| // SPDX-License-Identifier: GPL-2.0 |
| |
| /* |
| * Copyright 2016-2019 HabanaLabs, Ltd. |
| * All Rights Reserved. |
| */ |
| |
| #include <uapi/misc/habanalabs.h> |
| #include "habanalabs.h" |
| |
| #include <linux/uaccess.h> |
| #include <linux/slab.h> |
| |
| #define HL_CS_FLAGS_SIG_WAIT (HL_CS_FLAGS_SIGNAL | HL_CS_FLAGS_WAIT) |
| |
| static void job_wq_completion(struct work_struct *work); |
| static long _hl_cs_wait_ioctl(struct hl_device *hdev, |
| struct hl_ctx *ctx, u64 timeout_us, u64 seq); |
| static void cs_do_release(struct kref *ref); |
| |
| static void hl_sob_reset(struct kref *ref) |
| { |
| struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob, |
| kref); |
| struct hl_device *hdev = hw_sob->hdev; |
| |
| hdev->asic_funcs->reset_sob(hdev, hw_sob); |
| } |
| |
| void hl_sob_reset_error(struct kref *ref) |
| { |
| struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob, |
| kref); |
| struct hl_device *hdev = hw_sob->hdev; |
| |
| dev_crit(hdev->dev, |
| "SOB release shouldn't be called here, q_idx: %d, sob_id: %d\n", |
| hw_sob->q_idx, hw_sob->sob_id); |
| } |
| |
| static void hl_fence_release(struct kref *kref) |
| { |
| struct hl_fence *fence = |
| container_of(kref, struct hl_fence, refcount); |
| struct hl_cs_compl *hl_cs_cmpl = |
| container_of(fence, struct hl_cs_compl, base_fence); |
| struct hl_device *hdev = hl_cs_cmpl->hdev; |
| |
| /* EBUSY means the CS was never submitted and hence we don't have |
| * an attached hw_sob object that we should handle here |
| */ |
| if (fence->error == -EBUSY) |
| goto free; |
| |
| if ((hl_cs_cmpl->type == CS_TYPE_SIGNAL) || |
| (hl_cs_cmpl->type == CS_TYPE_WAIT)) { |
| |
| dev_dbg(hdev->dev, |
| "CS 0x%llx type %d finished, sob_id: %d, sob_val: 0x%x\n", |
| hl_cs_cmpl->cs_seq, |
| hl_cs_cmpl->type, |
| hl_cs_cmpl->hw_sob->sob_id, |
| hl_cs_cmpl->sob_val); |
| |
| /* |
| * A signal CS can get completion while the corresponding wait |
| * for signal CS is on its way to the PQ. The wait for signal CS |
| * will get stuck if the signal CS incremented the SOB to its |
| * max value and there are no pending (submitted) waits on this |
| * SOB. |
| * We do the following to void this situation: |
| * 1. The wait for signal CS must get a ref for the signal CS as |
| * soon as possible in cs_ioctl_signal_wait() and put it |
| * before being submitted to the PQ but after it incremented |
| * the SOB refcnt in init_signal_wait_cs(). |
| * 2. Signal/Wait for signal CS will decrement the SOB refcnt |
| * here. |
| * These two measures guarantee that the wait for signal CS will |
| * reset the SOB upon completion rather than the signal CS and |
| * hence the above scenario is avoided. |
| */ |
| kref_put(&hl_cs_cmpl->hw_sob->kref, hl_sob_reset); |
| } |
| |
| free: |
| kfree(hl_cs_cmpl); |
| } |
| |
| void hl_fence_put(struct hl_fence *fence) |
| { |
| if (fence) |
| kref_put(&fence->refcount, hl_fence_release); |
| } |
| |
| void hl_fence_get(struct hl_fence *fence) |
| { |
| if (fence) |
| kref_get(&fence->refcount); |
| } |
| |
| static void hl_fence_init(struct hl_fence *fence) |
| { |
| kref_init(&fence->refcount); |
| fence->error = 0; |
| init_completion(&fence->completion); |
| } |
| |
| static void cs_get(struct hl_cs *cs) |
| { |
| kref_get(&cs->refcount); |
| } |
| |
| static int cs_get_unless_zero(struct hl_cs *cs) |
| { |
| return kref_get_unless_zero(&cs->refcount); |
| } |
| |
| static void cs_put(struct hl_cs *cs) |
| { |
| kref_put(&cs->refcount, cs_do_release); |
| } |
| |
| static bool is_cb_patched(struct hl_device *hdev, struct hl_cs_job *job) |
| { |
| /* |
| * Patched CB is created for external queues jobs, and for H/W queues |
| * jobs if the user CB was allocated by driver and MMU is disabled. |
| */ |
| return (job->queue_type == QUEUE_TYPE_EXT || |
| (job->queue_type == QUEUE_TYPE_HW && |
| job->is_kernel_allocated_cb && |
| !hdev->mmu_enable)); |
| } |
| |
| /* |
| * cs_parser - parse the user command submission |
| * |
| * @hpriv : pointer to the private data of the fd |
| * @job : pointer to the job that holds the command submission info |
| * |
| * The function parses the command submission of the user. It calls the |
| * ASIC specific parser, which returns a list of memory blocks to send |
| * to the device as different command buffers |
| * |
| */ |
| static int cs_parser(struct hl_fpriv *hpriv, struct hl_cs_job *job) |
| { |
| struct hl_device *hdev = hpriv->hdev; |
| struct hl_cs_parser parser; |
| int rc; |
| |
| parser.ctx_id = job->cs->ctx->asid; |
| parser.cs_sequence = job->cs->sequence; |
| parser.job_id = job->id; |
| |
| parser.hw_queue_id = job->hw_queue_id; |
| parser.job_userptr_list = &job->userptr_list; |
| parser.patched_cb = NULL; |
| parser.user_cb = job->user_cb; |
| parser.user_cb_size = job->user_cb_size; |
| parser.queue_type = job->queue_type; |
| parser.is_kernel_allocated_cb = job->is_kernel_allocated_cb; |
| job->patched_cb = NULL; |
| |
| rc = hdev->asic_funcs->cs_parser(hdev, &parser); |
| |
| if (is_cb_patched(hdev, job)) { |
| if (!rc) { |
| job->patched_cb = parser.patched_cb; |
| job->job_cb_size = parser.patched_cb_size; |
| job->contains_dma_pkt = parser.contains_dma_pkt; |
| |
| spin_lock(&job->patched_cb->lock); |
| job->patched_cb->cs_cnt++; |
| spin_unlock(&job->patched_cb->lock); |
| } |
| |
| /* |
| * Whether the parsing worked or not, we don't need the |
| * original CB anymore because it was already parsed and |
| * won't be accessed again for this CS |
| */ |
| spin_lock(&job->user_cb->lock); |
| job->user_cb->cs_cnt--; |
| spin_unlock(&job->user_cb->lock); |
| hl_cb_put(job->user_cb); |
| job->user_cb = NULL; |
| } else if (!rc) { |
| job->job_cb_size = job->user_cb_size; |
| } |
| |
| return rc; |
| } |
| |
| static void free_job(struct hl_device *hdev, struct hl_cs_job *job) |
| { |
| struct hl_cs *cs = job->cs; |
| |
| if (is_cb_patched(hdev, job)) { |
| hl_userptr_delete_list(hdev, &job->userptr_list); |
| |
| /* |
| * We might arrive here from rollback and patched CB wasn't |
| * created, so we need to check it's not NULL |
| */ |
| if (job->patched_cb) { |
| spin_lock(&job->patched_cb->lock); |
| job->patched_cb->cs_cnt--; |
| spin_unlock(&job->patched_cb->lock); |
| |
| hl_cb_put(job->patched_cb); |
| } |
| } |
| |
| /* For H/W queue jobs, if a user CB was allocated by driver and MMU is |
| * enabled, the user CB isn't released in cs_parser() and thus should be |
| * released here. |
| */ |
| if (job->queue_type == QUEUE_TYPE_HW && |
| job->is_kernel_allocated_cb && hdev->mmu_enable) { |
| spin_lock(&job->user_cb->lock); |
| job->user_cb->cs_cnt--; |
| spin_unlock(&job->user_cb->lock); |
| |
| hl_cb_put(job->user_cb); |
| } |
| |
| /* |
| * This is the only place where there can be multiple threads |
| * modifying the list at the same time |
| */ |
| spin_lock(&cs->job_lock); |
| list_del(&job->cs_node); |
| spin_unlock(&cs->job_lock); |
| |
| hl_debugfs_remove_job(hdev, job); |
| |
| if (job->queue_type == QUEUE_TYPE_EXT || |
| job->queue_type == QUEUE_TYPE_HW) |
| cs_put(cs); |
| |
| kfree(job); |
| } |
| |
| static void cs_counters_aggregate(struct hl_device *hdev, struct hl_ctx *ctx) |
| { |
| hdev->aggregated_cs_counters.device_in_reset_drop_cnt += |
| ctx->cs_counters.device_in_reset_drop_cnt; |
| hdev->aggregated_cs_counters.out_of_mem_drop_cnt += |
| ctx->cs_counters.out_of_mem_drop_cnt; |
| hdev->aggregated_cs_counters.parsing_drop_cnt += |
| ctx->cs_counters.parsing_drop_cnt; |
| hdev->aggregated_cs_counters.queue_full_drop_cnt += |
| ctx->cs_counters.queue_full_drop_cnt; |
| hdev->aggregated_cs_counters.max_cs_in_flight_drop_cnt += |
| ctx->cs_counters.max_cs_in_flight_drop_cnt; |
| } |
| |
| static void cs_do_release(struct kref *ref) |
| { |
| struct hl_cs *cs = container_of(ref, struct hl_cs, |
| refcount); |
| struct hl_device *hdev = cs->ctx->hdev; |
| struct hl_cs_job *job, *tmp; |
| |
| cs->completed = true; |
| |
| /* |
| * Although if we reached here it means that all external jobs have |
| * finished, because each one of them took refcnt to CS, we still |
| * need to go over the internal jobs and free them. Otherwise, we |
| * will have leaked memory and what's worse, the CS object (and |
| * potentially the CTX object) could be released, while the JOB |
| * still holds a pointer to them (but no reference). |
| */ |
| list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node) |
| free_job(hdev, job); |
| |
| /* We also need to update CI for internal queues */ |
| if (cs->submitted) { |
| hdev->asic_funcs->hw_queues_lock(hdev); |
| |
| hdev->cs_active_cnt--; |
| if (!hdev->cs_active_cnt) { |
| struct hl_device_idle_busy_ts *ts; |
| |
| ts = &hdev->idle_busy_ts_arr[hdev->idle_busy_ts_idx++]; |
| ts->busy_to_idle_ts = ktime_get(); |
| |
| if (hdev->idle_busy_ts_idx == HL_IDLE_BUSY_TS_ARR_SIZE) |
| hdev->idle_busy_ts_idx = 0; |
| } else if (hdev->cs_active_cnt < 0) { |
| dev_crit(hdev->dev, "CS active cnt %d is negative\n", |
| hdev->cs_active_cnt); |
| } |
| |
| hdev->asic_funcs->hw_queues_unlock(hdev); |
| |
| hl_int_hw_queue_update_ci(cs); |
| |
| spin_lock(&hdev->hw_queues_mirror_lock); |
| /* remove CS from hw_queues mirror list */ |
| list_del_init(&cs->mirror_node); |
| spin_unlock(&hdev->hw_queues_mirror_lock); |
| |
| /* |
| * Don't cancel TDR in case this CS was timedout because we |
| * might be running from the TDR context |
| */ |
| if ((!cs->timedout) && |
| (hdev->timeout_jiffies != MAX_SCHEDULE_TIMEOUT)) { |
| struct hl_cs *next; |
| |
| if (cs->tdr_active) |
| cancel_delayed_work_sync(&cs->work_tdr); |
| |
| spin_lock(&hdev->hw_queues_mirror_lock); |
| |
| /* queue TDR for next CS */ |
| next = list_first_entry_or_null( |
| &hdev->hw_queues_mirror_list, |
| struct hl_cs, mirror_node); |
| |
| if ((next) && (!next->tdr_active)) { |
| next->tdr_active = true; |
| schedule_delayed_work(&next->work_tdr, |
| hdev->timeout_jiffies); |
| } |
| |
| spin_unlock(&hdev->hw_queues_mirror_lock); |
| } |
| } else if (cs->type == CS_TYPE_WAIT) { |
| /* |
| * In case the wait for signal CS was submitted, the put occurs |
| * in init_signal_wait_cs() right before hanging on the PQ. |
| */ |
| hl_fence_put(cs->signal_fence); |
| } |
| |
| /* |
| * Must be called before hl_ctx_put because inside we use ctx to get |
| * the device |
| */ |
| hl_debugfs_remove_cs(cs); |
| |
| hl_ctx_put(cs->ctx); |
| |
| /* We need to mark an error for not submitted because in that case |
| * the hl fence release flow is different. Mainly, we don't need |
| * to handle hw_sob for signal/wait |
| */ |
| if (cs->timedout) |
| cs->fence->error = -ETIMEDOUT; |
| else if (cs->aborted) |
| cs->fence->error = -EIO; |
| else if (!cs->submitted) |
| cs->fence->error = -EBUSY; |
| |
| complete_all(&cs->fence->completion); |
| hl_fence_put(cs->fence); |
| cs_counters_aggregate(hdev, cs->ctx); |
| |
| kfree(cs->jobs_in_queue_cnt); |
| kfree(cs); |
| } |
| |
| static void cs_timedout(struct work_struct *work) |
| { |
| struct hl_device *hdev; |
| int rc; |
| struct hl_cs *cs = container_of(work, struct hl_cs, |
| work_tdr.work); |
| rc = cs_get_unless_zero(cs); |
| if (!rc) |
| return; |
| |
| if ((!cs->submitted) || (cs->completed)) { |
| cs_put(cs); |
| return; |
| } |
| |
| /* Mark the CS is timed out so we won't try to cancel its TDR */ |
| cs->timedout = true; |
| |
| hdev = cs->ctx->hdev; |
| |
| dev_err(hdev->dev, |
| "Command submission %llu has not finished in time!\n", |
| cs->sequence); |
| |
| cs_put(cs); |
| |
| if (hdev->reset_on_lockup) |
| hl_device_reset(hdev, false, false); |
| } |
| |
| static int allocate_cs(struct hl_device *hdev, struct hl_ctx *ctx, |
| enum hl_cs_type cs_type, struct hl_cs **cs_new) |
| { |
| struct hl_cs_compl *cs_cmpl; |
| struct hl_fence *other = NULL; |
| struct hl_cs *cs; |
| int rc; |
| |
| cs = kzalloc(sizeof(*cs), GFP_ATOMIC); |
| if (!cs) |
| return -ENOMEM; |
| |
| cs->ctx = ctx; |
| cs->submitted = false; |
| cs->completed = false; |
| cs->type = cs_type; |
| INIT_LIST_HEAD(&cs->job_list); |
| INIT_DELAYED_WORK(&cs->work_tdr, cs_timedout); |
| kref_init(&cs->refcount); |
| spin_lock_init(&cs->job_lock); |
| |
| cs_cmpl = kmalloc(sizeof(*cs_cmpl), GFP_ATOMIC); |
| if (!cs_cmpl) { |
| rc = -ENOMEM; |
| goto free_cs; |
| } |
| |
| cs_cmpl->hdev = hdev; |
| cs_cmpl->type = cs->type; |
| spin_lock_init(&cs_cmpl->lock); |
| cs->fence = &cs_cmpl->base_fence; |
| |
| spin_lock(&ctx->cs_lock); |
| |
| cs_cmpl->cs_seq = ctx->cs_sequence; |
| other = ctx->cs_pending[cs_cmpl->cs_seq & |
| (hdev->asic_prop.max_pending_cs - 1)]; |
| |
| if (other && !completion_done(&other->completion)) { |
| dev_dbg_ratelimited(hdev->dev, |
| "Rejecting CS because of too many in-flights CS\n"); |
| ctx->cs_counters.max_cs_in_flight_drop_cnt++; |
| rc = -EAGAIN; |
| goto free_fence; |
| } |
| |
| cs->jobs_in_queue_cnt = kcalloc(hdev->asic_prop.max_queues, |
| sizeof(*cs->jobs_in_queue_cnt), GFP_ATOMIC); |
| if (!cs->jobs_in_queue_cnt) { |
| rc = -ENOMEM; |
| goto free_fence; |
| } |
| |
| /* init hl_fence */ |
| hl_fence_init(&cs_cmpl->base_fence); |
| |
| cs->sequence = cs_cmpl->cs_seq; |
| |
| ctx->cs_pending[cs_cmpl->cs_seq & |
| (hdev->asic_prop.max_pending_cs - 1)] = |
| &cs_cmpl->base_fence; |
| ctx->cs_sequence++; |
| |
| hl_fence_get(&cs_cmpl->base_fence); |
| |
| hl_fence_put(other); |
| |
| spin_unlock(&ctx->cs_lock); |
| |
| *cs_new = cs; |
| |
| return 0; |
| |
| free_fence: |
| spin_unlock(&ctx->cs_lock); |
| kfree(cs_cmpl); |
| free_cs: |
| kfree(cs); |
| return rc; |
| } |
| |
| static void cs_rollback(struct hl_device *hdev, struct hl_cs *cs) |
| { |
| struct hl_cs_job *job, *tmp; |
| |
| list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node) |
| free_job(hdev, job); |
| } |
| |
| void hl_cs_rollback_all(struct hl_device *hdev) |
| { |
| int i; |
| struct hl_cs *cs, *tmp; |
| |
| /* flush all completions */ |
| for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) |
| flush_workqueue(hdev->cq_wq[i]); |
| |
| /* Make sure we don't have leftovers in the H/W queues mirror list */ |
| list_for_each_entry_safe(cs, tmp, &hdev->hw_queues_mirror_list, |
| mirror_node) { |
| cs_get(cs); |
| cs->aborted = true; |
| dev_warn_ratelimited(hdev->dev, "Killing CS %d.%llu\n", |
| cs->ctx->asid, cs->sequence); |
| cs_rollback(hdev, cs); |
| cs_put(cs); |
| } |
| } |
| |
| static void job_wq_completion(struct work_struct *work) |
| { |
| struct hl_cs_job *job = container_of(work, struct hl_cs_job, |
| finish_work); |
| struct hl_cs *cs = job->cs; |
| struct hl_device *hdev = cs->ctx->hdev; |
| |
| /* job is no longer needed */ |
| free_job(hdev, job); |
| } |
| |
| static int validate_queue_index(struct hl_device *hdev, |
| struct hl_cs_chunk *chunk, |
| enum hl_queue_type *queue_type, |
| bool *is_kernel_allocated_cb) |
| { |
| struct asic_fixed_properties *asic = &hdev->asic_prop; |
| struct hw_queue_properties *hw_queue_prop; |
| |
| /* This must be checked here to prevent out-of-bounds access to |
| * hw_queues_props array |
| */ |
| if (chunk->queue_index >= asic->max_queues) { |
| dev_err(hdev->dev, "Queue index %d is invalid\n", |
| chunk->queue_index); |
| return -EINVAL; |
| } |
| |
| hw_queue_prop = &asic->hw_queues_props[chunk->queue_index]; |
| |
| if (hw_queue_prop->type == QUEUE_TYPE_NA) { |
| dev_err(hdev->dev, "Queue index %d is invalid\n", |
| chunk->queue_index); |
| return -EINVAL; |
| } |
| |
| if (hw_queue_prop->driver_only) { |
| dev_err(hdev->dev, |
| "Queue index %d is restricted for the kernel driver\n", |
| chunk->queue_index); |
| return -EINVAL; |
| } |
| |
| *queue_type = hw_queue_prop->type; |
| *is_kernel_allocated_cb = !!hw_queue_prop->requires_kernel_cb; |
| |
| return 0; |
| } |
| |
| static struct hl_cb *get_cb_from_cs_chunk(struct hl_device *hdev, |
| struct hl_cb_mgr *cb_mgr, |
| struct hl_cs_chunk *chunk) |
| { |
| struct hl_cb *cb; |
| u32 cb_handle; |
| |
| cb_handle = (u32) (chunk->cb_handle >> PAGE_SHIFT); |
| |
| cb = hl_cb_get(hdev, cb_mgr, cb_handle); |
| if (!cb) { |
| dev_err(hdev->dev, "CB handle 0x%x invalid\n", cb_handle); |
| return NULL; |
| } |
| |
| if ((chunk->cb_size < 8) || (chunk->cb_size > cb->size)) { |
| dev_err(hdev->dev, "CB size %u invalid\n", chunk->cb_size); |
| goto release_cb; |
| } |
| |
| spin_lock(&cb->lock); |
| cb->cs_cnt++; |
| spin_unlock(&cb->lock); |
| |
| return cb; |
| |
| release_cb: |
| hl_cb_put(cb); |
| return NULL; |
| } |
| |
| struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev, |
| enum hl_queue_type queue_type, bool is_kernel_allocated_cb) |
| { |
| struct hl_cs_job *job; |
| |
| job = kzalloc(sizeof(*job), GFP_ATOMIC); |
| if (!job) |
| return NULL; |
| |
| job->queue_type = queue_type; |
| job->is_kernel_allocated_cb = is_kernel_allocated_cb; |
| |
| if (is_cb_patched(hdev, job)) |
| INIT_LIST_HEAD(&job->userptr_list); |
| |
| if (job->queue_type == QUEUE_TYPE_EXT) |
| INIT_WORK(&job->finish_work, job_wq_completion); |
| |
| return job; |
| } |
| |
| static int cs_ioctl_default(struct hl_fpriv *hpriv, void __user *chunks, |
| u32 num_chunks, u64 *cs_seq) |
| { |
| struct hl_device *hdev = hpriv->hdev; |
| struct hl_cs_chunk *cs_chunk_array; |
| struct hl_cs_job *job; |
| struct hl_cs *cs; |
| struct hl_cb *cb; |
| bool int_queues_only = true; |
| u32 size_to_copy; |
| int rc, i; |
| |
| *cs_seq = ULLONG_MAX; |
| |
| if (num_chunks > HL_MAX_JOBS_PER_CS) { |
| dev_err(hdev->dev, |
| "Number of chunks can NOT be larger than %d\n", |
| HL_MAX_JOBS_PER_CS); |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| cs_chunk_array = kmalloc_array(num_chunks, sizeof(*cs_chunk_array), |
| GFP_ATOMIC); |
| if (!cs_chunk_array) { |
| rc = -ENOMEM; |
| goto out; |
| } |
| |
| size_to_copy = num_chunks * sizeof(struct hl_cs_chunk); |
| if (copy_from_user(cs_chunk_array, chunks, size_to_copy)) { |
| dev_err(hdev->dev, "Failed to copy cs chunk array from user\n"); |
| rc = -EFAULT; |
| goto free_cs_chunk_array; |
| } |
| |
| /* increment refcnt for context */ |
| hl_ctx_get(hdev, hpriv->ctx); |
| |
| rc = allocate_cs(hdev, hpriv->ctx, CS_TYPE_DEFAULT, &cs); |
| if (rc) { |
| hl_ctx_put(hpriv->ctx); |
| goto free_cs_chunk_array; |
| } |
| |
| *cs_seq = cs->sequence; |
| |
| hl_debugfs_add_cs(cs); |
| |
| /* Validate ALL the CS chunks before submitting the CS */ |
| for (i = 0 ; i < num_chunks ; i++) { |
| struct hl_cs_chunk *chunk = &cs_chunk_array[i]; |
| enum hl_queue_type queue_type; |
| bool is_kernel_allocated_cb; |
| |
| rc = validate_queue_index(hdev, chunk, &queue_type, |
| &is_kernel_allocated_cb); |
| if (rc) { |
| hpriv->ctx->cs_counters.parsing_drop_cnt++; |
| goto free_cs_object; |
| } |
| |
| if (is_kernel_allocated_cb) { |
| cb = get_cb_from_cs_chunk(hdev, &hpriv->cb_mgr, chunk); |
| if (!cb) { |
| hpriv->ctx->cs_counters.parsing_drop_cnt++; |
| rc = -EINVAL; |
| goto free_cs_object; |
| } |
| } else { |
| cb = (struct hl_cb *) (uintptr_t) chunk->cb_handle; |
| } |
| |
| if (queue_type == QUEUE_TYPE_EXT || queue_type == QUEUE_TYPE_HW) |
| int_queues_only = false; |
| |
| job = hl_cs_allocate_job(hdev, queue_type, |
| is_kernel_allocated_cb); |
| if (!job) { |
| hpriv->ctx->cs_counters.out_of_mem_drop_cnt++; |
| dev_err(hdev->dev, "Failed to allocate a new job\n"); |
| rc = -ENOMEM; |
| if (is_kernel_allocated_cb) |
| goto release_cb; |
| |
| goto free_cs_object; |
| } |
| |
| job->id = i + 1; |
| job->cs = cs; |
| job->user_cb = cb; |
| job->user_cb_size = chunk->cb_size; |
| job->hw_queue_id = chunk->queue_index; |
| |
| cs->jobs_in_queue_cnt[job->hw_queue_id]++; |
| |
| list_add_tail(&job->cs_node, &cs->job_list); |
| |
| /* |
| * Increment CS reference. When CS reference is 0, CS is |
| * done and can be signaled to user and free all its resources |
| * Only increment for JOB on external or H/W queues, because |
| * only for those JOBs we get completion |
| */ |
| if (job->queue_type == QUEUE_TYPE_EXT || |
| job->queue_type == QUEUE_TYPE_HW) |
| cs_get(cs); |
| |
| hl_debugfs_add_job(hdev, job); |
| |
| rc = cs_parser(hpriv, job); |
| if (rc) { |
| hpriv->ctx->cs_counters.parsing_drop_cnt++; |
| dev_err(hdev->dev, |
| "Failed to parse JOB %d.%llu.%d, err %d, rejecting the CS\n", |
| cs->ctx->asid, cs->sequence, job->id, rc); |
| goto free_cs_object; |
| } |
| } |
| |
| if (int_queues_only) { |
| hpriv->ctx->cs_counters.parsing_drop_cnt++; |
| dev_err(hdev->dev, |
| "Reject CS %d.%llu because only internal queues jobs are present\n", |
| cs->ctx->asid, cs->sequence); |
| rc = -EINVAL; |
| goto free_cs_object; |
| } |
| |
| rc = hl_hw_queue_schedule_cs(cs); |
| if (rc) { |
| if (rc != -EAGAIN) |
| dev_err(hdev->dev, |
| "Failed to submit CS %d.%llu to H/W queues, error %d\n", |
| cs->ctx->asid, cs->sequence, rc); |
| goto free_cs_object; |
| } |
| |
| rc = HL_CS_STATUS_SUCCESS; |
| goto put_cs; |
| |
| release_cb: |
| spin_lock(&cb->lock); |
| cb->cs_cnt--; |
| spin_unlock(&cb->lock); |
| hl_cb_put(cb); |
| free_cs_object: |
| cs_rollback(hdev, cs); |
| *cs_seq = ULLONG_MAX; |
| /* The path below is both for good and erroneous exits */ |
| put_cs: |
| /* We finished with the CS in this function, so put the ref */ |
| cs_put(cs); |
| free_cs_chunk_array: |
| kfree(cs_chunk_array); |
| out: |
| return rc; |
| } |
| |
| static int cs_ioctl_signal_wait(struct hl_fpriv *hpriv, enum hl_cs_type cs_type, |
| void __user *chunks, u32 num_chunks, |
| u64 *cs_seq) |
| { |
| struct hl_device *hdev = hpriv->hdev; |
| struct hl_ctx *ctx = hpriv->ctx; |
| struct hl_cs_chunk *cs_chunk_array, *chunk; |
| struct hw_queue_properties *hw_queue_prop; |
| struct hl_fence *sig_fence = NULL; |
| struct hl_cs_job *job; |
| struct hl_cs *cs; |
| struct hl_cb *cb; |
| enum hl_queue_type q_type; |
| u64 *signal_seq_arr = NULL, signal_seq; |
| u32 size_to_copy, q_idx, signal_seq_arr_len, cb_size; |
| int rc; |
| |
| *cs_seq = ULLONG_MAX; |
| |
| if (num_chunks > HL_MAX_JOBS_PER_CS) { |
| dev_err(hdev->dev, |
| "Number of chunks can NOT be larger than %d\n", |
| HL_MAX_JOBS_PER_CS); |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| cs_chunk_array = kmalloc_array(num_chunks, sizeof(*cs_chunk_array), |
| GFP_ATOMIC); |
| if (!cs_chunk_array) { |
| rc = -ENOMEM; |
| goto out; |
| } |
| |
| size_to_copy = num_chunks * sizeof(struct hl_cs_chunk); |
| if (copy_from_user(cs_chunk_array, chunks, size_to_copy)) { |
| dev_err(hdev->dev, "Failed to copy cs chunk array from user\n"); |
| rc = -EFAULT; |
| goto free_cs_chunk_array; |
| } |
| |
| /* currently it is guaranteed to have only one chunk */ |
| chunk = &cs_chunk_array[0]; |
| |
| if (chunk->queue_index >= hdev->asic_prop.max_queues) { |
| dev_err(hdev->dev, "Queue index %d is invalid\n", |
| chunk->queue_index); |
| rc = -EINVAL; |
| goto free_cs_chunk_array; |
| } |
| |
| q_idx = chunk->queue_index; |
| hw_queue_prop = &hdev->asic_prop.hw_queues_props[q_idx]; |
| q_type = hw_queue_prop->type; |
| |
| if ((q_idx >= hdev->asic_prop.max_queues) || |
| (!hw_queue_prop->supports_sync_stream)) { |
| dev_err(hdev->dev, "Queue index %d is invalid\n", q_idx); |
| rc = -EINVAL; |
| goto free_cs_chunk_array; |
| } |
| |
| if (cs_type == CS_TYPE_WAIT) { |
| struct hl_cs_compl *sig_waitcs_cmpl; |
| |
| signal_seq_arr_len = chunk->num_signal_seq_arr; |
| |
| /* currently only one signal seq is supported */ |
| if (signal_seq_arr_len != 1) { |
| dev_err(hdev->dev, |
| "Wait for signal CS supports only one signal CS seq\n"); |
| rc = -EINVAL; |
| goto free_cs_chunk_array; |
| } |
| |
| signal_seq_arr = kmalloc_array(signal_seq_arr_len, |
| sizeof(*signal_seq_arr), |
| GFP_ATOMIC); |
| if (!signal_seq_arr) { |
| rc = -ENOMEM; |
| goto free_cs_chunk_array; |
| } |
| |
| size_to_copy = chunk->num_signal_seq_arr * |
| sizeof(*signal_seq_arr); |
| if (copy_from_user(signal_seq_arr, |
| u64_to_user_ptr(chunk->signal_seq_arr), |
| size_to_copy)) { |
| dev_err(hdev->dev, |
| "Failed to copy signal seq array from user\n"); |
| rc = -EFAULT; |
| goto free_signal_seq_array; |
| } |
| |
| /* currently it is guaranteed to have only one signal seq */ |
| signal_seq = signal_seq_arr[0]; |
| sig_fence = hl_ctx_get_fence(ctx, signal_seq); |
| if (IS_ERR(sig_fence)) { |
| dev_err(hdev->dev, |
| "Failed to get signal CS with seq 0x%llx\n", |
| signal_seq); |
| rc = PTR_ERR(sig_fence); |
| goto free_signal_seq_array; |
| } |
| |
| if (!sig_fence) { |
| /* signal CS already finished */ |
| rc = 0; |
| goto free_signal_seq_array; |
| } |
| |
| sig_waitcs_cmpl = |
| container_of(sig_fence, struct hl_cs_compl, base_fence); |
| |
| if (sig_waitcs_cmpl->type != CS_TYPE_SIGNAL) { |
| dev_err(hdev->dev, |
| "CS seq 0x%llx is not of a signal CS\n", |
| signal_seq); |
| hl_fence_put(sig_fence); |
| rc = -EINVAL; |
| goto free_signal_seq_array; |
| } |
| |
| if (completion_done(&sig_fence->completion)) { |
| /* signal CS already finished */ |
| hl_fence_put(sig_fence); |
| rc = 0; |
| goto free_signal_seq_array; |
| } |
| } |
| |
| /* increment refcnt for context */ |
| hl_ctx_get(hdev, ctx); |
| |
| rc = allocate_cs(hdev, ctx, cs_type, &cs); |
| if (rc) { |
| if (cs_type == CS_TYPE_WAIT) |
| hl_fence_put(sig_fence); |
| hl_ctx_put(ctx); |
| goto free_signal_seq_array; |
| } |
| |
| /* |
| * Save the signal CS fence for later initialization right before |
| * hanging the wait CS on the queue. |
| */ |
| if (cs->type == CS_TYPE_WAIT) |
| cs->signal_fence = sig_fence; |
| |
| hl_debugfs_add_cs(cs); |
| |
| *cs_seq = cs->sequence; |
| |
| job = hl_cs_allocate_job(hdev, q_type, true); |
| if (!job) { |
| ctx->cs_counters.out_of_mem_drop_cnt++; |
| dev_err(hdev->dev, "Failed to allocate a new job\n"); |
| rc = -ENOMEM; |
| goto put_cs; |
| } |
| |
| if (cs->type == CS_TYPE_WAIT) |
| cb_size = hdev->asic_funcs->get_wait_cb_size(hdev); |
| else |
| cb_size = hdev->asic_funcs->get_signal_cb_size(hdev); |
| |
| cb = hl_cb_kernel_create(hdev, cb_size, |
| q_type == QUEUE_TYPE_HW && hdev->mmu_enable); |
| if (!cb) { |
| ctx->cs_counters.out_of_mem_drop_cnt++; |
| kfree(job); |
| rc = -EFAULT; |
| goto put_cs; |
| } |
| |
| job->id = 0; |
| job->cs = cs; |
| job->user_cb = cb; |
| job->user_cb->cs_cnt++; |
| job->user_cb_size = cb_size; |
| job->hw_queue_id = q_idx; |
| |
| /* |
| * No need in parsing, user CB is the patched CB. |
| * We call hl_cb_destroy() out of two reasons - we don't need the CB in |
| * the CB idr anymore and to decrement its refcount as it was |
| * incremented inside hl_cb_kernel_create(). |
| */ |
| job->patched_cb = job->user_cb; |
| job->job_cb_size = job->user_cb_size; |
| hl_cb_destroy(hdev, &hdev->kernel_cb_mgr, cb->id << PAGE_SHIFT); |
| |
| cs->jobs_in_queue_cnt[job->hw_queue_id]++; |
| |
| list_add_tail(&job->cs_node, &cs->job_list); |
| |
| /* increment refcount as for external queues we get completion */ |
| cs_get(cs); |
| |
| hl_debugfs_add_job(hdev, job); |
| |
| rc = hl_hw_queue_schedule_cs(cs); |
| if (rc) { |
| if (rc != -EAGAIN) |
| dev_err(hdev->dev, |
| "Failed to submit CS %d.%llu to H/W queues, error %d\n", |
| ctx->asid, cs->sequence, rc); |
| goto free_cs_object; |
| } |
| |
| rc = HL_CS_STATUS_SUCCESS; |
| goto put_cs; |
| |
| free_cs_object: |
| cs_rollback(hdev, cs); |
| *cs_seq = ULLONG_MAX; |
| /* The path below is both for good and erroneous exits */ |
| put_cs: |
| /* We finished with the CS in this function, so put the ref */ |
| cs_put(cs); |
| free_signal_seq_array: |
| if (cs_type == CS_TYPE_WAIT) |
| kfree(signal_seq_arr); |
| free_cs_chunk_array: |
| kfree(cs_chunk_array); |
| out: |
| return rc; |
| } |
| |
| int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data) |
| { |
| struct hl_device *hdev = hpriv->hdev; |
| union hl_cs_args *args = data; |
| struct hl_ctx *ctx = hpriv->ctx; |
| void __user *chunks_execute, *chunks_restore; |
| enum hl_cs_type cs_type; |
| u32 num_chunks_execute, num_chunks_restore, sig_wait_flags; |
| u64 cs_seq = ULONG_MAX; |
| int rc, do_ctx_switch; |
| bool need_soft_reset = false; |
| |
| if (hl_device_disabled_or_in_reset(hdev)) { |
| dev_warn_ratelimited(hdev->dev, |
| "Device is %s. Can't submit new CS\n", |
| atomic_read(&hdev->in_reset) ? "in_reset" : "disabled"); |
| rc = -EBUSY; |
| goto out; |
| } |
| |
| sig_wait_flags = args->in.cs_flags & HL_CS_FLAGS_SIG_WAIT; |
| |
| if (unlikely(sig_wait_flags == HL_CS_FLAGS_SIG_WAIT)) { |
| dev_err(hdev->dev, |
| "Signal and wait CS flags are mutually exclusive, context %d\n", |
| ctx->asid); |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| if (unlikely((sig_wait_flags & HL_CS_FLAGS_SIG_WAIT) && |
| (!hdev->supports_sync_stream))) { |
| dev_err(hdev->dev, "Sync stream CS is not supported\n"); |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| if (args->in.cs_flags & HL_CS_FLAGS_SIGNAL) |
| cs_type = CS_TYPE_SIGNAL; |
| else if (args->in.cs_flags & HL_CS_FLAGS_WAIT) |
| cs_type = CS_TYPE_WAIT; |
| else |
| cs_type = CS_TYPE_DEFAULT; |
| |
| chunks_execute = (void __user *) (uintptr_t) args->in.chunks_execute; |
| num_chunks_execute = args->in.num_chunks_execute; |
| |
| if (cs_type == CS_TYPE_DEFAULT) { |
| if (!num_chunks_execute) { |
| dev_err(hdev->dev, |
| "Got execute CS with 0 chunks, context %d\n", |
| ctx->asid); |
| rc = -EINVAL; |
| goto out; |
| } |
| } else if (num_chunks_execute != 1) { |
| dev_err(hdev->dev, |
| "Sync stream CS mandates one chunk only, context %d\n", |
| ctx->asid); |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| do_ctx_switch = atomic_cmpxchg(&ctx->thread_ctx_switch_token, 1, 0); |
| |
| if (do_ctx_switch || (args->in.cs_flags & HL_CS_FLAGS_FORCE_RESTORE)) { |
| long ret; |
| |
| chunks_restore = |
| (void __user *) (uintptr_t) args->in.chunks_restore; |
| num_chunks_restore = args->in.num_chunks_restore; |
| |
| mutex_lock(&hpriv->restore_phase_mutex); |
| |
| if (do_ctx_switch) { |
| rc = hdev->asic_funcs->context_switch(hdev, ctx->asid); |
| if (rc) { |
| dev_err_ratelimited(hdev->dev, |
| "Failed to switch to context %d, rejecting CS! %d\n", |
| ctx->asid, rc); |
| /* |
| * If we timedout, or if the device is not IDLE |
| * while we want to do context-switch (-EBUSY), |
| * we need to soft-reset because QMAN is |
| * probably stuck. However, we can't call to |
| * reset here directly because of deadlock, so |
| * need to do it at the very end of this |
| * function |
| */ |
| if ((rc == -ETIMEDOUT) || (rc == -EBUSY)) |
| need_soft_reset = true; |
| mutex_unlock(&hpriv->restore_phase_mutex); |
| goto out; |
| } |
| } |
| |
| hdev->asic_funcs->restore_phase_topology(hdev); |
| |
| if (!num_chunks_restore) { |
| dev_dbg(hdev->dev, |
| "Need to run restore phase but restore CS is empty\n"); |
| rc = 0; |
| } else { |
| rc = cs_ioctl_default(hpriv, chunks_restore, |
| num_chunks_restore, &cs_seq); |
| } |
| |
| mutex_unlock(&hpriv->restore_phase_mutex); |
| |
| if (rc) { |
| dev_err(hdev->dev, |
| "Failed to submit restore CS for context %d (%d)\n", |
| ctx->asid, rc); |
| goto out; |
| } |
| |
| /* Need to wait for restore completion before execution phase */ |
| if (num_chunks_restore) { |
| ret = _hl_cs_wait_ioctl(hdev, ctx, |
| jiffies_to_usecs(hdev->timeout_jiffies), |
| cs_seq); |
| if (ret <= 0) { |
| dev_err(hdev->dev, |
| "Restore CS for context %d failed to complete %ld\n", |
| ctx->asid, ret); |
| rc = -ENOEXEC; |
| goto out; |
| } |
| } |
| |
| ctx->thread_ctx_switch_wait_token = 1; |
| } else if (!ctx->thread_ctx_switch_wait_token) { |
| u32 tmp; |
| |
| rc = hl_poll_timeout_memory(hdev, |
| &ctx->thread_ctx_switch_wait_token, tmp, (tmp == 1), |
| 100, jiffies_to_usecs(hdev->timeout_jiffies), false); |
| |
| if (rc == -ETIMEDOUT) { |
| dev_err(hdev->dev, |
| "context switch phase timeout (%d)\n", tmp); |
| goto out; |
| } |
| } |
| |
| if (cs_type == CS_TYPE_DEFAULT) |
| rc = cs_ioctl_default(hpriv, chunks_execute, num_chunks_execute, |
| &cs_seq); |
| else |
| rc = cs_ioctl_signal_wait(hpriv, cs_type, chunks_execute, |
| num_chunks_execute, &cs_seq); |
| |
| out: |
| if (rc != -EAGAIN) { |
| memset(args, 0, sizeof(*args)); |
| args->out.status = rc; |
| args->out.seq = cs_seq; |
| } |
| |
| if (((rc == -ETIMEDOUT) || (rc == -EBUSY)) && (need_soft_reset)) |
| hl_device_reset(hdev, false, false); |
| |
| return rc; |
| } |
| |
| static long _hl_cs_wait_ioctl(struct hl_device *hdev, |
| struct hl_ctx *ctx, u64 timeout_us, u64 seq) |
| { |
| struct hl_fence *fence; |
| unsigned long timeout; |
| long rc; |
| |
| if (timeout_us == MAX_SCHEDULE_TIMEOUT) |
| timeout = timeout_us; |
| else |
| timeout = usecs_to_jiffies(timeout_us); |
| |
| hl_ctx_get(hdev, ctx); |
| |
| fence = hl_ctx_get_fence(ctx, seq); |
| if (IS_ERR(fence)) { |
| rc = PTR_ERR(fence); |
| if (rc == -EINVAL) |
| dev_notice_ratelimited(hdev->dev, |
| "Can't wait on CS %llu because current CS is at seq %llu\n", |
| seq, ctx->cs_sequence); |
| } else if (fence) { |
| if (!timeout_us) |
| rc = completion_done(&fence->completion); |
| else |
| rc = wait_for_completion_interruptible_timeout( |
| &fence->completion, timeout); |
| |
| if (fence->error == -ETIMEDOUT) |
| rc = -ETIMEDOUT; |
| else if (fence->error == -EIO) |
| rc = -EIO; |
| |
| hl_fence_put(fence); |
| } else { |
| dev_dbg(hdev->dev, |
| "Can't wait on seq %llu because current CS is at seq %llu (Fence is gone)\n", |
| seq, ctx->cs_sequence); |
| rc = 1; |
| } |
| |
| hl_ctx_put(ctx); |
| |
| return rc; |
| } |
| |
| int hl_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data) |
| { |
| struct hl_device *hdev = hpriv->hdev; |
| union hl_wait_cs_args *args = data; |
| u64 seq = args->in.seq; |
| long rc; |
| |
| rc = _hl_cs_wait_ioctl(hdev, hpriv->ctx, args->in.timeout_us, seq); |
| |
| memset(args, 0, sizeof(*args)); |
| |
| if (rc < 0) { |
| if (rc == -ERESTARTSYS) { |
| dev_err_ratelimited(hdev->dev, |
| "user process got signal while waiting for CS handle %llu\n", |
| seq); |
| args->out.status = HL_WAIT_CS_STATUS_INTERRUPTED; |
| rc = -EINTR; |
| } else if (rc == -ETIMEDOUT) { |
| dev_err_ratelimited(hdev->dev, |
| "CS %llu has timed-out while user process is waiting for it\n", |
| seq); |
| args->out.status = HL_WAIT_CS_STATUS_TIMEDOUT; |
| } else if (rc == -EIO) { |
| dev_err_ratelimited(hdev->dev, |
| "CS %llu has been aborted while user process is waiting for it\n", |
| seq); |
| args->out.status = HL_WAIT_CS_STATUS_ABORTED; |
| } |
| return rc; |
| } |
| |
| if (rc == 0) |
| args->out.status = HL_WAIT_CS_STATUS_BUSY; |
| else |
| args->out.status = HL_WAIT_CS_STATUS_COMPLETED; |
| |
| return 0; |
| } |