| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * AMD Cryptographic Coprocessor (CCP) AES CMAC crypto API support |
| * |
| * Copyright (C) 2013,2018 Advanced Micro Devices, Inc. |
| * |
| * Author: Tom Lendacky <thomas.lendacky@amd.com> |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/sched.h> |
| #include <linux/delay.h> |
| #include <linux/scatterlist.h> |
| #include <linux/crypto.h> |
| #include <crypto/algapi.h> |
| #include <crypto/aes.h> |
| #include <crypto/hash.h> |
| #include <crypto/internal/hash.h> |
| #include <crypto/scatterwalk.h> |
| |
| #include "ccp-crypto.h" |
| |
| static int ccp_aes_cmac_complete(struct crypto_async_request *async_req, |
| int ret) |
| { |
| struct ahash_request *req = ahash_request_cast(async_req); |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct ccp_aes_cmac_req_ctx *rctx = ahash_request_ctx_dma(req); |
| unsigned int digest_size = crypto_ahash_digestsize(tfm); |
| |
| if (ret) |
| goto e_free; |
| |
| if (rctx->hash_rem) { |
| /* Save remaining data to buffer */ |
| unsigned int offset = rctx->nbytes - rctx->hash_rem; |
| |
| scatterwalk_map_and_copy(rctx->buf, rctx->src, |
| offset, rctx->hash_rem, 0); |
| rctx->buf_count = rctx->hash_rem; |
| } else { |
| rctx->buf_count = 0; |
| } |
| |
| /* Update result area if supplied */ |
| if (req->result && rctx->final) |
| memcpy(req->result, rctx->iv, digest_size); |
| |
| e_free: |
| sg_free_table(&rctx->data_sg); |
| |
| return ret; |
| } |
| |
| static int ccp_do_cmac_update(struct ahash_request *req, unsigned int nbytes, |
| unsigned int final) |
| { |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct ccp_ctx *ctx = crypto_ahash_ctx_dma(tfm); |
| struct ccp_aes_cmac_req_ctx *rctx = ahash_request_ctx_dma(req); |
| struct scatterlist *sg, *cmac_key_sg = NULL; |
| unsigned int block_size = |
| crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); |
| unsigned int need_pad, sg_count; |
| gfp_t gfp; |
| u64 len; |
| int ret; |
| |
| if (!ctx->u.aes.key_len) |
| return -EINVAL; |
| |
| if (nbytes) |
| rctx->null_msg = 0; |
| |
| len = (u64)rctx->buf_count + (u64)nbytes; |
| |
| if (!final && (len <= block_size)) { |
| scatterwalk_map_and_copy(rctx->buf + rctx->buf_count, req->src, |
| 0, nbytes, 0); |
| rctx->buf_count += nbytes; |
| |
| return 0; |
| } |
| |
| rctx->src = req->src; |
| rctx->nbytes = nbytes; |
| |
| rctx->final = final; |
| rctx->hash_rem = final ? 0 : len & (block_size - 1); |
| rctx->hash_cnt = len - rctx->hash_rem; |
| if (!final && !rctx->hash_rem) { |
| /* CCP can't do zero length final, so keep some data around */ |
| rctx->hash_cnt -= block_size; |
| rctx->hash_rem = block_size; |
| } |
| |
| if (final && (rctx->null_msg || (len & (block_size - 1)))) |
| need_pad = 1; |
| else |
| need_pad = 0; |
| |
| sg_init_one(&rctx->iv_sg, rctx->iv, sizeof(rctx->iv)); |
| |
| /* Build the data scatterlist table - allocate enough entries for all |
| * possible data pieces (buffer, input data, padding) |
| */ |
| sg_count = (nbytes) ? sg_nents(req->src) + 2 : 2; |
| gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? |
| GFP_KERNEL : GFP_ATOMIC; |
| ret = sg_alloc_table(&rctx->data_sg, sg_count, gfp); |
| if (ret) |
| return ret; |
| |
| sg = NULL; |
| if (rctx->buf_count) { |
| sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count); |
| sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->buf_sg); |
| if (!sg) { |
| ret = -EINVAL; |
| goto e_free; |
| } |
| } |
| |
| if (nbytes) { |
| sg = ccp_crypto_sg_table_add(&rctx->data_sg, req->src); |
| if (!sg) { |
| ret = -EINVAL; |
| goto e_free; |
| } |
| } |
| |
| if (need_pad) { |
| int pad_length = block_size - (len & (block_size - 1)); |
| |
| rctx->hash_cnt += pad_length; |
| |
| memset(rctx->pad, 0, sizeof(rctx->pad)); |
| rctx->pad[0] = 0x80; |
| sg_init_one(&rctx->pad_sg, rctx->pad, pad_length); |
| sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->pad_sg); |
| if (!sg) { |
| ret = -EINVAL; |
| goto e_free; |
| } |
| } |
| if (sg) { |
| sg_mark_end(sg); |
| sg = rctx->data_sg.sgl; |
| } |
| |
| /* Initialize the K1/K2 scatterlist */ |
| if (final) |
| cmac_key_sg = (need_pad) ? &ctx->u.aes.k2_sg |
| : &ctx->u.aes.k1_sg; |
| |
| memset(&rctx->cmd, 0, sizeof(rctx->cmd)); |
| INIT_LIST_HEAD(&rctx->cmd.entry); |
| rctx->cmd.engine = CCP_ENGINE_AES; |
| rctx->cmd.u.aes.type = ctx->u.aes.type; |
| rctx->cmd.u.aes.mode = ctx->u.aes.mode; |
| rctx->cmd.u.aes.action = CCP_AES_ACTION_ENCRYPT; |
| rctx->cmd.u.aes.key = &ctx->u.aes.key_sg; |
| rctx->cmd.u.aes.key_len = ctx->u.aes.key_len; |
| rctx->cmd.u.aes.iv = &rctx->iv_sg; |
| rctx->cmd.u.aes.iv_len = AES_BLOCK_SIZE; |
| rctx->cmd.u.aes.src = sg; |
| rctx->cmd.u.aes.src_len = rctx->hash_cnt; |
| rctx->cmd.u.aes.dst = NULL; |
| rctx->cmd.u.aes.cmac_key = cmac_key_sg; |
| rctx->cmd.u.aes.cmac_key_len = ctx->u.aes.kn_len; |
| rctx->cmd.u.aes.cmac_final = final; |
| |
| ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd); |
| |
| return ret; |
| |
| e_free: |
| sg_free_table(&rctx->data_sg); |
| |
| return ret; |
| } |
| |
| static int ccp_aes_cmac_init(struct ahash_request *req) |
| { |
| struct ccp_aes_cmac_req_ctx *rctx = ahash_request_ctx_dma(req); |
| |
| memset(rctx, 0, sizeof(*rctx)); |
| |
| rctx->null_msg = 1; |
| |
| return 0; |
| } |
| |
| static int ccp_aes_cmac_update(struct ahash_request *req) |
| { |
| return ccp_do_cmac_update(req, req->nbytes, 0); |
| } |
| |
| static int ccp_aes_cmac_final(struct ahash_request *req) |
| { |
| return ccp_do_cmac_update(req, 0, 1); |
| } |
| |
| static int ccp_aes_cmac_finup(struct ahash_request *req) |
| { |
| return ccp_do_cmac_update(req, req->nbytes, 1); |
| } |
| |
| static int ccp_aes_cmac_digest(struct ahash_request *req) |
| { |
| int ret; |
| |
| ret = ccp_aes_cmac_init(req); |
| if (ret) |
| return ret; |
| |
| return ccp_aes_cmac_finup(req); |
| } |
| |
| static int ccp_aes_cmac_export(struct ahash_request *req, void *out) |
| { |
| struct ccp_aes_cmac_req_ctx *rctx = ahash_request_ctx_dma(req); |
| struct ccp_aes_cmac_exp_ctx state; |
| |
| /* Don't let anything leak to 'out' */ |
| memset(&state, 0, sizeof(state)); |
| |
| state.null_msg = rctx->null_msg; |
| memcpy(state.iv, rctx->iv, sizeof(state.iv)); |
| state.buf_count = rctx->buf_count; |
| memcpy(state.buf, rctx->buf, sizeof(state.buf)); |
| |
| /* 'out' may not be aligned so memcpy from local variable */ |
| memcpy(out, &state, sizeof(state)); |
| |
| return 0; |
| } |
| |
| static int ccp_aes_cmac_import(struct ahash_request *req, const void *in) |
| { |
| struct ccp_aes_cmac_req_ctx *rctx = ahash_request_ctx_dma(req); |
| struct ccp_aes_cmac_exp_ctx state; |
| |
| /* 'in' may not be aligned so memcpy to local variable */ |
| memcpy(&state, in, sizeof(state)); |
| |
| memset(rctx, 0, sizeof(*rctx)); |
| rctx->null_msg = state.null_msg; |
| memcpy(rctx->iv, state.iv, sizeof(rctx->iv)); |
| rctx->buf_count = state.buf_count; |
| memcpy(rctx->buf, state.buf, sizeof(rctx->buf)); |
| |
| return 0; |
| } |
| |
| static int ccp_aes_cmac_setkey(struct crypto_ahash *tfm, const u8 *key, |
| unsigned int key_len) |
| { |
| struct ccp_ctx *ctx = crypto_ahash_ctx_dma(tfm); |
| struct ccp_crypto_ahash_alg *alg = |
| ccp_crypto_ahash_alg(crypto_ahash_tfm(tfm)); |
| u64 k0_hi, k0_lo, k1_hi, k1_lo, k2_hi, k2_lo; |
| u64 rb_hi = 0x00, rb_lo = 0x87; |
| struct crypto_aes_ctx aes; |
| __be64 *gk; |
| int ret; |
| |
| switch (key_len) { |
| case AES_KEYSIZE_128: |
| ctx->u.aes.type = CCP_AES_TYPE_128; |
| break; |
| case AES_KEYSIZE_192: |
| ctx->u.aes.type = CCP_AES_TYPE_192; |
| break; |
| case AES_KEYSIZE_256: |
| ctx->u.aes.type = CCP_AES_TYPE_256; |
| break; |
| default: |
| return -EINVAL; |
| } |
| ctx->u.aes.mode = alg->mode; |
| |
| /* Set to zero until complete */ |
| ctx->u.aes.key_len = 0; |
| |
| /* Set the key for the AES cipher used to generate the keys */ |
| ret = aes_expandkey(&aes, key, key_len); |
| if (ret) |
| return ret; |
| |
| /* Encrypt a block of zeroes - use key area in context */ |
| memset(ctx->u.aes.key, 0, sizeof(ctx->u.aes.key)); |
| aes_encrypt(&aes, ctx->u.aes.key, ctx->u.aes.key); |
| memzero_explicit(&aes, sizeof(aes)); |
| |
| /* Generate K1 and K2 */ |
| k0_hi = be64_to_cpu(*((__be64 *)ctx->u.aes.key)); |
| k0_lo = be64_to_cpu(*((__be64 *)ctx->u.aes.key + 1)); |
| |
| k1_hi = (k0_hi << 1) | (k0_lo >> 63); |
| k1_lo = k0_lo << 1; |
| if (ctx->u.aes.key[0] & 0x80) { |
| k1_hi ^= rb_hi; |
| k1_lo ^= rb_lo; |
| } |
| gk = (__be64 *)ctx->u.aes.k1; |
| *gk = cpu_to_be64(k1_hi); |
| gk++; |
| *gk = cpu_to_be64(k1_lo); |
| |
| k2_hi = (k1_hi << 1) | (k1_lo >> 63); |
| k2_lo = k1_lo << 1; |
| if (ctx->u.aes.k1[0] & 0x80) { |
| k2_hi ^= rb_hi; |
| k2_lo ^= rb_lo; |
| } |
| gk = (__be64 *)ctx->u.aes.k2; |
| *gk = cpu_to_be64(k2_hi); |
| gk++; |
| *gk = cpu_to_be64(k2_lo); |
| |
| ctx->u.aes.kn_len = sizeof(ctx->u.aes.k1); |
| sg_init_one(&ctx->u.aes.k1_sg, ctx->u.aes.k1, sizeof(ctx->u.aes.k1)); |
| sg_init_one(&ctx->u.aes.k2_sg, ctx->u.aes.k2, sizeof(ctx->u.aes.k2)); |
| |
| /* Save the supplied key */ |
| memset(ctx->u.aes.key, 0, sizeof(ctx->u.aes.key)); |
| memcpy(ctx->u.aes.key, key, key_len); |
| ctx->u.aes.key_len = key_len; |
| sg_init_one(&ctx->u.aes.key_sg, ctx->u.aes.key, key_len); |
| |
| return ret; |
| } |
| |
| static int ccp_aes_cmac_cra_init(struct crypto_tfm *tfm) |
| { |
| struct ccp_ctx *ctx = crypto_tfm_ctx_dma(tfm); |
| struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); |
| |
| ctx->complete = ccp_aes_cmac_complete; |
| ctx->u.aes.key_len = 0; |
| |
| crypto_ahash_set_reqsize_dma(ahash, |
| sizeof(struct ccp_aes_cmac_req_ctx)); |
| |
| return 0; |
| } |
| |
| int ccp_register_aes_cmac_algs(struct list_head *head) |
| { |
| struct ccp_crypto_ahash_alg *ccp_alg; |
| struct ahash_alg *alg; |
| struct hash_alg_common *halg; |
| struct crypto_alg *base; |
| int ret; |
| |
| ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL); |
| if (!ccp_alg) |
| return -ENOMEM; |
| |
| INIT_LIST_HEAD(&ccp_alg->entry); |
| ccp_alg->mode = CCP_AES_MODE_CMAC; |
| |
| alg = &ccp_alg->alg; |
| alg->init = ccp_aes_cmac_init; |
| alg->update = ccp_aes_cmac_update; |
| alg->final = ccp_aes_cmac_final; |
| alg->finup = ccp_aes_cmac_finup; |
| alg->digest = ccp_aes_cmac_digest; |
| alg->export = ccp_aes_cmac_export; |
| alg->import = ccp_aes_cmac_import; |
| alg->setkey = ccp_aes_cmac_setkey; |
| |
| halg = &alg->halg; |
| halg->digestsize = AES_BLOCK_SIZE; |
| halg->statesize = sizeof(struct ccp_aes_cmac_exp_ctx); |
| |
| base = &halg->base; |
| snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "cmac(aes)"); |
| snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "cmac-aes-ccp"); |
| base->cra_flags = CRYPTO_ALG_ASYNC | |
| CRYPTO_ALG_ALLOCATES_MEMORY | |
| CRYPTO_ALG_KERN_DRIVER_ONLY | |
| CRYPTO_ALG_NEED_FALLBACK; |
| base->cra_blocksize = AES_BLOCK_SIZE; |
| base->cra_ctxsize = sizeof(struct ccp_ctx) + crypto_dma_padding(); |
| base->cra_priority = CCP_CRA_PRIORITY; |
| base->cra_init = ccp_aes_cmac_cra_init; |
| base->cra_module = THIS_MODULE; |
| |
| ret = crypto_register_ahash(alg); |
| if (ret) { |
| pr_err("%s ahash algorithm registration error (%d)\n", |
| base->cra_name, ret); |
| kfree(ccp_alg); |
| return ret; |
| } |
| |
| list_add(&ccp_alg->entry, head); |
| |
| return 0; |
| } |