct e1000_adapter *adapter = tx_ring->adapter; |
| struct e1000_hw *hw = &adapter->hw; |
| |
| __ew32_prepare(hw); |
| writel(i, tx_ring->tail); |
| |
| if (unlikely(i != readl(tx_ring->tail))) { |
| u32 tctl = er32(TCTL); |
| |
| ew32(TCTL, tctl & ~E1000_TCTL_EN); |
| e_err("ME firmware caused invalid TDT - resetting\n"); |
| schedule_work(&adapter->reset_task); |
| } |
| } |
| |
| /** |
| * e1000_alloc_rx_buffers - Replace used receive buffers |
| * @rx_ring: Rx descriptor ring |
| * @cleaned_count: number to reallocate |
| * @gfp: flags for allocation |
| **/ |
| static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring, |
| int cleaned_count, gfp_t gfp) |
| { |
| struct e1000_adapter *adapter = rx_ring->adapter; |
| struct net_device *netdev = adapter->netdev; |
| struct pci_dev *pdev = adapter->pdev; |
| union e1000_rx_desc_extended *rx_desc; |
| struct e1000_buffer *buffer_info; |
| struct sk_buff *skb; |
| unsigned int i; |
| unsigned int bufsz = adapter->rx_buffer_len; |
| |
| i = rx_ring->next_to_use; |
| buffer_info = &rx_ring->buffer_info[i]; |
| |
| while (cleaned_count--) { |
| skb = buffer_info->skb; |
| if (skb) { |
| skb_trim(skb, 0); |
| goto map_skb; |
| } |
| |
| skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp); |
| if (!skb) { |
| /* Better luck next round */ |
| adapter->alloc_rx_buff_failed++; |
| break; |
| } |
| |
| buffer_info->skb = skb; |
| map_skb: |
| buffer_info->dma = dma_map_single(&pdev->dev, skb->data, |
| adapter->rx_buffer_len, |
| DMA_FROM_DEVICE); |
| if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { |
| dev_err(&pdev->dev, "Rx DMA map failed\n"); |
| adapter->rx_dma_failed++; |
| break; |
| } |
| |
| rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); |
| rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma); |
| |
| if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) { |
| /* Force memory writes to complete before letting h/w |
| * know there are new descriptors to fetch. (Only |
| * applicable for weak-ordered memory model archs, |
| * such as IA-64). |
| */ |
| wmb(); |
| if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) |
| e1000e_update_rdt_wa(rx_ring, i); |
| else |
| writel(i, rx_ring->tail); |
| } |
| i++; |
| if (i == rx_ring->count) |
| i = 0; |
| buffer_info = &rx_ring->buffer_info[i]; |
| } |
| |
| rx_ring->next_to_use = i; |
| } |
| |
| /** |
| * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split |
| * @rx_ring: Rx descriptor ring |
| * @cleaned_count: number to reallocate |
| * @gfp: flags for allocation |
| **/ |
| static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring, |
| int cleaned_count, gfp_t gfp) |
| { |
| struct e1000_adapter *adapter = rx_ring->adapter; |
| struct net_device *netdev = adapter->netdev; |
| struct pci_dev *pdev = adapter->pdev; |
| union e1000_rx_desc_packet_split *rx_desc; |
| struct e1000_buffer *buffer_info; |
| struct e1000_ps_page *ps_page; |
| struct sk_buff *skb; |
| unsigned int i, j; |
| |
| i = rx_ring->next_to_use; |
| buffer_info = &rx_ring->buffer_info[i]; |
| |
| while (cleaned_count--) { |
| rx_desc = E1000_RX_DESC_PS(*rx_ring, i); |
| |
| for (j = 0; j < PS_PAGE_BUFFERS; j++) { |
| ps_page = &buffer_info->ps_pages[j]; |
| if (j >= adapter->rx_ps_pages) { |
| /* all unused desc entries get hw null ptr */ |
| rx_desc->read.buffer_addr[j + 1] = |
| ~cpu_to_le64(0); |
| continue; |
| } |
| if (!ps_page->page) { |
| ps_page->page = alloc_page(gfp); |
| if (!ps_page->page) { |
| adapter->alloc_rx_buff_failed++; |
| goto no_buffers; |
| } |
| ps_page->dma = dma_map_page(&pdev->dev, |
| ps_page->page, |
| 0, PAGE_SIZE, |
| DMA_FROM_DEVICE); |
| if (dma_mapping_error(&pdev->dev, |
| ps_page->dma)) { |
| dev_err(&adapter->pdev->dev, |
| "Rx DMA page map failed\n"); |
| adapter->rx_dma_failed++; |
| goto no_buffers; |
| } |
| } |
| /* Refresh the desc even if buffer_addrs |
| * didn't change because each write-back |
| * erases this info. |
| */ |
| rx_desc->read.buffer_addr[j + 1] = |
| cpu_to_le64(ps_page->dma); |
| } |
| |
| skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0, |
| gfp); |
| |
| if (!skb) { |
| adapter->alloc_rx_buff_failed++; |
| break; |
| } |
| |
| buffer_info->skb = skb; |
| buffer_info->dma = dma_map_single(&pdev->dev, skb->data, |
| adapter->rx_ps_bsize0, |
| DMA_FROM_DEVICE); |
| if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { |
| dev_err(&pdev->dev, "Rx DMA map failed\n"); |
| adapter->rx_dma_failed++; |
| /* cleanup skb */ |
| dev_kfree_skb_any(skb); |
| buffer_info->skb = NULL; |
| break; |
| } |
| |
| rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma); |
| |
| if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) { |
| /* Force memory writes to complete before letting h/w |
| * know there are new descriptors to fetch. (Only |
| * applicable for weak-ordered memory model archs, |
| * such as IA-64). |
| */ |
| wmb(); |
| if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) |
| e1000e_update_rdt_wa(rx_ring, i << 1); |
| else |
| writel(i << 1, rx_ring->tail); |
| } |
| |
| i++; |
| if (i == rx_ring->count) |
| i = 0; |
| buffer_info = &rx_ring->buffer_info[i]; |
| } |
| |
| no_buffers: |
| rx_ring->next_to_use = i; |
| } |
| |
| /** |
| * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers |
| * @rx_ring: Rx descriptor ring |
| * @cleaned_count: number of buffers to allocate this pass |
| * @gfp: flags for allocation |
| **/ |
| |
| static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring, |
| int cleaned_count, gfp_t gfp) |
| { |
| struct e1000_adapter *adapter = rx_ring->adapter; |
| struct net_device *netdev = adapter->netdev; |
| struct pci_dev *pdev = adapter->pdev; |
| union e1000_rx_desc_extended *rx_desc; |
| struct e1000_buffer *buffer_info; |
| struct sk_buff *skb; |
| unsigned int i; |
| unsigned int bufsz = 256 - 16; /* for skb_reserve */ |
| |
| i = rx_ring->next_to_use; |
| buffer_info = &rx_ring->buffer_info[i]; |
| |
| while (cleaned_count--) { |
| skb = buffer_info->skb; |
| if (skb) { |
| skb_trim(skb, 0); |
| goto check_page; |
| } |
| |
| skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp); |
| if (unlikely(!skb)) { |
| /* Better luck next round */ |
| adapter->alloc_rx_buff_failed++; |
| break; |
| } |
| |
| buffer_info->skb = skb; |
| check_page: |
| /* allocate a new page if necessary */ |
| if (!buffer_info->page) { |
| buffer_info->page = alloc_page(gfp); |
| if (unlikely(!buffer_info->page)) { |
| adapter->alloc_rx_buff_failed++; |
| break; |
| } |
| } |
| |
| if (!buffer_info->dma) { |
| buffer_info->dma = dma_map_page(&pdev->dev, |
| buffer_info->page, 0, |
| PAGE_SIZE, |
| DMA_FROM_DEVICE); |
| if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { |
| adapter->alloc_rx_buff_failed++; |
| break; |
| } |
| } |
| |
| rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); |
| rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma); |
| |
| if (unlikely(++i == rx_ring->count)) |
| i = 0; |
| buffer_info = &rx_ring->buffer_info[i]; |
| } |
| |
| if (likely(rx_ring->next_to_use != i)) { |
| rx_ring->next_to_use = i; |
| if (unlikely(i-- == 0)) |
| i = (rx_ring->count - 1); |
| |
| /* Force memory writes to complete before letting h/w |
| * know there are new descriptors to fetch. (Only |
| * applicable for weak-ordered memory model archs, |
| * such as IA-64). |
| */ |
| wmb(); |
| if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) |
| e1000e_update_rdt_wa(rx_ring, i); |
| else |
| writel(i, rx_ring->tail); |
| } |
| } |
| |
| static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss, |
| struct sk_buff *skb) |
| { |
| if (netdev->features & NETIF_F_RXHASH) |
| skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3); |
| } |
| |
| /** |
| * e1000_clean_rx_irq - Send received data up the network stack |
| * @rx_ring: Rx descriptor ring |
| * @work_done: output parameter for indicating completed work |
| * @work_to_do: how many packets we can clean |
| * |
| * the return value indicates whether actual cleaning was done, there |
| * is no guarantee that everything was cleaned |
| **/ |
| static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done, |
| int work_to_do) |
| { |
| struct e1000_adapter *adapter = rx_ring->adapter; |
| struct net_device *netdev = adapter->netdev; |
| struct pci_dev *pdev = adapter->pdev; |
| struct e1000_hw *hw = &adapter->hw; |
| union e1000_rx_desc_extended *rx_desc, *next_rxd; |
| struct e1000_buffer *buffer_info, *next_buffer; |
| u32 length, staterr; |
| unsigned int i; |
| int cleaned_count = 0; |
| bool cleaned = false; |
| unsigned int total_rx_bytes = 0, total_rx_packets = 0; |
| |
| i = rx_ring->next_to_clean; |
| rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); |
| staterr = le32_to_cpu(rx_desc->wb.upper.status_error); |
| buffer_info = &rx_ring->buffer_info[i]; |
| |
| while (staterr & E1000_RXD_STAT_DD) { |
| struct sk_buff *skb; |
| |
| if (*work_done >= work_to_do) |
| break; |
| (*work_done)++; |
| dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ |
| |
| skb = buffer_info->skb; |
| buffer_info->skb = NULL; |
| |
| prefetch(skb->data - NET_IP_ALIGN); |
| |
| i++; |
| if (i == rx_ring->count) |
| i = 0; |
| next_rxd = E1000_RX_DESC_EXT(*rx_ring, i); |
| prefetch(next_rxd); |
| |
| next_buffer = &rx_ring->buffer_info[i]; |
| |
| cleaned = true; |
| cleaned_count++; |
| dma_unmap_single(&pdev->dev, buffer_info->dma, |
| adapter->rx_buffer_len, DMA_FROM_DEVICE); |
| buffer_info->dma = 0; |
| |
| length = le16_to_cpu(rx_desc->wb.upper.length); |
| |
| /* !EOP means multiple descriptors were used to store a single |
| * packet, if that's the case we need to toss it. In fact, we |
| * need to toss every packet with the EOP bit clear and the |
| * next frame that _does_ have the EOP bit set, as it is by |
| * definition only a frame fragment |
| */ |
| if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) |
| adapter->flags2 |= FLAG2_IS_DISCARDING; |
| |
| if (adapter->flags2 & FLAG2_IS_DISCARDING) { |
| /* All receives must fit into a single buffer */ |
| e_dbg("Receive packet consumed multiple buffers\n"); |
| /* recycle */ |
| buffer_info->skb = skb; |
| if (staterr & E1000_RXD_STAT_EOP) |
| adapter->flags2 &= ~FLAG2_IS_DISCARDING; |
| goto next_desc; |
| } |
| |
| if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) && |
| !(netdev->features & NETIF_F_RXALL))) { |
| /* recycle */ |
| buffer_info->skb = skb; |
| goto next_desc; |
| } |
| |
| /* adjust length to remove Ethernet CRC */ |
| if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) { |
| /* If configured to store CRC, don't subtract FCS, |
| * but keep the FCS bytes out of the total_rx_bytes |
| * counter |
| */ |
| if (netdev->features & NETIF_F_RXFCS) |
| total_rx_bytes -= 4; |
| else |
| length -= 4; |
| } |
| |
| total_rx_bytes += length; |
| total_rx_packets++; |
| |
| /* code added for copybreak, this should improve |
| * performance for small packets with large amounts |
| * of reassembly being done in the stack |
| */ |
| if (length < copybreak) { |
| struct sk_buff *new_skb = |
| napi_alloc_skb(&adapter->napi, length); |
| if (new_skb) { |
| skb_copy_to_linear_data_offset(new_skb, |
| -NET_IP_ALIGN, |
| (skb->data - |
| NET_IP_ALIGN), |
| (length + |
| NET_IP_ALIGN)); |
| /* save the skb in buffer_info as good */ |
| buffer_info->skb = skb; |
| skb = new_skb; |
| } |
| /* else just continue with the old one */ |
| } |
| /* end copybreak code */ |
| skb_put(skb, length); |
| |
| /* Receive Checksum Offload */ |
| e1000_rx_checksum(adapter, staterr, skb); |
| |
| e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb); |
| |
| e1000_receive_skb(adapter, netdev, skb, staterr, |
| rx_desc->wb.upper.vlan); |
| |
| next_desc: |
| rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF); |
| |
| /* return some buffers to hardware, one at a time is too slow */ |
| if (cleaned_count >= E1000_RX_BUFFER_WRITE) { |
| adapter->alloc_rx_buf(rx_ring, cleaned_count, |
| GFP_ATOMIC); |
| cleaned_count = 0; |
| } |
| |
| /* use prefetched values */ |
| rx_desc = next_rxd; |
| buffer_info = next_buffer; |
| |
| staterr = le32_to_cpu(rx_desc->wb.upper.status_error); |
| } |
| rx_ring->next_to_clean = i; |
| |
| cleaned_count = e1000_desc_unused(rx_ring); |
| if (cleaned_count) |
| adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC); |
| |
| adapter->total_rx_bytes += total_rx_bytes; |
| adapter->total_rx_packets += total_rx_packets; |
| return cleaned; |
| } |
| |
| static void e1000_put_txbuf(struct e1000_ring *tx_ring, |
| struct e1000_buffer *buffer_info, |
| bool drop) |
| { |
| struct e1000_adapter *adapter = tx_ring->adapter; |
| |
| if (buffer_info->dma) { |
| if (buffer_info->mapped_as_page) |
| dma_unmap_page(&adapter->pdev->dev, buffer_info->dma, |
| buffer_info->length, DMA_TO_DEVICE); |
| else |
| dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, |
| buffer_info->length, DMA_TO_DEVICE); |
| buffer_info->dma = 0; |
| } |
| if (buffer_info->skb) { |
| if (drop) |
| dev_kfree_skb_any(buffer_info->skb); |
| else |
| dev_consume_skb_any(buffer_info->skb); |
| buffer_info->skb = NULL; |
| } |
| buffer_info->time_stamp = 0; |
| } |
| |
| static void e1000_print_hw_hang(struct work_struct *work) |
| { |
| struct e1000_adapter *adapter = container_of(work, |
| struct e1000_adapter, |
| print_hang_task); |
| struct net_device *netdev = adapter->netdev; |
| struct e1000_ring *tx_ring = adapter->tx_ring; |
| unsigned int i = tx_ring->next_to_clean; |
| unsigned int eop = tx_ring->buffer_info[i].next_to_watch; |
| struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop); |
| struct e1000_hw *hw = &adapter->hw; |
| u16 phy_status, phy_1000t_status, phy_ext_status; |
| u16 pci_status; |
| |
| if (test_bit(__E1000_DOWN, &adapter->state)) |
| return; |
| |
| if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) { |
| /* May be block on write-back, flush and detect again |
| * flush pending descriptor writebacks to memory |
| */ |
| ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); |
| /* execute the writes immediately */ |
| e1e_flush(); |
| /* Due to rare timing issues, write to TIDV again to ensure |
| * the write is successful |
| */ |
| ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); |
| /* execute the writes immediately */ |
| e1e_flush(); |
| adapter->tx_hang_recheck = true; |
| return; |
| } |
| adapter->tx_hang_recheck = false; |
| |
| if (er32(TDH(0)) == er32(TDT(0))) { |
| e_dbg("false hang detected, ignoring\n"); |
| return; |
| } |
| |
| /* Real hang detected */ |
| netif_stop_queue(netdev); |
| |
| e1e_rphy(hw, MII_BMSR, &phy_status); |
| e1e_rphy(hw, MII_STAT1000, &phy_1000t_status); |
| e1e_rphy(hw, MII_ESTATUS, &phy_ext_status); |
| |
| pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status); |
| |
| /* detected Hardware unit hang */ |
| e_err("Detected Hardware Unit Hang:\n" |
| " TDH <%x>\n" |
| " TDT <%x>\n" |
| " next_to_use <%x>\n" |
| " next_to_clean <%x>\n" |
| "buffer_info[next_to_clean]:\n" |
| " time_stamp <%lx>\n" |
| " next_to_watch <%x>\n" |
| " jiffies <%lx>\n" |
| " next_to_watch.status <%x>\n" |
| "MAC Status <%x>\n" |
| "PHY Status <%x>\n" |
| "PHY 1000BASE-T Status <%x>\n" |
| "PHY Extended Status <%x>\n" |
| "PCI Status <%x>\n", |
| readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use, |
| tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp, |
| eop, jiffies, eop_desc->upper.fields.status, er32(STATUS), |
| phy_status, phy_1000t_status, phy_ext_status, pci_status); |
| |
| e1000e_dump(adapter); |
| |
| /* Suggest workaround for known h/w issue */ |
| if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE)) |
| e_err("Try turning off Tx pause (flow control) via ethtool\n"); |
| } |
| |
| /** |
| * e1000e_tx_hwtstamp_work - check for Tx time stamp |
| * @work: pointer to work struct |
| * |
| * This work function polls the TSYNCTXCTL valid bit to determine when a |
| * timestamp has been taken for the current stored skb. The timestamp must |
| * be for this skb because only one such packet is allowed in the queue. |
| */ |
| static void e1000e_tx_hwtstamp_work(struct work_struct *work) |
| { |
| struct e1000_adapter *adapter = container_of(work, struct e1000_adapter, |
| tx_hwtstamp_work); |
| struct e1000_hw *hw = &adapter->hw; |
| |
| if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) { |
| struct sk_buff *skb = adapter->tx_hwtstamp_skb; |
| struct skb_shared_hwtstamps shhwtstamps; |
| u64 txstmp; |
| |
| txstmp = er32(TXSTMPL); |
| txstmp |= (u64)er32(TXSTMPH) << 32; |
| |
| e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp); |
| |
| /* Clear the global tx_hwtstamp_skb pointer and force writes |
| * prior to notifying the stack of a Tx timestamp. |
| */ |
| adapter->tx_hwtstamp_skb = NULL; |
| wmb(); /* force write prior to skb_tstamp_tx */ |
| |
| skb_tstamp_tx(skb, &shhwtstamps); |
| dev_consume_skb_any(skb); |
| } else if (time_after(jiffies, adapter->tx_hwtstamp_start |
| + adapter->tx_timeout_factor * HZ)) { |
| dev_kfree_skb_any(adapter->tx_hwtstamp_skb); |
| adapter->tx_hwtstamp_skb = NULL; |
| adapter->tx_hwtstamp_timeouts++; |
| e_warn("clearing Tx timestamp hang\n"); |
| } else { |
| /* reschedule to check later */ |
| schedule_work(&adapter->tx_hwtstamp_work); |
| } |
| } |
| |
| /** |
| * e1000_clean_tx_irq - Reclaim resources after transmit completes |
| * @tx_ring: Tx descriptor ring |
| * |
| * the return value indicates whether actual cleaning was done, there |
| * is no guarantee that everything was cleaned |
| **/ |
| static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring) |
| { |
| struct e1000_adapter *adapter = tx_ring->adapter; |
| struct net_device *netdev = adapter->netdev; |
| struct e1000_hw *hw = &adapter->hw; |
| struct e1000_tx_desc *tx_desc, *eop_desc; |
| struct e1000_buffer *buffer_info; |
| unsigned int i, eop; |
| unsigned int count = 0; |
| unsigned int total_tx_bytes = 0, total_tx_packets = 0; |
| unsigned int bytes_compl = 0, pkts_compl = 0; |
| |
| i = tx_ring->next_to_clean; |
| eop = tx_ring->buffer_info[i].next_to_watch; |
| eop_desc = E1000_TX_DESC(*tx_ring, eop); |
| |
| while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && |
| (count < tx_ring->count)) { |
| bool cleaned = false; |
| |
| dma_rmb(); /* read buffer_info after eop_desc */ |
| for (; !cleaned; count++) { |
| tx_desc = E1000_TX_DESC(*tx_ring, i); |
| buffer_info = &tx_ring->buffer_info[i]; |
| cleaned = (i == eop); |
| |
| if (cleaned) { |
| total_tx_packets += buffer_info->segs; |
| total_tx_bytes += buffer_info->bytecount; |
| if (buffer_info->skb) { |
| bytes_compl += buffer_info->skb->len; |
| pkts_compl++; |
| } |
| } |
| |
| e1000_put_txbuf(tx_ring, buffer_info, false); |
| tx_desc->upper.data = 0; |
| |
| i++; |
| if (i == tx_ring->count) |
| i = 0; |
| } |
| |
| if (i == tx_ring->next_to_use) |
| break; |
| eop = tx_ring->buffer_info[i].next_to_watch; |
| eop_desc = E1000_TX_DESC(*tx_ring, eop); |
| } |
| |
| tx_ring->next_to_clean = i; |
| |
| netdev_completed_queue(netdev, pkts_compl, bytes_compl); |
| |
| #define TX_WAKE_THRESHOLD 32 |
| if (count && netif_carrier_ok(netdev) && |
| e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) { |
| /* Make sure that anybody stopping the queue after this |
| * sees the new next_to_clean. |
| */ |
| smp_mb(); |
| |
| if (netif_queue_stopped(netdev) && |
| !(test_bit(__E1000_DOWN, &adapter->state))) { |
| netif_wake_queue(netdev); |
| ++adapter->restart_queue; |
| } |
| } |
| |
| if (adapter->detect_tx_hung) { |
| /* Detect a transmit hang in hardware, this serializes the |
| * check with the clearing of time_stamp and movement of i |
| */ |
| adapter->detect_tx_hung = false; |
| if (tx_ring->buffer_info[i].time_stamp && |
| time_after(jiffies, tx_ring->buffer_info[i].time_stamp |
| + (adapter->tx_timeout_factor * HZ)) && |
| !(er32(STATUS) & E1000_STATUS_TXOFF)) |
| schedule_work(&adapter->print_hang_task); |
| else |
| adapter->tx_hang_recheck = false; |
| } |
| adapter->total_tx_bytes += total_tx_bytes; |
| adapter->total_tx_packets += total_tx_packets; |
| return count < tx_ring->count; |
| } |
| |
| /** |
| * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split |
| * @rx_ring: Rx descriptor ring |
| * @work_done: output parameter for indicating completed work |
| * @work_to_do: how many packets we can clean |
| * |
| * the return value indicates whether actual cleaning was done, there |
| * is no guarantee that everything was cleaned |
| **/ |
| static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done, |
| int work_to_do) |
| { |
| struct e1000_adapter *adapter = rx_ring->adapter; |
| struct e1000_hw *hw = &adapter->hw; |
| union e1000_rx_desc_packet_split *rx_desc, *next_rxd; |
| struct net_device *netdev = adapter->netdev; |
| struct pci_dev *pdev = adapter->pdev; |
| struct e1000_buffer *buffer_info, *next_buffer; |
| struct e1000_ps_page *ps_page; |
| struct sk_buff *skb; |
| unsigned int i, j; |
| u32 length, staterr; |
| int cleaned_count = 0; |
| bool cleaned = false; |
| unsigned int total_rx_bytes = 0, total_rx_packets = 0; |
| |
| i = rx_ring->next_to_clean; |
| rx_desc = E1000_RX_DESC_PS(*rx_ring, i); |
| staterr = le32_to_cpu(rx_desc->wb.middle.status_error); |
| buffer_info = &rx_ring->buffer_info[i]; |
| |
| while (staterr & E1000_RXD_STAT_DD) { |
| if (*work_done >= work_to_do) |
| break; |
| (*work_done)++; |
| skb = buffer_info->skb; |
| dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ |
| |
| /* in the packet split case this is header only */ |
| prefetch(skb->data - NET_IP_ALIGN); |
| |
| i++; |
| if (i == rx_ring->count) |
| i = 0; |
| next_rxd = E1000_RX_DESC_PS(*rx_ring, i); |
| prefetch(next_rxd); |
| |
| next_buffer = &rx_ring->buffer_info[i]; |
| |
| cleaned = true; |
| cleaned_count++; |
| dma_unmap_single(&pdev->dev, buffer_info->dma, |
| adapter->rx_ps_bsize0, DMA_FROM_DEVICE); |
| buffer_info->dma = 0; |
| |
| /* see !EOP comment in other Rx routine */ |
| if (!(staterr & E1000_RXD_STAT_EOP)) |
| adapter->flags2 |= FLAG2_IS_DISCARDING; |
| |
| if (adapter->flags2 & FLAG2_IS_DISCARDING) { |
| e_dbg("Packet Split buffers didn't pick up the full packet\n"); |
| dev_kfree_skb_irq(skb); |
| if (staterr & E1000_RXD_STAT_EOP) |
| adapter->flags2 &= ~FLAG2_IS_DISCARDING; |
| goto next_desc; |
| } |
| |
| if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) && |
| !(netdev->features & NETIF_F_RXALL))) { |
| dev_kfree_skb_irq(skb); |
| goto next_desc; |
| } |
| |
| length = le16_to_cpu(rx_desc->wb.middle.length0); |
| |
| if (!length) { |
| e_dbg("Last part of the packet spanning multiple descriptors\n"); |
| dev_kfree_skb_irq(skb); |
| goto next_desc; |
| } |
| |
| /* Good Receive */ |
| skb_put(skb, length); |
| |
| { |
| /* this looks ugly, but it seems compiler issues make |
| * it more efficient than reusing j |
| */ |
| int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]); |
| |
| /* page alloc/put takes too long and effects small |
| * packet throughput, so unsplit small packets and |
| * save the alloc/put only valid in softirq (napi) |
| * context to call kmap_* |
| */ |
| if (l1 && (l1 <= copybreak) && |
| ((length + l1) <= adapter->rx_ps_bsize0)) { |
| u8 *vaddr; |
| |
| ps_page = &buffer_info->ps_pages[0]; |
| |
| /* there is no documentation about how to call |
| * kmap_atomic, so we can't hold the mapping |
| * very long |
| */ |
| dma_sync_single_for_cpu(&pdev->dev, |
| ps_page->dma, |
| PAGE_SIZE, |
| DMA_FROM_DEVICE); |
| vaddr = kmap_atomic(ps_page->page); |
| memcpy(skb_tail_pointer(skb), vaddr, l1); |
| kunmap_atomic(vaddr); |
| dma_sync_single_for_device(&pdev->dev, |
| ps_page->dma, |
| PAGE_SIZE, |
| DMA_FROM_DEVICE); |
| |
| /* remove the CRC */ |
| if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) { |
| if (!(netdev->features & NETIF_F_RXFCS)) |
| l1 -= 4; |
| } |
| |
| skb_put(skb, l1); |
| goto copydone; |
| } /* if */ |
| } |
| |
| for (j = 0; j < PS_PAGE_BUFFERS; j++) { |
| length = le16_to_cpu(rx_desc->wb.upper.length[j]); |
| if (!length) |
| break; |
| |
| ps_page = &buffer_info->ps_pages[j]; |
| dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE, |
| DMA_FROM_DEVICE); |
| ps_page->dma = 0; |
| skb_fill_page_desc(skb, j, ps_page->page, 0, length); |
| ps_page->page = NULL; |
| skb->len += length; |
| skb->data_len += length; |
| skb->truesize += PAGE_SIZE; |
| } |
| |
| /* strip the ethernet crc, problem is we're using pages now so |
| * this whole operation can get a little cpu intensive |
| */ |
| if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) { |
| if (!(netdev->features & NETIF_F_RXFCS)) |
| pskb_trim(skb, skb->len - 4); |
| } |
| |
| copydone: |
| total_rx_bytes += skb->len; |
| total_rx_packets++; |
| |
| e1000_rx_checksum(adapter, staterr, skb); |
| |
| e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb); |
| |
| if (rx_desc->wb.upper.header_status & |
| cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)) |
| adapter->rx_hdr_split++; |
| |
| e1000_receive_skb(adapter, netdev, skb, staterr, |
| rx_desc->wb.middle.vlan); |
| |
| next_desc: |
| rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF); |
| buffer_info->skb = NULL; |
| |
| /* return some buffers to hardware, one at a time is too slow */ |
| if (cleaned_count >= E1000_RX_BUFFER_WRITE) { |
| adapter->alloc_rx_buf(rx_ring, cleaned_count, |
| GFP_ATOMIC); |
| cleaned_count = 0; |
| } |
| |
| /* use prefetched values */ |
| rx_desc = next_rxd; |
| buffer_info = next_buffer; |
| |
| staterr = le32_to_cpu(rx_desc->wb.middle.status_error); |
| } |
| rx_ring->next_to_clean = i; |
| |
| cleaned_count = e1000_desc_unused(rx_ring); |
| if (cleaned_count) |
| adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC); |
| |
| adapter->total_rx_bytes += total_rx_bytes; |
| adapter->total_rx_packets += total_rx_packets; |
| return cleaned; |
| } |
| |
| static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb, |
| u16 length) |
| { |
| bi->page = NULL; |
| skb->len += length; |
| skb->data_len += length; |
| skb->truesize += PAGE_SIZE; |
| } |
| |
| /** |
| * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy |
| * @rx_ring: Rx descriptor ring |
| * @work_done: output parameter for indicating completed work |
| * @work_to_do: how many packets we can clean |
| * |
| * the return value indicates whether actual cleaning was done, there |
| * is no guarantee that everything was cleaned |
| **/ |
| static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done, |
| int work_to_do) |
| { |
| struct e1000_adapter *adapter = rx_ring->adapter; |
| struct net_device *netdev = adapter->netdev; |
| struct pci_dev *pdev = adapter->pdev; |
| union e1000_rx_desc_extended *rx_desc, *next_rxd; |
| struct e1000_buffer *buffer_info, *next_buffer; |
| u32 length, staterr; |
| unsigned int i; |
| int cleaned_count = 0; |
| bool cleaned = false; |
| unsigned int total_rx_bytes = 0, total_rx_packets = 0; |
| struct skb_shared_info *shinfo; |
| |
| i = rx_ring->next_to_clean; |
| rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); |
| staterr = le32_to_cpu(rx_desc->wb.upper.status_error); |
| buffer_info = &rx_ring->buffer_info[i]; |
| |
| while (staterr & E1000_RXD_STAT_DD) { |
| struct sk_buff *skb; |
| |
| if (*work_done >= work_to_do) |
| break; |
| (*work_done)++; |
| dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ |
| |
| skb = buffer_info->skb; |
| buffer_info->skb = NULL; |
| |
| ++i; |
| if (i == rx_ring->count) |
| i = 0; |
| next_rxd = E1000_RX_DESC_EXT(*rx_ring, i); |
| prefetch(next_rxd); |
| |
| next_buffer = &rx_ring->buffer_info[i]; |
| |
| cleaned = true; |
| cleaned_count++; |
| dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE, |
| DMA_FROM_DEVICE); |
| buffer_info->dma = 0; |
| |
| length = le16_to_cpu(rx_desc->wb.upper.length); |
| |
| /* errors is only valid for DD + EOP descriptors */ |
| if (unlikely((staterr & E1000_RXD_STAT_EOP) && |
| ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) && |
| !(netdev->features & NETIF_F_RXALL)))) { |
| /* recycle both page and skb */ |
| buffer_info->skb = skb; |
| /* an error means any chain goes out the window too */ |
| if (rx_ring->rx_skb_top) |
| dev_kfree_skb_irq(rx_ring->rx_skb_top); |
| rx_ring->rx_skb_top = NULL; |
| goto next_desc; |
| } |
| #define rxtop (rx_ring->rx_skb_top) |
| if (!(staterr & E1000_RXD_STAT_EOP)) { |
| /* this descriptor is only the beginning (or middle) */ |
| if (!rxtop) { |
| /* this is the beginning of a chain */ |
| rxtop = skb; |
| skb_fill_page_desc(rxtop, 0, buffer_info->page, |
| 0, length); |
| } else { |
| /* this is the middle of a chain */ |
| shinfo = skb_shinfo(rxtop); |
| skb_fill_page_desc(rxtop, shinfo->nr_frags, |
| buffer_info->page, 0, |
| length); |
| /* re-use the skb, only consumed the page */ |
| buffer_info->skb = skb; |
| } |
| e1000_consume_page(buffer_info, rxtop, length); |
| goto next_desc; |
| } else { |
| if (rxtop) { |
| /* end of the chain */ |
| shinfo = skb_shinfo(rxtop); |
| skb_fill_page_desc(rxtop, shinfo->nr_frags, |
| buffer_info->page, 0, |
| length); |
| /* re-use the current skb, we only consumed the |
| * page |
| */ |
| buffer_info->skb = skb; |
| skb = rxtop; |
| rxtop = NULL; |
| e1000_consume_page(buffer_info, skb, length); |
| } else { |
| /* no chain, got EOP, this buf is the packet |
| * copybreak to save the put_page/alloc_page |
| */ |
| if (length <= copybreak && |
| skb_tailroom(skb) >= length) { |
| u8 *vaddr; |
| vaddr = kmap_atomic(buffer_info->page); |
| memcpy(skb_tail_pointer(skb), vaddr, |
| length); |
| kunmap_atomic(vaddr); |
| /* re-use the page, so don't erase |
| * buffer_info->page |
| */ |
| skb_put(skb, length); |
| } else { |
| skb_fill_page_desc(skb, 0, |
| buffer_info->page, 0, |
| length); |
| e1000_consume_page(buffer_info, skb, |
| length); |
| } |
| } |
| } |
| |
| /* Receive Checksum Offload */ |
| e1000_rx_checksum(adapter, staterr, skb); |
| |
| e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb); |
| |
| /* probably a little skewed due to removing CRC */ |
| total_rx_bytes += skb->len; |
| total_rx_packets++; |
| |
| /* eth type trans needs skb->data to point to something */ |
| if (!pskb_may_pull(skb, ETH_HLEN)) { |
| e_err("pskb_may_pull failed.\n"); |
| dev_kfree_skb_irq(skb); |
| goto next_desc; |
| } |
| |
| e1000_receive_skb(adapter, netdev, skb, staterr, |
| rx_desc->wb.upper.vlan); |
| |
| next_desc: |
| rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF); |
| |
| /* return some buffers to hardware, one at a time is too slow */ |
| if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { |
| adapter->alloc_rx_buf(rx_ring, cleaned_count, |
| GFP_ATOMIC); |
| cleaned_count = 0; |
| } |
| |
| /* use prefetched values */ |
| rx_desc = next_rxd; |
| buffer_info = next_buffer; |
| |
| staterr = le32_to_cpu(rx_desc->wb.upper.status_error); |
| } |
| rx_ring->next_to_clean = i; |
| |
| cleaned_count = e1000_desc_unused(rx_ring); |
| if (cleaned_count) |
| adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC); |
| |
| adapter->total_rx_bytes += total_rx_bytes; |
| adapter->total_rx_packets += total_rx_packets; |
| return cleaned; |
| } |
| |
| /** |
| * e1000_clean_rx_ring - Free Rx Buffers per Queue |
| * @rx_ring: Rx descriptor ring |
| **/ |
| static void e1000_clean_rx_ring(struct e1000_ring *rx_ring) |
| { |
| struct e1000_adapter *adapter = rx_ring->adapter; |
| struct e1000_buffer *buffer_info; |
| struct e1000_ps_page *ps_page; |
| struct pci_dev *pdev = adapter->pdev; |
| unsigned int i, j; |
| |
| /* Free all the Rx ring sk_buffs */ |
| for (i = 0; i < rx_ring->count; i++) { |
| buffer_info = &rx_ring->buffer_info[i]; |
| if (buffer_info->dma) { |
| if (adapter->clean_rx == e1000_clean_rx_irq) |
| dma_unmap_single(&pdev->dev, buffer_info->dma, |
| adapter->rx_buffer_len, |
| DMA_FROM_DEVICE); |
| else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) |
| dma_unmap_page(&pdev->dev, buffer_info->dma, |
| PAGE_SIZE, DMA_FROM_DEVICE); |
| else if (adapter->clean_rx == e1000_clean_rx_irq_ps) |
| dma_unmap_single(&pdev->dev, buffer_info->dma, |
| adapter->rx_ps_bsize0, |
| DMA_FROM_DEVICE); |
| buffer_info->dma = 0; |
| } |
| |
| if (buffer_info->page) { |
| put_page(buffer_info->page); |
| buffer_info->page = NULL; |
| } |
| |
| if (buffer_info->skb) { |
| dev_kfree_skb(buffer_info->skb); |
| buffer_info->skb = NULL; |
| } |
| |
| for (j = 0; j < PS_PAGE_BUFFERS; j++) { |
| ps_page = &buffer_info->ps_pages[j]; |
| if (!ps_page->page) |
| break; |
| dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE, |
| DMA_FROM_DEVICE); |
| ps_page->dma = 0; |
| put_page(ps_page->page); |
| ps_page->page = NULL; |
| } |
| } |
| |
| /* there also may be some cached data from a chained receive */ |
| if (rx_ring->rx_skb_top) { |
| dev_kfree_skb(rx_ring->rx_skb_top); |
| rx_ring->rx_skb_top = NULL; |
| } |
| |
| /* Zero out the descriptor ring */ |
| memset(rx_ring->desc, 0, rx_ring->size); |
| |
| rx_ring->next_to_clean = 0; |
| rx_ring->next_to_use = 0; |
| adapter->flags2 &= ~FLAG2_IS_DISCARDING; |
| } |
| |
| static void e1000e_downshift_workaround(struct work_struct *work) |
| { |
| struct e1000_adapter *adapter = container_of(work, |
| struct e1000_adapter, |
| downshift_task); |
| |
| if (test_bit(__E1000_DOWN, &adapter->state)) |
| return; |
| |
| e1000e_gig_downshift_workaround_ich8lan(&adapter->hw); |
| } |
| |
| /** |
| * e1000_intr_msi - Interrupt Handler |
| * @irq: interrupt number |
| * @data: pointer to a network interface device structure |
| **/ |
| static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data) |
| { |
| struct net_device *netdev = data; |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| u32 icr = er32(ICR); |
| |
| /* read ICR disables interrupts using IAM */ |
| if (icr & E1000_ICR_LSC) { |
| hw->mac.get_link_status = true; |
| /* ICH8 workaround-- Call gig speed drop workaround on cable |
| * disconnect (LSC) before accessing any PHY registers |
| */ |
| if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && |
| (!(er32(STATUS) & E1000_STATUS_LU))) |
| schedule_work(&adapter->downshift_task); |
| |
| /* 80003ES2LAN workaround-- For packet buffer work-around on |
| * link down event; disable receives here in the ISR and reset |
| * adapter in watchdog |
| */ |
| if (netif_carrier_ok(netdev) && |
| adapter->flags & FLAG_RX_NEEDS_RESTART) { |
| /* disable receives */ |
| u32 rctl = er32(RCTL); |
| |
| ew32(RCTL, rctl & ~E1000_RCTL_EN); |
| adapter->flags |= FLAG_RESTART_NOW; |
| } |
| /* guard against interrupt when we're going down */ |
| if (!test_bit(__E1000_DOWN, &adapter->state)) |
| mod_timer(&adapter->watchdog_timer, jiffies + 1); |
| } |
| |
| /* Reset on uncorrectable ECC error */ |
| if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) { |
| u32 pbeccsts = er32(PBECCSTS); |
| |
| adapter->corr_errors += |
| pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK; |
| adapter->uncorr_errors += |
| (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >> |
| E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT; |
| |
| /* Do the reset outside of interrupt context */ |
| schedule_work(&adapter->reset_task); |
| |
| /* return immediately since reset is imminent */ |
| return IRQ_HANDLED; |
| } |
| |
| if (napi_schedule_prep(&adapter->napi)) { |
| adapter->total_tx_bytes = 0; |
| adapter->total_tx_packets = 0; |
| adapter->total_rx_bytes = 0; |
| adapter->total_rx_packets = 0; |
| __napi_schedule(&adapter->napi); |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * e1000_intr - Interrupt Handler |
| * @irq: interrupt number |
| * @data: pointer to a network interface device structure |
| **/ |
| static irqreturn_t e1000_intr(int __always_unused irq, void *data) |
| { |
| struct net_device *netdev = data; |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| u32 rctl, icr = er32(ICR); |
| |
| if (!icr || test_bit(__E1000_DOWN, &adapter->state)) |
| return IRQ_NONE; /* Not our interrupt */ |
| |
| /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is |
| * not set, then the adapter didn't send an interrupt |
| */ |
| if (!(icr & E1000_ICR_INT_ASSERTED)) |
| return IRQ_NONE; |
| |
| /* Interrupt Auto-Mask...upon reading ICR, |
| * interrupts are masked. No need for the |
| * IMC write |
| */ |
| |
| if (icr & E1000_ICR_LSC) { |
| hw->mac.get_link_status = true; |
| /* ICH8 workaround-- Call gig speed drop workaround on cable |
| * disconnect (LSC) before accessing any PHY registers |
| */ |
| if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && |
| (!(er32(STATUS) & E1000_STATUS_LU))) |
| schedule_work(&adapter->downshift_task); |
| |
| /* 80003ES2LAN workaround-- |
| * For packet buffer work-around on link down event; |
| * disable receives here in the ISR and |
| * reset adapter in watchdog |
| */ |
| if (netif_carrier_ok(netdev) && |
| (adapter->flags & FLAG_RX_NEEDS_RESTART)) { |
| /* disable receives */ |
| rctl = er32(RCTL); |
| ew32(RCTL, rctl & ~E1000_RCTL_EN); |
| adapter->flags |= FLAG_RESTART_NOW; |
| } |
| /* guard against interrupt when we're going down */ |
| if (!test_bit(__E1000_DOWN, &adapter->state)) |
| mod_timer(&adapter->watchdog_timer, jiffies + 1); |
| } |
| |
| /* Reset on uncorrectable ECC error */ |
| if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) { |
| u32 pbeccsts = er32(PBECCSTS); |
| |
| adapter->corr_errors += |
| pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK; |
| adapter->uncorr_errors += |
| (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >> |
| E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT; |
| |
| /* Do the reset outside of interrupt context */ |
| schedule_work(&adapter->reset_task); |
| |
| /* return immediately since reset is imminent */ |
| return IRQ_HANDLED; |
| } |
| |
| if (napi_schedule_prep(&adapter->napi)) { |
| adapter->total_tx_bytes = 0; |
| adapter->total_tx_packets = 0; |
| adapter->total_rx_bytes = 0; |
| adapter->total_rx_packets = 0; |
| __napi_schedule(&adapter->napi); |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t e1000_msix_other(int __always_unused irq, void *data) |
| { |
| struct net_device *netdev = data; |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| u32 icr = er32(ICR); |
| |
| if (icr & adapter->eiac_mask) |
| ew32(ICS, (icr & adapter->eiac_mask)); |
| |
| if (icr & E1000_ICR_LSC) { |
| hw->mac.get_link_status = true; |
| /* guard against interrupt when we're going down */ |
| if (!test_bit(__E1000_DOWN, &adapter->state)) |
| mod_timer(&adapter->watchdog_timer, jiffies + 1); |
| } |
| |
| if (!test_bit(__E1000_DOWN, &adapter->state)) |
| ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data) |
| { |
| struct net_device *netdev = data; |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| struct e1000_ring *tx_ring = adapter->tx_ring; |
| |
| adapter->total_tx_bytes = 0; |
| adapter->total_tx_packets = 0; |
| |
| if (!e1000_clean_tx_irq(tx_ring)) |
| /* Ring was not completely cleaned, so fire another interrupt */ |
| ew32(ICS, tx_ring->ims_val); |
| |
| if (!test_bit(__E1000_DOWN, &adapter->state)) |
| ew32(IMS, adapter->tx_ring->ims_val); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data) |
| { |
| struct net_device *netdev = data; |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_ring *rx_ring = adapter->rx_ring; |
| |
| /* Write the ITR value calculated at the end of the |
| * previous interrupt. |
| */ |
| if (rx_ring->set_itr) { |
| u32 itr = rx_ring->itr_val ? |
| 1000000000 / (rx_ring->itr_val * 256) : 0; |
| |
| writel(itr, rx_ring->itr_register); |
| rx_ring->set_itr = 0; |
| } |
| |
| if (napi_schedule_prep(&adapter->napi)) { |
| adapter->total_rx_bytes = 0; |
| adapter->total_rx_packets = 0; |
| __napi_schedule(&adapter->napi); |
| } |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * e1000_configure_msix - Configure MSI-X hardware |
| * @adapter: board private structure |
| * |
| * e1000_configure_msix sets up the hardware to properly |
| * generate MSI-X interrupts. |
| **/ |
| static void e1000_configure_msix(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| struct e1000_ring *rx_ring = adapter->rx_ring; |
| struct e1000_ring *tx_ring = adapter->tx_ring; |
| int vector = 0; |
| u32 ctrl_ext, ivar = 0; |
| |
| adapter->eiac_mask = 0; |
| |
| /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */ |
| if (hw->mac.type == e1000_82574) { |
| u32 rfctl = er32(RFCTL); |
| |
| rfctl |= E1000_RFCTL_ACK_DIS; |
| ew32(RFCTL, rfctl); |
| } |
| |
| /* Configure Rx vector */ |
| rx_ring->ims_val = E1000_IMS_RXQ0; |
| adapter->eiac_mask |= rx_ring->ims_val; |
| if (rx_ring->itr_val) |
| writel(1000000000 / (rx_ring->itr_val * 256), |
| rx_ring->itr_register); |
| else |
| writel(1, rx_ring->itr_register); |
| ivar = E1000_IVAR_INT_ALLOC_VALID | vector; |
| |
| /* Configure Tx vector */ |
| tx_ring->ims_val = E1000_IMS_TXQ0; |
| vector++; |
| if (tx_ring->itr_val) |
| writel(1000000000 / (tx_ring->itr_val * 256), |
| tx_ring->itr_register); |
| else |
| writel(1, tx_ring->itr_register); |
| adapter->eiac_mask |= tx_ring->ims_val; |
| ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8); |
| |
| /* set vector for Other Causes, e.g. link changes */ |
| vector++; |
| ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16); |
| if (rx_ring->itr_val) |
| writel(1000000000 / (rx_ring->itr_val * 256), |
| hw->hw_addr + E1000_EITR_82574(vector)); |
| else |
| writel(1, hw->hw_addr + E1000_EITR_82574(vector)); |
| |
| /* Cause Tx interrupts on every write back */ |
| ivar |= BIT(31); |
| |
| ew32(IVAR, ivar); |
| |
| /* enable MSI-X PBA support */ |
| ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME; |
| ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME; |
| ew32(CTRL_EXT, ctrl_ext); |
| e1e_flush(); |
| } |
| |
| void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter) |
| { |
| if (adapter->msix_entries) { |
| pci_disable_msix(adapter->pdev); |
| kfree(adapter->msix_entries); |
| adapter->msix_entries = NULL; |
| } else if (adapter->flags & FLAG_MSI_ENABLED) { |
| pci_disable_msi(adapter->pdev); |
| adapter->flags &= ~FLAG_MSI_ENABLED; |
| } |
| } |
| |
| /** |
| * e1000e_set_interrupt_capability - set MSI or MSI-X if supported |
| * @adapter: board private structure |
| * |
| * Attempt to configure interrupts using the best available |
| * capabilities of the hardware and kernel. |
| **/ |
| void e1000e_set_interrupt_capability(struct e1000_adapter *adapter) |
| { |
| int err; |
| int i; |
| |
| switch (adapter->int_mode) { |
| case E1000E_INT_MODE_MSIX: |
| if (adapter->flags & FLAG_HAS_MSIX) { |
| adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */ |
| adapter->msix_entries = kcalloc(adapter->num_vectors, |
| sizeof(struct |
| msix_entry), |
| GFP_KERNEL); |
| if (adapter->msix_entries) { |
| struct e1000_adapter *a = adapter; |
| |
| for (i = 0; i < adapter->num_vectors; i++) |
| adapter->msix_entries[i].entry = i; |
| |
| err = pci_enable_msix_range(a->pdev, |
| a->msix_entries, |
| a->num_vectors, |
| a->num_vectors); |
| if (err > 0) |
| return; |
| } |
| /* MSI-X failed, so fall through and try MSI */ |
| e_err("Failed to initialize MSI-X interrupts. Falling back to MSI interrupts.\n"); |
| e1000e_reset_interrupt_capability(adapter); |
| } |
| adapter->int_mode = E1000E_INT_MODE_MSI; |
| fallthrough; |
| case E1000E_INT_MODE_MSI: |
| if (!pci_enable_msi(adapter->pdev)) { |
| adapter->flags |= FLAG_MSI_ENABLED; |
| } else { |
| adapter->int_mode = E1000E_INT_MODE_LEGACY; |
| e_err("Failed to initialize MSI interrupts. Falling back to legacy interrupts.\n"); |
| } |
| fallthrough; |
| case E1000E_INT_MODE_LEGACY: |
| /* Don't do anything; this is the system default */ |
| break; |
| } |
| |
| /* store the number of vectors being used */ |
| adapter->num_vectors = 1; |
| } |
| |
| /** |
| * e1000_request_msix - Initialize MSI-X interrupts |
| * @adapter: board private structure |
| * |
| * e1000_request_msix allocates MSI-X vectors and requests interrupts from the |
| * kernel. |
| **/ |
| static int e1000_request_msix(struct e1000_adapter *adapter) |
| { |
| struct net_device *netdev = adapter->netdev; |
| int err = 0, vector = 0; |
| |
| if (strlen(netdev->name) < (IFNAMSIZ - 5)) |
| snprintf(adapter->rx_ring->name, |
| sizeof(adapter->rx_ring->name) - 1, |
| "%.14s-rx-0", netdev->name); |
| else |
| memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ); |
| err = request_irq(adapter->msix_entries[vector].vector, |
| e1000_intr_msix_rx, 0, adapter->rx_ring->name, |
| netdev); |
| if (err) |
| return err; |
| adapter->rx_ring->itr_register = adapter->hw.hw_addr + |
| E1000_EITR_82574(vector); |
| adapter->rx_ring->itr_val = adapter->itr; |
| vector++; |
| |
| if (strlen(netdev->name) < (IFNAMSIZ - 5)) |
| snprintf(adapter->tx_ring->name, |
| sizeof(adapter->tx_ring->name) - 1, |
| "%.14s-tx-0", netdev->name); |
| else |
| memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ); |
| err = request_irq(adapter->msix_entries[vector].vector, |
| e1000_intr_msix_tx, 0, adapter->tx_ring->name, |
| netdev); |
| if (err) |
| return err; |
| adapter->tx_ring->itr_register = adapter->hw.hw_addr + |
| E1000_EITR_82574(vector); |
| adapter->tx_ring->itr_val = adapter->itr; |
| vector++; |
| |
| err = request_irq(adapter->msix_entries[vector].vector, |
| e1000_msix_other, 0, netdev->name, netdev); |
| if (err) |
| return err; |
| |
| e1000_configure_msix(adapter); |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_request_irq - initialize interrupts |
| * @adapter: board private structure |
| * |
| * Attempts to configure interrupts using the best available |
| * capabilities of the hardware and kernel. |
| **/ |
| static int e1000_request_irq(struct e1000_adapter *adapter) |
| { |
| struct net_device *netdev = adapter->netdev; |
| int err; |
| |
| if (adapter->msix_entries) { |
| err = e1000_request_msix(adapter); |
| if (!err) |
| return err; |
| /* fall back to MSI */ |
| e1000e_reset_interrupt_capability(adapter); |
| adapter->int_mode = E1000E_INT_MODE_MSI; |
| e1000e_set_interrupt_capability(adapter); |
| } |
| if (adapter->flags & FLAG_MSI_ENABLED) { |
| err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0, |
| netdev->name, netdev); |
| if (!err) |
| return err; |
| |
| /* fall back to legacy interrupt */ |
| e1000e_reset_interrupt_capability(adapter); |
| adapter->int_mode = E1000E_INT_MODE_LEGACY; |
| } |
| |
| err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED, |
| netdev->name, netdev); |
| if (err) |
| e_err("Unable to allocate interrupt, Error: %d\n", err); |
| |
| return err; |
| } |
| |
| static void e1000_free_irq(struct e1000_adapter *adapter) |
| { |
| struct net_device *netdev = adapter->netdev; |
| |
| if (adapter->msix_entries) { |
| int vector = 0; |
| |
| free_irq(adapter->msix_entries[vector].vector, netdev); |
| vector++; |
| |
| free_irq(adapter->msix_entries[vector].vector, netdev); |
| vector++; |
| |
| /* Other Causes interrupt vector */ |
| free_irq(adapter->msix_entries[vector].vector, netdev); |
| return; |
| } |
| |
| free_irq(adapter->pdev->irq, netdev); |
| } |
| |
| /** |
| * e1000_irq_disable - Mask off interrupt generation on the NIC |
| * @adapter: board private structure |
| **/ |
| static void e1000_irq_disable(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| |
| ew32(IMC, ~0); |
| if (adapter->msix_entries) |
| ew32(EIAC_82574, 0); |
| e1e_flush(); |
| |
| if (adapter->msix_entries) { |
| int i; |
| |
| for (i = 0; i < adapter->num_vectors; i++) |
| synchronize_irq(adapter->msix_entries[i].vector); |
| } else { |
| synchronize_irq(adapter->pdev->irq); |
| } |
| } |
| |
| /** |
| * e1000_irq_enable - Enable default interrupt generation settings |
| * @adapter: board private structure |
| **/ |
| static void e1000_irq_enable(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| |
| if (adapter->msix_entries) { |
| ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574); |
| ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | |
| IMS_OTHER_MASK); |
| } else if (hw->mac.type >= e1000_pch_lpt) { |
| ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER); |
| } else { |
| ew32(IMS, IMS_ENABLE_MASK); |
| } |
| e1e_flush(); |
| } |
| |
| /** |
| * e1000e_get_hw_control - get control of the h/w from f/w |
| * @adapter: address of board private structure |
| * |
| * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit. |
| * For ASF and Pass Through versions of f/w this means that |
| * the driver is loaded. For AMT version (only with 82573) |
| * of the f/w this means that the network i/f is open. |
| **/ |
| void e1000e_get_hw_control(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 ctrl_ext; |
| u32 swsm; |
| |
| /* Let firmware know the driver has taken over */ |
| if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { |
| swsm = er32(SWSM); |
| ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD); |
| } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { |
| ctrl_ext = er32(CTRL_EXT); |
| ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); |
| } |
| } |
| |
| /** |
| * e1000e_release_hw_control - release control of the h/w to f/w |
| * @adapter: address of board private structure |
| * |
| * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit. |
| * For ASF and Pass Through versions of f/w this means that the |
| * driver is no longer loaded. For AMT version (only with 82573) i |
| * of the f/w this means that the network i/f is closed. |
| * |
| **/ |
| void e1000e_release_hw_control(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 ctrl_ext; |
| u32 swsm; |
| |
| /* Let firmware taken over control of h/w */ |
| if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { |
| swsm = er32(SWSM); |
| ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD); |
| } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { |
| ctrl_ext = er32(CTRL_EXT); |
| ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); |
| } |
| } |
| |
| /** |
| * e1000_alloc_ring_dma - allocate memory for a ring structure |
| * @adapter: board private structure |
| * @ring: ring struct for which to allocate dma |
| **/ |
| static int e1000_alloc_ring_dma(struct e1000_adapter *adapter, |
| struct e1000_ring *ring) |
| { |
| struct pci_dev *pdev = adapter->pdev; |
| |
| ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma, |
| GFP_KERNEL); |
| if (!ring->desc) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| /** |
| * e1000e_setup_tx_resources - allocate Tx resources (Descriptors) |
| * @tx_ring: Tx descriptor ring |
| * |
| * Return 0 on success, negative on failure |
| **/ |
| int e1000e_setup_tx_resources(struct e1000_ring *tx_ring) |
| { |
| struct e1000_adapter *adapter = tx_ring->adapter; |
| int err = -ENOMEM, size; |
| |
| size = sizeof(struct e1000_buffer) * tx_ring->count; |
| tx_ring->buffer_info = vzalloc(size); |
| if (!tx_ring->buffer_info) |
| goto err; |
| |
| /* round up to nearest 4K */ |
| tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); |
| tx_ring->size = ALIGN(tx_ring->size, 4096); |
| |
| err = e1000_alloc_ring_dma(adapter, tx_ring); |
| if (err) |
| goto err; |
| |
| tx_ring->next_to_use = 0; |
| tx_ring->next_to_clean = 0; |
| |
| return 0; |
| err: |
| vfree(tx_ring->buffer_info); |
| e_err("Unable to allocate memory for the transmit descriptor ring\n"); |
| return err; |
| } |
| |
| /** |
| * e1000e_setup_rx_resources - allocate Rx resources (Descriptors) |
| * @rx_ring: Rx descriptor ring |
| * |
| * Returns 0 on success, negative on failure |
| **/ |
| int e1000e_setup_rx_resources(struct e1000_ring *rx_ring) |
| { |
| struct e1000_adapter *adapter = rx_ring->adapter; |
| struct e1000_buffer *buffer_info; |
| int i, size, desc_len, err = -ENOMEM; |
| |
| size = sizeof(struct e1000_buffer) * rx_ring->count; |
| rx_ring->buffer_info = vzalloc(size); |
| if (!rx_ring->buffer_info) |
| goto err; |
| |
| for (i = 0; i < rx_ring->count; i++) { |
| buffer_info = &rx_ring->buffer_info[i]; |
| buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS, |
| sizeof(struct e1000_ps_page), |
| GFP_KERNEL); |
| if (!buffer_info->ps_pages) |
| goto err_pages; |
| } |
| |
| desc_len = sizeof(union e1000_rx_desc_packet_split); |
| |
| /* Round up to nearest 4K */ |
| rx_ring->size = rx_ring->count * desc_len; |
| rx_ring->size = ALIGN(rx_ring->size, 4096); |
| |
| err = e1000_alloc_ring_dma(adapter, rx_ring); |
| if (err) |
| goto err_pages; |
| |
| rx_ring->next_to_clean = 0; |
| rx_ring->next_to_use = 0; |
| rx_ring->rx_skb_top = NULL; |
| |
| return 0; |
| |
| err_pages: |
| for (i = 0; i < rx_ring->count; i++) { |
| buffer_info = &rx_ring->buffer_info[i]; |
| kfree(buffer_info->ps_pages); |
| } |
| err: |
| vfree(rx_ring->buffer_info); |
| e_err("Unable to allocate memory for the receive descriptor ring\n"); |
| return err; |
| } |
| |
| /** |
| * e1000_clean_tx_ring - Free Tx Buffers |
| * @tx_ring: Tx descriptor ring |
| **/ |
| static void e1000_clean_tx_ring(struct e1000_ring *tx_ring) |
| { |
| struct e1000_adapter *adapter = tx_ring->adapter; |
| struct e1000_buffer *buffer_info; |
| unsigned long size; |
| unsigned int i; |
| |
| for (i = 0; i < tx_ring->count; i++) { |
| buffer_info = &tx_ring->buffer_info[i]; |
| e1000_put_txbuf(tx_ring, buffer_info, false); |
| } |
| |
| netdev_reset_queue(adapter->netdev); |
| size = sizeof(struct e1000_buffer) * tx_ring->count; |
| memset(tx_ring->buffer_info, 0, size); |
| |
| memset(tx_ring->desc, 0, tx_ring->size); |
| |
| tx_ring->next_to_use = 0; |
| tx_ring->next_to_clean = 0; |
| } |
| |
| /** |
| * e1000e_free_tx_resources - Free Tx Resources per Queue |
| * @tx_ring: Tx descriptor ring |
| * |
| * Free all transmit software resources |
| **/ |
| void e1000e_free_tx_resources(struct e1000_ring *tx_ring) |
| { |
| struct e1000_adapter *adapter = tx_ring->adapter; |
| struct pci_dev *pdev = adapter->pdev; |
| |
| e1000_clean_tx_ring(tx_ring); |
| |
| vfree(tx_ring->buffer_info); |
| tx_ring->buffer_info = NULL; |
| |
| dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, |
| tx_ring->dma); |
| tx_ring->desc = NULL; |
| } |
| |
| /** |
| * e1000e_free_rx_resources - Free Rx Resources |
| * @rx_ring: Rx descriptor ring |
| * |
| * Free all receive software resources |
| **/ |
| void e1000e_free_rx_resources(struct e1000_ring *rx_ring) |
| { |
| struct e1000_adapter *adapter = rx_ring->adapter; |
| struct pci_dev *pdev = adapter->pdev; |
| int i; |
| |
| e1000_clean_rx_ring(rx_ring); |
| |
| for (i = 0; i < rx_ring->count; i++) |
| kfree(rx_ring->buffer_info[i].ps_pages); |
| |
| vfree(rx_ring->buffer_info); |
| rx_ring->buffer_info = NULL; |
| |
| dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, |
| rx_ring->dma); |
| rx_ring->desc = NULL; |
| } |
| |
| /** |
| * e1000_update_itr - update the dynamic ITR value based on statistics |
| * @itr_setting: current adapter->itr |
| * @packets: the number of packets during this measurement interval |
| * @bytes: the number of bytes during this measurement interval |
| * |
| * Stores a new ITR value based on packets and byte |
| * counts during the last interrupt. The advantage of per interrupt |
| * computation is faster updates and more accurate ITR for the current |
| * traffic pattern. Constants in this function were computed |
| * based on theoretical maximum wire speed and thresholds were set based |
| * on testing data as well as attempting to minimize response time |
| * while increasing bulk throughput. This functionality is controlled |
| * by the InterruptThrottleRate module parameter. |
| **/ |
| static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes) |
| { |
| unsigned int retval = itr_setting; |
| |
| if (packets == 0) |
| return itr_setting; |
| |
| switch (itr_setting) { |
| case lowest_latency: |
| /* handle TSO and jumbo frames */ |
| if (bytes / packets > 8000) |
| retval = bulk_latency; |
| else if ((packets < 5) && (bytes > 512)) |
| retval = low_latency; |
| break; |
| case low_latency: /* 50 usec aka 20000 ints/s */ |
| if (bytes > 10000) { |
| /* this if handles the TSO accounting */ |
| if (bytes / packets > 8000) |
| retval = bulk_latency; |
| else if ((packets < 10) || ((bytes / packets) > 1200)) |
| retval = bulk_latency; |
| else if ((packets > 35)) |
| retval = lowest_latency; |
| } else if (bytes / packets > 2000) { |
| retval = bulk_latency; |
| } else if (packets <= 2 && bytes < 512) { |
| retval = lowest_latency; |
| } |
| break; |
| case bulk_latency: /* 250 usec aka 4000 ints/s */ |
| if (bytes > 25000) { |
| if (packets > 35) |
| retval = low_latency; |
| } else if (bytes < 6000) { |
| retval = low_latency; |
| } |
| break; |
| } |
| |
| return retval; |
| } |
| |
| static void e1000_set_itr(struct e1000_adapter *adapter) |
| { |
| u16 current_itr; |
| u32 new_itr = adapter->itr; |
| |
| /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ |
| if (adapter->link_speed != SPEED_1000) { |
| current_itr = 0; |
| new_itr = 4000; |
| goto set_itr_now; |
| } |
| |
| if (adapter->flags2 & FLAG2_DISABLE_AIM) { |
| new_itr = 0; |
| goto set_itr_now; |
| } |
| |
| adapter->tx_itr = e1000_update_itr(adapter->tx_itr, |
| adapter->total_tx_packets, |
| adapter->total_tx_bytes); |
| /* conservative mode (itr 3) eliminates the lowest_latency setting */ |
| if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) |
| adapter->tx_itr = low_latency; |
| |
| adapter->rx_itr = e1000_update_itr(adapter->rx_itr, |
| adapter->total_rx_packets, |
| adapter->total_rx_bytes); |
| /* conservative mode (itr 3) eliminates the lowest_latency setting */ |
| if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) |
| adapter->rx_itr = low_latency; |
| |
| current_itr = max(adapter->rx_itr, adapter->tx_itr); |
| |
| /* counts and packets in update_itr are dependent on these numbers */ |
| switch (current_itr) { |
| case lowest_latency: |
| new_itr = 70000; |
| break; |
| case low_latency: |
| new_itr = 20000; /* aka hwitr = ~200 */ |
| break; |
| case bulk_latency: |
| new_itr = 4000; |
| break; |
| default: |
| break; |
| } |
| |
| set_itr_now: |
| if (new_itr != adapter->itr) { |
| /* this attempts to bias the interrupt rate towards Bulk |
| * by adding intermediate steps when interrupt rate is |
| * increasing |
| */ |
| new_itr = new_itr > adapter->itr ? |
| min(adapter->itr + (new_itr >> 2), new_itr) : new_itr; |
| adapter->itr = new_itr; |
| adapter->rx_ring->itr_val = new_itr; |
| if (adapter->msix_entries) |
| adapter->rx_ring->set_itr = 1; |
| else |
| e1000e_write_itr(adapter, new_itr); |
| } |
| } |
| |
| /** |
| * e1000e_write_itr - write the ITR value to the appropriate registers |
| * @adapter: address of board private structure |
| * @itr: new ITR value to program |
| * |
| * e1000e_write_itr determines if the adapter is in MSI-X mode |
| * and, if so, writes the EITR registers with the ITR value. |
| * Otherwise, it writes the ITR value into the ITR register. |
| **/ |
| void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 new_itr = itr ? 1000000000 / (itr * 256) : 0; |
| |
| if (adapter->msix_entries) { |
| int vector; |
| |
| for (vector = 0; vector < adapter->num_vectors; vector++) |
| writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector)); |
| } else { |
| ew32(ITR, new_itr); |
| } |
| } |
| |
| /** |
| * e1000_alloc_queues - Allocate memory for all rings |
| * @adapter: board private structure to initialize |
| **/ |
| static int e1000_alloc_queues(struct e1000_adapter *adapter) |
| { |
| int size = sizeof(struct e1000_ring); |
| |
| adapter->tx_ring = kzalloc(size, GFP_KERNEL); |
| if (!adapter->tx_ring) |
| goto err; |
| adapter->tx_ring->count = adapter->tx_ring_count; |
| adapter->tx_ring->adapter = adapter; |
| |
| adapter->rx_ring = kzalloc(size, GFP_KERNEL); |
| if (!adapter->rx_ring) |
| goto err; |
| adapter->rx_ring->count = adapter->rx_ring_count; |
| adapter->rx_ring->adapter = adapter; |
| |
| return 0; |
| err: |
| e_err("Unable to allocate memory for queues\n"); |
| kfree(adapter->rx_ring); |
| kfree(adapter->tx_ring); |
| return -ENOMEM; |
| } |
| |
| /** |
| * e1000e_poll - NAPI Rx polling callback |
| * @napi: struct associated with this polling callback |
| * @budget: number of packets driver is allowed to process this poll |
| **/ |
| static int e1000e_poll(struct napi_struct *napi, int budget) |
| { |
| struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, |
| napi); |
| struct e1000_hw *hw = &adapter->hw; |
| struct net_device *poll_dev = adapter->netdev; |
| int tx_cleaned = 1, work_done = 0; |
| |
| adapter = netdev_priv(poll_dev); |
| |
| if (!adapter->msix_entries || |
| (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val)) |
| tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring); |
| |
| adapter->clean_rx(adapter->rx_ring, &work_done, budget); |
| |
| if (!tx_cleaned || work_done == budget) |
| return budget; |
| |
| /* Exit the polling mode, but don't re-enable interrupts if stack might |
| * poll us due to busy-polling |
| */ |
| if (likely(napi_complete_done(napi, work_done))) { |
| if (adapter->itr_setting & 3) |
| e1000_set_itr(adapter); |
| if (!test_bit(__E1000_DOWN, &adapter->state)) { |
| if (adapter->msix_entries) |
| ew32(IMS, adapter->rx_ring->ims_val); |
| else |
| e1000_irq_enable(adapter); |
| } |
| } |
| |
| return work_done; |
| } |
| |
| static int e1000_vlan_rx_add_vid(struct net_device *netdev, |
| __always_unused __be16 proto, u16 vid) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| u32 vfta, index; |
| |
| /* don't update vlan cookie if already programmed */ |
| if ((adapter->hw.mng_cookie.status & |
| E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && |
| (vid == adapter->mng_vlan_id)) |
| return 0; |
| |
| /* add VID to filter table */ |
| if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { |
| index = (vid >> 5) & 0x7F; |
| vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); |
| vfta |= BIT((vid & 0x1F)); |
| hw->mac.ops.write_vfta(hw, index, vfta); |
| } |
| |
| set_bit(vid, adapter->active_vlans); |
| |
| return 0; |
| } |
| |
| static int e1000_vlan_rx_kill_vid(struct net_device *netdev, |
| __always_unused __be16 proto, u16 vid) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| u32 vfta, index; |
| |
| if ((adapter->hw.mng_cookie.status & |
| E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && |
| (vid == adapter->mng_vlan_id)) { |
| /* release control to f/w */ |
| e1000e_release_hw_control(adapter); |
| return 0; |
| } |
| |
| /* remove VID from filter table */ |
| if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { |
| index = (vid >> 5) & 0x7F; |
| vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); |
| vfta &= ~BIT((vid & 0x1F)); |
| hw->mac.ops.write_vfta(hw, index, vfta); |
| } |
| |
| clear_bit(vid, adapter->active_vlans); |
| |
| return 0; |
| } |
| |
| /** |
| * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering |
| * @adapter: board private structure to initialize |
| **/ |
| static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter) |
| { |
| struct net_device *netdev = adapter->netdev; |
| struct e1000_hw *hw = &adapter->hw; |
| u32 rctl; |
| |
| if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { |
| /* disable VLAN receive filtering */ |
| rctl = er32(RCTL); |
| rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN); |
| ew32(RCTL, rctl); |
| |
| if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) { |
| e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), |
| adapter->mng_vlan_id); |
| adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; |
| } |
| } |
| } |
| |
| /** |
| * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering |
| * @adapter: board private structure to initialize |
| **/ |
| static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 rctl; |
| |
| if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { |
| /* enable VLAN receive filtering */ |
| rctl = er32(RCTL); |
| rctl |= E1000_RCTL_VFE; |
| rctl &= ~E1000_RCTL_CFIEN; |
| ew32(RCTL, rctl); |
| } |
| } |
| |
| /** |
| * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping |
| * @adapter: board private structure to initialize |
| **/ |
| static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 ctrl; |
| |
| /* disable VLAN tag insert/strip */ |
| ctrl = er32(CTRL); |
| ctrl &= ~E1000_CTRL_VME; |
| ew32(CTRL, ctrl); |
| } |
| |
| /** |
| * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping |
| * @adapter: board private structure to initialize |
| **/ |
| static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 ctrl; |
| |
| /* enable VLAN tag insert/strip */ |
| ctrl = er32(CTRL); |
| ctrl |= E1000_CTRL_VME; |
| ew32(CTRL, ctrl); |
| } |
| |
| static void e1000_update_mng_vlan(struct e1000_adapter *adapter) |
| { |
| struct net_device *netdev = adapter->netdev; |
| u16 vid = adapter->hw.mng_cookie.vlan_id; |
| u16 old_vid = adapter->mng_vlan_id; |
| |
| if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { |
| e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid); |
| adapter->mng_vlan_id = vid; |
| } |
| |
| if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid)) |
| e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid); |
| } |
| |
| static void e1000_restore_vlan(struct e1000_adapter *adapter) |
| { |
| u16 vid; |
| |
| e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0); |
| |
| for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) |
| e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); |
| } |
| |
| static void e1000_init_manageability_pt(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 manc, manc2h, mdef, i, j; |
| |
| if (!(adapter->flags & FLAG_MNG_PT_ENABLED)) |
| return; |
| |
| manc = er32(MANC); |
| |
| /* enable receiving management packets to the host. this will probably |
| * generate destination unreachable messages from the host OS, but |
| * the packets will be handled on SMBUS |
| */ |
| manc |= E1000_MANC_EN_MNG2HOST; |
| manc2h = er32(MANC2H); |
| |
| switch (hw->mac.type) { |
| default: |
| manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664); |
| break; |
| case e1000_82574: |
| case e1000_82583: |
| /* Check if IPMI pass-through decision filter already exists; |
| * if so, enable it. |
| */ |
| for (i = 0, j = 0; i < 8; i++) { |
| mdef = er32(MDEF(i)); |
| |
| /* Ignore filters with anything other than IPMI ports */ |
| if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664)) |
| continue; |
| |
| /* Enable this decision filter in MANC2H */ |
| if (mdef) |
| manc2h |= BIT(i); |
| |
| j |= mdef; |
| } |
| |
| if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664)) |
| break; |
| |
| /* Create new decision filter in an empty filter */ |
| for (i = 0, j = 0; i < 8; i++) |
| if (er32(MDEF(i)) == 0) { |
| ew32(MDEF(i), (E1000_MDEF_PORT_623 | |
| E1000_MDEF_PORT_664)); |
| manc2h |= BIT(1); |
| j++; |
| break; |
| } |
| |
| if (!j) |
| e_warn("Unable to create IPMI pass-through filter\n"); |
| break; |
| } |
| |
| ew32(MANC2H, manc2h); |
| ew32(MANC, manc); |
| } |
| |
| /** |
| * e1000_configure_tx - Configure Transmit Unit after Reset |
| * @adapter: board private structure |
| * |
| * Configure the Tx unit of the MAC after a reset. |
| **/ |
| static void e1000_configure_tx(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| struct e1000_ring *tx_ring = adapter->tx_ring; |
| u64 tdba; |
| u32 tdlen, tctl, tarc; |
| |
| /* Setup the HW Tx Head and Tail descriptor pointers */ |
| tdba = tx_ring->dma; |
| tdlen = tx_ring->count * sizeof(struct e1000_tx_desc); |
| ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32))); |
| ew32(TDBAH(0), (tdba >> 32)); |
| ew32(TDLEN(0), tdlen); |
| ew32(TDH(0), 0); |
| ew32(TDT(0), 0); |
| tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0); |
| tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0); |
| |
| writel(0, tx_ring->head); |
| if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) |
| e1000e_update_tdt_wa(tx_ring, 0); |
| else |
| writel(0, tx_ring->tail); |
| |
| /* Set the Tx Interrupt Delay register */ |
| ew32(TIDV, adapter->tx_int_delay); |
| /* Tx irq moderation */ |
| ew32(TADV, adapter->tx_abs_int_delay); |
| |
| if (adapter->flags2 & FLAG2_DMA_BURST) { |
| u32 txdctl = er32(TXDCTL(0)); |
| |
| txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH | |
| E1000_TXDCTL_WTHRESH); |
| /* set up some performance related parameters to encourage the |
| * hardware to use the bus more efficiently in bursts, depends |
| * on the tx_int_delay to be enabled, |
| * wthresh = 1 ==> burst write is disabled to avoid Tx stalls |
| * hthresh = 1 ==> prefetch when one or more available |
| * pthresh = 0x1f ==> prefetch if internal cache 31 or less |
| * BEWARE: this seems to work but should be considered first if |
| * there are Tx hangs or other Tx related bugs |
| */ |
| txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE; |
| ew32(TXDCTL(0), txdctl); |
| } |
| /* erratum work around: set txdctl the same for both queues */ |
| ew32(TXDCTL(1), er32(TXDCTL(0))); |
| |
| /* Program the Transmit Control Register */ |
| tctl = er32(TCTL); |
| tctl &= ~E1000_TCTL_CT; |
| tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | |
| (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); |
| |
| if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) { |
| tarc = er32(TARC(0)); |
| /* set the speed mode bit, we'll clear it if we're not at |
| * gigabit link later |
| */ |
| #define SPEED_MODE_BIT BIT(21) |
| tarc |= SPEED_MODE_BIT; |
| ew32(TARC(0), tarc); |
| } |
| |
| /* errata: program both queues to unweighted RR */ |
| if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) { |
| tarc = er32(TARC(0)); |
| tarc |= 1; |
| ew32(TARC(0), tarc); |
| tarc = er32(TARC(1)); |
| tarc |= 1; |
| ew32(TARC(1), tarc); |
| } |
| |
| /* Setup Transmit Descriptor Settings for eop descriptor */ |
| adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; |
| |
| /* only set IDE if we are delaying interrupts using the timers */ |
| if (adapter->tx_int_delay) |
| adapter->txd_cmd |= E1000_TXD_CMD_IDE; |
| |
| /* enable Report Status bit */ |
| adapter->txd_cmd |= E1000_TXD_CMD_RS; |
| |
| ew32(TCTL, tctl); |
| |
| hw->mac.ops.config_collision_dist(hw); |
| |
| /* SPT and KBL Si errata workaround to avoid data corruption */ |
| if (hw->mac.type == e1000_pch_spt) { |
| u32 reg_val; |
| |
| reg_val = er32(IOSFPC); |
| reg_val |= E1000_RCTL_RDMTS_HEX; |
| ew32(IOSFPC, reg_val); |
| |
| reg_val = er32(TARC(0)); |
| /* SPT and KBL Si errata workaround to avoid Tx hang. |
| * Dropping the number of outstanding requests from |
| * 3 to 2 in order to avoid a buffer overrun. |
| */ |
| reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ; |
| reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ; |
| ew32(TARC(0), reg_val); |
| } |
| } |
| |
| #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \ |
| (((S) & (PAGE_SIZE - 1)) ? 1 : 0)) |
| |
| /** |
| * e1000_setup_rctl - configure the receive control registers |
| * @adapter: Board private structure |
| **/ |
| static void e1000_setup_rctl(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 rctl, rfctl; |
| u32 pages = 0; |
| |
| /* Workaround Si errata on PCHx - configure jumbo frame flow. |
| * If jumbo frames not set, program related MAC/PHY registers |
| * to h/w defaults |
| */ |
| if (hw->mac.type >= e1000_pch2lan) { |
| s32 ret_val; |
| |
| if (adapter->netdev->mtu > ETH_DATA_LEN) |
| ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true); |
| else |
| ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false); |
| |
| if (ret_val) |
| e_dbg("failed to enable|disable jumbo frame workaround mode\n"); |
| } |
| |
| /* Program MC offset vector base */ |
| rctl = er32(RCTL); |
| rctl &= ~(3 << E1000_RCTL_MO_SHIFT); |
| rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | |
| E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | |
| (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); |
| |
| /* Do not Store bad packets */ |
| rctl &= ~E1000_RCTL_SBP; |
| |
| /* Enable Long Packet receive */ |
| if (adapter->netdev->mtu <= ETH_DATA_LEN) |
| rctl &= ~E1000_RCTL_LPE; |
| else |
| rctl |= E1000_RCTL_LPE; |
| |
| /* Some systems expect that the CRC is included in SMBUS traffic. The |
| * hardware strips the CRC before sending to both SMBUS (BMC) and to |
| * host memory when this is enabled |
| */ |
| if (adapter->flags2 & FLAG2_CRC_STRIPPING) |
| rctl |= E1000_RCTL_SECRC; |
| |
| /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */ |
| if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) { |
| u16 phy_data; |
| |
| e1e_rphy(hw, PHY_REG(770, 26), &phy_data); |
| phy_data &= 0xfff8; |
| phy_data |= BIT(2); |
| e1e_wphy(hw, PHY_REG(770, 26), phy_data); |
| |
| e1e_rphy(hw, 22, &phy_data); |
| phy_data &= 0x0fff; |
| phy_data |= BIT(14); |
| e1e_wphy(hw, 0x10, 0x2823); |
| e1e_wphy(hw, 0x11, 0x0003); |
| e1e_wphy(hw, 22, phy_data); |
| } |
| |
| /* Setup buffer sizes */ |
| rctl &= ~E1000_RCTL_SZ_4096; |
| rctl |= E1000_RCTL_BSEX; |
| switch (adapter->rx_buffer_len) { |
| case 2048: |
| default: |
| rctl |= E1000_RCTL_SZ_2048; |
| rctl &= ~E1000_RCTL_BSEX; |
| break; |
| case 4096: |
| rctl |= E1000_RCTL_SZ_4096; |
| break; |
| case 8192: |
| rctl |= E1000_RCTL_SZ_8192; |
| break; |
| case 16384: |
| rctl |= E1000_RCTL_SZ_16384; |
| break; |
| } |
| |
| /* Enable Extended Status in all Receive Descriptors */ |
| rfctl = er32(RFCTL); |
| rfctl |= E1000_RFCTL_EXTEN; |
| ew32(RFCTL, rfctl); |
| |
| /* 82571 and greater support packet-split where the protocol |
| * header is placed in skb->data and the packet data is |
| * placed in pages hanging off of skb_shinfo(skb)->nr_frags. |
| * In the case of a non-split, skb->data is linearly filled, |
| * followed by the page buffers. Therefore, skb->data is |
| * sized to hold the largest protocol header. |
| * |
| * allocations using alloc_page take too long for regular MTU |
| * so only enable packet split for jumbo frames |
| * |
| * Using pages when the page size is greater than 16k wastes |
| * a lot of memory, since we allocate 3 pages at all times |
| * per packet. |
| */ |
| pages = PAGE_USE_COUNT(adapter->netdev->mtu); |
| if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE)) |
| adapter->rx_ps_pages = pages; |
| else |
| adapter->rx_ps_pages = 0; |
| |
| if (adapter->rx_ps_pages) { |
| u32 psrctl = 0; |
| |
| /* Enable Packet split descriptors */ |
| rctl |= E1000_RCTL_DTYP_PS; |
| |
| psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT; |
| |
| switch (adapter->rx_ps_pages) { |
| case 3: |
| psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT; |
| fallthrough; |
| case 2: |
| psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT; |
| fallthrough; |
| case 1: |
| psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT; |
| break; |
| } |
| |
| ew32(PSRCTL, psrctl); |
| } |
| |
| /* This is useful for sniffing bad packets. */ |
| if (adapter->netdev->features & NETIF_F_RXALL) { |
| /* UPE and MPE will be handled by normal PROMISC logic |
| * in e1000e_set_rx_mode |
| */ |
| rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ |
| E1000_RCTL_BAM | /* RX All Bcast Pkts */ |
| E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ |
| |
| rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */ |
| E1000_RCTL_DPF | /* Allow filtered pause */ |
| E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */ |
| /* Do not mess with E1000_CTRL_VME, it affects transmit as well, |
| * and that breaks VLANs. |
| */ |
| } |
| |
| ew32(RCTL, rctl); |
| /* just started the receive unit, no need to restart */ |
| adapter->flags &= ~FLAG_RESTART_NOW; |
| } |
| |
| /** |
| * e1000_configure_rx - Configure Receive Unit after Reset |
| * @adapter: board private structure |
| * |
| * Configure the Rx unit of the MAC after a reset. |
| **/ |
| static void e1000_configure_rx(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| struct e1000_ring *rx_ring = adapter->rx_ring; |
| u64 rdba; |
| u32 rdlen, rctl, rxcsum, ctrl_ext; |
| |
| if (adapter->rx_ps_pages) { |
| /* this is a 32 byte descriptor */ |
| rdlen = rx_ring->count * |
| sizeof(union e1000_rx_desc_packet_split); |
| adapter->clean_rx = e1000_clean_rx_irq_ps; |
| adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps; |
| } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) { |
| rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended); |
| adapter->clean_rx = e1000_clean_jumbo_rx_irq; |
| adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; |
| } else { |
| rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended); |
| adapter->clean_rx = e1000_clean_rx_irq; |
| adapter->alloc_rx_buf = e1000_alloc_rx_buffers; |
| } |
| |
| /* disable receives while setting up the descriptors */ |
| rctl = er32(RCTL); |
| if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) |
| ew32(RCTL, rctl & ~E1000_RCTL_EN); |
| e1e_flush(); |
| usleep_range(10000, 11000); |
| |
| if (adapter->flags2 & FLAG2_DMA_BURST) { |
| /* set the writeback threshold (only takes effect if the RDTR |
| * is set). set GRAN=1 and write back up to 0x4 worth, and |
| * enable prefetching of 0x20 Rx descriptors |
| * granularity = 01 |
| * wthresh = 04, |
| * hthresh = 04, |
| * pthresh = 0x20 |
| */ |
| ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE); |
| ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE); |
| } |
| |
| /* set the Receive Delay Timer Register */ |
| ew32(RDTR, adapter->rx_int_delay); |
| |
| /* irq moderation */ |
| ew32(RADV, adapter->rx_abs_int_delay); |
| if ((adapter->itr_setting != 0) && (adapter->itr != 0)) |
| e1000e_write_itr(adapter, adapter->itr); |
| |
| ctrl_ext = er32(CTRL_EXT); |
| /* Auto-Mask interrupts upon ICR access */ |
| ctrl_ext |= E1000_CTRL_EXT_IAME; |
| ew32(IAM, 0xffffffff); |
| ew32(CTRL_EXT, ctrl_ext); |
| e1e_flush(); |
| |
| /* Setup the HW Rx Head and Tail Descriptor Pointers and |
| * the Base and Length of the Rx Descriptor Ring |
| */ |
| rdba = rx_ring->dma; |
| ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32))); |
| ew32(RDBAH(0), (rdba >> 32)); |
| ew32(RDLEN(0), rdlen); |
| ew32(RDH(0), 0); |
| ew32(RDT(0), 0); |
| rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0); |
| rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0); |
| |
| writel(0, rx_ring->head); |
| if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) |
| e1000e_update_rdt_wa(rx_ring, 0); |
| else |
| writel(0, rx_ring->tail); |
| |
| /* Enable Receive Checksum Offload for TCP and UDP */ |
| rxcsum = er32(RXCSUM); |
| if (adapter->netdev->features & NETIF_F_RXCSUM) |
| rxcsum |= E1000_RXCSUM_TUOFL; |
| else |
| rxcsum &= ~E1000_RXCSUM_TUOFL; |
| ew32(RXCSUM, rxcsum); |
| |
| /* With jumbo frames, excessive C-state transition latencies result |
| * in dropped transactions. |
| */ |
| if (adapter->netdev->mtu > ETH_DATA_LEN) { |
| u32 lat = |
| ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 - |
| adapter->max_frame_size) * 8 / 1000; |
| |
| if (adapter->flags & FLAG_IS_ICH) { |
| u32 rxdctl = er32(RXDCTL(0)); |
| |
| ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8)); |
| } |
| |
| dev_info(&adapter->pdev->dev, |
| "Some CPU C-states have been disabled in order to enable jumbo frames\n"); |
| cpu_latency_qos_update_request(&adapter->pm_qos_req, lat); |
| } else { |
| cpu_latency_qos_update_request(&adapter->pm_qos_req, |
| PM_QOS_DEFAULT_VALUE); |
| } |
| |
| /* Enable Receives */ |
| ew32(RCTL, rctl); |
| } |
| |
| /** |
| * e1000e_write_mc_addr_list - write multicast addresses to MTA |
| * @netdev: network interface device structure |
| * |
| * Writes multicast address list to the MTA hash table. |
| * Returns: -ENOMEM on failure |
| * 0 on no addresses written |
| * X on writing X addresses to MTA |
| */ |
| static int e1000e_write_mc_addr_list(struct net_device *netdev) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| struct netdev_hw_addr *ha; |
| u8 *mta_list; |
| int i; |
| |
| if (netdev_mc_empty(netdev)) { |
| /* nothing to program, so clear mc list */ |
| hw->mac.ops.update_mc_addr_list(hw, NULL, 0); |
| return 0; |
| } |
| |
| mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC); |
| if (!mta_list) |
| return -ENOMEM; |
| |
| /* update_mc_addr_list expects a packed array of only addresses. */ |
| i = 0; |
| netdev_for_each_mc_addr(ha, netdev) |
| memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); |
| |
| hw->mac.ops.update_mc_addr_list(hw, mta_list, i); |
| kfree(mta_list); |
| |
| return netdev_mc_count(netdev); |
| } |
| |
| /** |
| * e1000e_write_uc_addr_list - write unicast addresses to RAR table |
| * @netdev: network interface device structure |
| * |
| * Writes unicast address list to the RAR table. |
| * Returns: -ENOMEM on failure/insufficient address space |
| * 0 on no addresses written |
| * X on writing X addresses to the RAR table |
| **/ |
| static int e1000e_write_uc_addr_list(struct net_device *netdev) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| unsigned int rar_entries; |
| int count = 0; |
| |
| rar_entries = hw->mac.ops.rar_get_count(hw); |
| |
| /* save a rar entry for our hardware address */ |
| rar_entries--; |
| |
| /* save a rar entry for the LAA workaround */ |
| if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) |
| rar_entries--; |
| |
| /* return ENOMEM indicating insufficient memory for addresses */ |
| if (netdev_uc_count(netdev) > rar_entries) |
| return -ENOMEM; |
| |
| if (!netdev_uc_empty(netdev) && rar_entries) { |
| struct netdev_hw_addr *ha; |
| |
| /* write the addresses in reverse order to avoid write |
| * combining |
| */ |
| netdev_for_each_uc_addr(ha, netdev) { |
| int ret_val; |
| |
| if (!rar_entries) |
| break; |
| ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--); |
| if (ret_val < 0) |
| return -ENOMEM; |
| count++; |
| } |
| } |
| |
| /* zero out the remaining RAR entries not used above */ |
| for (; rar_entries > 0; rar_entries--) { |
| ew32(RAH(rar_entries), 0); |
| ew32(RAL(rar_entries), 0); |
| } |
| e1e_flush(); |
| |
| return count; |
| } |
| |
| /** |
| * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set |
| * @netdev: network interface device structure |
| * |
| * The ndo_set_rx_mode entry point is called whenever the unicast or multicast |
| * address list or the network interface flags are updated. This routine is |
| * responsible for configuring the hardware for proper unicast, multicast, |
| * promiscuous mode, and all-multi behavior. |
| **/ |
| static void e1000e_set_rx_mode(struct net_device *netdev) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| u32 rctl; |
| |
| if (pm_runtime_suspended(netdev->dev.parent)) |
| return; |
| |
| /* Check for Promiscuous and All Multicast modes */ |
| rctl = er32(RCTL); |
| |
| /* clear the affected bits */ |
| rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); |
| |
| if (netdev->flags & IFF_PROMISC) { |
| rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); |
| /* Do not hardware filter VLANs in promisc mode */ |
| e1000e_vlan_filter_disable(adapter); |
| } else { |
| int count; |
| |
| if (netdev->flags & IFF_ALLMULTI) { |
| rctl |= E1000_RCTL_MPE; |
| } else { |
| /* Write addresses to the MTA, if the attempt fails |
| * then we should just turn on promiscuous mode so |
| * that we can at least receive multicast traffic |
| */ |
| count = e1000e_write_mc_addr_list(netdev); |
| if (count < 0) |
| rctl |= E1000_RCTL_MPE; |
| } |
| e1000e_vlan_filter_enable(adapter); |
| /* Write addresses to available RAR registers, if there is not |
| * sufficient space to store all the addresses then enable |
| * unicast promiscuous mode |
| */ |
| count = e1000e_write_uc_addr_list(netdev); |
| if (count < 0) |
| rctl |= E1000_RCTL_UPE; |
| } |
| |
| ew32(RCTL, rctl); |
| |
| if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) |
| e1000e_vlan_strip_enable(adapter); |
| else |
| e1000e_vlan_strip_disable(adapter); |
| } |
| |
| static void e1000e_setup_rss_hash(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 mrqc, rxcsum; |
| u32 rss_key[10]; |
| int i; |
| |
| netdev_rss_key_fill(rss_key, sizeof(rss_key)); |
| for (i = 0; i < 10; i++) |
| ew32(RSSRK(i), rss_key[i]); |
| |
| /* Direct all traffic to queue 0 */ |
| for (i = 0; i < 32; i++) |
| ew32(RETA(i), 0); |
| |
| /* Disable raw packet checksumming so that RSS hash is placed in |
| * descriptor on writeback. |
| */ |
| rxcsum = er32(RXCSUM); |
| rxcsum |= E1000_RXCSUM_PCSD; |
| |
| ew32(RXCSUM, rxcsum); |
| |
| mrqc = (E1000_MRQC_RSS_FIELD_IPV4 | |
| E1000_MRQC_RSS_FIELD_IPV4_TCP | |
| E1000_MRQC_RSS_FIELD_IPV6 | |
| E1000_MRQC_RSS_FIELD_IPV6_TCP | |
| E1000_MRQC_RSS_FIELD_IPV6_TCP_EX); |
| |
| ew32(MRQC, mrqc); |
| } |
| |
| /** |
| * e1000e_get_base_timinca - get default SYSTIM time increment attributes |
| * @adapter: board private structure |
| * @timinca: pointer to returned time increment attributes |
| * |
| * Get attributes for incrementing the System Time Register SYSTIML/H at |
| * the default base frequency, and set the cyclecounter shift value. |
| **/ |
| s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 incvalue, incperiod, shift; |
| |
| /* Make sure clock is enabled on I217/I218/I219 before checking |
| * the frequency |
| */ |
| if ((hw->mac.type >= e1000_pch_lpt) && |
| !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) && |
| !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) { |
| u32 fextnvm7 = er32(FEXTNVM7); |
| |
| if (!(fextnvm7 & BIT(0))) { |
| ew32(FEXTNVM7, fextnvm7 | BIT(0)); |
| e1e_flush(); |
| } |
| } |
| |
| switch (hw->mac.type) { |
| case e1000_pch2lan: |
| /* Stable 96MHz frequency */ |
| incperiod = INCPERIOD_96MHZ; |
| incvalue = INCVALUE_96MHZ; |
| shift = INCVALUE_SHIFT_96MHZ; |
| adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ; |
| break; |
| case e1000_pch_lpt: |
| if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) { |
| /* Stable 96MHz frequency */ |
| incperiod = INCPERIOD_96MHZ; |
| incvalue = INCVALUE_96MHZ; |
| shift = INCVALUE_SHIFT_96MHZ; |
| adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ; |
| } else { |
| /* Stable 25MHz frequency */ |
| incperiod = INCPERIOD_25MHZ; |
| incvalue = INCVALUE_25MHZ; |
| shift = INCVALUE_SHIFT_25MHZ; |
| adapter->cc.shift = shift; |
| } |
| break; |
| case e1000_pch_spt: |
| /* Stable 24MHz frequency */ |
| incperiod = INCPERIOD_24MHZ; |
| incvalue = INCVALUE_24MHZ; |
| shift = INCVALUE_SHIFT_24MHZ; |
| adapter->cc.shift = shift; |
| break; |
| case e1000_pch_cnp: |
| case e1000_pch_tgp: |
| case e1000_pch_adp: |
| case e1000_pch_mtp: |
| if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) { |
| /* Stable 24MHz frequency */ |
| incperiod = INCPERIOD_24MHZ; |
| incvalue = INCVALUE_24MHZ; |
| shift = INCVALUE_SHIFT_24MHZ; |
| adapter->cc.shift = shift; |
| } else { |
| /* Stable 38400KHz frequency */ |
| incperiod = INCPERIOD_38400KHZ; |
| incvalue = INCVALUE_38400KHZ; |
| shift = INCVALUE_SHIFT_38400KHZ; |
| adapter->cc.shift = shift; |
| } |
| break; |
| case e1000_82574: |
| case e1000_82583: |
| /* Stable 25MHz frequency */ |
| incperiod = INCPERIOD_25MHZ; |
| incvalue = INCVALUE_25MHZ; |
| shift = INCVALUE_SHIFT_25MHZ; |
| adapter->cc.shift = shift; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) | |
| ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK)); |
| |
| return 0; |
| } |
| |
| /** |
| * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable |
| * @adapter: board private structure |
| * @config: timestamp configuration |
| * |
| * Outgoing time stamping can be enabled and disabled. Play nice and |
| * disable it when requested, although it shouldn't cause any overhead |
| * when no packet needs it. At most one packet in the queue may be |
| * marked for time stamping, otherwise it would be impossible to tell |
| * for sure to which packet the hardware time stamp belongs. |
| * |
| * Incoming time stamping has to be configured via the hardware filters. |
| * Not all combinations are supported, in particular event type has to be |
| * specified. Matching the kind of event packet is not supported, with the |
| * exception of "all V2 events regardless of level 2 or 4". |
| **/ |
| static int e1000e_config_hwtstamp(struct e1000_adapter *adapter, |
| struct hwtstamp_config *config) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED; |
| u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED; |
| u32 rxmtrl = 0; |
| u16 rxudp = 0; |
| bool is_l4 = false; |
| bool is_l2 = false; |
| u32 regval; |
| |
| if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP)) |
| return -EINVAL; |
| |
| /* flags reserved for future extensions - must be zero */ |
| if (config->flags) |
| return -EINVAL; |
| |
| switch (config->tx_type) { |
| case HWTSTAMP_TX_OFF: |
| tsync_tx_ctl = 0; |
| break; |
| case HWTSTAMP_TX_ON: |
| break; |
| default: |
| return -ERANGE; |
| } |
| |
| switch (config->rx_filter) { |
| case HWTSTAMP_FILTER_NONE: |
| tsync_rx_ctl = 0; |
| break; |
| case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: |
| tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; |
| rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE; |
| is_l4 = true; |
| break; |
| case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: |
| tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; |
| rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE; |
| is_l4 = true; |
| break; |
| case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: |
| /* Also time stamps V2 L2 Path Delay Request/Response */ |
| tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2; |
| rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE; |
| is_l2 = true; |
| break; |
| case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: |
| /* Also time stamps V2 L2 Path Delay Request/Response. */ |
| tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2; |
| rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE; |
| is_l2 = true; |
| break; |
| case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: |
| /* Hardware cannot filter just V2 L4 Sync messages */ |
| fallthrough; |
| case HWTSTAMP_FILTER_PTP_V2_SYNC: |
| /* Also time stamps V2 Path Delay Request/Response. */ |
| tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2; |
| rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE; |
| is_l2 = true; |
| is_l4 = true; |
| break; |
| case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: |
| /* Hardware cannot filter just V2 L4 Delay Request messages */ |
| fallthrough; |
| case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: |
| /* Also time stamps V2 Path Delay Request/Response. */ |
| tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2; |
| rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE; |
| is_l2 = true; |
| is_l4 = true; |
| break; |
| case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: |
| case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: |
| /* Hardware cannot filter just V2 L4 or L2 Event messages */ |
| fallthrough; |
| case HWTSTAMP_FILTER_PTP_V2_EVENT: |
| tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2; |
| config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; |
| is_l2 = true; |
| is_l4 = true; |
| break; |
| case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: |
| /* For V1, the hardware can only filter Sync messages or |
| * Delay Request messages but not both so fall-through to |
| * time stamp all packets. |
| */ |
| fallthrough; |
| case HWTSTAMP_FILTER_NTP_ALL: |
| case HWTSTAMP_FILTER_ALL: |
| is_l2 = true; |
| is_l4 = true; |
| tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL; |
| config->rx_filter = HWTSTAMP_FILTER_ALL; |
| break; |
| default: |
| return -ERANGE; |
| } |
| |
| adapter->hwtstamp_config = *config; |
| |
| /* enable/disable Tx h/w time stamping */ |
| regval = er32(TSYNCTXCTL); |
| regval &= ~E1000_TSYNCTXCTL_ENABLED; |
| regval |= tsync_tx_ctl; |
| ew32(TSYNCTXCTL, regval); |
| if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) != |
| (regval & E1000_TSYNCTXCTL_ENABLED)) { |
| e_err("Timesync Tx Control register not set as expected\n"); |
| return -EAGAIN; |
| } |
| |
| /* enable/disable Rx h/w time stamping */ |
| regval = er32(TSYNCRXCTL); |
| regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK); |
| regval |= tsync_rx_ctl; |
| ew32(TSYNCRXCTL, regval); |
| if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED | |
| E1000_TSYNCRXCTL_TYPE_MASK)) != |
| (regval & (E1000_TSYNCRXCTL_ENABLED | |
| E1000_TSYNCRXCTL_TYPE_MASK))) { |
| e_err("Timesync Rx Control register not set as expected\n"); |
| return -EAGAIN; |
| } |
| |
| /* L2: define ethertype filter for time stamped packets */ |
| if (is_l2) |
| rxmtrl |= ETH_P_1588; |
| |
| /* define which PTP packets get time stamped */ |
| ew32(RXMTRL, rxmtrl); |
| |
| /* Filter by destination port */ |
| if (is_l4) { |
| rxudp = PTP_EV_PORT; |
| cpu_to_be16s(&rxudp); |
| } |
| ew32(RXUDP, rxudp); |
| |
| e1e_flush(); |
| |
| /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */ |
| er32(RXSTMPH); |
| er32(TXSTMPH); |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_configure - configure the hardware for Rx and Tx |
| * @adapter: private board structure |
| **/ |
| static void e1000_configure(struct e1000_adapter *adapter) |
| { |
| struct e1000_ring *rx_ring = adapter->rx_ring; |
| |
| e1000e_set_rx_mode(adapter->netdev); |
| |
| e1000_restore_vlan(adapter); |
| e1000_init_manageability_pt(adapter); |
| |
| e1000_configure_tx(adapter); |
| |
| if (adapter->netdev->features & NETIF_F_RXHASH) |
| e1000e_setup_rss_hash(adapter); |
| e1000_setup_rctl(adapter); |
| e1000_configure_rx(adapter); |
| adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL); |
| } |
| |
| /** |
| * e1000e_power_up_phy - restore link in case the phy was powered down |
| * @adapter: address of board private structure |
| * |
| * The phy may be powered down to save power and turn off link when the |
| * driver is unloaded and wake on lan is not enabled (among others) |
| * *** this routine MUST be followed by a call to e1000e_reset *** |
| **/ |
| void e1000e_power_up_phy(struct e1000_adapter *adapter) |
| { |
| if (adapter->hw.phy.ops.power_up) |
| adapter->hw.phy.ops.power_up(&adapter->hw); |
| |
| adapter->hw.mac.ops.setup_link(&adapter->hw); |
| } |
| |
| /** |
| * e1000_power_down_phy - Power down the PHY |
| * @adapter: board private structure |
| * |
| * Power down the PHY so no link is implied when interface is down. |
| * The PHY cannot be powered down if management or WoL is active. |
| */ |
| static void e1000_power_down_phy(struct e1000_adapter *adapter) |
| { |
| if (adapter->hw.phy.ops.power_down) |
| adapter->hw.phy.ops.power_down(&adapter->hw); |
| } |
| |
| /** |
| * e1000_flush_tx_ring - remove all descriptors from the tx_ring |
| * @adapter: board private structure |
| * |
| * We want to clear all pending descriptors from the TX ring. |
| * zeroing happens when the HW reads the regs. We assign the ring itself as |
| * the data of the next descriptor. We don't care about the data we are about |
| * to reset the HW. |
| */ |
| static void e1000_flush_tx_ring(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| struct e1000_ring *tx_ring = adapter->tx_ring; |
| struct e1000_tx_desc *tx_desc = NULL; |
| u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS; |
| u16 size = 512; |
| |
| tctl = er32(TCTL); |
| ew32(TCTL, tctl | E1000_TCTL_EN); |
| tdt = er32(TDT(0)); |
| BUG_ON(tdt != tx_ring->next_to_use); |
| tx_desc = E1000_TX_DESC(*tx_ring, tx_ring->next_to_use); |
| tx_desc->buffer_addr = cpu_to_le64(tx_ring->dma); |
| |
| tx_desc->lower.data = cpu_to_le32(txd_lower | size); |
| tx_desc->upper.data = 0; |
| /* flush descriptors to memory before notifying the HW */ |
| wmb(); |
| tx_ring->next_to_use++; |
| if (tx_ring->next_to_use == tx_ring->count) |
| tx_ring->next_to_use = 0; |
| ew32(TDT(0), tx_ring->next_to_use); |
| usleep_range(200, 250); |
| } |
| |
| /** |
| * e1000_flush_rx_ring - remove all descriptors from the rx_ring |
| * @adapter: board private structure |
| * |
| * Mark all descriptors in the RX ring as consumed and disable the rx ring |
| */ |
| static void e1000_flush_rx_ring(struct e1000_adapter *adapter) |
| { |
| u32 rctl, rxdctl; |
| struct e1000_hw *hw = &adapter->hw; |
| |
| rctl = er32(RCTL); |
| ew32(RCTL, rctl & ~E1000_RCTL_EN); |
| e1e_flush(); |
| usleep_range(100, 150); |
| |
| rxdctl = er32(RXDCTL(0)); |
| /* zero the lower 14 bits (prefetch and host thresholds) */ |
| rxdctl &= 0xffffc000; |
| |
| /* update thresholds: prefetch threshold to 31, host threshold to 1 |
| * and make sure the granularity is "descriptors" and not "cache lines" |
| */ |
| rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC); |
| |
| ew32(RXDCTL(0), rxdctl); |
| /* momentarily enable the RX ring for the changes to take effect */ |
| ew32(RCTL, rctl | E1000_RCTL_EN); |
| e1e_flush(); |
| usleep_range(100, 150); |
| ew32(RCTL, rctl & ~E1000_RCTL_EN); |
| } |
| |
| /** |
| * e1000_flush_desc_rings - remove all descriptors from the descriptor rings |
| * @adapter: board private structure |
| * |
| * In i219, the descriptor rings must be emptied before resetting the HW |
| * or before changing the device state to D3 during runtime (runtime PM). |
| * |
| * Failure to do this will cause the HW to enter a unit hang state which can |
| * only be released by PCI reset on the device |
| * |
| */ |
| |
| static void e1000_flush_desc_rings(struct e1000_adapter *adapter) |
| { |
| u16 hang_state; |
| u32 fext_nvm11, tdlen; |
| struct e1000_hw *hw = &adapter->hw; |
| |
| /* First, disable MULR fix in FEXTNVM11 */ |
| fext_nvm11 = er32(FEXTNVM11); |
| fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX; |
| ew32(FEXTNVM11, fext_nvm11); |
| /* do nothing if we're not in faulty state, or if the queue is empty */ |
| tdlen = er32(TDLEN(0)); |
| pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS, |
| &hang_state); |
| if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen) |
| return; |
| e1000_flush_tx_ring(adapter); |
| /* recheck, maybe the fault is caused by the rx ring */ |
| pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS, |
| &hang_state); |
| if (hang_state & FLUSH_DESC_REQUIRED) |
| e1000_flush_rx_ring(adapter); |
| } |
| |
| /** |
| * e1000e_systim_reset - reset the timesync registers after a hardware reset |
| * @adapter: board private structure |
| * |
| * When the MAC is reset, all hardware bits for timesync will be reset to the |
| * default values. This function will restore the settings last in place. |
| * Since the clock SYSTIME registers are reset, we will simply restore the |
| * cyclecounter to the kernel real clock time. |
| **/ |
| static void e1000e_systim_reset(struct e1000_adapter *adapter) |
| { |
| struct ptp_clock_info *info = &adapter->ptp_clock_info; |
| struct e1000_hw *hw = &adapter->hw; |
| unsigned long flags; |
| u32 timinca; |
| s32 ret_val; |
| |
| if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP)) |
| return; |
| |
| if (info->adjfreq) { |
| /* restore the previous ptp frequency delta */ |
| ret_val = info->adjfreq(info, adapter->ptp_delta); |
| } else { |
| /* set the default base frequency if no adjustment possible */ |
| ret_val = e1000e_get_base_timinca(adapter, &timinca); |
| if (!ret_val) |
| ew32(TIMINCA, timinca); |
| } |
| |
| if (ret_val) { |
| dev_warn(&adapter->pdev->dev, |
| "Failed to restore TIMINCA clock rate delta: %d\n", |
| ret_val); |
| return; |
| } |
| |
| /* reset the systim ns time counter */ |
| spin_lock_irqsave(&adapter->systim_lock, flags); |
| timecounter_init(&adapter->tc, &adapter->cc, |
| ktime_to_ns(ktime_get_real())); |
| spin_unlock_irqrestore(&adapter->systim_lock, flags); |
| |
| /* restore the previous hwtstamp configuration settings */ |
| e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config); |
| } |
| |
| /** |
| * e1000e_reset - bring the hardware into a known good state |
| * @adapter: board private structure |
| * |
| * This function boots the hardware and enables some settings that |
| * require a configuration cycle of the hardware - those cannot be |
| * set/changed during runtime. After reset the device needs to be |
| * properly configured for Rx, Tx etc. |
| */ |
| void e1000e_reset(struct e1000_adapter *adapter) |
| { |
| struct e1000_mac_info *mac = &adapter->hw.mac; |
| struct e1000_fc_info *fc = &adapter->hw.fc; |
| struct e1000_hw *hw = &adapter->hw; |
| u32 tx_space, min_tx_space, min_rx_space; |
| u32 pba = adapter->pba; |
| u16 hwm; |
| |
| /* reset Packet Buffer Allocation to default */ |
| ew32(PBA, pba); |
| |
| if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) { |
| /* To maintain wire speed transmits, the Tx FIFO should be |
| * large enough to accommodate two full transmit packets, |
| * rounded up to the next 1KB and expressed in KB. Likewise, |
| * the Rx FIFO should be large enough to accommodate at least |
| * one full receive packet and is similarly rounded up and |
| * expressed in KB. |
| */ |
| pba = er32(PBA); |
| /* upper 16 bits has Tx packet buffer allocation size in KB */ |
| tx_space = pba >> 16; |
| /* lower 16 bits has Rx packet buffer allocation size in KB */ |
| pba &= 0xffff; |
| /* the Tx fifo also stores 16 bytes of information about the Tx |
| * but don't include ethernet FCS because hardware appends it |
| */ |
| min_tx_space = (adapter->max_frame_size + |
| sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2; |
| min_tx_space = ALIGN(min_tx_space, 1024); |
| min_tx_space >>= 10; |
| /* software strips receive CRC, so leave room for it */ |
| min_rx_space = adapter->max_frame_size; |
| min_rx_space = ALIGN(min_rx_space, 1024); |
| min_rx_space >>= 10; |
| |
| /* If current Tx allocation is less than the min Tx FIFO size, |
| * and the min Tx FIFO size is less than the current Rx FIFO |
| * allocation, take space away from current Rx allocation |
| */ |
| if ((tx_space < min_tx_space) && |
| ((min_tx_space - tx_space) < pba)) { |
| pba -= min_tx_space - tx_space; |
| |
| /* if short on Rx space, Rx wins and must trump Tx |
| * adjustment |
| */ |
| if (pba < min_rx_space) |
| pba = min_rx_space; |
| } |
| |
| ew32(PBA, pba); |
| } |
| |
| /* flow control settings |
| * |
| * The high water mark must be low enough to fit one full frame |
| * (or the size used for early receive) above it in the Rx FIFO. |
| * Set it to the lower of: |
| * - 90% of the Rx FIFO size, and |
| * - the full Rx FIFO size minus one full frame |
| */ |
| if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME) |
| fc->pause_time = 0xFFFF; |
| else |
| fc->pause_time = E1000_FC_PAUSE_TIME; |
| fc->send_xon = true; |
| fc->current_mode = fc->requested_mode; |
| |
| switch (hw->mac.type) { |
| case e1000_ich9lan: |
| case e1000_ich10lan: |
| if (adapter->netdev->mtu > ETH_DATA_LEN) { |
| pba = 14; |
| ew32(PBA, pba); |
| fc->high_water = 0x2800; |
| fc->low_water = fc->high_water - 8; |
| break; |
| } |
| fallthrough; |
| default: |
| hwm = min(((pba << 10) * 9 / 10), |
| ((pba << 10) - adapter->max_frame_size)); |
| |
| fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */ |
| fc->low_water = fc->high_water - 8; |
| break; |
| case e1000_pchlan: |
| /* Workaround PCH LOM adapter hangs with certain network |
| * loads. If hangs persist, try disabling Tx flow control. |
| */ |
| if (adapter->netdev->mtu > ETH_DATA_LEN) { |
| fc->high_water = 0x3500; |
| fc->low_water = 0x1500; |
| } else { |
| fc->high_water = 0x5000; |
| fc->low_water = 0x3000; |
| } |
| fc->refresh_time = 0x1000; |
| break; |
| case e1000_pch2lan: |
| case e1000_pch_lpt: |
| case e1000_pch_spt: |
| case e1000_pch_cnp: |
| case e1000_pch_tgp: |
| case e1000_pch_adp: |
| case e1000_pch_mtp: |
| fc->refresh_time = 0xFFFF; |
| fc->pause_time = 0xFFFF; |
| |
| if (adapter->netdev->mtu <= ETH_DATA_LEN) { |
| fc->high_water = 0x05C20; |
| fc->low_water = 0x05048; |
| break; |
| } |
| |
| pba = 14; |
| ew32(PBA, pba); |
| fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH; |
| fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL; |
| break; |
| } |
| |
| /* Alignment of Tx data is on an arbitrary byte boundary with the |
| * maximum size per Tx descriptor limited only to the transmit |
| * allocation of the packet buffer minus 96 bytes with an upper |
| * limit of 24KB due to receive synchronization limitations. |
| */ |
| adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96, |
| 24 << 10); |
| |
| /* Disable Adaptive Interrupt Moderation if 2 full packets cannot |
| * fit in receive buffer. |
| */ |
| if (adapter->itr_setting & 0x3) { |
| if ((adapter->max_frame_size * 2) > (pba << 10)) { |
| if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) { |
| dev_info(&adapter->pdev->dev, |
| "Interrupt Throttle Rate off\n"); |
| adapter->flags2 |= FLAG2_DISABLE_AIM; |
| e1000e_write_itr(adapter, 0); |
| } |
| } else if (adapter->flags2 & FLAG2_DISABLE_AIM) { |
| dev_info(&adapter->pdev->dev, |
| "Interrupt Throttle Rate on\n"); |
| adapter->flags2 &= ~FLAG2_DISABLE_AIM; |
| adapter->itr = 20000; |
| e1000e_write_itr(adapter, adapter->itr); |
| } |
| } |
| |
| if (hw->mac.type >= e1000_pch_spt) |
| e1000_flush_desc_rings(adapter); |
| /* Allow time for pending master requests to run */ |
| mac->ops.reset_hw(hw); |
| |
| /* For parts with AMT enabled, let the firmware know |
| * that the network interface is in control |
| */ |
| if (adapter->flags & FLAG_HAS_AMT) |
| e1000e_get_hw_control(adapter); |
| |
| ew32(WUC, 0); |
| |
| if (mac->ops.init_hw(hw)) |
| e_err("Hardware Error\n"); |
| |
| e1000_update_mng_vlan(adapter); |
| |
| /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ |
| ew32(VET, ETH_P_8021Q); |
| |
| e1000e_reset_adaptive(hw); |
| |
| /* restore systim and hwtstamp settings */ |
| e1000e_systim_reset(adapter); |
| |
| /* Set EEE advertisement as appropriate */ |
| if (adapter->flags2 & FLAG2_HAS_EEE) { |
| s32 ret_val; |
| u16 adv_addr; |
| |
| switch (hw->phy.type) { |
| case e1000_phy_82579: |
| adv_addr = I82579_EEE_ADVERTISEMENT; |
| break; |
| case e1000_phy_i217: |
| adv_addr = I217_EEE_ADVERTISEMENT; |
| break; |
| default: |
| dev_err(&adapter->pdev->dev, |
| "Invalid PHY type setting EEE advertisement\n"); |
| return; |
| } |
| |
| ret_val = hw->phy.ops.acquire(hw); |
| if (ret_val) { |
| dev_err(&adapter->pdev->dev, |
| "EEE advertisement - unable to acquire PHY\n"); |
| return; |
| } |
| |
| e1000_write_emi_reg_locked(hw, adv_addr, |
| hw->dev_spec.ich8lan.eee_disable ? |
| 0 : adapter->eee_advert); |
| |
| hw->phy.ops.release(hw); |
| } |
| |
| if (!netif_running(adapter->netdev) && |
| !test_bit(__E1000_TESTING, &adapter->state)) |
| e1000_power_down_phy(adapter); |
| |
| e1000_get_phy_info(hw); |
| |
| if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) && |
| !(adapter->flags & FLAG_SMART_POWER_DOWN)) { |
| u16 phy_data = 0; |
| /* speed up time to link by disabling smart power down, ignore |
| * the return value of this function because there is nothing |
| * different we would do if it failed |
| */ |
| e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); |
| phy_data &= ~IGP02E1000_PM_SPD; |
| e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); |
| } |
| if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) { |
| u32 reg; |
| |
| /* Fextnvm7 @ 0xe4[2] = 1 */ |
| reg = er32(FEXTNVM7); |
| reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE; |
| ew32(FEXTNVM7, reg); |
| /* Fextnvm9 @ 0x5bb4[13:12] = 11 */ |
| reg = er32(FEXTNVM9); |
| reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS | |
| E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS; |
| ew32(FEXTNVM9, reg); |
| } |
| |
| } |
| |
| /** |
| * e1000e_trigger_lsc - trigger an LSC interrupt |
| * @adapter: |
| * |
| * Fire a link status change interrupt to start the watchdog. |
| **/ |
| static void e1000e_trigger_lsc(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| |
| if (adapter->msix_entries) |
| ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER); |
| else |
| ew32(ICS, E1000_ICS_LSC); |
| } |
| |
| void e1000e_up(struct e1000_adapter *adapter) |
| { |
| /* hardware has been reset, we need to reload some things */ |
| e1000_configure(adapter); |
| |
| clear_bit(__E1000_DOWN, &adapter->state); |
| |
| if (adapter->msix_entries) |
| e1000_configure_msix(adapter); |
| e1000_irq_enable(adapter); |
| |
| /* Tx queue started by watchdog timer when link is up */ |
| |
| e1000e_trigger_lsc(adapter); |
| } |
| |
| static void e1000e_flush_descriptors(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| |
| if (!(adapter->flags2 & FLAG2_DMA_BURST)) |
| return; |
| |
| /* flush pending descriptor writebacks to memory */ |
| ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); |
| ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD); |
| |
| /* execute the writes immediately */ |
| e1e_flush(); |
| |
| /* due to rare timing issues, write to TIDV/RDTR again to ensure the |
| * write is successful |
| */ |
| ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); |
| ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD); |
| |
| /* execute the writes immediately */ |
| e1e_flush(); |
| } |
| |
| static void e1000e_update_stats(struct e1000_adapter *adapter); |
| |
| /** |
| * e1000e_down - quiesce the device and optionally reset the hardware |
| * @adapter: board private structure |
| * @reset: boolean flag to reset the hardware or not |
| */ |
| void e1000e_down(struct e1000_adapter *adapter, bool reset) |
| { |
| struct net_device *netdev = adapter->netdev; |
| struct e1000_hw *hw = &adapter->hw; |
| u32 tctl, rctl; |
| |
| /* signal that we're down so the interrupt handler does not |
| * reschedule our watchdog timer |
| */ |
| set_bit(__E1000_DOWN, &adapter->state); |
| |
| netif_carrier_off(netdev); |
| |
| /* disable receives in the hardware */ |
| rctl = er32(RCTL); |
| if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) |
| ew32(RCTL, rctl & ~E1000_RCTL_EN); |
| /* flush and sleep below */ |
| |
| netif_stop_queue(netdev); |
| |
| /* disable transmits in the hardware */ |
| tctl = er32(TCTL); |
| tctl &= ~E1000_TCTL_EN; |
| ew32(TCTL, tctl); |
| |
| /* flush both disables and wait for them to finish */ |
| e1e_flush(); |
| usleep_range(10000, 11000); |
| |
| e1000_irq_disable(adapter); |
| |
| napi_synchronize(&adapter->napi); |
| |
| del_timer_sync(&adapter->watchdog_timer); |
| del_timer_sync(&adapter->phy_info_timer); |
| |
| spin_lock(&adapter->stats64_lock); |
| e1000e_update_stats(adapter); |
| spin_unlock(&adapter->stats64_lock); |
| |
| e1000e_flush_descriptors(adapter); |
| |
| adapter->link_speed = 0; |
| adapter->link_duplex = 0; |
| |
| /* Disable Si errata workaround on PCHx for jumbo frame flow */ |
| if ((hw->mac.type >= e1000_pch2lan) && |
| (adapter->netdev->mtu > ETH_DATA_LEN) && |
| e1000_lv_jumbo_workaround_ich8lan(hw, false)) |
| e_dbg("failed to disable jumbo frame workaround mode\n"); |
| |
| if (!pci_channel_offline(adapter->pdev)) { |
| if (reset) |
| e1000e_reset(adapter); |
| else if (hw->mac.type >= e1000_pch_spt) |
| e1000_flush_desc_rings(adapter); |
| } |
| e1000_clean_tx_ring(adapter->tx_ring); |
| e1000_clean_rx_ring(adapter->rx_ring); |
| } |
| |
| void e1000e_reinit_locked(struct e1000_adapter *adapter) |
| { |
| might_sleep(); |
| while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) |
| usleep_range(1000, 1100); |
| e1000e_down(adapter, true); |
| e1000e_up(adapter); |
| clear_bit(__E1000_RESETTING, &adapter->state); |
| } |
| |
| /** |
| * e1000e_sanitize_systim - sanitize raw cycle counter reads |
| * @hw: pointer to the HW structure |
| * @systim: PHC time value read, sanitized and returned |
| * @sts: structure to hold system time before and after reading SYSTIML, |
| * may be NULL |
| * |
| * Errata for 82574/82583 possible bad bits read from SYSTIMH/L: |
| * check to see that the time is incrementing at a reasonable |
| * rate and is a multiple of incvalue. |
| **/ |
| static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim, |
| struct ptp_system_timestamp *sts) |
| { |
| u64 time_delta, rem, temp; |
| u64 systim_next; |
| u32 incvalue; |
| int i; |
| |
| incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK; |
| for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) { |
| /* latch SYSTIMH on read of SYSTIML */ |
| ptp_read_system_prets(sts); |
| systim_next = (u64)er32(SYSTIML); |
| ptp_read_system_postts(sts); |
| systim_next |= (u64)er32(SYSTIMH) << 32; |
| |
| time_delta = systim_next - systim; |
| temp = time_delta; |
| /* VMWare users have seen incvalue of zero, don't div / 0 */ |
| rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0); |
| |
| systim = systim_next; |
| |
| if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0)) |
| break; |
| } |
| |
| return systim; |
| } |
| |
| /** |
| * e1000e_read_systim - read SYSTIM register |
| * @adapter: board private structure |
| * @sts: structure which will contain system time before and after reading |
| * SYSTIML, may be NULL |
| **/ |
| u64 e1000e_read_systim(struct e1000_adapter *adapter, |
| struct ptp_system_timestamp *sts) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 systimel, systimel_2, systimeh; |
| u64 systim; |
| /* SYSTIMH latching upon SYSTIML read does not work well. |
| * This means that if SYSTIML overflows after we read it but before |
| * we read SYSTIMH, the value of SYSTIMH has been incremented and we |
| * will experience a huge non linear increment in the systime value |
| * to fix that we test for overflow and if true, we re-read systime. |
| */ |
| ptp_read_system_prets(sts); |
| systimel = er32(SYSTIML); |
| ptp_read_system_postts(sts); |
| systimeh = er32(SYSTIMH); |
| /* Is systimel is so large that overflow is possible? */ |
| if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) { |
| ptp_read_system_prets(sts); |
| systimel_2 = er32(SYSTIML); |
| ptp_read_system_postts(sts); |
| if (systimel > systimel_2) { |
| /* There was an overflow, read again SYSTIMH, and use |
| * systimel_2 |
| */ |
| systimeh = er32(SYSTIMH); |
| systimel = systimel_2; |
| } |
| } |
| systim = (u64)systimel; |
| systim |= (u64)systimeh << 32; |
| |
| if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW) |
| systim = e1000e_sanitize_systim(hw, systim, sts); |
| |
| return systim; |
| } |
| |
| /** |
| * e1000e_cyclecounter_read - read raw cycle counter (used by time counter) |
| * @cc: cyclecounter structure |
| **/ |
| static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc) |
| { |
| struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter, |
| cc); |
| |
| return e1000e_read_systim(adapter, NULL); |
| } |
| |
| /** |
| * e1000_sw_init - Initialize general software structures (struct e1000_adapter) |
| * @adapter: board private structure to initialize |
| * |
| * e1000_sw_init initializes the Adapter private data structure. |
| * Fields are initialized based on PCI device information and |
| * OS network device settings (MTU size). |
| **/ |
| static int e1000_sw_init(struct e1000_adapter *adapter) |
| { |
| struct net_device *netdev = adapter->netdev; |
| |
| adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN; |
| adapter->rx_ps_bsize0 = 128; |
| adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN; |
| adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; |
| adapter->tx_ring_count = E1000_DEFAULT_TXD; |
| adapter->rx_ring_count = E1000_DEFAULT_RXD; |
| |
| spin_lock_init(&adapter->stats64_lock); |
| |
| e1000e_set_interrupt_capability(adapter); |
| |
| if (e1000_alloc_queues(adapter)) |
| return -ENOMEM; |
| |
| /* Setup hardware time stamping cyclecounter */ |
| if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) { |
| adapter->cc.read = e1000e_cyclecounter_read; |
| adapter->cc.mask = CYCLECOUNTER_MASK(64); |
| adapter->cc.mult = 1; |
| /* cc.shift set in e1000e_get_base_tininca() */ |
| |
| spin_lock_init(&adapter->systim_lock); |
| INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work); |
| } |
| |
| /* Explicitly disable IRQ since the NIC can be in any state. */ |
| e1000_irq_disable(adapter); |
| |
| set_bit(__E1000_DOWN, &adapter->state); |
| return 0; |
| } |
| |
| /** |
| * e1000_intr_msi_test - Interrupt Handler |
| * @irq: interrupt number |
| * @data: pointer to a network interface device structure |
| **/ |
| static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data) |
| { |
| struct net_device *netdev = data; |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| u32 icr = er32(ICR); |
| |
| e_dbg("icr is %08X\n", icr); |
| if (icr & E1000_ICR_RXSEQ) { |
| adapter->flags &= ~FLAG_MSI_TEST_FAILED; |
| /* Force memory writes to complete before acknowledging the |
| * interrupt is handled. |
| */ |
| wmb(); |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * e1000_test_msi_interrupt - Returns 0 for successful test |
| * @adapter: board private struct |
| * |
| * code flow taken from tg3.c |
| **/ |
| static int e1000_test_msi_interrupt(struct e1000_adapter *adapter) |
| { |
| struct net_device *netdev = adapter->netdev; |
| struct e1000_hw *hw = &adapter->hw; |
| int err; |
| |
| /* poll_enable hasn't been called yet, so don't need disable */ |
| /* clear any pending events */ |
| er32(ICR); |
| |
| /* free the real vector and request a test handler */ |
| e1000_free_irq(adapter); |
| e1000e_reset_interrupt_capability(adapter); |
| |
| /* Assume that the test fails, if it succeeds then the test |
| * MSI irq handler will unset this flag |
| */ |
| adapter->flags |= FLAG_MSI_TEST_FAILED; |
| |
| err = pci_enable_msi(adapter->pdev); |
| if (err) |
| goto msi_test_failed; |
| |
| err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0, |
| netdev->name, netdev); |
| if (err) { |
| pci_disable_msi(adapter->pdev); |
| goto msi_test_failed; |
| } |
| |
| /* Force memory writes to complete before enabling and firing an |
| * interrupt. |
| */ |
| wmb(); |
| |
| e1000_irq_enable(adapter); |
| |
| /* fire an unusual interrupt on the test handler */ |
| ew32(ICS, E1000_ICS_RXSEQ); |
| e1e_flush(); |
| msleep(100); |
| |
| e1000_irq_disable(adapter); |
| |
| rmb(); /* read flags after interrupt has been fired */ |
| |
| if (adapter->flags & FLAG_MSI_TEST_FAILED) { |
| adapter->int_mode = E1000E_INT_MODE_LEGACY; |
| e_info("MSI interrupt test failed, using legacy interrupt.\n"); |
| } else { |
| e_dbg("MSI interrupt test succeeded!\n"); |
| } |
| |
| free_irq(adapter->pdev->irq, netdev); |
| pci_disable_msi(adapter->pdev); |
| |
| msi_test_failed: |
| e1000e_set_interrupt_capability(adapter); |
| return e1000_request_irq(adapter); |
| } |
| |
| /** |
| * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored |
| * @adapter: board private struct |
| * |
| * code flow taken from tg3.c, called with e1000 interrupts disabled. |
| **/ |
| static int e1000_test_msi(struct e1000_adapter *adapter) |
| { |
| int err; |
| u16 pci_cmd; |
| |
| if (!(adapter->flags & FLAG_MSI_ENABLED)) |
| return 0; |
| |
| /* disable SERR in case the MSI write causes a master abort */ |
| pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd); |
| if (pci_cmd & PCI_COMMAND_SERR) |
| pci_write_config_word(adapter->pdev, PCI_COMMAND, |
| pci_cmd & ~PCI_COMMAND_SERR); |
| |
| err = e1000_test_msi_interrupt(adapter); |
| |
| /* re-enable SERR */ |
| if (pci_cmd & PCI_COMMAND_SERR) { |
| pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd); |
| pci_cmd |= PCI_COMMAND_SERR; |
| pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd); |
| } |
| |
| return err; |
| } |
| |
| /** |
| * e1000e_open - Called when a network interface is made active |
| * @netdev: network interface device structure |
| * |
| * Returns 0 on success, negative value on failure |
| * |
| * The open entry point is called when a network interface is made |
| * active by the system (IFF_UP). At this point all resources needed |
| * for transmit and receive operations are allocated, the interrupt |
| * handler is registered with the OS, the watchdog timer is started, |
| * and the stack is notified that the interface is ready. |
| **/ |
| int e1000e_open(struct net_device *netdev) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| struct pci_dev *pdev = adapter->pdev; |
| int err; |
| |
| /* disallow open during test */ |
| if (test_bit(__E1000_TESTING, &adapter->state)) |
| return -EBUSY; |
| |
| pm_runtime_get_sync(&pdev->dev); |
| |
| netif_carrier_off(netdev); |
| netif_stop_queue(netdev); |
| |
| /* allocate transmit descriptors */ |
| err = e1000e_setup_tx_resources(adapter->tx_ring); |
| if (err) |
| goto err_setup_tx; |
| |
| /* allocate receive descriptors */ |
| err = e1000e_setup_rx_resources(adapter->rx_ring); |
| if (err) |
| goto err_setup_rx; |
| |
| /* If AMT is enabled, let the firmware know that the network |
| * interface is now open and reset the part to a known state. |
| */ |
| if (adapter->flags & FLAG_HAS_AMT) { |
| e1000e_get_hw_control(adapter); |
| e1000e_reset(adapter); |
| } |
| |
| e1000e_power_up_phy(adapter); |
| |
| adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; |
| if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)) |
| e1000_update_mng_vlan(adapter); |
| |
| /* DMA latency requirement to workaround jumbo issue */ |
| cpu_latency_qos_add_request(&adapter->pm_qos_req, PM_QOS_DEFAULT_VALUE); |
| |
| /* before we allocate an interrupt, we must be ready to handle it. |
| * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt |
| * as soon as we call pci_request_irq, so we have to setup our |
| * clean_rx handler before we do so. |
| */ |
| e1000_configure(adapter); |
| |
| err = e1000_request_irq(adapter); |
| if (err) |
| goto err_req_irq; |
| |
| /* Work around PCIe errata with MSI interrupts causing some chipsets to |
| * ignore e1000e MSI messages, which means we need to test our MSI |
| * interrupt now |
| */ |
| if (adapter->int_mode != E1000E_INT_MODE_LEGACY) { |
| err = e1000_test_msi(adapter); |
| if (err) { |
| e_err("Interrupt allocation failed\n"); |
| goto err_req_irq; |
| } |
| } |
| |
| /* From here on the code is the same as e1000e_up() */ |
| clear_bit(__E1000_DOWN, &adapter->state); |
| |
| napi_enable(&adapter->napi); |
| |
| e1000_irq_enable(adapter); |
| |
| adapter->tx_hang_recheck = false; |
| |
| hw->mac.get_link_status = true; |
| pm_runtime_put(&pdev->dev); |
| |
| e1000e_trigger_lsc(adapter); |
| |
| return 0; |
| |
| err_req_irq: |
| cpu_latency_qos_remove_request(&adapter->pm_qos_req); |
| e1000e_release_hw_control(adapter); |
| e1000_power_down_phy(adapter); |
| e1000e_free_rx_resources(adapter->rx_ring); |
| err_setup_rx: |
| e1000e_free_tx_resources(adapter->tx_ring); |
| err_setup_tx: |
| e1000e_reset(adapter); |
| pm_runtime_put_sync(&pdev->dev); |
| |
| return err; |
| } |
| |
| /** |
| * e1000e_close - Disables a network interface |
| * @netdev: network interface device structure |
| * |
| * Returns 0, this is not allowed to fail |
| * |
| * The close entry point is called when an interface is de-activated |
| * by the OS. The hardware is still under the drivers control, but |
| * needs to be disabled. A global MAC reset is issued to stop the |
| * hardware, and all transmit and receive resources are freed. |
| **/ |
| int e1000e_close(struct net_device *netdev) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct pci_dev *pdev = adapter->pdev; |
| int count = E1000_CHECK_RESET_COUNT; |
| |
| while (test_bit(__E1000_RESETTING, &adapter->state) && count--) |
| usleep_range(10000, 11000); |
| |
| WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); |
| |
| pm_runtime_get_sync(&pdev->dev); |
| |
| if (netif_device_present(netdev)) { |
| e1000e_down(adapter, true); |
| e1000_free_irq(adapter); |
| |
| /* Link status message must follow this format */ |
| netdev_info(netdev, "NIC Link is Down\n"); |
| } |
| |
| napi_disable(&adapter->napi); |
| |
| e1000e_free_tx_resources(adapter->tx_ring); |
| e1000e_free_rx_resources(adapter->rx_ring); |
| |
| /* kill manageability vlan ID if supported, but not if a vlan with |
| * the same ID is registered on the host OS (let 8021q kill it) |
| */ |
| if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) |
| e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), |
| adapter->mng_vlan_id); |
| |
| /* If AMT is enabled, let the firmware know that the network |
| * interface is now closed |
| */ |
| if ((adapter->flags & FLAG_HAS_AMT) && |
| !test_bit(__E1000_TESTING, &adapter->state)) |
| e1000e_release_hw_control(adapter); |
| |
| cpu_latency_qos_remove_request(&adapter->pm_qos_req); |
| |
| pm_runtime_put_sync(&pdev->dev); |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_set_mac - Change the Ethernet Address of the NIC |
| * @netdev: network interface device structure |
| * @p: pointer to an address structure |
| * |
| * Returns 0 on success, negative on failure |
| **/ |
| static int e1000_set_mac(struct net_device *netdev, void *p) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| struct sockaddr *addr = p; |
| |
| if (!is_valid_ether_addr(addr->sa_data)) |
| return -EADDRNOTAVAIL; |
| |
| memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); |
| memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len); |
| |
| hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0); |
| |
| if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) { |
| /* activate the work around */ |
| e1000e_set_laa_state_82571(&adapter->hw, 1); |
| |
| /* Hold a copy of the LAA in RAR[14] This is done so that |
| * between the time RAR[0] gets clobbered and the time it |
| * gets fixed (in e1000_watchdog), the actual LAA is in one |
| * of the RARs and no incoming packets directed to this port |
| * are dropped. Eventually the LAA will be in RAR[0] and |
| * RAR[14] |
| */ |
| hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, |
| adapter->hw.mac.rar_entry_count - 1); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * e1000e_update_phy_task - work thread to update phy |
| * @work: pointer to our work struct |
| * |
| * this worker thread exists because we must acquire a |
| * semaphore to read the phy, which we could msleep while |
| * waiting for it, and we can't msleep in a timer. |
| **/ |
| static void e1000e_update_phy_task(struct work_struct *work) |
| { |
| struct e1000_adapter *adapter = container_of(work, |
| struct e1000_adapter, |
| update_phy_task); |
| struct e1000_hw *hw = &adapter->hw; |
| |
| if (test_bit(__E1000_DOWN, &adapter->state)) |
| return; |
| |
| e1000_get_phy_info(hw); |
| |
| /* Enable EEE on 82579 after link up */ |
| if (hw->phy.type >= e1000_phy_82579) |
| e1000_set_eee_pchlan(hw); |
| } |
| |
| /** |
| * e1000_update_phy_info - timre call-back to update PHY info |
| * @t: pointer to timer_list containing private info adapter |
| * |
| * Need to wait a few seconds after link up to get diagnostic information from |
| * the phy |
| **/ |
| static void e1000_update_phy_info(struct timer_list *t) |
| { |
| struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer); |
| |
| if (test_bit(__E1000_DOWN, &adapter->state)) |
| return; |
| |
| schedule_work(&adapter->update_phy_task); |
| } |
| |
| /** |
| * e1000e_update_phy_stats - Update the PHY statistics counters |
| * @adapter: board private structure |
| * |
| * Read/clear the upper 16-bit PHY registers and read/accumulate lower |
| **/ |
| static void e1000e_update_phy_stats(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| s32 ret_val; |
| u16 phy_data; |
| |
| ret_val = hw->phy.ops.acquire(hw); |
| if (ret_val) |
| return; |
| |
| /* A page set is expensive so check if already on desired page. |
| * If not, set to the page with the PHY status registers. |
| */ |
| hw->phy.addr = 1; |
| ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, |
| &phy_data); |
| if (ret_val) |
| goto release; |
| if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) { |
| ret_val = hw->phy.ops.set_page(hw, |
| HV_STATS_PAGE << IGP_PAGE_SHIFT); |
| if (ret_val) |
| goto release; |
| } |
| |
| /* Single Collision Count */ |
| hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data); |
| ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data); |
| if (!ret_val) |
| adapter->stats.scc += phy_data; |
| |
| /* Excessive Collision Count */ |
| hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data); |
| ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data); |
| if (!ret_val) |
| adapter->stats.ecol += phy_data; |
| |
| /* Multiple Collision Count */ |
| hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data); |
| ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data); |
| if (!ret_val) |
| adapter->stats.mcc += phy_data; |
| |
| /* Late Collision Count */ |
| hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data); |
| ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data); |
| if (!ret_val) |
| adapter->stats.latecol += phy_data; |
| |
| /* Collision Count - also used for adaptive IFS */ |
| hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data); |
| ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data); |
| if (!ret_val) |
| hw->mac.collision_delta = phy_data; |
| |
| /* Defer Count */ |
| hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data); |
| ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data); |
| if (!ret_val) |
| adapter->stats.dc += phy_data; |
| |
| /* Transmit with no CRS */ |
| hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data); |
| ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data); |
| if (!ret_val) |
| adapter->stats.tncrs += phy_data; |
| |
| release: |
| hw->phy.ops.release(hw); |
| } |
| |
| /** |
| * e1000e_update_stats - Update the board statistics counters |
| * @adapter: board private structure |
| **/ |
| static void e1000e_update_stats(struct e1000_adapter *adapter) |
| { |
| struct net_device *netdev = adapter->netdev; |
| struct e1000_hw *hw = &adapter->hw; |
| struct pci_dev *pdev = adapter->pdev; |
| |
| /* Prevent stats update while adapter is being reset, or if the pci |
| * connection is down. |
| */ |
| if (adapter->link_speed == 0) |
| return; |
| if (pci_channel_offline(pdev)) |
| return; |
| |
| adapter->stats.crcerrs += er32(CRCERRS); |
| adapter->stats.gprc += er32(GPRC); |
| adapter->stats.gorc += er32(GORCL); |
| er32(GORCH); /* Clear gorc */ |
| adapter->stats.bprc += er32(BPRC); |
| adapter->stats.mprc += er32(MPRC); |
| adapter->stats.roc += er32(ROC); |
| |
| adapter->stats.mpc += er32(MPC); |
| |
| /* Half-duplex statistics */ |
| if (adapter->link_duplex == HALF_DUPLEX) { |
| if (adapter->flags2 & FLAG2_HAS_PHY_STATS) { |
| e1000e_update_phy_stats(adapter); |
| } else { |
| adapter->stats.scc += er32(SCC); |
| adapter->stats.ecol += er32(ECOL); |
| adapter->stats.mcc += er32(MCC); |
| adapter->stats.latecol += er32(LATECOL); |
| adapter->stats.dc += er32(DC); |
| |
| hw->mac.collision_delta = er32(COLC); |
| |
| if ((hw->mac.type != e1000_82574) && |
| (hw->mac.type != e1000_82583)) |
| adapter->stats.tncrs += er32(TNCRS); |
| } |
| adapter->stats.colc += hw->mac.collision_delta; |
| } |
| |
| adapter->stats.xonrxc += er32(XONRXC); |
| adapter->stats.xontxc += er32(XONTXC); |
| adapter->stats.xoffrxc += er32(XOFFRXC); |
| adapter->stats.xofftxc += er32(XOFFTXC); |
| adapter->stats.gptc += er32(GPTC); |
| adapter->stats.gotc += er32(GOTCL); |
| er32(GOTCH); /* Clear gotc */ |
| adapter->stats.rnbc += er32(RNBC); |
| adapter->stats.ruc += er32(RUC); |
| |
| adapter->stats.mptc += er32(MPTC); |
| adapter->stats.bptc += er32(BPTC); |
| |
| /* used for adaptive IFS */ |
| |
| hw->mac.tx_packet_delta = er32(TPT); |
| adapter->stats.tpt += hw->mac.tx_packet_delta; |
| |
| adapter->stats.algnerrc += er32(ALGNERRC); |
| adapter->stats.rxerrc += er32(RXERRC); |
| adapter->stats.cexterr += er32(CEXTERR); |
| adapter->stats.tsctc += er32(TSCTC); |
| adapter->stats.tsctfc += er32(TSCTFC); |
| |
| /* Fill out the OS statistics structure */ |
| netdev->stats.multicast = adapter->stats.mprc; |
| netdev->stats.collisions = adapter->stats.colc; |
| |
| /* Rx Errors */ |
| |
| /* RLEC on some newer hardware can be incorrect so build |
| * our own version based on RUC and ROC |
| */ |
| netdev->stats.rx_errors = adapter->stats.rxerrc + |
| adapter->stats.crcerrs + adapter->stats.algnerrc + |
| adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr; |
| netdev->stats.rx_length_errors = adapter->stats.ruc + |
| adapter->stats.roc; |
| netdev->stats.rx_crc_errors = adapter->stats.crcerrs; |
| netdev->stats.rx_frame_errors = adapter->stats.algnerrc; |
| netdev->stats.rx_missed_errors = adapter->stats.mpc; |
| |
| /* Tx Errors */ |
| netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol; |
| netdev->stats.tx_aborted_errors = adapter->stats.ecol; |
| netdev->stats.tx_window_errors = adapter->stats.latecol; |
| netdev->stats.tx_carrier_errors = adapter->stats.tncrs; |
| |
| /* Tx Dropped needs to be maintained elsewhere */ |
| |
| /* Management Stats */ |
| adapter->stats.mgptc += er32(MGTPTC); |
| adapter->stats.mgprc += er32(MGTPRC); |
| adapter->stats.mgpdc += er32(MGTPDC); |
| |
| /* Correctable ECC Errors */ |
| if (hw->mac.type >= e1000_pch_lpt) { |
| u32 pbeccsts = er32(PBECCSTS); |
| |
| adapter->corr_errors += |
| pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK; |
| adapter->uncorr_errors += |
| (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >> |
| E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT; |
| } |
| } |
| |
| /** |
| * e1000_phy_read_status - Update the PHY register status snapshot |
| * @adapter: board private structure |
| **/ |
| static void e1000_phy_read_status(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| struct e1000_phy_regs *phy = &adapter->phy_regs; |
| |
| if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) && |
| (er32(STATUS) & E1000_STATUS_LU) && |
| (adapter->hw.phy.media_type == e1000_media_type_copper)) { |
| int ret_val; |
| |
| ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr); |
| ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr); |
| ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise); |
| ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa); |
| ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion); |
| ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000); |
| ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000); |
| ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus); |
| if (ret_val) |
| e_warn("Error reading PHY register\n"); |
| } else { |
| /* Do not read PHY registers if link is not up |
| * Set values to typical power-on defaults |
| */ |
| phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX); |
| phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL | |
| BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE | |
| BMSR_ERCAP); |
| phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP | |
| ADVERTISE_ALL | ADVERTISE_CSMA); |
| phy->lpa = 0; |
| phy->expansion = EXPANSION_ENABLENPAGE; |
| phy->ctrl1000 = ADVERTISE_1000FULL; |
| phy->stat1000 = 0; |
| phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF); |
| } |
| } |
| |
| static void e1000_print_link_info(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 ctrl = er32(CTRL); |
| |
| /* Link status message must follow this format for user tools */ |
| netdev_info(adapter->netdev, |
| "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n", |
| adapter->link_speed, |
| adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half", |
| (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" : |
| (ctrl & E1000_CTRL_RFCE) ? "Rx" : |
| (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None"); |
| } |
| |
| static bool e1000e_has_link(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| bool link_active = false; |
| s32 ret_val = 0; |
| |
| /* get_link_status is set on LSC (link status) interrupt or |
| * Rx sequence error interrupt. get_link_status will stay |
| * true until the check_for_link establishes link |
| * for copper adapters ONLY |
| */ |
| switch (hw->phy.media_type) { |
| case e1000_media_type_copper: |
| if (hw->mac.get_link_status) { |
| ret_val = hw->mac.ops.check_for_link(hw); |
| link_active = !hw->mac.get_link_status; |
| } else { |
| link_active = true; |
| } |
| break; |
| case e1000_media_type_fiber: |
| ret_val = hw->mac.ops.check_for_link(hw); |
| link_active = !!(er32(STATUS) & E1000_STATUS_LU); |
| break; |
| case e1000_media_type_internal_serdes: |
| ret_val = hw->mac.ops.check_for_link(hw); |
| link_active = hw->mac.serdes_has_link; |
| break; |
| default: |
| case e1000_media_type_unknown: |
| break; |
| } |
| |
| if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) && |
| (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) { |
| /* See e1000_kmrn_lock_loss_workaround_ich8lan() */ |
| e_info("Gigabit has been disabled, downgrading speed\n"); |
| } |
| |
| return link_active; |
| } |
| |
| static void e1000e_enable_receives(struct e1000_adapter *adapter) |
| { |
| /* make sure the receive unit is started */ |
| if ((adapter->flags & FLAG_RX_NEEDS_RESTART) && |
| (adapter->flags & FLAG_RESTART_NOW)) { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 rctl = er32(RCTL); |
| |
| ew32(RCTL, rctl | E1000_RCTL_EN); |
| adapter->flags &= ~FLAG_RESTART_NOW; |
| } |
| } |
| |
| static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| |
| /* With 82574 controllers, PHY needs to be checked periodically |
| * for hung state and reset, if two calls return true |
| */ |
| if (e1000_check_phy_82574(hw)) |
| adapter->phy_hang_count++; |
| else |
| adapter->phy_hang_count = 0; |
| |
| if (adapter->phy_hang_count > 1) { |
| adapter->phy_hang_count = 0; |
| e_dbg("PHY appears hung - resetting\n"); |
| schedule_work(&adapter->reset_task); |
| } |
| } |
| |
| /** |
| * e1000_watchdog - Timer Call-back |
| * @t: pointer to timer_list containing private info adapter |
| **/ |
| static void e1000_watchdog(struct timer_list *t) |
| { |
| struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer); |
| |
| /* Do the rest outside of interrupt context */ |
| schedule_work(&adapter->watchdog_task); |
| |
| /* TODO: make this use queue_delayed_work() */ |
| } |
| |
| static void e1000_watchdog_task(struct work_struct *work) |
| { |
| struct e1000_adapter *adapter = container_of(work, |
| struct e1000_adapter, |
| watchdog_task); |
| struct net_device *netdev = adapter->netdev; |
| struct e1000_mac_info *mac = &adapter->hw.mac; |
| struct e1000_phy_info *phy = &adapter->hw.phy; |
| struct e1000_ring *tx_ring = adapter->tx_ring; |
| u32 dmoff_exit_timeout = 100, tries = 0; |
| struct e1000_hw *hw = &adapter->hw; |
| u32 link, tctl, pcim_state; |
| |
| if (test_bit(__E1000_DOWN, &adapter->state)) |
| return; |
| |
| link = e1000e_has_link(adapter); |
| if ((netif_carrier_ok(netdev)) && link) { |
| /* Cancel scheduled suspend requests. */ |
| pm_runtime_resume(netdev->dev.parent); |
| |
| e1000e_enable_receives(adapter); |
| goto link_up; |
| } |
| |
| if ((e1000e_enable_tx_pkt_filtering(hw)) && |
| (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)) |
| e1000_update_mng_vlan(adapter); |
| |
| if (link) { |
| if (!netif_carrier_ok(netdev)) { |
| bool txb2b = true; |
| |
| /* Cancel scheduled suspend requests. */ |
| pm_runtime_resume(netdev->dev.parent); |
| |
| /* Checking if MAC is in DMoff state*/ |
| if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) { |
| pcim_state = er32(STATUS); |
| while (pcim_state & E1000_STATUS_PCIM_STATE) { |
| if (tries++ == dmoff_exit_timeout) { |
| e_dbg("Error in exiting dmoff\n"); |
| break; |
| } |
| usleep_range(10000, 20000); |
| pcim_state = er32(STATUS); |
| |
| /* Checking if MAC exited DMoff state */ |
| if (!(pcim_state & E1000_STATUS_PCIM_STATE)) |
| e1000_phy_hw_reset(&adapter->hw); |
| } |
| } |
| |
| /* update snapshot of PHY registers on LSC */ |
| e1000_phy_read_status(adapter); |
| mac->ops.get_link_up_info(&adapter->hw, |
| &adapter->link_speed, |
| &adapter->link_duplex); |
| e1000_print_link_info(adapter); |
| |
| /* check if SmartSpeed worked */ |
| e1000e_check_downshift(hw); |
| if (phy->speed_downgraded) |
| netdev_warn(netdev, |
| "Link Speed was downgraded by SmartSpeed\n"); |
| |
| /* On supported PHYs, check for duplex mismatch only |
| * if link has autonegotiated at 10/100 half |
| */ |
| if ((hw->phy.type == e1000_phy_igp_3 || |
| hw->phy.type == e1000_phy_bm) && |
| hw->mac.autoneg && |
| (adapter->link_speed == SPEED_10 || |
| adapter->link_speed == SPEED_100) && |
| (adapter->link_duplex == HALF_DUPLEX)) { |
| u16 autoneg_exp; |
| |
| e1e_rphy(hw, MII_EXPANSION, &autoneg_exp); |
| |
| if (!(autoneg_exp & EXPANSION_NWAY)) |
| e_info("Autonegotiated half duplex but link partner cannot autoneg. Try forcing full duplex if link gets many collisions.\n"); |
| } |
| |
| /* adjust timeout factor according to speed/duplex */ |
| adapter->tx_timeout_factor = 1; |
| switch (adapter->link_speed) { |
| case SPEED_10: |
| txb2b = false; |
| adapter->tx_timeout_factor = 16; |
| break; |
| case SPEED_100: |
| txb2b = false; |
| adapter->tx_timeout_factor = 10; |
| break; |
| } |
| |
| /* workaround: re-program speed mode bit after |
| * link-up event |
| */ |
| if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) && |
| !txb2b) { |
| u32 tarc0; |
| |
| tarc0 = er32(TARC(0)); |
| tarc0 &= ~SPEED_MODE_BIT; |
| ew32(TARC(0), tarc0); |
| } |
| |
| /* disable TSO for pcie and 10/100 speeds, to avoid |
| * some hardware issues |
| */ |
| if (!(adapter->flags & FLAG_TSO_FORCE)) { |
| switch (adapter->link_speed) { |
| case SPEED_10: |
| case SPEED_100: |
| e_info("10/100 speed: disabling TSO\n"); |
| netdev->features &= ~NETIF_F_TSO; |
| netdev->features &= ~NETIF_F_TSO6; |
| break; |
| case SPEED_1000: |
| netdev->features |= NETIF_F_TSO; |
| netdev->features |= NETIF_F_TSO6; |
| break; |
| default: |
| /* oops */ |
| break; |
| } |
| if (hw->mac.type == e1000_pch_spt) { |
| netdev->features &= ~NETIF_F_TSO; |
| netdev->features &= ~NETIF_F_TSO6; |
| } |
| } |
| |
| /* enable transmits in the hardware, need to do this |
| * after setting TARC(0) |
| */ |
| tctl = er32(TCTL); |
| tctl |= E1000_TCTL_EN; |
| ew32(TCTL, tctl); |
| |
| /* Perform any post-link-up configuration before |
| * reporting link up. |
| */ |
| if (phy->ops.cfg_on_link_up) |
| phy->ops.cfg_on_link_up(hw); |
| |
| netif_wake_queue(netdev); |
| netif_carrier_on(netdev); |
| |
| if (!test_bit(__E1000_DOWN, &adapter->state)) |
| mod_timer(&adapter->phy_info_timer, |
| round_jiffies(jiffies + 2 * HZ)); |
| } |
| } else { |
| if (netif_carrier_ok(netdev)) { |
| adapter->link_speed = 0; |
| adapter->link_duplex = 0; |
| /* Link status message must follow this format */ |
| netdev_info(netdev, "NIC Link is Down\n"); |
| netif_carrier_off(netdev); |
| netif_stop_queue(netdev); |
| if (!test_bit(__E1000_DOWN, &adapter->state)) |
| mod_timer(&adapter->phy_info_timer, |
| round_jiffies(jiffies + 2 * HZ)); |
| |
| /* 8000ES2LAN requires a Rx packet buffer work-around |
| * on link down event; reset the controller to flush |
| * the Rx packet buffer. |
| */ |
| if (adapter->flags & FLAG_RX_NEEDS_RESTART) |
| adapter->flags |= FLAG_RESTART_NOW; |
| else |
| pm_schedule_suspend(netdev->dev.parent, |
| LINK_TIMEOUT); |
| } |
| } |
| |
| link_up: |
| spin_lock(&adapter->stats64_lock); |
| e1000e_update_stats(adapter); |
| |
| mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; |
| adapter->tpt_old = adapter->stats.tpt; |
| mac->collision_delta = adapter->stats.colc - adapter->colc_old; |
| adapter->colc_old = adapter->stats.colc; |
| |
| adapter->gorc = adapter->stats.gorc - adapter->gorc_old; |
| adapter->gorc_old = adapter->stats.gorc; |
| adapter->gotc = adapter->stats.gotc - adapter->gotc_old; |
| adapter->gotc_old = adapter->stats.gotc; |
| spin_unlock(&adapter->stats64_lock); |
| |
| /* If the link is lost the controller stops DMA, but |
| * if there is queued Tx work it cannot be done. So |
| * reset the controller to flush the Tx packet buffers. |
| */ |
| if (!netif_carrier_ok(netdev) && |
| (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) |
| adapter->flags |= FLAG_RESTART_NOW; |
| |
| /* If reset is necessary, do it outside of interrupt context. */ |
| if (adapter->flags & FLAG_RESTART_NOW) { |
| schedule_work(&adapter->reset_task); |
| /* return immediately since reset is imminent */ |
| return; |
| } |
| |
| e1000e_update_adaptive(&adapter->hw); |
| |
| /* Simple mode for Interrupt Throttle Rate (ITR) */ |
| if (adapter->itr_setting == 4) { |
| /* Symmetric Tx/Rx gets a reduced ITR=2000; |
| * Total asymmetrical Tx or Rx gets ITR=8000; |
| * everyone else is between 2000-8000. |
| */ |
| u32 goc = (adapter->gotc + adapter->gorc) / 10000; |
| u32 dif = (adapter->gotc > adapter->gorc ? |
| adapter->gotc - adapter->gorc : |
| adapter->gorc - adapter->gotc) / 10000; |
| u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; |
| |
| e1000e_write_itr(adapter, itr); |
| } |
| |
| /* Cause software interrupt to ensure Rx ring is cleaned */ |
| if (adapter->msix_entries) |
| ew32(ICS, adapter->rx_ring->ims_val); |
| else |
| ew32(ICS, E1000_ICS_RXDMT0); |
| |
| /* flush pending descriptors to memory before detecting Tx hang */ |
| e1000e_flush_descriptors(adapter); |
| |
| /* Force detection of hung controller every watchdog period */ |
| adapter->detect_tx_hung = true; |
| |
| /* With 82571 controllers, LAA may be overwritten due to controller |
| * reset from the other port. Set the appropriate LAA in RAR[0] |
| */ |
| if (e1000e_get_laa_state_82571(hw)) |
| hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0); |
| |
| if (adapter->flags2 & FLAG2_CHECK_PHY_HANG) |
| e1000e_check_82574_phy_workaround(adapter); |
| |
| /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */ |
| if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) { |
| if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) && |
| (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) { |
| er32(RXSTMPH); |
| adapter->rx_hwtstamp_cleared++; |
| } else { |
| adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP; |
| } |
| } |
| |
| /* Reset the timer */ |
| if (!test_bit(__E1000_DOWN, &adapter->state)) |
| mod_timer(&adapter->watchdog_timer, |
| round_jiffies(jiffies + 2 * HZ)); |
| } |
| |
| #define E1000_TX_FLAGS_CSUM 0x00000001 |
| #define E1000_TX_FLAGS_VLAN 0x00000002 |
| #define E1000_TX_FLAGS_TSO 0x00000004 |
| #define E1000_TX_FLAGS_IPV4 0x00000008 |
| #define E1000_TX_FLAGS_NO_FCS 0x00000010 |
| #define E1000_TX_FLAGS_HWTSTAMP 0x00000020 |
| #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 |
| #define E1000_TX_FLAGS_VLAN_SHIFT 16 |
| |
| static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb, |
| __be16 protocol) |
| { |
| struct e1000_context_desc *context_desc; |
| struct e1000_buffer *buffer_info; |
| unsigned int i; |
| u32 cmd_length = 0; |
| u16 ipcse = 0, mss; |
| u8 ipcss, ipcso, tucss, tucso, hdr_len; |
| int err; |
| |
| if (!skb_is_gso(skb)) |
| return 0; |
| |
| err = skb_cow_head(skb, 0); |
| if (err < 0) |
| return err; |
| |
| hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); |
| mss = skb_shinfo(skb)->gso_size; |
| if (protocol == htons(ETH_P_IP)) { |
| struct iphdr *iph = ip_hdr(skb); |
| iph->tot_len = 0; |
| iph->check = 0; |
| tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, |
| 0, IPPROTO_TCP, 0); |
| cmd_length = E1000_TXD_CMD_IP; |
| ipcse = skb_transport_offset(skb) - 1; |
| } else if (skb_is_gso_v6(skb)) { |
| tcp_v6_gso_csum_prep(skb); |
| ipcse = 0; |
| } |
| ipcss = skb_network_offset(skb); |
| ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; |
| tucss = skb_transport_offset(skb); |
| tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; |
| |
| cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | |
| E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); |
| |
| i = tx_ring->next_to_use; |
| context_desc = E1000_CONTEXT_DESC(*tx_ring, i); |
| buffer_info = &tx_ring->buffer_info[i]; |
| |
| context_desc->lower_setup.ip_fields.ipcss = ipcss; |
| context_desc->lower_setup.ip_fields.ipcso = ipcso; |
| context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); |
| context_desc->upper_setup.tcp_fields.tucss = tucss; |
| context_desc->upper_setup.tcp_fields.tucso = tucso; |
| context_desc->upper_setup.tcp_fields.tucse = 0; |
| context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); |
| context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; |
| context_desc->cmd_and_length = cpu_to_le32(cmd_length); |
| |
| buffer_info->time_stamp = jiffies; |
| buffer_info->next_to_watch = i; |
| |
| i++; |
| if (i == tx_ring->count) |
| i = 0; |
| tx_ring->next_to_use = i; |
| |
| return 1; |
| } |
| |
| static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb, |
| __be16 protocol) |
| { |
| struct e1000_adapter *adapter = tx_ring->adapter; |
| struct e1000_context_desc *context_desc; |
| struct e1000_buffer *buffer_info; |
| unsigned int i; |
| u8 css; |
| u32 cmd_len = E1000_TXD_CMD_DEXT; |
| |
| if (skb->ip_summed != CHECKSUM_PARTIAL) |
| return false; |
| |
| switch (protocol) { |
| case cpu_to_be16(ETH_P_IP): |
| if (ip_hdr(skb)->protocol == IPPROTO_TCP) |
| cmd_len |= E1000_TXD_CMD_TCP; |
| break; |
| case cpu_to_be16(ETH_P_IPV6): |
| /* XXX not handling all IPV6 headers */ |
| if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) |
| cmd_len |= E1000_TXD_CMD_TCP; |
| break; |
| default: |
| if (unlikely(net_ratelimit())) |
| e_warn("checksum_partial proto=%x!\n", |
| be16_to_cpu(protocol)); |
| break; |
| } |
| |
| css = skb_checksum_start_offset(skb); |
| |
| i = tx_ring->next_to_use; |
| buffer_info = &tx_ring->buffer_info[i]; |
| context_desc = E1000_CONTEXT_DESC(*tx_ring, i); |
| |
| context_desc->lower_setup.ip_config = 0; |
| context_desc->upper_setup.tcp_fields.tucss = css; |
| context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset; |
| context_desc->upper_setup.tcp_fields.tucse = 0; |
| context_desc->tcp_seg_setup.data = 0; |
| context_desc->cmd_and_length = cpu_to_le32(cmd_len); |
| |
| buffer_info->time_stamp = jiffies; |
| buffer_info->next_to_watch = i; |
| |
| i++; |
| if (i == tx_ring->count) |
| i = 0; |
| tx_ring->next_to_use = i; |
| |
| return true; |
| } |
| |
| static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb, |
| unsigned int first, unsigned int max_per_txd, |
| unsigned int nr_frags) |
| { |
| struct e1000_adapter *adapter = tx_ring->adapter; |
| struct pci_dev *pdev = adapter->pdev; |
| struct e1000_buffer *buffer_info; |
| unsigned int len = skb_headlen(skb); |
| unsigned int offset = 0, size, count = 0, i; |
| unsigned int f, bytecount, segs; |
| |
| i = tx_ring->next_to_use; |
| |
| while (len) { |
| buffer_info = &tx_ring->buffer_info[i]; |
| size = min(len, max_per_txd); |
| |
| buffer_info->length = size; |
| buffer_info->time_stamp = jiffies; |
| buffer_info->next_to_watch = i; |
| buffer_info->dma = dma_map_single(&pdev->dev, |
| skb->data + offset, |
| size, DMA_TO_DEVICE); |
| buffer_info->mapped_as_page = false; |
| if (dma_mapping_error(&pdev->dev, buffer_info->dma)) |
| goto dma_error; |
| |
| len -= size; |
| offset += size; |
| count++; |
| |
| if (len) { |
| i++; |
| if (i == tx_ring->count) |
| i = 0; |
| } |
| } |
| |
| for (f = 0; f < nr_frags; f++) { |
| const skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; |
| |
| len = skb_frag_size(frag); |
| offset = 0; |
| |
| while (len) { |
| i++; |
| if (i == tx_ring->count) |
| i = 0; |
| |
| buffer_info = &tx_ring->buffer_info[i]; |
| size = min(len, max_per_txd); |
| |
| buffer_info->length = size; |
| buffer_info->time_stamp = jiffies; |
| buffer_info->next_to_watch = i; |
| buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, |
| offset, size, |
| DMA_TO_DEVICE); |
| buffer_info->mapped_as_page = true; |
| if (dma_mapping_error(&pdev->dev, buffer_info->dma)) |
| goto dma_error; |
| |
| len -= size; |
| offset += size; |
| count++; |
| } |
| } |
| |
| segs = skb_shinfo(skb)->gso_segs ? : 1; |
| /* multiply data chunks by size of headers */ |
| bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len; |
| |
| tx_ring->buffer_info[i].skb = skb; |
| tx_ring->buffer_info[i].segs = segs; |
| tx_ring->buffer_info[i].bytecount = bytecount; |
| tx_ring->buffer_info[first].next_to_watch = i; |
| |
| return count; |
| |
| dma_error: |
| dev_err(&pdev->dev, "Tx DMA map failed\n"); |
| buffer_info->dma = 0; |
| if (count) |
| count--; |
| |
| while (count--) { |
| if (i == 0) |
| i += tx_ring->count; |
| i--; |
| buffer_info = &tx_ring->buffer_info[i]; |
| e1000_put_txbuf(tx_ring, buffer_info, true); |
| } |
| |
| return 0; |
| } |
| |
| static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count) |
| { |
| struct e1000_adapter *adapter = tx_ring->adapter; |
| struct e1000_tx_desc *tx_desc = NULL; |
| struct e1000_buffer *buffer_info; |
| u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; |
| unsigned int i; |
| |
| if (tx_flags & E1000_TX_FLAGS_TSO) { |
| txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | |
| E1000_TXD_CMD_TSE; |
| txd_upper |= E1000_TXD_POPTS_TXSM << 8; |
| |
| if (tx_flags & E1000_TX_FLAGS_IPV4) |
| txd_upper |= E1000_TXD_POPTS_IXSM << 8; |
| } |
| |
| if (tx_flags & E1000_TX_FLAGS_CSUM) { |
| txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; |
| txd_upper |= E1000_TXD_POPTS_TXSM << 8; |
| } |
| |
| if (tx_flags & E1000_TX_FLAGS_VLAN) { |
| txd_lower |= E1000_TXD_CMD_VLE; |
| txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); |
| } |
| |
| if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) |
| txd_lower &= ~(E1000_TXD_CMD_IFCS); |
| |
| if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) { |
| txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; |
| txd_upper |= E1000_TXD_EXTCMD_TSTAMP; |
| } |
| |
| i = tx_ring->next_to_use; |
| |
| do { |
| buffer_info = &tx_ring->buffer_info[i]; |
| tx_desc = E1000_TX_DESC(*tx_ring, i); |
| tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); |
| tx_desc->lower.data = cpu_to_le32(txd_lower | |
| buffer_info->length); |
| tx_desc->upper.data = cpu_to_le32(txd_upper); |
| |
| i++; |
| if (i == tx_ring->count) |
| i = 0; |
| } while (--count > 0); |
| |
| tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); |
| |
| /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */ |
| if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) |
| tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS)); |
| |
| /* Force memory writes to complete before letting h/w |
| * know there are new descriptors to fetch. (Only |
| * applicable for weak-ordered memory model archs, |
| * such as IA-64). |
| */ |
| wmb(); |
| |
| tx_ring->next_to_use = i; |
| } |
| |
| #define MINIMUM_DHCP_PACKET_SIZE 282 |
| static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter, |
| struct sk_buff *skb) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u16 length, offset; |
| |
| if (skb_vlan_tag_present(skb) && |
| !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) && |
| (adapter->hw.mng_cookie.status & |
| E1000_MNG_DHCP_COOKIE_STATUS_VLAN))) |
| return 0; |
| |
| if (skb->len <= MINIMUM_DHCP_PACKET_SIZE) |
| return 0; |
| |
| if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP)) |
| return 0; |
| |
| { |
| const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14); |
| struct udphdr *udp; |
| |
| if (ip->protocol != IPPROTO_UDP) |
| return 0; |
| |
| udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2)); |
| if (ntohs(udp->dest) != 67) |
| return 0; |
| |
| offset = (u8 *)udp + 8 - skb->data; |
| length = skb->len - offset; |
| return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length); |
| } |
| |
| return 0; |
| } |
| |
| static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size) |
| { |
| struct e1000_adapter *adapter = tx_ring->adapter; |
| |
| netif_stop_queue(adapter->netdev); |
| /* Herbert's original patch had: |
| * smp_mb__after_netif_stop_queue(); |
| * but since that doesn't exist yet, just open code it. |
| */ |
| smp_mb(); |
| |
| /* We need to check again in a case another CPU has just |
| * made room available. |
| */ |
| if (e1000_desc_unused(tx_ring) < size) |
| return -EBUSY; |
| |
| /* A reprieve! */ |
| netif_start_queue(adapter->netdev); |
| ++adapter->restart_queue; |
| return 0; |
| } |
| |
| static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size) |
| { |
| BUG_ON(size > tx_ring->count); |
| |
| if (e1000_desc_unused(tx_ring) >= size) |
| return 0; |
| return __e1000_maybe_stop_tx(tx_ring, size); |
| } |
| |
| static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, |
| struct net_device *netdev) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_ring *tx_ring = adapter->tx_ring; |
| unsigned int first; |
| unsigned int tx_flags = 0; |
| unsigned int len = skb_headlen(skb); |
| unsigned int nr_frags; |
| unsigned int mss; |
| int count = 0; |
| int tso; |
| unsigned int f; |
| __be16 protocol = vlan_get_protocol(skb); |
| |
| if (test_bit(__E1000_DOWN, &adapter->state)) { |
| dev_kfree_skb_any(skb); |
| return NETDEV_TX_OK; |
| } |
| |
| if (skb->len <= 0) { |
| dev_kfree_skb_any(skb); |
| return NETDEV_TX_OK; |
| } |
| |
| /* The minimum packet size with TCTL.PSP set is 17 bytes so |
| * pad skb in order to meet this minimum size requirement |
| */ |
| if (skb_put_padto(skb, 17)) |
| return NETDEV_TX_OK; |
| |
| mss = skb_shinfo(skb)->gso_size; |
| if (mss) { |
| u8 hdr_len; |
| |
| /* TSO Workaround for 82571/2/3 Controllers -- if skb->data |
| * points to just header, pull a few bytes of payload from |
| * frags into skb->data |
| */ |
| hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); |
| /* we do this workaround for ES2LAN, but it is un-necessary, |
| * avoiding it could save a lot of cycles |
| */ |
| if (skb->data_len && (hdr_len == len)) { |
| unsigned int pull_size; |
| |
| pull_size = min_t(unsigned int, 4, skb->data_len); |
| if (!__pskb_pull_tail(skb, pull_size)) { |
| e_err("__pskb_pull_tail failed.\n"); |
| dev_kfree_skb_any(skb); |
| return NETDEV_TX_OK; |
| } |
| len = skb_headlen(skb); |
| } |
| } |
| |
| /* reserve a descriptor for the offload context */ |
| if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) |
| count++; |
| count++; |
| |
| count += DIV_ROUND_UP(len, adapter->tx_fifo_limit); |
| |
| nr_frags = skb_shinfo(skb)->nr_frags; |
| for (f = 0; f < nr_frags; f++) |
| count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]), |
| adapter->tx_fifo_limit); |
| |
| if (adapter->hw.mac.tx_pkt_filtering) |
| e1000_transfer_dhcp_info(adapter, skb); |
| |
| /* need: count + 2 desc gap to keep tail from touching |
| * head, otherwise try next time |
| */ |
| if (e1000_maybe_stop_tx(tx_ring, count + 2)) |
| return NETDEV_TX_BUSY; |
| |
| if (skb_vlan_tag_present(skb)) { |
| tx_flags |= E1000_TX_FLAGS_VLAN; |
| tx_flags |= (skb_vlan_tag_get(skb) << |
| E1000_TX_FLAGS_VLAN_SHIFT); |
| } |
| |
| first = tx_ring->next_to_use; |
| |
| tso = e1000_tso(tx_ring, skb, protocol); |
| if (tso < 0) { |
| dev_kfree_skb_any(skb); |
| return NETDEV_TX_OK; |
| } |
| |
| if (tso) |
| tx_flags |= E1000_TX_FLAGS_TSO; |
| else if (e1000_tx_csum(tx_ring, skb, protocol)) |
| tx_flags |= E1000_TX_FLAGS_CSUM; |
| |
| /* Old method was to assume IPv4 packet by default if TSO was enabled. |
| * 82571 hardware supports TSO capabilities for IPv6 as well... |
| * no longer assume, we must. |
| */ |
| if (protocol == htons(ETH_P_IP)) |
| tx_flags |= E1000_TX_FLAGS_IPV4; |
| |
| if (unlikely(skb->no_fcs)) |
| tx_flags |= E1000_TX_FLAGS_NO_FCS; |
| |
| /* if count is 0 then mapping error has occurred */ |
| count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit, |
| nr_frags); |
| if (count) { |
| if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && |
| (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) { |
| if (!adapter->tx_hwtstamp_skb) { |
| skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; |
| tx_flags |= E1000_TX_FLAGS_HWTSTAMP; |
| adapter->tx_hwtstamp_skb = skb_get(skb); |
| adapter->tx_hwtstamp_start = jiffies; |
| schedule_work(&adapter->tx_hwtstamp_work); |
| } else { |
| adapter->tx_hwtstamp_skipped++; |
| } |
| } |
| |
| skb_tx_timestamp(skb); |
| |
| netdev_sent_queue(netdev, skb->len); |
| e1000_tx_queue(tx_ring, tx_flags, count); |
| /* Make sure there is space in the ring for the next send. */ |
| e1000_maybe_stop_tx(tx_ring, |
| (MAX_SKB_FRAGS * |
| DIV_ROUND_UP(PAGE_SIZE, |
| adapter->tx_fifo_limit) + 2)); |
| |
| if (!netdev_xmit_more() || |
| netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) { |
| if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) |
| e1000e_update_tdt_wa(tx_ring, |
| tx_ring->next_to_use); |
| else |
| writel(tx_ring->next_to_use, tx_ring->tail); |
| } |
| } else { |
| dev_kfree_skb_any(skb); |
| tx_ring->buffer_info[first].time_stamp = 0; |
| tx_ring->next_to_use = first; |
| } |
| |
| return NETDEV_TX_OK; |
| } |
| |
| /** |
| * e1000_tx_timeout - Respond to a Tx Hang |
| * @netdev: network interface device structure |
| * @txqueue: index of the hung queue (unused) |
| **/ |
| static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| |
| /* Do the reset outside of interrupt context */ |
| adapter->tx_timeout_count++; |
| schedule_work(&adapter->reset_task); |
| } |
| |
| static void e1000_reset_task(struct work_struct *work) |
| { |
| struct e1000_adapter *adapter; |
| adapter = container_of(work, struct e1000_adapter, reset_task); |
| |
| rtnl_lock(); |
| /* don't run the task if already down */ |
| if (test_bit(__E1000_DOWN, &adapter->state)) { |
| rtnl_unlock(); |
| return; |
| } |
| |
| if (!(adapter->flags & FLAG_RESTART_NOW)) { |
| e1000e_dump(adapter); |
| e_err("Reset adapter unexpectedly\n"); |
| } |
| e1000e_reinit_locked(adapter); |
| rtnl_unlock(); |
| } |
| |
| /** |
| * e1000e_get_stats64 - Get System Network Statistics |
| * @netdev: network interface device structure |
| * @stats: rtnl_link_stats64 pointer |
| * |
| * Returns the address of the device statistics structure. |
| **/ |
| void e1000e_get_stats64(struct net_device *netdev, |
| struct rtnl_link_stats64 *stats) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| |
| spin_lock(&adapter->stats64_lock); |
| e1000e_update_stats(adapter); |
| /* Fill out the OS statistics structure */ |
| stats->rx_bytes = adapter->stats.gorc; |
| stats->rx_packets = adapter->stats.gprc; |
| stats->tx_bytes = adapter->stats.gotc; |
| stats->tx_packets = adapter->stats.gptc; |
| stats->multicast = adapter->stats.mprc; |
| stats->collisions = adapter->stats.colc; |
| |
| /* Rx Errors */ |
| |
| /* RLEC on some newer hardware can be incorrect so build |
| * our own version based on RUC and ROC |
| */ |
| stats->rx_errors = adapter->stats.rxerrc + |
| adapter->stats.crcerrs + adapter->stats.algnerrc + |
| adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr; |
| stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc; |
| stats->rx_crc_errors = adapter->stats.crcerrs; |
| stats->rx_frame_errors = adapter->stats.algnerrc; |
| stats->rx_missed_errors = adapter->stats.mpc; |
| |
| /* Tx Errors */ |
| stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol; |
| stats->tx_aborted_errors = adapter->stats.ecol; |
| stats->tx_window_errors = adapter->stats.latecol; |
| stats->tx_carrier_errors = adapter->stats.tncrs; |
| |
| /* Tx Dropped needs to be maintained elsewhere */ |
| |
| spin_unlock(&adapter->stats64_lock); |
| } |
| |
| /** |
| * e1000_change_mtu - Change the Maximum Transfer Unit |
| * @netdev: network interface device structure |
| * @new_mtu: new value for maximum frame size |
| * |
| * Returns 0 on success, negative on failure |
| **/ |
| static int e1000_change_mtu(struct net_device *netdev, int new_mtu) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN; |
| |
| /* Jumbo frame support */ |
| if ((new_mtu > ETH_DATA_LEN) && |
| !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) { |
| e_err("Jumbo Frames not supported.\n"); |
| return -EINVAL; |
| } |
| |
| /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */ |
| if ((adapter->hw.mac.type >= e1000_pch2lan) && |
| !(adapter->flags2 & FLAG2_CRC_STRIPPING) && |
| (new_mtu > ETH_DATA_LEN)) { |
| e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n"); |
| return -EINVAL; |
| } |
| |
| while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) |
| usleep_range(1000, 1100); |
| /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */ |
| adapter->max_frame_size = max_frame; |
| netdev_dbg(netdev, "changing MTU from %d to %d\n", |
| netdev->mtu, new_mtu); |
| netdev->mtu = new_mtu; |
| |
| pm_runtime_get_sync(netdev->dev.parent); |
| |
| if (netif_running(netdev)) |
| e1000e_down(adapter, true); |
| |
| /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN |
| * means we reserve 2 more, this pushes us to allocate from the next |
| * larger slab size. |
| * i.e. RXBUFFER_2048 --> size-4096 slab |
| * However with the new *_jumbo_rx* routines, jumbo receives will use |
| * fragmented skbs |
| */ |
| |
| if (max_frame <= 2048) |
| adapter->rx_buffer_len = 2048; |
| else |
| adapter->rx_buffer_len = 4096; |
| |
| /* adjust allocation if LPE protects us, and we aren't using SBP */ |
| if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) |
| adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN; |
| |
| if (netif_running(netdev)) |
| e1000e_up(adapter); |
| else |
| e1000e_reset(adapter); |
| |
| pm_runtime_put_sync(netdev->dev.parent); |
| |
| clear_bit(__E1000_RESETTING, &adapter->state); |
| |
| return 0; |
| } |
| |
| static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, |
| int cmd) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct mii_ioctl_data *data = if_mii(ifr); |
| |
| if (adapter->hw.phy.media_type != e1000_media_type_copper) |
| return -EOPNOTSUPP; |
| |
| switch (cmd) { |
| case SIOCGMIIPHY: |
| data->phy_id = adapter->hw.phy.addr; |
| break; |
| case SIOCGMIIREG: |
| e1000_phy_read_status(adapter); |
| |
| switch (data->reg_num & 0x1F) { |
| case MII_BMCR: |
| data->val_out = adapter->phy_regs.bmcr; |
| break; |
| case MII_BMSR: |
| data->val_out = adapter->phy_regs.bmsr; |
| break; |
| case MII_PHYSID1: |
| data->val_out = (adapter->hw.phy.id >> 16); |
| break; |
| case MII_PHYSID2: |
| data->val_out = (adapter->hw.phy.id & 0xFFFF); |
| break; |
| case MII_ADVERTISE: |
| data->val_out = adapter->phy_regs.advertise; |
| break; |
| case MII_LPA: |
| data->val_out = adapter->phy_regs.lpa; |
| break; |
| case MII_EXPANSION: |
| data->val_out = adapter->phy_regs.expansion; |
| break; |
| case MII_CTRL1000: |
| data->val_out = adapter->phy_regs.ctrl1000; |
| break; |
| case MII_STAT1000: |
| data->val_out = adapter->phy_regs.stat1000; |
| break; |
| case MII_ESTATUS: |
| data->val_out = adapter->phy_regs.estatus; |
| break; |
| default: |
| return -EIO; |
| } |
| break; |
| case SIOCSMIIREG: |
| default: |
| return -EOPNOTSUPP; |
| } |
| return 0; |
| } |
| |
| /** |
| * e1000e_hwtstamp_set - control hardware time stamping |
| * @netdev: network interface device structure |
| * @ifr: interface request |
| * |
| * Outgoing time stamping can be enabled and disabled. Play nice and |
| * disable it when requested, although it shouldn't cause any overhead |
| * when no packet needs it. At most one packet in the queue may be |
| * marked for time stamping, otherwise it would be impossible to tell |
| * for sure to which packet the hardware time stamp belongs. |
| * |
| * Incoming time stamping has to be configured via the hardware filters. |
| * Not all combinations are supported, in particular event type has to be |
| * specified. Matching the kind of event packet is not supported, with the |
| * exception of "all V2 events regardless of level 2 or 4". |
| **/ |
| static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct hwtstamp_config config; |
| int ret_val; |
| |
| if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) |
| return -EFAULT; |
| |
| ret_val = e1000e_config_hwtstamp(adapter, &config); |
| if (ret_val) |
| return ret_val; |
| |
| switch (config.rx_filter) { |
| case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: |
| case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: |
| case HWTSTAMP_FILTER_PTP_V2_SYNC: |
| case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: |
| case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: |
| case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: |
| /* With V2 type filters which specify a Sync or Delay Request, |
| * Path Delay Request/Response messages are also time stamped |
| * by hardware so notify the caller the requested packets plus |
| * some others are time stamped. |
| */ |
| config.rx_filter = HWTSTAMP_FILTER_SOME; |
| break; |
| default: |
| break; |
| } |
| |
| return copy_to_user(ifr->ifr_data, &config, |
| sizeof(config)) ? -EFAULT : 0; |
| } |
| |
| static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| |
| return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config, |
| sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0; |
| } |
| |
| static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) |
| { |
| switch (cmd) { |
| case SIOCGMIIPHY: |
| case SIOCGMIIREG: |
| case SIOCSMIIREG: |
| return e1000_mii_ioctl(netdev, ifr, cmd); |
| case SIOCSHWTSTAMP: |
| return e1000e_hwtstamp_set(netdev, ifr); |
| case SIOCGHWTSTAMP: |
| return e1000e_hwtstamp_get(netdev, ifr); |
| default: |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 i, mac_reg, wuc; |
| u16 phy_reg, wuc_enable; |
| int retval; |
| |
| /* copy MAC RARs to PHY RARs */ |
| e1000_copy_rx_addrs_to_phy_ich8lan(hw); |
| |
| retval = hw->phy.ops.acquire(hw); |
| if (retval) { |
| e_err("Could not acquire PHY\n"); |
| return retval; |
| } |
| |
| /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */ |
| retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable); |
| if (retval) |
| goto release; |
| |
| /* copy MAC MTA to PHY MTA - only needed for pchlan */ |
| for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) { |
| mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i); |
| hw->phy.ops.write_reg_page(hw, BM_MTA(i), |
| (u16)(mac_reg & 0xFFFF)); |
| hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1, |
| (u16)((mac_reg >> 16) & 0xFFFF)); |
| } |
| |
| /* configure PHY Rx Control register */ |
| hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg); |
| mac_reg = er32(RCTL); |
| if (mac_reg & E1000_RCTL_UPE) |
| phy_reg |= BM_RCTL_UPE; |
| if (mac_reg & E1000_RCTL_MPE) |
| phy_reg |= BM_RCTL_MPE; |
| phy_reg &= ~(BM_RCTL_MO_MASK); |
| if (mac_reg & E1000_RCTL_MO_3) |
| phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT) |
| << BM_RCTL_MO_SHIFT); |
| if (mac_reg & E1000_RCTL_BAM) |
| phy_reg |= BM_RCTL_BAM; |
| if (mac_reg & E1000_RCTL_PMCF) |
| phy_reg |= BM_RCTL_PMCF; |
| mac_reg = er32(CTRL); |
| if (mac_reg & E1000_CTRL_RFCE) |
| phy_reg |= BM_RCTL_RFCE; |
| hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg); |
| |
| wuc = E1000_WUC_PME_EN; |
| if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC)) |
| wuc |= E1000_WUC_APME; |
| |
| /* enable PHY wakeup in MAC register */ |
| ew32(WUFC, wufc); |
| ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME | |
| E1000_WUC_PME_STATUS | wuc)); |
| |
| /* configure and enable PHY wakeup in PHY registers */ |
| hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc); |
| hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc); |
| |
| /* activate PHY wakeup */ |
| wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT; |
| retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable); |
| if (retval) |
| e_err("Could not set PHY Host Wakeup bit\n"); |
| release: |
| hw->phy.ops.release(hw); |
| |
| return retval; |
| } |
| |
| static void e1000e_flush_lpic(struct pci_dev *pdev) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| u32 ret_val; |
| |
| pm_runtime_get_sync(netdev->dev.parent); |
| |
| ret_val = hw->phy.ops.acquire(hw); |
| if (ret_val) |
| goto fl_out; |
| |
| pr_info("EEE TX LPI TIMER: %08X\n", |
| er32(LPIC) >> E1000_LPIC_LPIET_SHIFT); |
| |
| hw->phy.ops.release(hw); |
| |
| fl_out: |
| pm_runtime_put_sync(netdev->dev.parent); |
| } |
| |
| /* S0ix implementation */ |
| static void e1000e_s0ix_entry_flow(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 mac_data; |
| u16 phy_data; |
| |
| /* Disable the periodic inband message, |
| * don't request PCIe clock in K1 page770_17[10:9] = 10b |
| */ |
| e1e_rphy(hw, HV_PM_CTRL, &phy_data); |
| phy_data &= ~HV_PM_CTRL_K1_CLK_REQ; |
| phy_data |= BIT(10); |
| e1e_wphy(hw, HV_PM_CTRL, phy_data); |
| |
| /* Make sure we don't exit K1 every time a new packet arrives |
| * 772_29[5] = 1 CS_Mode_Stay_In_K1 |
| */ |
| e1e_rphy(hw, I217_CGFREG, &phy_data); |
| phy_data |= BIT(5); |
| e1e_wphy(hw, I217_CGFREG, phy_data); |
| |
| /* Change the MAC/PHY interface to SMBus |
| * Force the SMBus in PHY page769_23[0] = 1 |
| * Force the SMBus in MAC CTRL_EXT[11] = 1 |
| */ |
| e1e_rphy(hw, CV_SMB_CTRL, &phy_data); |
| phy_data |= CV_SMB_CTRL_FORCE_SMBUS; |
| e1e_wphy(hw, CV_SMB_CTRL, phy_data); |
| mac_data = er32(CTRL_EXT); |
| mac_data |= E1000_CTRL_EXT_FORCE_SMBUS; |
| ew32(CTRL_EXT, mac_data); |
| |
| /* DFT control: PHY bit: page769_20[0] = 1 |
| * Gate PPW via EXTCNF_CTRL - set 0x0F00[7] = 1 |
| */ |
| e1e_rphy(hw, I82579_DFT_CTRL, &phy_data); |
| phy_data |= BIT(0); |
| e1e_wphy(hw, I82579_DFT_CTRL, phy_data); |
| |
| mac_data = er32(EXTCNF_CTRL); |
| mac_data |= E1000_EXTCNF_CTRL_GATE_PHY_CFG; |
| ew32(EXTCNF_CTRL, mac_data); |
| |
| /* Check MAC Tx/Rx packet buffer pointers. |
| * Reset MAC Tx/Rx packet buffer pointers to suppress any |
| * pending traffic indication that would prevent power gating. |
| */ |
| mac_data = er32(TDFH); |
| if (mac_data) |
| ew32(TDFH, 0); |
| mac_data = er32(TDFT); |
| if (mac_data) |
| ew32(TDFT, 0); |
| mac_data = er32(TDFHS); |
| if (mac_data) |
| ew32(TDFHS, 0); |
| mac_data = er32(TDFTS); |
| if (mac_data) |
| ew32(TDFTS, 0); |
| mac_data = er32(TDFPC); |
| if (mac_data) |
| ew32(TDFPC, 0); |
| mac_data = er32(RDFH); |
| if (mac_data) |
| ew32(RDFH, 0); |
| mac_data = er32(RDFT); |
| if (mac_data) |
| ew32(RDFT, 0); |
| mac_data = er32(RDFHS); |
| if (mac_data) |
| ew32(RDFHS, 0); |
| mac_data = er32(RDFTS); |
| if (mac_data) |
| ew32(RDFTS, 0); |
| mac_data = er32(RDFPC); |
| if (mac_data) |
| ew32(RDFPC, 0); |
| |
| /* Enable the Dynamic Power Gating in the MAC */ |
| mac_data = er32(FEXTNVM7); |
| mac_data |= BIT(22); |
| ew32(FEXTNVM7, mac_data); |
| |
| /* Disable the time synchronization clock */ |
| mac_data = er32(FEXTNVM7); |
| mac_data |= BIT(31); |
| mac_data &= ~BIT(0); |
| ew32(FEXTNVM7, mac_data); |
| |
| /* Dynamic Power Gating Enable */ |
| mac_data = er32(CTRL_EXT); |
| mac_data |= BIT(3); |
| ew32(CTRL_EXT, mac_data); |
| |
| /* Disable disconnected cable conditioning for Power Gating */ |
| mac_data = er32(DPGFR); |
| mac_data |= BIT(2); |
| ew32(DPGFR, mac_data); |
| |
| /* Don't wake from dynamic Power Gating with clock request */ |
| mac_data = er32(FEXTNVM12); |
| mac_data |= BIT(12); |
| ew32(FEXTNVM12, mac_data); |
| |
| /* Ungate PGCB clock */ |
| mac_data = er32(FEXTNVM9); |
| mac_data &= ~BIT(28); |
| ew32(FEXTNVM9, mac_data); |
| |
| /* Enable K1 off to enable mPHY Power Gating */ |
| mac_data = er32(FEXTNVM6); |
| mac_data |= BIT(31); |
| ew32(FEXTNVM6, mac_data); |
| |
| /* Enable mPHY power gating for any link and speed */ |
| mac_data = er32(FEXTNVM8); |
| mac_data |= BIT(9); |
| ew32(FEXTNVM8, mac_data); |
| |
| /* Enable the Dynamic Clock Gating in the DMA and MAC */ |
| mac_data = er32(CTRL_EXT); |
| mac_data |= E1000_CTRL_EXT_DMA_DYN_CLK_EN; |
| ew32(CTRL_EXT, mac_data); |
| |
| /* No MAC DPG gating SLP_S0 in modern standby |
| * Switch the logic of the lanphypc to use PMC counter |
| */ |
| mac_data = er32(FEXTNVM5); |
| mac_data |= BIT(7); |
| ew32(FEXTNVM5, mac_data); |
| } |
| |
| static void e1000e_s0ix_exit_flow(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 mac_data; |
| u16 phy_data; |
| |
| /* Disable the Dynamic Power Gating in the MAC */ |
| mac_data = er32(FEXTNVM7); |
| mac_data &= 0xFFBFFFFF; |
| ew32(FEXTNVM7, mac_data); |
| |
| /* Enable the time synchronization clock */ |
| mac_data = er32(FEXTNVM7); |
| mac_data |= BIT(0); |
| ew32(FEXTNVM7, mac_data); |
| |
| /* Disable mPHY power gating for any link and speed */ |
| mac_data = er32(FEXTNVM8); |
| mac_data &= ~BIT(9); |
| ew32(FEXTNVM8, mac_data); |
| |
| /* Disable K1 off */ |
| mac_data = er32(FEXTNVM6); |
| mac_data &= ~BIT(31); |
| ew32(FEXTNVM6, mac_data); |
| |
| /* Disable Ungate PGCB clock */ |
| mac_data = er32(FEXTNVM9); |
| mac_data |= BIT(28); |
| ew32(FEXTNVM9, mac_data); |
| |
| /* Cancel not waking from dynamic |
| * Power Gating with clock request |
| */ |
| mac_data = er32(FEXTNVM12); |
| mac_data &= ~BIT(12); |
| ew32(FEXTNVM12, mac_data); |
| |
| /* Cancel disable disconnected cable conditioning |
| * for Power Gating |
| */ |
| mac_data = er32(DPGFR); |
| mac_data &= ~BIT(2); |
| ew32(DPGFR, mac_data); |
| |
| /* Disable Dynamic Power Gating */ |
| mac_data = er32(CTRL_EXT); |
| mac_data &= 0xFFFFFFF7; |
| ew32(CTRL_EXT, mac_data); |
| |
| /* Disable the Dynamic Clock Gating in the DMA and MAC */ |
| mac_data = er32(CTRL_EXT); |
| mac_data &= 0xFFF7FFFF; |
| ew32(CTRL_EXT, mac_data); |
| |
| /* Revert the lanphypc logic to use the internal Gbe counter |
| * and not the PMC counter |
| */ |
| mac_data = er32(FEXTNVM5); |
| mac_data &= 0xFFFFFF7F; |
| ew32(FEXTNVM5, mac_data); |
| |
| /* Enable the periodic inband message, |
| * Request PCIe clock in K1 page770_17[10:9] =01b |
| */ |
| e1e_rphy(hw, HV_PM_CTRL, &phy_data); |
| phy_data &= 0xFBFF; |
| phy_data |= HV_PM_CTRL_K1_CLK_REQ; |
| e1e_wphy(hw, HV_PM_CTRL, phy_data); |
| |
| /* Return back configuration |
| * 772_29[5] = 0 CS_Mode_Stay_In_K1 |
| */ |
| e1e_rphy(hw, I217_CGFREG, &phy_data); |
| phy_data &= 0xFFDF; |
| e1e_wphy(hw, I217_CGFREG, phy_data); |
| |
| /* Change the MAC/PHY interface to Kumeran |
| * Unforce the SMBus in PHY page769_23[0] = 0 |
| * Unforce the SMBus in MAC CTRL_EXT[11] = 0 |
| */ |
| e1e_rphy(hw, CV_SMB_CTRL, &phy_data); |
| phy_data &= ~CV_SMB_CTRL_FORCE_SMBUS; |
| e1e_wphy(hw, CV_SMB_CTRL, phy_data); |
| mac_data = er32(CTRL_EXT); |
| mac_data &= ~E1000_CTRL_EXT_FORCE_SMBUS; |
| ew32(CTRL_EXT, mac_data); |
| } |
| |
| static int e1000e_pm_freeze(struct device *dev) |
| { |
| struct net_device *netdev = dev_get_drvdata(dev); |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| bool present; |
| |
| rtnl_lock(); |
| |
| present = netif_device_present(netdev); |
| netif_device_detach(netdev); |
| |
| if (present && netif_running(netdev)) { |
| int count = E1000_CHECK_RESET_COUNT; |
| |
| while (test_bit(__E1000_RESETTING, &adapter->state) && count--) |
| usleep_range(10000, 11000); |
| |
| WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); |
| |
| /* Quiesce the device without resetting the hardware */ |
| e1000e_down(adapter, false); |
| e1000_free_irq(adapter); |
| } |
| rtnl_unlock(); |
| |
| e1000e_reset_interrupt_capability(adapter); |
| |
| /* Allow time for pending master requests to run */ |
| e1000e_disable_pcie_master(&adapter->hw); |
| |
| return 0; |
| } |
| |
| static int __e1000_shutdown(struct pci_dev *pdev, bool runtime) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| u32 ctrl, ctrl_ext, rctl, status, wufc; |
| int retval = 0; |
| |
| /* Runtime suspend should only enable wakeup for link changes */ |
| if (runtime) |
| wufc = E1000_WUFC_LNKC; |
| else if (device_may_wakeup(&pdev->dev)) |
| wufc = adapter->wol; |
| else |
| wufc = 0; |
| |
| status = er32(STATUS); |
| if (status & E1000_STATUS_LU) |
| wufc &= ~E1000_WUFC_LNKC; |
| |
| if (wufc) { |
| e1000_setup_rctl(adapter); |
| e1000e_set_rx_mode(netdev); |
| |
| /* turn on all-multi mode if wake on multicast is enabled */ |
| if (wufc & E1000_WUFC_MC) { |
| rctl = er32(RCTL); |
| rctl |= E1000_RCTL_MPE; |
| ew32(RCTL, rctl); |
| } |
| |
| ctrl = er32(CTRL); |
| ctrl |= E1000_CTRL_ADVD3WUC; |
| if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP)) |
| ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT; |
| ew32(CTRL, ctrl); |
| |
| if (adapter->hw.phy.media_type == e1000_media_type_fiber || |
| adapter->hw.phy.media_type == |
| e1000_media_type_internal_serdes) { |
| /* keep the laser running in D3 */ |
| ctrl_ext = er32(CTRL_EXT); |
| ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA; |
| ew32(CTRL_EXT, ctrl_ext); |
| } |
| |
| if (!runtime) |
| e1000e_power_up_phy(adapter); |
| |
| if (adapter->flags & FLAG_IS_ICH) |
| e1000_suspend_workarounds_ich8lan(&adapter->hw); |
| |
| if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) { |
| /* enable wakeup by the PHY */ |
| retval = e1000_init_phy_wakeup(adapter, wufc); |
| if (retval) |
| return retval; |
| } else { |
| /* enable wakeup by the MAC */ |
| ew32(WUFC, wufc); |
| ew32(WUC, E1000_WUC_PME_EN); |
| } |
| } else { |
| ew32(WUC, 0); |
| ew32(WUFC, 0); |
| |
| e1000_power_down_phy(adapter); |
| } |
| |
| if (adapter->hw.phy.type == e1000_phy_igp_3) { |
| e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw); |
| } else if (hw->mac.type >= e1000_pch_lpt) { |
| if (wufc && !(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC))) |
| /* ULP does not support wake from unicast, multicast |
| * or broadcast. |
| */ |
| retval = e1000_enable_ulp_lpt_lp(hw, !runtime); |
| |
| if (retval) |
| return retval; |
| } |
| |
| /* Ensure that the appropriate bits are set in LPI_CTRL |
| * for EEE in Sx |
| */ |
| if ((hw->phy.type >= e1000_phy_i217) && |
| adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) { |
| u16 lpi_ctrl = 0; |
| |
| retval = hw->phy.ops.acquire(hw); |
| if (!retval) { |
| retval = e1e_rphy_locked(hw, I82579_LPI_CTRL, |
| &lpi_ctrl); |
| if (!retval) { |
| if (adapter->eee_advert & |
| hw->dev_spec.ich8lan.eee_lp_ability & |
| I82579_EEE_100_SUPPORTED) |
| lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE; |
| if (adapter->eee_advert & |
| hw->dev_spec.ich8lan.eee_lp_ability & |
| I82579_EEE_1000_SUPPORTED) |
| lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE; |
| |
| retval = e1e_wphy_locked(hw, I82579_LPI_CTRL, |
| lpi_ctrl); |
| } |
| } |
| hw->phy.ops.release(hw); |
| } |
| |
| /* Release control of h/w to f/w. If f/w is AMT enabled, this |
| * would have already happened in close and is redundant. |
| */ |
| e1000e_release_hw_control(adapter); |
| |
| pci_clear_master(pdev); |
| |
| /* The pci-e switch on some quad port adapters will report a |
| * correctable error when the MAC transitions from D0 to D3. To |
| * prevent this we need to mask off the correctable errors on the |
| * downstream port of the pci-e switch. |
| * |
| * We don't have the associated upstream bridge while assigning |
| * the PCI device into guest. For example, the KVM on power is |
| * one of the cases. |
| */ |
| if (adapter->flags & FLAG_IS_QUAD_PORT) { |
| struct pci_dev *us_dev = pdev->bus->self; |
| u16 devctl; |
| |
| if (!us_dev) |
| return 0; |
| |
| pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl); |
| pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, |
| (devctl & ~PCI_EXP_DEVCTL_CERE)); |
| |
| pci_save_state(pdev); |
| pci_prepare_to_sleep(pdev); |
| |
| pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * __e1000e_disable_aspm - Disable ASPM states |
| * @pdev: pointer to PCI device struct |
| * @state: bit-mask of ASPM states to disable |
| * @locked: indication if this context holds pci_bus_sem locked. |
| * |
| * Some devices *must* have certain ASPM states disabled per hardware errata. |
| **/ |
| static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked) |
| { |
| struct pci_dev *parent = pdev->bus->self; |
| u16 aspm_dis_mask = 0; |
| u16 pdev_aspmc, parent_aspmc; |
| |
| switch (state) { |
| case PCIE_LINK_STATE_L0S: |
| case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1: |
| aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S; |
| fallthrough; /* can't have L1 without L0s */ |
| case PCIE_LINK_STATE_L1: |
| aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1; |
| break; |
| default: |
| return; |
| } |
| |
| pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc); |
| pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC; |
| |
| if (parent) { |
| pcie_capability_read_word(parent, PCI_EXP_LNKCTL, |
| &parent_aspmc); |
| parent_aspmc &= PCI_EXP_LNKCTL_ASPMC; |
| } |
| |
| /* Nothing to do if the ASPM states to be disabled already are */ |
| if (!(pdev_aspmc & aspm_dis_mask) && |
| (!parent || !(parent_aspmc & aspm_dis_mask))) |
| return; |
| |
| dev_info(&pdev->dev, "Disabling ASPM %s %s\n", |
| (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ? |
| "L0s" : "", |
| (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ? |
| "L1" : ""); |
| |
| #ifdef CONFIG_PCIEASPM |
| if (locked) |
| pci_disable_link_state_locked(pdev, state); |
| else |
| pci_disable_link_state(pdev, state); |
| |
| /* Double-check ASPM control. If not disabled by the above, the |
| * BIOS is preventing that from happening (or CONFIG_PCIEASPM is |
| * not enabled); override by writing PCI config space directly. |
| */ |
| pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc); |
| pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC; |
| |
| if (!(aspm_dis_mask & pdev_aspmc)) |
| return; |
| #endif |
| |
| /* Both device and parent should have the same ASPM setting. |
| * Disable ASPM in downstream component first and then upstream. |
| */ |
| pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask); |
| |
| if (parent) |
| pcie_capability_clear_word(parent, PCI_EXP_LNKCTL, |
| aspm_dis_mask); |
| } |
| |
| /** |
| * e1000e_disable_aspm - Disable ASPM states. |
| * @pdev: pointer to PCI device struct |
| * @state: bit-mask of ASPM states to disable |
| * |
| * This function acquires the pci_bus_sem! |
| * Some devices *must* have certain ASPM states disabled per hardware errata. |
| **/ |
| static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state) |
| { |
| __e1000e_disable_aspm(pdev, state, 0); |
| } |
| |
| /** |
| * e1000e_disable_aspm_locked - Disable ASPM states. |
| * @pdev: pointer to PCI device struct |
| * @state: bit-mask of ASPM states to disable |
| * |
| * This function must be called with pci_bus_sem acquired! |
| * Some devices *must* have certain ASPM states disabled per hardware errata. |
| **/ |
| static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state) |
| { |
| __e1000e_disable_aspm(pdev, state, 1); |
| } |
| |
| static int e1000e_pm_thaw(struct device *dev) |
| { |
| struct net_device *netdev = dev_get_drvdata(dev); |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| int rc = 0; |
| |
| e1000e_set_interrupt_capability(adapter); |
| |
| rtnl_lock(); |
| if (netif_running(netdev)) { |
| rc = e1000_request_irq(adapter); |
| if (rc) |
| goto err_irq; |
| |
| e1000e_up(adapter); |
| } |
| |
| netif_device_attach(netdev); |
| err_irq: |
| rtnl_unlock(); |
| |
| return rc; |
| } |
| |
| static int __e1000_resume(struct pci_dev *pdev) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| u16 aspm_disable_flag = 0; |
| |
| if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S) |
| aspm_disable_flag = PCIE_LINK_STATE_L0S; |
| if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1) |
| aspm_disable_flag |= PCIE_LINK_STATE_L1; |
| if (aspm_disable_flag) |
| e1000e_disable_aspm(pdev, aspm_disable_flag); |
| |
| pci_set_master(pdev); |
| |
| if (hw->mac.type >= e1000_pch2lan) |
| e1000_resume_workarounds_pchlan(&adapter->hw); |
| |
| e1000e_power_up_phy(adapter); |
| |
| /* report the system wakeup cause from S3/S4 */ |
| if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) { |
| u16 phy_data; |
| |
| e1e_rphy(&adapter->hw, BM_WUS, &phy_data); |
| if (phy_data) { |
| e_info("PHY Wakeup cause - %s\n", |
| phy_data & E1000_WUS_EX ? "Unicast Packet" : |
| phy_data & E1000_WUS_MC ? "Multicast Packet" : |
| phy_data & E1000_WUS_BC ? "Broadcast Packet" : |
| phy_data & E1000_WUS_MAG ? "Magic Packet" : |
| phy_data & E1000_WUS_LNKC ? |
| "Link Status Change" : "other"); |
| } |
| e1e_wphy(&adapter->hw, BM_WUS, ~0); |
| } else { |
| u32 wus = er32(WUS); |
| |
| if (wus) { |
| e_info("MAC Wakeup cause - %s\n", |
| wus & E1000_WUS_EX ? "Unicast Packet" : |
| wus & E1000_WUS_MC ? "Multicast Packet" : |
| wus & E1000_WUS_BC ? "Broadcast Packet" : |
| wus & E1000_WUS_MAG ? "Magic Packet" : |
| wus & E1000_WUS_LNKC ? "Link Status Change" : |
| "other"); |
| } |
| ew32(WUS, ~0); |
| } |
| |
| e1000e_reset(adapter); |
| |
| e1000_init_manageability_pt(adapter); |
| |
| /* If the controller has AMT, do not set DRV_LOAD until the interface |
| * is up. For all other cases, let the f/w know that the h/w is now |
| * under the control of the driver. |
| */ |
| if (!(adapter->flags & FLAG_HAS_AMT)) |
| e1000e_get_hw_control(adapter); |
| |
| return 0; |
| } |
| |
| static __maybe_unused int e1000e_pm_prepare(struct device *dev) |
| { |
| return pm_runtime_suspended(dev) && |
| pm_suspend_via_firmware(); |
| } |
| |
| static __maybe_unused int e1000e_pm_suspend(struct device *dev) |
| { |
| struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev)); |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct pci_dev *pdev = to_pci_dev(dev); |
| int rc; |
| |
| e1000e_flush_lpic(pdev); |
| |
| e1000e_pm_freeze(dev); |
| |
| rc = __e1000_shutdown(pdev, false); |
| if (rc) { |
| e1000e_pm_thaw(dev); |
| } else { |
| /* Introduce S0ix implementation */ |
| if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS) |
| e1000e_s0ix_entry_flow(adapter); |
| } |
| |
| return rc; |
| } |
| |
| static __maybe_unused int e1000e_pm_resume(struct device *dev) |
| { |
| struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev)); |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct pci_dev *pdev = to_pci_dev(dev); |
| int rc; |
| |
| /* Introduce S0ix implementation */ |
| if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS) |
| e1000e_s0ix_exit_flow(adapter); |
| |
| rc = __e1000_resume(pdev); |
| if (rc) |
| return rc; |
| |
| return e1000e_pm_thaw(dev); |
| } |
| |
| static __maybe_unused int e1000e_pm_runtime_idle(struct device *dev) |
| { |
| struct net_device *netdev = dev_get_drvdata(dev); |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| u16 eee_lp; |
| |
| eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability; |
| |
| if (!e1000e_has_link(adapter)) { |
| adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp; |
| pm_schedule_suspend(dev, 5 * MSEC_PER_SEC); |
| } |
| |
| return -EBUSY; |
| } |
| |
| static __maybe_unused int e1000e_pm_runtime_resume(struct device *dev) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| int rc; |
| |
| rc = __e1000_resume(pdev); |
| if (rc) |
| return rc; |
| |
| if (netdev->flags & IFF_UP) |
| e1000e_up(adapter); |
| |
| return rc; |
| } |
| |
| static __maybe_unused int e1000e_pm_runtime_suspend(struct device *dev) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| |
| if (netdev->flags & IFF_UP) { |
| int count = E1000_CHECK_RESET_COUNT; |
| |
| while (test_bit(__E1000_RESETTING, &adapter->state) && count--) |
| usleep_range(10000, 11000); |
| |
| WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); |
| |
| /* Down the device without resetting the hardware */ |
| e1000e_down(adapter, false); |
| } |
| |
| if (__e1000_shutdown(pdev, true)) { |
| e1000e_pm_runtime_resume(dev); |
| return -EBUSY; |
| } |
| |
| return 0; |
| } |
| |
| static void e1000_shutdown(struct pci_dev *pdev) |
| { |
| e1000e_flush_lpic(pdev); |
| |
| e1000e_pm_freeze(&pdev->dev); |
| |
| __e1000_shutdown(pdev, false); |
| } |
| |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| |
| static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data) |
| { |
| struct net_device *netdev = data; |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| |
| if (adapter->msix_entries) { |
| int vector, msix_irq; |
| |
| vector = 0; |
| msix_irq = adapter->msix_entries[vector].vector; |
| if (disable_hardirq(msix_irq)) |
| e1000_intr_msix_rx(msix_irq, netdev); |
| enable_irq(msix_irq); |
| |
| vector++; |
| msix_irq = adapter->msix_entries[vector].vector; |
| if (disable_hardirq(msix_irq)) |
| e1000_intr_msix_tx(msix_irq, netdev); |
| enable_irq(msix_irq); |
| |
| vector++; |
| msix_irq = adapter->msix_entries[vector].vector; |
| if (disable_hardirq(msix_irq)) |
| e1000_msix_other(msix_irq, netdev); |
| enable_irq(msix_irq); |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * e1000_netpoll |
| * @netdev: network interface device structure |
| * |
| * Polling 'interrupt' - used by things like netconsole to send skbs |
| * without having to re-enable interrupts. It's not called while |
| * the interrupt routine is executing. |
| */ |
| static void e1000_netpoll(struct net_device *netdev) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| |
| switch (adapter->int_mode) { |
| case E1000E_INT_MODE_MSIX: |
| e1000_intr_msix(adapter->pdev->irq, netdev); |
| break; |
| case E1000E_INT_MODE_MSI: |
| if (disable_hardirq(adapter->pdev->irq)) |
| e1000_intr_msi(adapter->pdev->irq, netdev); |
| enable_irq(adapter->pdev->irq); |
| break; |
| default: /* E1000E_INT_MODE_LEGACY */ |
| if (disable_hardirq(adapter->pdev->irq)) |
| e1000_intr(adapter->pdev->irq, netdev); |
| enable_irq(adapter->pdev->irq); |
| break; |
| } |
| } |
| #endif |
| |
| /** |
| * e1000_io_error_detected - called when PCI error is detected |
| * @pdev: Pointer to PCI device |
| * @state: The current pci connection state |
| * |
| * This function is called after a PCI bus error affecting |
| * this device has been detected. |
| */ |
| static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, |
| pci_channel_state_t state) |
| { |
| e1000e_pm_freeze(&pdev->dev); |
| |
| if (state == pci_channel_io_perm_failure) |
| return PCI_ERS_RESULT_DISCONNECT; |
| |
| pci_disable_device(pdev); |
| |
| /* Request a slot reset. */ |
| return PCI_ERS_RESULT_NEED_RESET; |
| } |
| |
| /** |
| * e1000_io_slot_reset - called after the pci bus has been reset. |
| * @pdev: Pointer to PCI device |
| * |
| * Restart the card from scratch, as if from a cold-boot. Implementation |
| * resembles the first-half of the e1000e_pm_resume routine. |
| */ |
| static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| u16 aspm_disable_flag = 0; |
| int err; |
| pci_ers_result_t result; |
| |
| if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S) |
| aspm_disable_flag = PCIE_LINK_STATE_L0S; |
| if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1) |
| aspm_disable_flag |= PCIE_LINK_STATE_L1; |
| if (aspm_disable_flag) |
| e1000e_disable_aspm_locked(pdev, aspm_disable_flag); |
| |
| err = pci_enable_device_mem(pdev); |
| if (err) { |
| dev_err(&pdev->dev, |
| "Cannot re-enable PCI device after reset.\n"); |
| result = PCI_ERS_RESULT_DISCONNECT; |
| } else { |
| pdev->state_saved = true; |
| pci_restore_state(pdev); |
| pci_set_master(pdev); |
| |
| pci_enable_wake(pdev, PCI_D3hot, 0); |
| pci_enable_wake(pdev, PCI_D3cold, 0); |
| |
| e1000e_reset(adapter); |
| ew32(WUS, ~0); |
| result = PCI_ERS_RESULT_RECOVERED; |
| } |
| |
| return result; |
| } |
| |
| /** |
| * e1000_io_resume - called when traffic can start flowing again. |
| * @pdev: Pointer to PCI device |
| * |
| * This callback is called when the error recovery driver tells us that |
| * its OK to resume normal operation. Implementation resembles the |
| * second-half of the e1000e_pm_resume routine. |
| */ |
| static void e1000_io_resume(struct pci_dev *pdev) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| |
| e1000_init_manageability_pt(adapter); |
| |
| e1000e_pm_thaw(&pdev->dev); |
| |
| /* If the controller has AMT, do not set DRV_LOAD until the interface |
| * is up. For all other cases, let the f/w know that the h/w is now |
| * under the control of the driver. |
| */ |
| if (!(adapter->flags & FLAG_HAS_AMT)) |
| e1000e_get_hw_control(adapter); |
| } |
| |
| static void e1000_print_device_info(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| struct net_device *netdev = adapter->netdev; |
| u32 ret_val; |
| u8 pba_str[E1000_PBANUM_LENGTH]; |
| |
| /* print bus type/speed/width info */ |
| e_info("(PCI Express:2.5GT/s:%s) %pM\n", |
| /* bus width */ |
| ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" : |
| "Width x1"), |
| /* MAC address */ |
| netdev->dev_addr); |
| e_info("Intel(R) PRO/%s Network Connection\n", |
| (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000"); |
| ret_val = e1000_read_pba_string_generic(hw, pba_str, |
| E1000_PBANUM_LENGTH); |
| if (ret_val) |
| strlcpy((char *)pba_str, "Unknown", sizeof(pba_str)); |
| e_info("MAC: %d, PHY: %d, PBA No: %s\n", |
| hw->mac.type, hw->phy.type, pba_str); |
| } |
| |
| static void e1000_eeprom_checks(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| int ret_val; |
| u16 buf = 0; |
| |
| if (hw->mac.type != e1000_82573) |
| return; |
| |
| ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf); |
| le16_to_cpus(&buf); |
| if (!ret_val && (!(buf & BIT(0)))) { |
| /* Deep Smart Power Down (DSPD) */ |
| dev_warn(&adapter->pdev->dev, |
| "Warning: detected DSPD enabled in EEPROM\n"); |
| } |
| } |
| |
| static netdev_features_t e1000_fix_features(struct net_device *netdev, |
| netdev_features_t features) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| |
| /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */ |
| if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN)) |
| features &= ~NETIF_F_RXFCS; |
| |
| /* Since there is no support for separate Rx/Tx vlan accel |
| * enable/disable make sure Tx flag is always in same state as Rx. |
| */ |
| if (features & NETIF_F_HW_VLAN_CTAG_RX) |
| features |= NETIF_F_HW_VLAN_CTAG_TX; |
| else |
| features &= ~NETIF_F_HW_VLAN_CTAG_TX; |
| |
| return features; |
| } |
| |
| static int e1000_set_features(struct net_device *netdev, |
| netdev_features_t features) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| netdev_features_t changed = features ^ netdev->features; |
| |
| if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) |
| adapter->flags |= FLAG_TSO_FORCE; |
| |
| if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX | |
| NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS | |
| NETIF_F_RXALL))) |
| return 0; |
| |
| if (changed & NETIF_F_RXFCS) { |
| if (features & NETIF_F_RXFCS) { |
| adapter->flags2 &= ~FLAG2_CRC_STRIPPING; |
| } else { |
| /* We need to take it back to defaults, which might mean |
| * stripping is still disabled at the adapter level. |
| */ |
| if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING) |
| adapter->flags2 |= FLAG2_CRC_STRIPPING; |
| else |
| adapter->flags2 &= ~FLAG2_CRC_STRIPPING; |
| } |
| } |
| |
| netdev->features = features; |
| |
| if (netif_running(netdev)) |
| e1000e_reinit_locked(adapter); |
| else |
| e1000e_reset(adapter); |
| |
| return 1; |
| } |
| |
| static const struct net_device_ops e1000e_netdev_ops = { |
| .ndo_open = e1000e_open, |
| .ndo_stop = e1000e_close, |
| .ndo_start_xmit = e1000_xmit_frame, |
| .ndo_get_stats64 = e1000e_get_stats64, |
| .ndo_set_rx_mode = e1000e_set_rx_mode, |
| .ndo_set_mac_address = e1000_set_mac, |
| .ndo_change_mtu = e1000_change_mtu, |
| .ndo_do_ioctl = e1000_ioctl, |
| .ndo_tx_timeout = e1000_tx_timeout, |
| .ndo_validate_addr = eth_validate_addr, |
| |
| .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid, |
| .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid, |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| .ndo_poll_controller = e1000_netpoll, |
| #endif |
| .ndo_set_features = e1000_set_features, |
| .ndo_fix_features = e1000_fix_features, |
| .ndo_features_check = passthru_features_check, |
| }; |
| |
| /** |
| * e1000_probe - Device Initialization Routine |
| * @pdev: PCI device information struct |
| * @ent: entry in e1000_pci_tbl |
| * |
| * Returns 0 on success, negative on failure |
| * |
| * e1000_probe initializes an adapter identified by a pci_dev structure. |
| * The OS initialization, configuring of the adapter private structure, |
| * and a hardware reset occur. |
| **/ |
| static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent) |
| { |
| struct net_device *netdev; |
| struct e1000_adapter *adapter; |
| struct e1000_hw *hw; |
| const struct e1000_info *ei = e1000_info_tbl[ent->driver_data]; |
| resource_size_t mmio_start, mmio_len; |
| resource_size_t flash_start, flash_len; |
| static int cards_found; |
| u16 aspm_disable_flag = 0; |
| int bars, i, err, pci_using_dac; |
| u16 eeprom_data = 0; |
| u16 eeprom_apme_mask = E1000_EEPROM_APME; |
| s32 ret_val = 0; |
| |
| if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S) |
| aspm_disable_flag = PCIE_LINK_STATE_L0S; |
| if (ei->flags2 & FLAG2_DISABLE_ASPM_L1) |
| aspm_disable_flag |= PCIE_LINK_STATE_L1; |
| if (aspm_disable_flag) |
| e1000e_disable_aspm(pdev, aspm_disable_flag); |
| |
| err = pci_enable_device_mem(pdev); |
| if (err) |
| return err; |
| |
| pci_using_dac = 0; |
| err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); |
| if (!err) { |
| pci_using_dac = 1; |
| } else { |
| err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); |
| if (err) { |
| dev_err(&pdev->dev, |
| "No usable DMA configuration, aborting\n"); |
| goto err_dma; |
| } |
| } |
| |
| bars = pci_select_bars(pdev, IORESOURCE_MEM); |
| err = pci_request_selected_regions_exclusive(pdev, bars, |
| e1000e_driver_name); |
| if (err) |
| goto err_pci_reg; |
| |
| /* AER (Advanced Error Reporting) hooks */ |
| pci_enable_pcie_error_reporting(pdev); |
| |
| pci_set_master(pdev); |
| /* PCI config space info */ |
| err = pci_save_state(pdev); |
| if (err) |
| goto err_alloc_etherdev; |
| |
| err = -ENOMEM; |
| netdev = alloc_etherdev(sizeof(struct e1000_adapter)); |
| if (!netdev) |
| goto err_alloc_etherdev; |
| |
| SET_NETDEV_DEV(netdev, &pdev->dev); |
| |
| netdev->irq = pdev->irq; |
| |
| pci_set_drvdata(pdev, netdev); |
| adapter = netdev_priv(netdev); |
| hw = &adapter->hw; |
| adapter->netdev = netdev; |
| adapter->pdev = pdev; |
| adapter->ei = ei; |
| adapter->pba = ei->pba; |
| adapter->flags = ei->flags; |
| adapter->flags2 = ei->flags2; |
| adapter->hw.adapter = adapter; |
| adapter->hw.mac.type = ei->mac; |
| adapter->max_hw_frame_size = ei->max_hw_frame_size; |
| adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); |
| |
| mmio_start = pci_resource_start(pdev, 0); |
| mmio_len = pci_resource_len(pdev, 0); |
| |
| err = -EIO; |
| adapter->hw.hw_addr = ioremap(mmio_start, mmio_len); |
| if (!adapter->hw.hw_addr) |
| goto err_ioremap; |
| |
| if ((adapter->flags & FLAG_HAS_FLASH) && |
| (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) && |
| (hw->mac.type < e1000_pch_spt)) { |
| flash_start = pci_resource_start(pdev, 1); |
| flash_len = pci_resource_len(pdev, 1); |
| adapter->hw.flash_address = ioremap(flash_start, flash_len); |
| if (!adapter->hw.flash_address) |
| goto err_flashmap; |
| } |
| |
| /* Set default EEE advertisement */ |
| if (adapter->flags2 & FLAG2_HAS_EEE) |
| adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T; |
| |
| /* construct the net_device struct */ |
| netdev->netdev_ops = &e1000e_netdev_ops; |
| e1000e_set_ethtool_ops(netdev); |
| netdev->watchdog_timeo = 5 * HZ; |
| netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64); |
| strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name)); |
| |
| netdev->mem_start = mmio_start; |
| netdev->mem_end = mmio_start + mmio_len; |
| |
| adapter->bd_number = cards_found++; |
| |
| e1000e_check_options(adapter); |
| |
| /* setup adapter struct */ |
| err = e1000_sw_init(adapter); |
| if (err) |
| goto err_sw_init; |
| |
| memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); |
| memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); |
| memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); |
| |
| err = ei->get_variants(adapter); |
| if (err) |
| goto err_hw_init; |
| |
| if ((adapter->flags & FLAG_IS_ICH) && |
| (adapter->flags & FLAG_READ_ONLY_NVM) && |
| (hw->mac.type < e1000_pch_spt)) |
| e1000e_write_protect_nvm_ich8lan(&adapter->hw); |
| |
| hw->mac.ops.get_bus_info(&adapter->hw); |
| |
| adapter->hw.phy.autoneg_wait_to_complete = 0; |
| |
| /* Copper options */ |
| if (adapter->hw.phy.media_type == e1000_media_type_copper) { |
| adapter->hw.phy.mdix = AUTO_ALL_MODES; |
| adapter->hw.phy.disable_polarity_correction = 0; |
| adapter->hw.phy.ms_type = e1000_ms_hw_default; |
| } |
| |
| if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw)) |
| dev_info(&pdev->dev, |
| "PHY reset is blocked due to SOL/IDER session.\n"); |
| |
| /* Set initial default active device features */ |
| netdev->features = (NETIF_F_SG | |
| NETIF_F_HW_VLAN_CTAG_RX | |
| NETIF_F_HW_VLAN_CTAG_TX | |
| NETIF_F_TSO | |
| NETIF_F_TSO6 | |
| NETIF_F_RXHASH | |
| NETIF_F_RXCSUM | |
| NETIF_F_HW_CSUM); |
| |
| /* Set user-changeable features (subset of all device features) */ |
| netdev->hw_features = netdev->features; |
| netdev->hw_features |= NETIF_F_RXFCS; |
| netdev->priv_flags |= IFF_SUPP_NOFCS; |
| netdev->hw_features |= NETIF_F_RXALL; |
| |
| if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) |
| netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; |
| |
| netdev->vlan_features |= (NETIF_F_SG | |
| NETIF_F_TSO | |
| NETIF_F_TSO6 | |
| NETIF_F_HW_CSUM); |
| |
| netdev->priv_flags |= IFF_UNICAST_FLT; |
| |
| if (pci_using_dac) { |
| netdev->features |= NETIF_F_HIGHDMA; |
| netdev->vlan_features |= NETIF_F_HIGHDMA; |
| } |
| |
| /* MTU range: 68 - max_hw_frame_size */ |
| netdev->min_mtu = ETH_MIN_MTU; |
| netdev->max_mtu = adapter->max_hw_frame_size - |
| (VLAN_ETH_HLEN + ETH_FCS_LEN); |
| |
| if (e1000e_enable_mng_pass_thru(&adapter->hw)) |
| adapter->flags |= FLAG_MNG_PT_ENABLED; |
| |
| /* before reading the NVM, reset the controller to |
| * put the device in a known good starting state |
| */ |
| adapter->hw.mac.ops.reset_hw(&adapter->hw); |
| |
| /* systems with ASPM and others may see the checksum fail on the first |
| * attempt. Let's give it a few tries |
| */ |
| for (i = 0;; i++) { |
| if (e1000_validate_nvm_checksum(&adapter->hw) >= 0) |
| break; |
| if (i == 2) { |
| dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); |
| err = -EIO; |
| goto err_eeprom; |
| } |
| } |
| |
| e1000_eeprom_checks(adapter); |
| |
| /* copy the MAC address */ |
| if (e1000e_read_mac_addr(&adapter->hw)) |
| dev_err(&pdev->dev, |
| "NVM Read Error while reading MAC address\n"); |
| |
| memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len); |
| |
| if (!is_valid_ether_addr(netdev->dev_addr)) { |
| dev_err(&pdev->dev, "Invalid MAC Address: %pM\n", |
| netdev->dev_addr); |
| err = -EIO; |
| goto err_eeprom; |
| } |
| |
| timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0); |
| timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0); |
| |
| INIT_WORK(&adapter->reset_task, e1000_reset_task); |
| INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task); |
| INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround); |
| INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task); |
| INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang); |
| |
| /* Initialize link parameters. User can change them with ethtool */ |
| adapter->hw.mac.autoneg = 1; |
| adapter->fc_autoneg = true; |
| adapter->hw.fc.requested_mode = e1000_fc_default; |
| adapter->hw.fc.current_mode = e1000_fc_default; |
| adapter->hw.phy.autoneg_advertised = 0x2f; |
| |
| /* Initial Wake on LAN setting - If APM wake is enabled in |
| * the EEPROM, enable the ACPI Magic Packet filter |
| */ |
| if (adapter->flags & FLAG_APME_IN_WUC) { |
| /* APME bit in EEPROM is mapped to WUC.APME */ |
| eeprom_data = er32(WUC); |
| eeprom_apme_mask = E1000_WUC_APME; |
| if ((hw->mac.type > e1000_ich10lan) && |
| (eeprom_data & E1000_WUC_PHY_WAKE)) |
| adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP; |
| } else if (adapter->flags & FLAG_APME_IN_CTRL3) { |
| if (adapter->flags & FLAG_APME_CHECK_PORT_B && |
| (adapter->hw.bus.func == 1)) |
| ret_val = e1000_read_nvm(&adapter->hw, |
| NVM_INIT_CONTROL3_PORT_B, |
| 1, &eeprom_data); |
| else |
| ret_val = e1000_read_nvm(&adapter->hw, |
| NVM_INIT_CONTROL3_PORT_A, |
| 1, &eeprom_data); |
| } |
| |
| /* fetch WoL from EEPROM */ |
| if (ret_val) |
| e_dbg("NVM read error getting WoL initial values: %d\n", ret_val); |
| else if (eeprom_data & eeprom_apme_mask) |
| adapter->eeprom_wol |= E1000_WUFC_MAG; |
| |
| /* now that we have the eeprom settings, apply the special cases |
| * where the eeprom may be wrong or the board simply won't support |
| * wake on lan on a particular port |
| */ |
| if (!(adapter->flags & FLAG_HAS_WOL)) |
| adapter->eeprom_wol = 0; |
| |
| /* initialize the wol settings based on the eeprom settings */ |
| adapter->wol = adapter->eeprom_wol; |
| |
| /* make sure adapter isn't asleep if manageability is enabled */ |
| if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) || |
| (hw->mac.ops.check_mng_mode(hw))) |
| device_wakeup_enable(&pdev->dev); |
| |
| /* save off EEPROM version number */ |
| ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers); |
| |
| if (ret_val) { |
| e_dbg("NVM read error getting EEPROM version: %d\n", ret_val); |
| adapter->eeprom_vers = 0; |
| } |
| |
| /* init PTP hardware clock */ |
| e1000e_ptp_init(adapter); |
| |
| /* reset the hardware with the new settings */ |
| e1000e_reset(adapter); |
| |
| /* If the controller has AMT, do not set DRV_LOAD until the interface |
| * is up. For all other cases, let the f/w know that the h/w is now |
| * under the control of the driver. |
| */ |
| if (!(adapter->flags & FLAG_HAS_AMT)) |
| e1000e_get_hw_control(adapter); |
| |
| if (hw->mac.type >= e1000_pch_cnp) |
| adapter->flags2 |= FLAG2_ENABLE_S0IX_FLOWS; |
| |
| strlcpy(netdev->name, "eth%d", sizeof(netdev->name)); |
| err = register_netdev(netdev); |
| if (err) |
| goto err_register; |
| |
| /* carrier off reporting is important to ethtool even BEFORE open */ |
| netif_carrier_off(netdev); |
| |
| e1000_print_device_info(adapter); |
| |
| dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_SMART_PREPARE); |
| |
| if (pci_dev_run_wake(pdev) && hw->mac.type != e1000_pch_cnp) |
| pm_runtime_put_noidle(&pdev->dev); |
| |
| return 0; |
| |
| err_register: |
| if (!(adapter->flags & FLAG_HAS_AMT)) |
| e1000e_release_hw_control(adapter); |
| err_eeprom: |
| if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw)) |
| e1000_phy_hw_reset(&adapter->hw); |
| err_hw_init: |
| kfree(adapter->tx_ring); |
| kfree(adapter->rx_ring); |
| err_sw_init: |
| if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt)) |
| iounmap(adapter->hw.flash_address); |
| e1000e_reset_interrupt_capability(adapter); |
| err_flashmap: |
| iounmap(adapter->hw.hw_addr); |
| err_ioremap: |
| free_netdev(netdev); |
| err_alloc_etherdev: |
| pci_release_mem_regions(pdev); |
| err_pci_reg: |
| err_dma: |
| pci_disable_device(pdev); |
| return err; |
| } |
| |
| /** |
| * e1000_remove - Device Removal Routine |
| * @pdev: PCI device information struct |
| * |
| * e1000_remove is called by the PCI subsystem to alert the driver |
| * that it should release a PCI device. The could be caused by a |
| * Hot-Plug event, or because the driver is going to be removed from |
| * memory. |
| **/ |
| static void e1000_remove(struct pci_dev *pdev) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| |
| e1000e_ptp_remove(adapter); |
| |
| /* The timers may be rescheduled, so explicitly disable them |
| * from being rescheduled. |
| */ |
| set_bit(__E1000_DOWN, &adapter->state); |
| del_timer_sync(&adapter->watchdog_timer); |
| del_timer_sync(&adapter->phy_info_timer); |
| |
| cancel_work_sync(&adapter->reset_task); |
| cancel_work_sync(&adapter->watchdog_task); |
| cancel_work_sync(&adapter->downshift_task); |
| cancel_work_sync(&adapter->update_phy_task); |
| cancel_work_sync(&adapter->print_hang_task); |
| |
| if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) { |
| cancel_work_sync(&adapter->tx_hwtstamp_work); |
| if (adapter->tx_hwtstamp_skb) { |
| dev_consume_skb_any(adapter->tx_hwtstamp_skb); |
| adapter->tx_hwtstamp_skb = NULL; |
| } |
| } |
| |
| unregister_netdev(netdev); |
| |
| if (pci_dev_run_wake(pdev)) |
| pm_runtime_get_noresume(&pdev->dev); |
| |
| /* Release control of h/w to f/w. If f/w is AMT enabled, this |
| * would have already happened in close and is redundant. |
| */ |
| e1000e_release_hw_control(adapter); |
| |
| e1000e_reset_interrupt_capability(adapter); |
| kfree(adapter->tx_ring); |
| kfree(adapter->rx_ring); |
| |
| iounmap(adapter->hw.hw_addr); |
| if ((adapter->hw.flash_address) && |
| (adapter->hw.mac.type < e1000_pch_spt)) |
| iounmap(adapter->hw.flash_address); |
| pci_release_mem_regions(pdev); |
| |
| free_netdev(netdev); |
| |
| /* AER disable */ |
| pci_disable_pcie_error_reporting(pdev); |
| |
| pci_disable_device(pdev); |
| } |
| |
| /* PCI Error Recovery (ERS) */ |
| static const struct pci_error_handlers e1000_err_handler = { |
| .error_detected = e1000_io_error_detected, |
| .slot_reset = e1000_io_slot_reset, |
| .resume = e1000_io_resume, |
| }; |
| |
| static const struct pci_device_id e1000_pci_tbl[] = { |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), |
| board_82571 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 }, |
| |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 }, |
| |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 }, |
| |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 }, |
| |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT), |
| board_80003es2lan }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT), |
| board_80003es2lan }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT), |
| board_80003es2lan }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT), |
| board_80003es2lan }, |
| |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan }, |
| |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan }, |
| |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan }, |
| |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan }, |
| |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan }, |
| |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan }, |
| |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM10), board_pch_cnp }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V10), board_pch_cnp }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM11), board_pch_cnp }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V11), board_pch_cnp }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM12), board_pch_spt }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V12), board_pch_spt }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM13), board_pch_cnp }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V13), board_pch_cnp }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM14), board_pch_cnp }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V14), board_pch_cnp }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM15), board_pch_cnp }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V15), board_pch_cnp }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM16), board_pch_cnp }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V16), board_pch_cnp }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM17), board_pch_cnp }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V17), board_pch_cnp }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM18), board_pch_cnp }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V18), board_pch_cnp }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM19), board_pch_cnp }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V19), board_pch_cnp }, |
| |
| { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */ |
| }; |
| MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); |
| |
| static const struct dev_pm_ops e1000_pm_ops = { |
| #ifdef CONFIG_PM_SLEEP |
| .prepare = e1000e_pm_prepare, |
| .suspend = e1000e_pm_suspend, |
| .resume = e1000e_pm_resume, |
| .freeze = e1000e_pm_freeze, |
| .thaw = e1000e_pm_thaw, |
| .poweroff = e1000e_pm_suspend, |
| .restore = e1000e_pm_resume, |
| #endif |
| SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume, |
| e1000e_pm_runtime_idle) |
| }; |
| |
| /* PCI Device API Driver */ |
| static struct pci_driver e1000_driver = { |
| .name = e1000e_driver_name, |
| .id_table = e1000_pci_tbl, |
| .probe = e1000_probe, |
| .remove = e1000_remove, |
| .driver = { |
| .pm = &e1000_pm_ops, |
| }, |
| .shutdown = e1000_shutdown, |
| .err_handler = &e1000_err_handler |
| }; |
| |
| /** |
| * e1000_init_module - Driver Registration Routine |
| * |
| * e1000_init_module is the first routine called when the driver is |
| * loaded. All it does is register with the PCI subsystem. |
| **/ |
| static int __init e1000_init_module(void) |
| { |
| pr_info("Intel(R) PRO/1000 Network Driver\n"); |
| pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n"); |
| |
| return pci_register_driver(&e1000_driver); |
| } |
| module_init(e1000_init_module); |
| |
| /** |
| * e1000_exit_module - Driver Exit Cleanup Routine |
| * |
| * e1000_exit_module is called just before the driver is removed |
| * from memory. |
| **/ |
| static void __exit e1000_exit_module(void) |
| { |
| pci_unregister_driver(&e1000_driver); |
| } |
| module_exit(e1000_exit_module); |
| |
| MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); |
| MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); |
| MODULE_LICENSE("GPL v2"); |
| |
| /* netdev.c */ |