| // SPDX-License-Identifier: GPL-2.0+ |
| // |
| // Copyright (c) 2013-2014 Freescale Semiconductor, Inc |
| // Copyright (c) 2017 Sysam, Angelo Dureghello <angelo@sysam.it> |
| |
| #include <linux/dmapool.h> |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/pm_domain.h> |
| |
| #include "fsl-edma-common.h" |
| |
| #define EDMA_CR 0x00 |
| #define EDMA_ES 0x04 |
| #define EDMA_ERQ 0x0C |
| #define EDMA_EEI 0x14 |
| #define EDMA_SERQ 0x1B |
| #define EDMA_CERQ 0x1A |
| #define EDMA_SEEI 0x19 |
| #define EDMA_CEEI 0x18 |
| #define EDMA_CINT 0x1F |
| #define EDMA_CERR 0x1E |
| #define EDMA_SSRT 0x1D |
| #define EDMA_CDNE 0x1C |
| #define EDMA_INTR 0x24 |
| #define EDMA_ERR 0x2C |
| |
| #define EDMA64_ERQH 0x08 |
| #define EDMA64_EEIH 0x10 |
| #define EDMA64_SERQ 0x18 |
| #define EDMA64_CERQ 0x19 |
| #define EDMA64_SEEI 0x1a |
| #define EDMA64_CEEI 0x1b |
| #define EDMA64_CINT 0x1c |
| #define EDMA64_CERR 0x1d |
| #define EDMA64_SSRT 0x1e |
| #define EDMA64_CDNE 0x1f |
| #define EDMA64_INTH 0x20 |
| #define EDMA64_INTL 0x24 |
| #define EDMA64_ERRH 0x28 |
| #define EDMA64_ERRL 0x2c |
| |
| void fsl_edma_tx_chan_handler(struct fsl_edma_chan *fsl_chan) |
| { |
| spin_lock(&fsl_chan->vchan.lock); |
| |
| if (!fsl_chan->edesc) { |
| /* terminate_all called before */ |
| spin_unlock(&fsl_chan->vchan.lock); |
| return; |
| } |
| |
| if (!fsl_chan->edesc->iscyclic) { |
| list_del(&fsl_chan->edesc->vdesc.node); |
| vchan_cookie_complete(&fsl_chan->edesc->vdesc); |
| fsl_chan->edesc = NULL; |
| fsl_chan->status = DMA_COMPLETE; |
| fsl_chan->idle = true; |
| } else { |
| vchan_cyclic_callback(&fsl_chan->edesc->vdesc); |
| } |
| |
| if (!fsl_chan->edesc) |
| fsl_edma_xfer_desc(fsl_chan); |
| |
| spin_unlock(&fsl_chan->vchan.lock); |
| } |
| |
| static void fsl_edma3_enable_request(struct fsl_edma_chan *fsl_chan) |
| { |
| u32 val, flags; |
| |
| flags = fsl_edma_drvflags(fsl_chan); |
| val = edma_readl_chreg(fsl_chan, ch_sbr); |
| /* Remote/local swapped wrongly on iMX8 QM Audio edma */ |
| if (flags & FSL_EDMA_DRV_QUIRK_SWAPPED) { |
| if (!fsl_chan->is_rxchan) |
| val |= EDMA_V3_CH_SBR_RD; |
| else |
| val |= EDMA_V3_CH_SBR_WR; |
| } else { |
| if (fsl_chan->is_rxchan) |
| val |= EDMA_V3_CH_SBR_RD; |
| else |
| val |= EDMA_V3_CH_SBR_WR; |
| } |
| |
| if (fsl_chan->is_remote) |
| val &= ~(EDMA_V3_CH_SBR_RD | EDMA_V3_CH_SBR_WR); |
| |
| edma_writel_chreg(fsl_chan, val, ch_sbr); |
| |
| if (flags & FSL_EDMA_DRV_HAS_CHMUX) { |
| /* |
| * ch_mux: With the exception of 0, attempts to write a value |
| * already in use will be forced to 0. |
| */ |
| if (!edma_readl_chreg(fsl_chan, ch_mux)) |
| edma_writel_chreg(fsl_chan, fsl_chan->srcid, ch_mux); |
| } |
| |
| val = edma_readl_chreg(fsl_chan, ch_csr); |
| val |= EDMA_V3_CH_CSR_ERQ; |
| edma_writel_chreg(fsl_chan, val, ch_csr); |
| } |
| |
| static void fsl_edma_enable_request(struct fsl_edma_chan *fsl_chan) |
| { |
| struct edma_regs *regs = &fsl_chan->edma->regs; |
| u32 ch = fsl_chan->vchan.chan.chan_id; |
| |
| if (fsl_edma_drvflags(fsl_chan) & FSL_EDMA_DRV_SPLIT_REG) |
| return fsl_edma3_enable_request(fsl_chan); |
| |
| if (fsl_chan->edma->drvdata->flags & FSL_EDMA_DRV_WRAP_IO) { |
| edma_writeb(fsl_chan->edma, EDMA_SEEI_SEEI(ch), regs->seei); |
| edma_writeb(fsl_chan->edma, ch, regs->serq); |
| } else { |
| /* ColdFire is big endian, and accesses natively |
| * big endian I/O peripherals |
| */ |
| iowrite8(EDMA_SEEI_SEEI(ch), regs->seei); |
| iowrite8(ch, regs->serq); |
| } |
| } |
| |
| static void fsl_edma3_disable_request(struct fsl_edma_chan *fsl_chan) |
| { |
| u32 val = edma_readl_chreg(fsl_chan, ch_csr); |
| u32 flags; |
| |
| flags = fsl_edma_drvflags(fsl_chan); |
| |
| if (flags & FSL_EDMA_DRV_HAS_CHMUX) |
| edma_writel_chreg(fsl_chan, 0, ch_mux); |
| |
| val &= ~EDMA_V3_CH_CSR_ERQ; |
| edma_writel_chreg(fsl_chan, val, ch_csr); |
| } |
| |
| void fsl_edma_disable_request(struct fsl_edma_chan *fsl_chan) |
| { |
| struct edma_regs *regs = &fsl_chan->edma->regs; |
| u32 ch = fsl_chan->vchan.chan.chan_id; |
| |
| if (fsl_edma_drvflags(fsl_chan) & FSL_EDMA_DRV_SPLIT_REG) |
| return fsl_edma3_disable_request(fsl_chan); |
| |
| if (fsl_chan->edma->drvdata->flags & FSL_EDMA_DRV_WRAP_IO) { |
| edma_writeb(fsl_chan->edma, ch, regs->cerq); |
| edma_writeb(fsl_chan->edma, EDMA_CEEI_CEEI(ch), regs->ceei); |
| } else { |
| /* ColdFire is big endian, and accesses natively |
| * big endian I/O peripherals |
| */ |
| iowrite8(ch, regs->cerq); |
| iowrite8(EDMA_CEEI_CEEI(ch), regs->ceei); |
| } |
| } |
| |
| static void mux_configure8(struct fsl_edma_chan *fsl_chan, void __iomem *addr, |
| u32 off, u32 slot, bool enable) |
| { |
| u8 val8; |
| |
| if (enable) |
| val8 = EDMAMUX_CHCFG_ENBL | slot; |
| else |
| val8 = EDMAMUX_CHCFG_DIS; |
| |
| iowrite8(val8, addr + off); |
| } |
| |
| static void mux_configure32(struct fsl_edma_chan *fsl_chan, void __iomem *addr, |
| u32 off, u32 slot, bool enable) |
| { |
| u32 val; |
| |
| if (enable) |
| val = EDMAMUX_CHCFG_ENBL << 24 | slot; |
| else |
| val = EDMAMUX_CHCFG_DIS; |
| |
| iowrite32(val, addr + off * 4); |
| } |
| |
| void fsl_edma_chan_mux(struct fsl_edma_chan *fsl_chan, |
| unsigned int slot, bool enable) |
| { |
| u32 ch = fsl_chan->vchan.chan.chan_id; |
| void __iomem *muxaddr; |
| unsigned int chans_per_mux, ch_off; |
| int endian_diff[4] = {3, 1, -1, -3}; |
| u32 dmamux_nr = fsl_chan->edma->drvdata->dmamuxs; |
| |
| if (!dmamux_nr) |
| return; |
| |
| chans_per_mux = fsl_chan->edma->n_chans / dmamux_nr; |
| ch_off = fsl_chan->vchan.chan.chan_id % chans_per_mux; |
| |
| if (fsl_chan->edma->drvdata->flags & FSL_EDMA_DRV_MUX_SWAP) |
| ch_off += endian_diff[ch_off % 4]; |
| |
| muxaddr = fsl_chan->edma->muxbase[ch / chans_per_mux]; |
| slot = EDMAMUX_CHCFG_SOURCE(slot); |
| |
| if (fsl_chan->edma->drvdata->flags & FSL_EDMA_DRV_CONFIG32) |
| mux_configure32(fsl_chan, muxaddr, ch_off, slot, enable); |
| else |
| mux_configure8(fsl_chan, muxaddr, ch_off, slot, enable); |
| } |
| |
| static unsigned int fsl_edma_get_tcd_attr(enum dma_slave_buswidth addr_width) |
| { |
| u32 val; |
| |
| if (addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) |
| addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| |
| val = ffs(addr_width) - 1; |
| return val | (val << 8); |
| } |
| |
| void fsl_edma_free_desc(struct virt_dma_desc *vdesc) |
| { |
| struct fsl_edma_desc *fsl_desc; |
| int i; |
| |
| fsl_desc = to_fsl_edma_desc(vdesc); |
| for (i = 0; i < fsl_desc->n_tcds; i++) |
| dma_pool_free(fsl_desc->echan->tcd_pool, fsl_desc->tcd[i].vtcd, |
| fsl_desc->tcd[i].ptcd); |
| kfree(fsl_desc); |
| } |
| |
| int fsl_edma_terminate_all(struct dma_chan *chan) |
| { |
| struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); |
| unsigned long flags; |
| LIST_HEAD(head); |
| |
| spin_lock_irqsave(&fsl_chan->vchan.lock, flags); |
| fsl_edma_disable_request(fsl_chan); |
| fsl_chan->edesc = NULL; |
| fsl_chan->idle = true; |
| vchan_get_all_descriptors(&fsl_chan->vchan, &head); |
| spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); |
| vchan_dma_desc_free_list(&fsl_chan->vchan, &head); |
| |
| if (fsl_edma_drvflags(fsl_chan) & FSL_EDMA_DRV_HAS_PD) |
| pm_runtime_allow(fsl_chan->pd_dev); |
| |
| return 0; |
| } |
| |
| int fsl_edma_pause(struct dma_chan *chan) |
| { |
| struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&fsl_chan->vchan.lock, flags); |
| if (fsl_chan->edesc) { |
| fsl_edma_disable_request(fsl_chan); |
| fsl_chan->status = DMA_PAUSED; |
| fsl_chan->idle = true; |
| } |
| spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); |
| return 0; |
| } |
| |
| int fsl_edma_resume(struct dma_chan *chan) |
| { |
| struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&fsl_chan->vchan.lock, flags); |
| if (fsl_chan->edesc) { |
| fsl_edma_enable_request(fsl_chan); |
| fsl_chan->status = DMA_IN_PROGRESS; |
| fsl_chan->idle = false; |
| } |
| spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); |
| return 0; |
| } |
| |
| static void fsl_edma_unprep_slave_dma(struct fsl_edma_chan *fsl_chan) |
| { |
| if (fsl_chan->dma_dir != DMA_NONE) |
| dma_unmap_resource(fsl_chan->vchan.chan.device->dev, |
| fsl_chan->dma_dev_addr, |
| fsl_chan->dma_dev_size, |
| fsl_chan->dma_dir, 0); |
| fsl_chan->dma_dir = DMA_NONE; |
| } |
| |
| static bool fsl_edma_prep_slave_dma(struct fsl_edma_chan *fsl_chan, |
| enum dma_transfer_direction dir) |
| { |
| struct device *dev = fsl_chan->vchan.chan.device->dev; |
| enum dma_data_direction dma_dir; |
| phys_addr_t addr = 0; |
| u32 size = 0; |
| |
| switch (dir) { |
| case DMA_MEM_TO_DEV: |
| dma_dir = DMA_FROM_DEVICE; |
| addr = fsl_chan->cfg.dst_addr; |
| size = fsl_chan->cfg.dst_maxburst; |
| break; |
| case DMA_DEV_TO_MEM: |
| dma_dir = DMA_TO_DEVICE; |
| addr = fsl_chan->cfg.src_addr; |
| size = fsl_chan->cfg.src_maxburst; |
| break; |
| default: |
| dma_dir = DMA_NONE; |
| break; |
| } |
| |
| /* Already mapped for this config? */ |
| if (fsl_chan->dma_dir == dma_dir) |
| return true; |
| |
| fsl_edma_unprep_slave_dma(fsl_chan); |
| |
| fsl_chan->dma_dev_addr = dma_map_resource(dev, addr, size, dma_dir, 0); |
| if (dma_mapping_error(dev, fsl_chan->dma_dev_addr)) |
| return false; |
| fsl_chan->dma_dev_size = size; |
| fsl_chan->dma_dir = dma_dir; |
| |
| return true; |
| } |
| |
| int fsl_edma_slave_config(struct dma_chan *chan, |
| struct dma_slave_config *cfg) |
| { |
| struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); |
| |
| memcpy(&fsl_chan->cfg, cfg, sizeof(*cfg)); |
| fsl_edma_unprep_slave_dma(fsl_chan); |
| |
| return 0; |
| } |
| |
| static size_t fsl_edma_desc_residue(struct fsl_edma_chan *fsl_chan, |
| struct virt_dma_desc *vdesc, bool in_progress) |
| { |
| struct fsl_edma_desc *edesc = fsl_chan->edesc; |
| enum dma_transfer_direction dir = edesc->dirn; |
| dma_addr_t cur_addr, dma_addr; |
| size_t len, size; |
| u32 nbytes = 0; |
| int i; |
| |
| /* calculate the total size in this desc */ |
| for (len = i = 0; i < fsl_chan->edesc->n_tcds; i++) { |
| nbytes = le32_to_cpu(edesc->tcd[i].vtcd->nbytes); |
| if (nbytes & (EDMA_V3_TCD_NBYTES_DMLOE | EDMA_V3_TCD_NBYTES_SMLOE)) |
| nbytes = EDMA_V3_TCD_NBYTES_MLOFF_NBYTES(nbytes); |
| len += nbytes * le16_to_cpu(edesc->tcd[i].vtcd->biter); |
| } |
| |
| if (!in_progress) |
| return len; |
| |
| if (dir == DMA_MEM_TO_DEV) |
| cur_addr = edma_read_tcdreg(fsl_chan, saddr); |
| else |
| cur_addr = edma_read_tcdreg(fsl_chan, daddr); |
| |
| /* figure out the finished and calculate the residue */ |
| for (i = 0; i < fsl_chan->edesc->n_tcds; i++) { |
| nbytes = le32_to_cpu(edesc->tcd[i].vtcd->nbytes); |
| if (nbytes & (EDMA_V3_TCD_NBYTES_DMLOE | EDMA_V3_TCD_NBYTES_SMLOE)) |
| nbytes = EDMA_V3_TCD_NBYTES_MLOFF_NBYTES(nbytes); |
| |
| size = nbytes * le16_to_cpu(edesc->tcd[i].vtcd->biter); |
| |
| if (dir == DMA_MEM_TO_DEV) |
| dma_addr = le32_to_cpu(edesc->tcd[i].vtcd->saddr); |
| else |
| dma_addr = le32_to_cpu(edesc->tcd[i].vtcd->daddr); |
| |
| len -= size; |
| if (cur_addr >= dma_addr && cur_addr < dma_addr + size) { |
| len += dma_addr + size - cur_addr; |
| break; |
| } |
| } |
| |
| return len; |
| } |
| |
| enum dma_status fsl_edma_tx_status(struct dma_chan *chan, |
| dma_cookie_t cookie, struct dma_tx_state *txstate) |
| { |
| struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); |
| struct virt_dma_desc *vdesc; |
| enum dma_status status; |
| unsigned long flags; |
| |
| status = dma_cookie_status(chan, cookie, txstate); |
| if (status == DMA_COMPLETE) |
| return status; |
| |
| if (!txstate) |
| return fsl_chan->status; |
| |
| spin_lock_irqsave(&fsl_chan->vchan.lock, flags); |
| vdesc = vchan_find_desc(&fsl_chan->vchan, cookie); |
| if (fsl_chan->edesc && cookie == fsl_chan->edesc->vdesc.tx.cookie) |
| txstate->residue = |
| fsl_edma_desc_residue(fsl_chan, vdesc, true); |
| else if (vdesc) |
| txstate->residue = |
| fsl_edma_desc_residue(fsl_chan, vdesc, false); |
| else |
| txstate->residue = 0; |
| |
| spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); |
| |
| return fsl_chan->status; |
| } |
| |
| static void fsl_edma_set_tcd_regs(struct fsl_edma_chan *fsl_chan, |
| struct fsl_edma_hw_tcd *tcd) |
| { |
| u16 csr = 0; |
| |
| /* |
| * TCD parameters are stored in struct fsl_edma_hw_tcd in little |
| * endian format. However, we need to load the TCD registers in |
| * big- or little-endian obeying the eDMA engine model endian, |
| * and this is performed from specific edma_write functions |
| */ |
| edma_write_tcdreg(fsl_chan, 0, csr); |
| |
| edma_write_tcdreg(fsl_chan, tcd->saddr, saddr); |
| edma_write_tcdreg(fsl_chan, tcd->daddr, daddr); |
| |
| edma_write_tcdreg(fsl_chan, tcd->attr, attr); |
| edma_write_tcdreg(fsl_chan, tcd->soff, soff); |
| |
| edma_write_tcdreg(fsl_chan, tcd->nbytes, nbytes); |
| edma_write_tcdreg(fsl_chan, tcd->slast, slast); |
| |
| edma_write_tcdreg(fsl_chan, tcd->citer, citer); |
| edma_write_tcdreg(fsl_chan, tcd->biter, biter); |
| edma_write_tcdreg(fsl_chan, tcd->doff, doff); |
| |
| edma_write_tcdreg(fsl_chan, tcd->dlast_sga, dlast_sga); |
| |
| csr = le16_to_cpu(tcd->csr); |
| |
| if (fsl_chan->is_sw) { |
| csr |= EDMA_TCD_CSR_START; |
| tcd->csr = cpu_to_le16(csr); |
| } |
| |
| /* |
| * Must clear CHn_CSR[DONE] bit before enable TCDn_CSR[ESG] at EDMAv3 |
| * eDMAv4 have not such requirement. |
| * Change MLINK need clear CHn_CSR[DONE] for both eDMAv3 and eDMAv4. |
| */ |
| if (((fsl_edma_drvflags(fsl_chan) & FSL_EDMA_DRV_CLEAR_DONE_E_SG) && |
| (csr & EDMA_TCD_CSR_E_SG)) || |
| ((fsl_edma_drvflags(fsl_chan) & FSL_EDMA_DRV_CLEAR_DONE_E_LINK) && |
| (csr & EDMA_TCD_CSR_E_LINK))) |
| edma_writel_chreg(fsl_chan, edma_readl_chreg(fsl_chan, ch_csr), ch_csr); |
| |
| |
| edma_write_tcdreg(fsl_chan, tcd->csr, csr); |
| } |
| |
| static inline |
| void fsl_edma_fill_tcd(struct fsl_edma_chan *fsl_chan, |
| struct fsl_edma_hw_tcd *tcd, u32 src, u32 dst, |
| u16 attr, u16 soff, u32 nbytes, u32 slast, u16 citer, |
| u16 biter, u16 doff, u32 dlast_sga, bool major_int, |
| bool disable_req, bool enable_sg) |
| { |
| struct dma_slave_config *cfg = &fsl_chan->cfg; |
| u16 csr = 0; |
| u32 burst; |
| |
| /* |
| * eDMA hardware SGs require the TCDs to be stored in little |
| * endian format irrespective of the register endian model. |
| * So we put the value in little endian in memory, waiting |
| * for fsl_edma_set_tcd_regs doing the swap. |
| */ |
| tcd->saddr = cpu_to_le32(src); |
| tcd->daddr = cpu_to_le32(dst); |
| |
| tcd->attr = cpu_to_le16(attr); |
| |
| tcd->soff = cpu_to_le16(soff); |
| |
| if (fsl_chan->is_multi_fifo) { |
| /* set mloff to support multiple fifo */ |
| burst = cfg->direction == DMA_DEV_TO_MEM ? |
| cfg->src_addr_width : cfg->dst_addr_width; |
| nbytes |= EDMA_V3_TCD_NBYTES_MLOFF(-(burst * 4)); |
| /* enable DMLOE/SMLOE */ |
| if (cfg->direction == DMA_MEM_TO_DEV) { |
| nbytes |= EDMA_V3_TCD_NBYTES_DMLOE; |
| nbytes &= ~EDMA_V3_TCD_NBYTES_SMLOE; |
| } else { |
| nbytes |= EDMA_V3_TCD_NBYTES_SMLOE; |
| nbytes &= ~EDMA_V3_TCD_NBYTES_DMLOE; |
| } |
| } |
| |
| tcd->nbytes = cpu_to_le32(nbytes); |
| tcd->slast = cpu_to_le32(slast); |
| |
| tcd->citer = cpu_to_le16(EDMA_TCD_CITER_CITER(citer)); |
| tcd->doff = cpu_to_le16(doff); |
| |
| tcd->dlast_sga = cpu_to_le32(dlast_sga); |
| |
| tcd->biter = cpu_to_le16(EDMA_TCD_BITER_BITER(biter)); |
| if (major_int) |
| csr |= EDMA_TCD_CSR_INT_MAJOR; |
| |
| if (disable_req) |
| csr |= EDMA_TCD_CSR_D_REQ; |
| |
| if (enable_sg) |
| csr |= EDMA_TCD_CSR_E_SG; |
| |
| if (fsl_chan->is_rxchan) |
| csr |= EDMA_TCD_CSR_ACTIVE; |
| |
| if (fsl_chan->is_sw) |
| csr |= EDMA_TCD_CSR_START; |
| |
| tcd->csr = cpu_to_le16(csr); |
| } |
| |
| static struct fsl_edma_desc *fsl_edma_alloc_desc(struct fsl_edma_chan *fsl_chan, |
| int sg_len) |
| { |
| struct fsl_edma_desc *fsl_desc; |
| int i; |
| |
| fsl_desc = kzalloc(struct_size(fsl_desc, tcd, sg_len), GFP_NOWAIT); |
| if (!fsl_desc) |
| return NULL; |
| |
| fsl_desc->echan = fsl_chan; |
| fsl_desc->n_tcds = sg_len; |
| for (i = 0; i < sg_len; i++) { |
| fsl_desc->tcd[i].vtcd = dma_pool_alloc(fsl_chan->tcd_pool, |
| GFP_NOWAIT, &fsl_desc->tcd[i].ptcd); |
| if (!fsl_desc->tcd[i].vtcd) |
| goto err; |
| } |
| return fsl_desc; |
| |
| err: |
| while (--i >= 0) |
| dma_pool_free(fsl_chan->tcd_pool, fsl_desc->tcd[i].vtcd, |
| fsl_desc->tcd[i].ptcd); |
| kfree(fsl_desc); |
| return NULL; |
| } |
| |
| struct dma_async_tx_descriptor *fsl_edma_prep_dma_cyclic( |
| struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len, |
| size_t period_len, enum dma_transfer_direction direction, |
| unsigned long flags) |
| { |
| struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); |
| struct fsl_edma_desc *fsl_desc; |
| dma_addr_t dma_buf_next; |
| bool major_int = true; |
| int sg_len, i; |
| u32 src_addr, dst_addr, last_sg, nbytes; |
| u16 soff, doff, iter; |
| |
| if (!is_slave_direction(direction)) |
| return NULL; |
| |
| if (!fsl_edma_prep_slave_dma(fsl_chan, direction)) |
| return NULL; |
| |
| sg_len = buf_len / period_len; |
| fsl_desc = fsl_edma_alloc_desc(fsl_chan, sg_len); |
| if (!fsl_desc) |
| return NULL; |
| fsl_desc->iscyclic = true; |
| fsl_desc->dirn = direction; |
| |
| dma_buf_next = dma_addr; |
| if (direction == DMA_MEM_TO_DEV) { |
| fsl_chan->attr = |
| fsl_edma_get_tcd_attr(fsl_chan->cfg.dst_addr_width); |
| nbytes = fsl_chan->cfg.dst_addr_width * |
| fsl_chan->cfg.dst_maxburst; |
| } else { |
| fsl_chan->attr = |
| fsl_edma_get_tcd_attr(fsl_chan->cfg.src_addr_width); |
| nbytes = fsl_chan->cfg.src_addr_width * |
| fsl_chan->cfg.src_maxburst; |
| } |
| |
| iter = period_len / nbytes; |
| |
| for (i = 0; i < sg_len; i++) { |
| if (dma_buf_next >= dma_addr + buf_len) |
| dma_buf_next = dma_addr; |
| |
| /* get next sg's physical address */ |
| last_sg = fsl_desc->tcd[(i + 1) % sg_len].ptcd; |
| |
| if (direction == DMA_MEM_TO_DEV) { |
| src_addr = dma_buf_next; |
| dst_addr = fsl_chan->dma_dev_addr; |
| soff = fsl_chan->cfg.dst_addr_width; |
| doff = fsl_chan->is_multi_fifo ? 4 : 0; |
| } else if (direction == DMA_DEV_TO_MEM) { |
| src_addr = fsl_chan->dma_dev_addr; |
| dst_addr = dma_buf_next; |
| soff = fsl_chan->is_multi_fifo ? 4 : 0; |
| doff = fsl_chan->cfg.src_addr_width; |
| } else { |
| /* DMA_DEV_TO_DEV */ |
| src_addr = fsl_chan->cfg.src_addr; |
| dst_addr = fsl_chan->cfg.dst_addr; |
| soff = doff = 0; |
| major_int = false; |
| } |
| |
| fsl_edma_fill_tcd(fsl_chan, fsl_desc->tcd[i].vtcd, src_addr, dst_addr, |
| fsl_chan->attr, soff, nbytes, 0, iter, |
| iter, doff, last_sg, major_int, false, true); |
| dma_buf_next += period_len; |
| } |
| |
| return vchan_tx_prep(&fsl_chan->vchan, &fsl_desc->vdesc, flags); |
| } |
| |
| struct dma_async_tx_descriptor *fsl_edma_prep_slave_sg( |
| struct dma_chan *chan, struct scatterlist *sgl, |
| unsigned int sg_len, enum dma_transfer_direction direction, |
| unsigned long flags, void *context) |
| { |
| struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); |
| struct fsl_edma_desc *fsl_desc; |
| struct scatterlist *sg; |
| u32 src_addr, dst_addr, last_sg, nbytes; |
| u16 soff, doff, iter; |
| int i; |
| |
| if (!is_slave_direction(direction)) |
| return NULL; |
| |
| if (!fsl_edma_prep_slave_dma(fsl_chan, direction)) |
| return NULL; |
| |
| fsl_desc = fsl_edma_alloc_desc(fsl_chan, sg_len); |
| if (!fsl_desc) |
| return NULL; |
| fsl_desc->iscyclic = false; |
| fsl_desc->dirn = direction; |
| |
| if (direction == DMA_MEM_TO_DEV) { |
| fsl_chan->attr = |
| fsl_edma_get_tcd_attr(fsl_chan->cfg.dst_addr_width); |
| nbytes = fsl_chan->cfg.dst_addr_width * |
| fsl_chan->cfg.dst_maxburst; |
| } else { |
| fsl_chan->attr = |
| fsl_edma_get_tcd_attr(fsl_chan->cfg.src_addr_width); |
| nbytes = fsl_chan->cfg.src_addr_width * |
| fsl_chan->cfg.src_maxburst; |
| } |
| |
| for_each_sg(sgl, sg, sg_len, i) { |
| if (direction == DMA_MEM_TO_DEV) { |
| src_addr = sg_dma_address(sg); |
| dst_addr = fsl_chan->dma_dev_addr; |
| soff = fsl_chan->cfg.dst_addr_width; |
| doff = 0; |
| } else if (direction == DMA_DEV_TO_MEM) { |
| src_addr = fsl_chan->dma_dev_addr; |
| dst_addr = sg_dma_address(sg); |
| soff = 0; |
| doff = fsl_chan->cfg.src_addr_width; |
| } else { |
| /* DMA_DEV_TO_DEV */ |
| src_addr = fsl_chan->cfg.src_addr; |
| dst_addr = fsl_chan->cfg.dst_addr; |
| soff = 0; |
| doff = 0; |
| } |
| |
| /* |
| * Choose the suitable burst length if sg_dma_len is not |
| * multiple of burst length so that the whole transfer length is |
| * multiple of minor loop(burst length). |
| */ |
| if (sg_dma_len(sg) % nbytes) { |
| u32 width = (direction == DMA_DEV_TO_MEM) ? doff : soff; |
| u32 burst = (direction == DMA_DEV_TO_MEM) ? |
| fsl_chan->cfg.src_maxburst : |
| fsl_chan->cfg.dst_maxburst; |
| int j; |
| |
| for (j = burst; j > 1; j--) { |
| if (!(sg_dma_len(sg) % (j * width))) { |
| nbytes = j * width; |
| break; |
| } |
| } |
| /* Set burst size as 1 if there's no suitable one */ |
| if (j == 1) |
| nbytes = width; |
| } |
| iter = sg_dma_len(sg) / nbytes; |
| if (i < sg_len - 1) { |
| last_sg = fsl_desc->tcd[(i + 1)].ptcd; |
| fsl_edma_fill_tcd(fsl_chan, fsl_desc->tcd[i].vtcd, src_addr, |
| dst_addr, fsl_chan->attr, soff, |
| nbytes, 0, iter, iter, doff, last_sg, |
| false, false, true); |
| } else { |
| last_sg = 0; |
| fsl_edma_fill_tcd(fsl_chan, fsl_desc->tcd[i].vtcd, src_addr, |
| dst_addr, fsl_chan->attr, soff, |
| nbytes, 0, iter, iter, doff, last_sg, |
| true, true, false); |
| } |
| } |
| |
| return vchan_tx_prep(&fsl_chan->vchan, &fsl_desc->vdesc, flags); |
| } |
| |
| struct dma_async_tx_descriptor *fsl_edma_prep_memcpy(struct dma_chan *chan, |
| dma_addr_t dma_dst, dma_addr_t dma_src, |
| size_t len, unsigned long flags) |
| { |
| struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); |
| struct fsl_edma_desc *fsl_desc; |
| |
| fsl_desc = fsl_edma_alloc_desc(fsl_chan, 1); |
| if (!fsl_desc) |
| return NULL; |
| fsl_desc->iscyclic = false; |
| |
| fsl_chan->is_sw = true; |
| |
| /* To match with copy_align and max_seg_size so 1 tcd is enough */ |
| fsl_edma_fill_tcd(fsl_chan, fsl_desc->tcd[0].vtcd, dma_src, dma_dst, |
| fsl_edma_get_tcd_attr(DMA_SLAVE_BUSWIDTH_32_BYTES), |
| 32, len, 0, 1, 1, 32, 0, true, true, false); |
| |
| return vchan_tx_prep(&fsl_chan->vchan, &fsl_desc->vdesc, flags); |
| } |
| |
| void fsl_edma_xfer_desc(struct fsl_edma_chan *fsl_chan) |
| { |
| struct virt_dma_desc *vdesc; |
| |
| lockdep_assert_held(&fsl_chan->vchan.lock); |
| |
| vdesc = vchan_next_desc(&fsl_chan->vchan); |
| if (!vdesc) |
| return; |
| fsl_chan->edesc = to_fsl_edma_desc(vdesc); |
| fsl_edma_set_tcd_regs(fsl_chan, fsl_chan->edesc->tcd[0].vtcd); |
| fsl_edma_enable_request(fsl_chan); |
| fsl_chan->status = DMA_IN_PROGRESS; |
| fsl_chan->idle = false; |
| } |
| |
| void fsl_edma_issue_pending(struct dma_chan *chan) |
| { |
| struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&fsl_chan->vchan.lock, flags); |
| |
| if (unlikely(fsl_chan->pm_state != RUNNING)) { |
| spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); |
| /* cannot submit due to suspend */ |
| return; |
| } |
| |
| if (vchan_issue_pending(&fsl_chan->vchan) && !fsl_chan->edesc) |
| fsl_edma_xfer_desc(fsl_chan); |
| |
| spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); |
| } |
| |
| int fsl_edma_alloc_chan_resources(struct dma_chan *chan) |
| { |
| struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); |
| |
| fsl_chan->tcd_pool = dma_pool_create("tcd_pool", chan->device->dev, |
| sizeof(struct fsl_edma_hw_tcd), |
| 32, 0); |
| return 0; |
| } |
| |
| void fsl_edma_free_chan_resources(struct dma_chan *chan) |
| { |
| struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); |
| struct fsl_edma_engine *edma = fsl_chan->edma; |
| unsigned long flags; |
| LIST_HEAD(head); |
| |
| spin_lock_irqsave(&fsl_chan->vchan.lock, flags); |
| fsl_edma_disable_request(fsl_chan); |
| if (edma->drvdata->dmamuxs) |
| fsl_edma_chan_mux(fsl_chan, 0, false); |
| fsl_chan->edesc = NULL; |
| vchan_get_all_descriptors(&fsl_chan->vchan, &head); |
| fsl_edma_unprep_slave_dma(fsl_chan); |
| spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); |
| |
| vchan_dma_desc_free_list(&fsl_chan->vchan, &head); |
| dma_pool_destroy(fsl_chan->tcd_pool); |
| fsl_chan->tcd_pool = NULL; |
| fsl_chan->is_sw = false; |
| fsl_chan->srcid = 0; |
| } |
| |
| void fsl_edma_cleanup_vchan(struct dma_device *dmadev) |
| { |
| struct fsl_edma_chan *chan, *_chan; |
| |
| list_for_each_entry_safe(chan, _chan, |
| &dmadev->channels, vchan.chan.device_node) { |
| list_del(&chan->vchan.chan.device_node); |
| tasklet_kill(&chan->vchan.task); |
| } |
| } |
| |
| /* |
| * On the 32 channels Vybrid/mpc577x edma version, register offsets are |
| * different compared to ColdFire mcf5441x 64 channels edma. |
| * |
| * This function sets up register offsets as per proper declared version |
| * so must be called in xxx_edma_probe() just after setting the |
| * edma "version" and "membase" appropriately. |
| */ |
| void fsl_edma_setup_regs(struct fsl_edma_engine *edma) |
| { |
| bool is64 = !!(edma->drvdata->flags & FSL_EDMA_DRV_EDMA64); |
| |
| edma->regs.cr = edma->membase + EDMA_CR; |
| edma->regs.es = edma->membase + EDMA_ES; |
| edma->regs.erql = edma->membase + EDMA_ERQ; |
| edma->regs.eeil = edma->membase + EDMA_EEI; |
| |
| edma->regs.serq = edma->membase + (is64 ? EDMA64_SERQ : EDMA_SERQ); |
| edma->regs.cerq = edma->membase + (is64 ? EDMA64_CERQ : EDMA_CERQ); |
| edma->regs.seei = edma->membase + (is64 ? EDMA64_SEEI : EDMA_SEEI); |
| edma->regs.ceei = edma->membase + (is64 ? EDMA64_CEEI : EDMA_CEEI); |
| edma->regs.cint = edma->membase + (is64 ? EDMA64_CINT : EDMA_CINT); |
| edma->regs.cerr = edma->membase + (is64 ? EDMA64_CERR : EDMA_CERR); |
| edma->regs.ssrt = edma->membase + (is64 ? EDMA64_SSRT : EDMA_SSRT); |
| edma->regs.cdne = edma->membase + (is64 ? EDMA64_CDNE : EDMA_CDNE); |
| edma->regs.intl = edma->membase + (is64 ? EDMA64_INTL : EDMA_INTR); |
| edma->regs.errl = edma->membase + (is64 ? EDMA64_ERRL : EDMA_ERR); |
| |
| if (is64) { |
| edma->regs.erqh = edma->membase + EDMA64_ERQH; |
| edma->regs.eeih = edma->membase + EDMA64_EEIH; |
| edma->regs.errh = edma->membase + EDMA64_ERRH; |
| edma->regs.inth = edma->membase + EDMA64_INTH; |
| } |
| } |
| |
| MODULE_LICENSE("GPL v2"); |