blob: 6146b2927d5c56af6bc3b9722c1789f29a4498fe [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Arm Firmware Framework for ARMv8-A(FFA) interface driver
*
* The Arm FFA specification[1] describes a software architecture to
* leverages the virtualization extension to isolate software images
* provided by an ecosystem of vendors from each other and describes
* interfaces that standardize communication between the various software
* images including communication between images in the Secure world and
* Normal world. Any Hypervisor could use the FFA interfaces to enable
* communication between VMs it manages.
*
* The Hypervisor a.k.a Partition managers in FFA terminology can assign
* system resources(Memory regions, Devices, CPU cycles) to the partitions
* and manage isolation amongst them.
*
* [1] https://developer.arm.com/docs/den0077/latest
*
* Copyright (C) 2021 ARM Ltd.
*/
#define DRIVER_NAME "ARM FF-A"
#define pr_fmt(fmt) DRIVER_NAME ": " fmt
#include <linux/acpi.h>
#include <linux/arm_ffa.h>
#include <linux/bitfield.h>
#include <linux/cpuhotplug.h>
#include <linux/device.h>
#include <linux/hashtable.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/of_irq.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <linux/smp.h>
#include <linux/uuid.h>
#include <linux/xarray.h>
#include "common.h"
#define FFA_DRIVER_VERSION FFA_VERSION_1_1
#define FFA_MIN_VERSION FFA_VERSION_1_0
#define SENDER_ID_MASK GENMASK(31, 16)
#define RECEIVER_ID_MASK GENMASK(15, 0)
#define SENDER_ID(x) ((u16)(FIELD_GET(SENDER_ID_MASK, (x))))
#define RECEIVER_ID(x) ((u16)(FIELD_GET(RECEIVER_ID_MASK, (x))))
#define PACK_TARGET_INFO(s, r) \
(FIELD_PREP(SENDER_ID_MASK, (s)) | FIELD_PREP(RECEIVER_ID_MASK, (r)))
/*
* Keeping RX TX buffer size as 4K for now
* 64K may be preferred to keep it min a page in 64K PAGE_SIZE config
*/
#define RXTX_BUFFER_SIZE SZ_4K
#define FFA_MAX_NOTIFICATIONS 64
static ffa_fn *invoke_ffa_fn;
static const int ffa_linux_errmap[] = {
/* better than switch case as long as return value is continuous */
0, /* FFA_RET_SUCCESS */
-EOPNOTSUPP, /* FFA_RET_NOT_SUPPORTED */
-EINVAL, /* FFA_RET_INVALID_PARAMETERS */
-ENOMEM, /* FFA_RET_NO_MEMORY */
-EBUSY, /* FFA_RET_BUSY */
-EINTR, /* FFA_RET_INTERRUPTED */
-EACCES, /* FFA_RET_DENIED */
-EAGAIN, /* FFA_RET_RETRY */
-ECANCELED, /* FFA_RET_ABORTED */
-ENODATA, /* FFA_RET_NO_DATA */
};
static inline int ffa_to_linux_errno(int errno)
{
int err_idx = -errno;
if (err_idx >= 0 && err_idx < ARRAY_SIZE(ffa_linux_errmap))
return ffa_linux_errmap[err_idx];
return -EINVAL;
}
struct ffa_pcpu_irq {
struct ffa_drv_info *info;
};
struct ffa_drv_info {
u32 version;
u16 vm_id;
struct mutex rx_lock; /* lock to protect Rx buffer */
struct mutex tx_lock; /* lock to protect Tx buffer */
void *rx_buffer;
void *tx_buffer;
bool mem_ops_native;
bool bitmap_created;
bool notif_enabled;
unsigned int sched_recv_irq;
unsigned int cpuhp_state;
struct ffa_pcpu_irq __percpu *irq_pcpu;
struct workqueue_struct *notif_pcpu_wq;
struct work_struct notif_pcpu_work;
struct work_struct irq_work;
struct xarray partition_info;
unsigned int partition_count;
DECLARE_HASHTABLE(notifier_hash, ilog2(FFA_MAX_NOTIFICATIONS));
struct mutex notify_lock; /* lock to protect notifier hashtable */
};
static struct ffa_drv_info *drv_info;
/*
* The driver must be able to support all the versions from the earliest
* supported FFA_MIN_VERSION to the latest supported FFA_DRIVER_VERSION.
* The specification states that if firmware supports a FFA implementation
* that is incompatible with and at a greater version number than specified
* by the caller(FFA_DRIVER_VERSION passed as parameter to FFA_VERSION),
* it must return the NOT_SUPPORTED error code.
*/
static u32 ffa_compatible_version_find(u32 version)
{
u16 major = FFA_MAJOR_VERSION(version), minor = FFA_MINOR_VERSION(version);
u16 drv_major = FFA_MAJOR_VERSION(FFA_DRIVER_VERSION);
u16 drv_minor = FFA_MINOR_VERSION(FFA_DRIVER_VERSION);
if ((major < drv_major) || (major == drv_major && minor <= drv_minor))
return version;
pr_info("Firmware version higher than driver version, downgrading\n");
return FFA_DRIVER_VERSION;
}
static int ffa_version_check(u32 *version)
{
ffa_value_t ver;
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_VERSION, .a1 = FFA_DRIVER_VERSION,
}, &ver);
if (ver.a0 == FFA_RET_NOT_SUPPORTED) {
pr_info("FFA_VERSION returned not supported\n");
return -EOPNOTSUPP;
}
if (ver.a0 < FFA_MIN_VERSION) {
pr_err("Incompatible v%d.%d! Earliest supported v%d.%d\n",
FFA_MAJOR_VERSION(ver.a0), FFA_MINOR_VERSION(ver.a0),
FFA_MAJOR_VERSION(FFA_MIN_VERSION),
FFA_MINOR_VERSION(FFA_MIN_VERSION));
return -EINVAL;
}
pr_info("Driver version %d.%d\n", FFA_MAJOR_VERSION(FFA_DRIVER_VERSION),
FFA_MINOR_VERSION(FFA_DRIVER_VERSION));
pr_info("Firmware version %d.%d found\n", FFA_MAJOR_VERSION(ver.a0),
FFA_MINOR_VERSION(ver.a0));
*version = ffa_compatible_version_find(ver.a0);
return 0;
}
static int ffa_rx_release(void)
{
ffa_value_t ret;
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_RX_RELEASE,
}, &ret);
if (ret.a0 == FFA_ERROR)
return ffa_to_linux_errno((int)ret.a2);
/* check for ret.a0 == FFA_RX_RELEASE ? */
return 0;
}
static int ffa_rxtx_map(phys_addr_t tx_buf, phys_addr_t rx_buf, u32 pg_cnt)
{
ffa_value_t ret;
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_FN_NATIVE(RXTX_MAP),
.a1 = tx_buf, .a2 = rx_buf, .a3 = pg_cnt,
}, &ret);
if (ret.a0 == FFA_ERROR)
return ffa_to_linux_errno((int)ret.a2);
return 0;
}
static int ffa_rxtx_unmap(u16 vm_id)
{
ffa_value_t ret;
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_RXTX_UNMAP, .a1 = PACK_TARGET_INFO(vm_id, 0),
}, &ret);
if (ret.a0 == FFA_ERROR)
return ffa_to_linux_errno((int)ret.a2);
return 0;
}
#define PARTITION_INFO_GET_RETURN_COUNT_ONLY BIT(0)
/* buffer must be sizeof(struct ffa_partition_info) * num_partitions */
static int
__ffa_partition_info_get(u32 uuid0, u32 uuid1, u32 uuid2, u32 uuid3,
struct ffa_partition_info *buffer, int num_partitions)
{
int idx, count, flags = 0, sz, buf_sz;
ffa_value_t partition_info;
if (drv_info->version > FFA_VERSION_1_0 &&
(!buffer || !num_partitions)) /* Just get the count for now */
flags = PARTITION_INFO_GET_RETURN_COUNT_ONLY;
mutex_lock(&drv_info->rx_lock);
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_PARTITION_INFO_GET,
.a1 = uuid0, .a2 = uuid1, .a3 = uuid2, .a4 = uuid3,
.a5 = flags,
}, &partition_info);
if (partition_info.a0 == FFA_ERROR) {
mutex_unlock(&drv_info->rx_lock);
return ffa_to_linux_errno((int)partition_info.a2);
}
count = partition_info.a2;
if (drv_info->version > FFA_VERSION_1_0) {
buf_sz = sz = partition_info.a3;
if (sz > sizeof(*buffer))
buf_sz = sizeof(*buffer);
} else {
/* FFA_VERSION_1_0 lacks size in the response */
buf_sz = sz = 8;
}
if (buffer && count <= num_partitions)
for (idx = 0; idx < count; idx++)
memcpy(buffer + idx, drv_info->rx_buffer + idx * sz,
buf_sz);
ffa_rx_release();
mutex_unlock(&drv_info->rx_lock);
return count;
}
/* buffer is allocated and caller must free the same if returned count > 0 */
static int
ffa_partition_probe(const uuid_t *uuid, struct ffa_partition_info **buffer)
{
int count;
u32 uuid0_4[4];
struct ffa_partition_info *pbuf;
export_uuid((u8 *)uuid0_4, uuid);
count = __ffa_partition_info_get(uuid0_4[0], uuid0_4[1], uuid0_4[2],
uuid0_4[3], NULL, 0);
if (count <= 0)
return count;
pbuf = kcalloc(count, sizeof(*pbuf), GFP_KERNEL);
if (!pbuf)
return -ENOMEM;
count = __ffa_partition_info_get(uuid0_4[0], uuid0_4[1], uuid0_4[2],
uuid0_4[3], pbuf, count);
if (count <= 0)
kfree(pbuf);
else
*buffer = pbuf;
return count;
}
#define VM_ID_MASK GENMASK(15, 0)
static int ffa_id_get(u16 *vm_id)
{
ffa_value_t id;
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_ID_GET,
}, &id);
if (id.a0 == FFA_ERROR)
return ffa_to_linux_errno((int)id.a2);
*vm_id = FIELD_GET(VM_ID_MASK, (id.a2));
return 0;
}
static int ffa_msg_send_direct_req(u16 src_id, u16 dst_id, bool mode_32bit,
struct ffa_send_direct_data *data)
{
u32 req_id, resp_id, src_dst_ids = PACK_TARGET_INFO(src_id, dst_id);
ffa_value_t ret;
if (mode_32bit) {
req_id = FFA_MSG_SEND_DIRECT_REQ;
resp_id = FFA_MSG_SEND_DIRECT_RESP;
} else {
req_id = FFA_FN_NATIVE(MSG_SEND_DIRECT_REQ);
resp_id = FFA_FN_NATIVE(MSG_SEND_DIRECT_RESP);
}
invoke_ffa_fn((ffa_value_t){
.a0 = req_id, .a1 = src_dst_ids, .a2 = 0,
.a3 = data->data0, .a4 = data->data1, .a5 = data->data2,
.a6 = data->data3, .a7 = data->data4,
}, &ret);
while (ret.a0 == FFA_INTERRUPT)
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_RUN, .a1 = ret.a1,
}, &ret);
if (ret.a0 == FFA_ERROR)
return ffa_to_linux_errno((int)ret.a2);
if (ret.a0 == resp_id) {
data->data0 = ret.a3;
data->data1 = ret.a4;
data->data2 = ret.a5;
data->data3 = ret.a6;
data->data4 = ret.a7;
return 0;
}
return -EINVAL;
}
static int ffa_mem_first_frag(u32 func_id, phys_addr_t buf, u32 buf_sz,
u32 frag_len, u32 len, u64 *handle)
{
ffa_value_t ret;
invoke_ffa_fn((ffa_value_t){
.a0 = func_id, .a1 = len, .a2 = frag_len,
.a3 = buf, .a4 = buf_sz,
}, &ret);
while (ret.a0 == FFA_MEM_OP_PAUSE)
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_MEM_OP_RESUME,
.a1 = ret.a1, .a2 = ret.a2,
}, &ret);
if (ret.a0 == FFA_ERROR)
return ffa_to_linux_errno((int)ret.a2);
if (ret.a0 == FFA_SUCCESS) {
if (handle)
*handle = PACK_HANDLE(ret.a2, ret.a3);
} else if (ret.a0 == FFA_MEM_FRAG_RX) {
if (handle)
*handle = PACK_HANDLE(ret.a1, ret.a2);
} else {
return -EOPNOTSUPP;
}
return frag_len;
}
static int ffa_mem_next_frag(u64 handle, u32 frag_len)
{
ffa_value_t ret;
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_MEM_FRAG_TX,
.a1 = HANDLE_LOW(handle), .a2 = HANDLE_HIGH(handle),
.a3 = frag_len,
}, &ret);
while (ret.a0 == FFA_MEM_OP_PAUSE)
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_MEM_OP_RESUME,
.a1 = ret.a1, .a2 = ret.a2,
}, &ret);
if (ret.a0 == FFA_ERROR)
return ffa_to_linux_errno((int)ret.a2);
if (ret.a0 == FFA_MEM_FRAG_RX)
return ret.a3;
else if (ret.a0 == FFA_SUCCESS)
return 0;
return -EOPNOTSUPP;
}
static int
ffa_transmit_fragment(u32 func_id, phys_addr_t buf, u32 buf_sz, u32 frag_len,
u32 len, u64 *handle, bool first)
{
if (!first)
return ffa_mem_next_frag(*handle, frag_len);
return ffa_mem_first_frag(func_id, buf, buf_sz, frag_len, len, handle);
}
static u32 ffa_get_num_pages_sg(struct scatterlist *sg)
{
u32 num_pages = 0;
do {
num_pages += sg->length / FFA_PAGE_SIZE;
} while ((sg = sg_next(sg)));
return num_pages;
}
static u16 ffa_memory_attributes_get(u32 func_id)
{
/*
* For the memory lend or donate operation, if the receiver is a PE or
* a proxy endpoint, the owner/sender must not specify the attributes
*/
if (func_id == FFA_FN_NATIVE(MEM_LEND) ||
func_id == FFA_MEM_LEND)
return 0;
return FFA_MEM_NORMAL | FFA_MEM_WRITE_BACK | FFA_MEM_INNER_SHAREABLE;
}
static int
ffa_setup_and_transmit(u32 func_id, void *buffer, u32 max_fragsize,
struct ffa_mem_ops_args *args)
{
int rc = 0;
bool first = true;
u32 composite_offset;
phys_addr_t addr = 0;
struct ffa_mem_region *mem_region = buffer;
struct ffa_composite_mem_region *composite;
struct ffa_mem_region_addr_range *constituents;
struct ffa_mem_region_attributes *ep_mem_access;
u32 idx, frag_len, length, buf_sz = 0, num_entries = sg_nents(args->sg);
mem_region->tag = args->tag;
mem_region->flags = args->flags;
mem_region->sender_id = drv_info->vm_id;
mem_region->attributes = ffa_memory_attributes_get(func_id);
ep_mem_access = buffer +
ffa_mem_desc_offset(buffer, 0, drv_info->version);
composite_offset = ffa_mem_desc_offset(buffer, args->nattrs,
drv_info->version);
for (idx = 0; idx < args->nattrs; idx++, ep_mem_access++) {
ep_mem_access->receiver = args->attrs[idx].receiver;
ep_mem_access->attrs = args->attrs[idx].attrs;
ep_mem_access->composite_off = composite_offset;
ep_mem_access->flag = 0;
ep_mem_access->reserved = 0;
}
mem_region->handle = 0;
mem_region->ep_count = args->nattrs;
if (drv_info->version <= FFA_VERSION_1_0) {
mem_region->ep_mem_size = 0;
} else {
mem_region->ep_mem_size = sizeof(*ep_mem_access);
mem_region->ep_mem_offset = sizeof(*mem_region);
memset(mem_region->reserved, 0, 12);
}
composite = buffer + composite_offset;
composite->total_pg_cnt = ffa_get_num_pages_sg(args->sg);
composite->addr_range_cnt = num_entries;
composite->reserved = 0;
length = composite_offset + CONSTITUENTS_OFFSET(num_entries);
frag_len = composite_offset + CONSTITUENTS_OFFSET(0);
if (frag_len > max_fragsize)
return -ENXIO;
if (!args->use_txbuf) {
addr = virt_to_phys(buffer);
buf_sz = max_fragsize / FFA_PAGE_SIZE;
}
constituents = buffer + frag_len;
idx = 0;
do {
if (frag_len == max_fragsize) {
rc = ffa_transmit_fragment(func_id, addr, buf_sz,
frag_len, length,
&args->g_handle, first);
if (rc < 0)
return -ENXIO;
first = false;
idx = 0;
frag_len = 0;
constituents = buffer;
}
if ((void *)constituents - buffer > max_fragsize) {
pr_err("Memory Region Fragment > Tx Buffer size\n");
return -EFAULT;
}
constituents->address = sg_phys(args->sg);
constituents->pg_cnt = args->sg->length / FFA_PAGE_SIZE;
constituents->reserved = 0;
constituents++;
frag_len += sizeof(struct ffa_mem_region_addr_range);
} while ((args->sg = sg_next(args->sg)));
return ffa_transmit_fragment(func_id, addr, buf_sz, frag_len,
length, &args->g_handle, first);
}
static int ffa_memory_ops(u32 func_id, struct ffa_mem_ops_args *args)
{
int ret;
void *buffer;
if (!args->use_txbuf) {
buffer = alloc_pages_exact(RXTX_BUFFER_SIZE, GFP_KERNEL);
if (!buffer)
return -ENOMEM;
} else {
buffer = drv_info->tx_buffer;
mutex_lock(&drv_info->tx_lock);
}
ret = ffa_setup_and_transmit(func_id, buffer, RXTX_BUFFER_SIZE, args);
if (args->use_txbuf)
mutex_unlock(&drv_info->tx_lock);
else
free_pages_exact(buffer, RXTX_BUFFER_SIZE);
return ret < 0 ? ret : 0;
}
static int ffa_memory_reclaim(u64 g_handle, u32 flags)
{
ffa_value_t ret;
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_MEM_RECLAIM,
.a1 = HANDLE_LOW(g_handle), .a2 = HANDLE_HIGH(g_handle),
.a3 = flags,
}, &ret);
if (ret.a0 == FFA_ERROR)
return ffa_to_linux_errno((int)ret.a2);
return 0;
}
static int ffa_features(u32 func_feat_id, u32 input_props,
u32 *if_props_1, u32 *if_props_2)
{
ffa_value_t id;
if (!ARM_SMCCC_IS_FAST_CALL(func_feat_id) && input_props) {
pr_err("%s: Invalid Parameters: %x, %x", __func__,
func_feat_id, input_props);
return ffa_to_linux_errno(FFA_RET_INVALID_PARAMETERS);
}
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_FEATURES, .a1 = func_feat_id, .a2 = input_props,
}, &id);
if (id.a0 == FFA_ERROR)
return ffa_to_linux_errno((int)id.a2);
if (if_props_1)
*if_props_1 = id.a2;
if (if_props_2)
*if_props_2 = id.a3;
return 0;
}
static int ffa_notification_bitmap_create(void)
{
ffa_value_t ret;
u16 vcpu_count = nr_cpu_ids;
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_NOTIFICATION_BITMAP_CREATE,
.a1 = drv_info->vm_id, .a2 = vcpu_count,
}, &ret);
if (ret.a0 == FFA_ERROR)
return ffa_to_linux_errno((int)ret.a2);
return 0;
}
static int ffa_notification_bitmap_destroy(void)
{
ffa_value_t ret;
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_NOTIFICATION_BITMAP_DESTROY,
.a1 = drv_info->vm_id,
}, &ret);
if (ret.a0 == FFA_ERROR)
return ffa_to_linux_errno((int)ret.a2);
return 0;
}
#define NOTIFICATION_LOW_MASK GENMASK(31, 0)
#define NOTIFICATION_HIGH_MASK GENMASK(63, 32)
#define NOTIFICATION_BITMAP_HIGH(x) \
((u32)(FIELD_GET(NOTIFICATION_HIGH_MASK, (x))))
#define NOTIFICATION_BITMAP_LOW(x) \
((u32)(FIELD_GET(NOTIFICATION_LOW_MASK, (x))))
#define PACK_NOTIFICATION_BITMAP(low, high) \
(FIELD_PREP(NOTIFICATION_LOW_MASK, (low)) | \
FIELD_PREP(NOTIFICATION_HIGH_MASK, (high)))
#define RECEIVER_VCPU_MASK GENMASK(31, 16)
#define PACK_NOTIFICATION_GET_RECEIVER_INFO(vcpu_r, r) \
(FIELD_PREP(RECEIVER_VCPU_MASK, (vcpu_r)) | \
FIELD_PREP(RECEIVER_ID_MASK, (r)))
#define NOTIFICATION_INFO_GET_MORE_PEND_MASK BIT(0)
#define NOTIFICATION_INFO_GET_ID_COUNT GENMASK(11, 7)
#define ID_LIST_MASK_64 GENMASK(51, 12)
#define ID_LIST_MASK_32 GENMASK(31, 12)
#define MAX_IDS_64 20
#define MAX_IDS_32 10
#define PER_VCPU_NOTIFICATION_FLAG BIT(0)
#define SECURE_PARTITION_BITMAP BIT(0)
#define NON_SECURE_VM_BITMAP BIT(1)
#define SPM_FRAMEWORK_BITMAP BIT(2)
#define NS_HYP_FRAMEWORK_BITMAP BIT(3)
static int ffa_notification_bind_common(u16 dst_id, u64 bitmap,
u32 flags, bool is_bind)
{
ffa_value_t ret;
u32 func, src_dst_ids = PACK_TARGET_INFO(dst_id, drv_info->vm_id);
func = is_bind ? FFA_NOTIFICATION_BIND : FFA_NOTIFICATION_UNBIND;
invoke_ffa_fn((ffa_value_t){
.a0 = func, .a1 = src_dst_ids, .a2 = flags,
.a3 = NOTIFICATION_BITMAP_LOW(bitmap),
.a4 = NOTIFICATION_BITMAP_HIGH(bitmap),
}, &ret);
if (ret.a0 == FFA_ERROR)
return ffa_to_linux_errno((int)ret.a2);
else if (ret.a0 != FFA_SUCCESS)
return -EINVAL;
return 0;
}
static
int ffa_notification_set(u16 src_id, u16 dst_id, u32 flags, u64 bitmap)
{
ffa_value_t ret;
u32 src_dst_ids = PACK_TARGET_INFO(dst_id, src_id);
invoke_ffa_fn((ffa_value_t) {
.a0 = FFA_NOTIFICATION_SET, .a1 = src_dst_ids, .a2 = flags,
.a3 = NOTIFICATION_BITMAP_LOW(bitmap),
.a4 = NOTIFICATION_BITMAP_HIGH(bitmap),
}, &ret);
if (ret.a0 == FFA_ERROR)
return ffa_to_linux_errno((int)ret.a2);
else if (ret.a0 != FFA_SUCCESS)
return -EINVAL;
return 0;
}
struct ffa_notify_bitmaps {
u64 sp_map;
u64 vm_map;
u64 arch_map;
};
static int ffa_notification_get(u32 flags, struct ffa_notify_bitmaps *notify)
{
ffa_value_t ret;
u16 src_id = drv_info->vm_id;
u16 cpu_id = smp_processor_id();
u32 rec_vcpu_ids = PACK_NOTIFICATION_GET_RECEIVER_INFO(cpu_id, src_id);
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_NOTIFICATION_GET, .a1 = rec_vcpu_ids, .a2 = flags,
}, &ret);
if (ret.a0 == FFA_ERROR)
return ffa_to_linux_errno((int)ret.a2);
else if (ret.a0 != FFA_SUCCESS)
return -EINVAL; /* Something else went wrong. */
notify->sp_map = PACK_NOTIFICATION_BITMAP(ret.a2, ret.a3);
notify->vm_map = PACK_NOTIFICATION_BITMAP(ret.a4, ret.a5);
notify->arch_map = PACK_NOTIFICATION_BITMAP(ret.a6, ret.a7);
return 0;
}
struct ffa_dev_part_info {
ffa_sched_recv_cb callback;
void *cb_data;
rwlock_t rw_lock;
};
static void __do_sched_recv_cb(u16 part_id, u16 vcpu, bool is_per_vcpu)
{
struct ffa_dev_part_info *partition;
ffa_sched_recv_cb callback;
void *cb_data;
partition = xa_load(&drv_info->partition_info, part_id);
read_lock(&partition->rw_lock);
callback = partition->callback;
cb_data = partition->cb_data;
read_unlock(&partition->rw_lock);
if (callback)
callback(vcpu, is_per_vcpu, cb_data);
}
static void ffa_notification_info_get(void)
{
int idx, list, max_ids, lists_cnt, ids_processed, ids_count[MAX_IDS_64];
bool is_64b_resp;
ffa_value_t ret;
u64 id_list;
do {
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_FN_NATIVE(NOTIFICATION_INFO_GET),
}, &ret);
if (ret.a0 != FFA_FN_NATIVE(SUCCESS) && ret.a0 != FFA_SUCCESS) {
if (ret.a2 != FFA_RET_NO_DATA)
pr_err("Notification Info fetch failed: 0x%lx (0x%lx)",
ret.a0, ret.a2);
return;
}
is_64b_resp = (ret.a0 == FFA_FN64_SUCCESS);
ids_processed = 0;
lists_cnt = FIELD_GET(NOTIFICATION_INFO_GET_ID_COUNT, ret.a2);
if (is_64b_resp) {
max_ids = MAX_IDS_64;
id_list = FIELD_GET(ID_LIST_MASK_64, ret.a2);
} else {
max_ids = MAX_IDS_32;
id_list = FIELD_GET(ID_LIST_MASK_32, ret.a2);
}
for (idx = 0; idx < lists_cnt; idx++, id_list >>= 2)
ids_count[idx] = (id_list & 0x3) + 1;
/* Process IDs */
for (list = 0; list < lists_cnt; list++) {
u16 vcpu_id, part_id, *packed_id_list = (u16 *)&ret.a3;
if (ids_processed >= max_ids - 1)
break;
part_id = packed_id_list[ids_processed++];
if (!ids_count[list]) { /* Global Notification */
__do_sched_recv_cb(part_id, 0, false);
continue;
}
/* Per vCPU Notification */
for (idx = 0; idx < ids_count[list]; idx++) {
if (ids_processed >= max_ids - 1)
break;
vcpu_id = packed_id_list[ids_processed++];
__do_sched_recv_cb(part_id, vcpu_id, true);
}
}
} while (ret.a2 & NOTIFICATION_INFO_GET_MORE_PEND_MASK);
}
static int ffa_run(struct ffa_device *dev, u16 vcpu)
{
ffa_value_t ret;
u32 target = dev->vm_id << 16 | vcpu;
invoke_ffa_fn((ffa_value_t){ .a0 = FFA_RUN, .a1 = target, }, &ret);
while (ret.a0 == FFA_INTERRUPT)
invoke_ffa_fn((ffa_value_t){ .a0 = FFA_RUN, .a1 = ret.a1, },
&ret);
if (ret.a0 == FFA_ERROR)
return ffa_to_linux_errno((int)ret.a2);
return 0;
}
static void ffa_set_up_mem_ops_native_flag(void)
{
if (!ffa_features(FFA_FN_NATIVE(MEM_LEND), 0, NULL, NULL) ||
!ffa_features(FFA_FN_NATIVE(MEM_SHARE), 0, NULL, NULL))
drv_info->mem_ops_native = true;
}
static u32 ffa_api_version_get(void)
{
return drv_info->version;
}
static int ffa_partition_info_get(const char *uuid_str,
struct ffa_partition_info *buffer)
{
int count;
uuid_t uuid;
struct ffa_partition_info *pbuf;
if (uuid_parse(uuid_str, &uuid)) {
pr_err("invalid uuid (%s)\n", uuid_str);
return -ENODEV;
}
count = ffa_partition_probe(&uuid, &pbuf);
if (count <= 0)
return -ENOENT;
memcpy(buffer, pbuf, sizeof(*pbuf) * count);
kfree(pbuf);
return 0;
}
static void ffa_mode_32bit_set(struct ffa_device *dev)
{
dev->mode_32bit = true;
}
static int ffa_sync_send_receive(struct ffa_device *dev,
struct ffa_send_direct_data *data)
{
return ffa_msg_send_direct_req(drv_info->vm_id, dev->vm_id,
dev->mode_32bit, data);
}
static int ffa_memory_share(struct ffa_mem_ops_args *args)
{
if (drv_info->mem_ops_native)
return ffa_memory_ops(FFA_FN_NATIVE(MEM_SHARE), args);
return ffa_memory_ops(FFA_MEM_SHARE, args);
}
static int ffa_memory_lend(struct ffa_mem_ops_args *args)
{
/* Note that upon a successful MEM_LEND request the caller
* must ensure that the memory region specified is not accessed
* until a successful MEM_RECALIM call has been made.
* On systems with a hypervisor present this will been enforced,
* however on systems without a hypervisor the responsibility
* falls to the calling kernel driver to prevent access.
*/
if (drv_info->mem_ops_native)
return ffa_memory_ops(FFA_FN_NATIVE(MEM_LEND), args);
return ffa_memory_ops(FFA_MEM_LEND, args);
}
#define FFA_SECURE_PARTITION_ID_FLAG BIT(15)
#define ffa_notifications_disabled() (!drv_info->notif_enabled)
enum notify_type {
NON_SECURE_VM,
SECURE_PARTITION,
FRAMEWORK,
};
struct notifier_cb_info {
struct hlist_node hnode;
ffa_notifier_cb cb;
void *cb_data;
enum notify_type type;
};
static int ffa_sched_recv_cb_update(u16 part_id, ffa_sched_recv_cb callback,
void *cb_data, bool is_registration)
{
struct ffa_dev_part_info *partition;
bool cb_valid;
if (ffa_notifications_disabled())
return -EOPNOTSUPP;
partition = xa_load(&drv_info->partition_info, part_id);
write_lock(&partition->rw_lock);
cb_valid = !!partition->callback;
if (!(is_registration ^ cb_valid)) {
write_unlock(&partition->rw_lock);
return -EINVAL;
}
partition->callback = callback;
partition->cb_data = cb_data;
write_unlock(&partition->rw_lock);
return 0;
}
static int ffa_sched_recv_cb_register(struct ffa_device *dev,
ffa_sched_recv_cb cb, void *cb_data)
{
return ffa_sched_recv_cb_update(dev->vm_id, cb, cb_data, true);
}
static int ffa_sched_recv_cb_unregister(struct ffa_device *dev)
{
return ffa_sched_recv_cb_update(dev->vm_id, NULL, NULL, false);
}
static int ffa_notification_bind(u16 dst_id, u64 bitmap, u32 flags)
{
return ffa_notification_bind_common(dst_id, bitmap, flags, true);
}
static int ffa_notification_unbind(u16 dst_id, u64 bitmap)
{
return ffa_notification_bind_common(dst_id, bitmap, 0, false);
}
/* Should be called while the notify_lock is taken */
static struct notifier_cb_info *
notifier_hash_node_get(u16 notify_id, enum notify_type type)
{
struct notifier_cb_info *node;
hash_for_each_possible(drv_info->notifier_hash, node, hnode, notify_id)
if (type == node->type)
return node;
return NULL;
}
static int
update_notifier_cb(int notify_id, enum notify_type type, ffa_notifier_cb cb,
void *cb_data, bool is_registration)
{
struct notifier_cb_info *cb_info = NULL;
bool cb_found;
cb_info = notifier_hash_node_get(notify_id, type);
cb_found = !!cb_info;
if (!(is_registration ^ cb_found))
return -EINVAL;
if (is_registration) {
cb_info = kzalloc(sizeof(*cb_info), GFP_KERNEL);
if (!cb_info)
return -ENOMEM;
cb_info->type = type;
cb_info->cb = cb;
cb_info->cb_data = cb_data;
hash_add(drv_info->notifier_hash, &cb_info->hnode, notify_id);
} else {
hash_del(&cb_info->hnode);
}
return 0;
}
static enum notify_type ffa_notify_type_get(u16 vm_id)
{
if (vm_id & FFA_SECURE_PARTITION_ID_FLAG)
return SECURE_PARTITION;
else
return NON_SECURE_VM;
}
static int ffa_notify_relinquish(struct ffa_device *dev, int notify_id)
{
int rc;
enum notify_type type = ffa_notify_type_get(dev->vm_id);
if (ffa_notifications_disabled())
return -EOPNOTSUPP;
if (notify_id >= FFA_MAX_NOTIFICATIONS)
return -EINVAL;
mutex_lock(&drv_info->notify_lock);
rc = update_notifier_cb(notify_id, type, NULL, NULL, false);
if (rc) {
pr_err("Could not unregister notification callback\n");
mutex_unlock(&drv_info->notify_lock);
return rc;
}
rc = ffa_notification_unbind(dev->vm_id, BIT(notify_id));
mutex_unlock(&drv_info->notify_lock);
return rc;
}
static int ffa_notify_request(struct ffa_device *dev, bool is_per_vcpu,
ffa_notifier_cb cb, void *cb_data, int notify_id)
{
int rc;
u32 flags = 0;
enum notify_type type = ffa_notify_type_get(dev->vm_id);
if (ffa_notifications_disabled())
return -EOPNOTSUPP;
if (notify_id >= FFA_MAX_NOTIFICATIONS)
return -EINVAL;
mutex_lock(&drv_info->notify_lock);
if (is_per_vcpu)
flags = PER_VCPU_NOTIFICATION_FLAG;
rc = ffa_notification_bind(dev->vm_id, BIT(notify_id), flags);
if (rc) {
mutex_unlock(&drv_info->notify_lock);
return rc;
}
rc = update_notifier_cb(notify_id, type, cb, cb_data, true);
if (rc) {
pr_err("Failed to register callback for %d - %d\n",
notify_id, rc);
ffa_notification_unbind(dev->vm_id, BIT(notify_id));
}
mutex_unlock(&drv_info->notify_lock);
return rc;
}
static int ffa_notify_send(struct ffa_device *dev, int notify_id,
bool is_per_vcpu, u16 vcpu)
{
u32 flags = 0;
if (ffa_notifications_disabled())
return -EOPNOTSUPP;
if (is_per_vcpu)
flags |= (PER_VCPU_NOTIFICATION_FLAG | vcpu << 16);
return ffa_notification_set(dev->vm_id, drv_info->vm_id, flags,
BIT(notify_id));
}
static void handle_notif_callbacks(u64 bitmap, enum notify_type type)
{
int notify_id;
struct notifier_cb_info *cb_info = NULL;
for (notify_id = 0; notify_id <= FFA_MAX_NOTIFICATIONS && bitmap;
notify_id++, bitmap >>= 1) {
if (!(bitmap & 1))
continue;
mutex_lock(&drv_info->notify_lock);
cb_info = notifier_hash_node_get(notify_id, type);
mutex_unlock(&drv_info->notify_lock);
if (cb_info && cb_info->cb)
cb_info->cb(notify_id, cb_info->cb_data);
}
}
static void notif_pcpu_irq_work_fn(struct work_struct *work)
{
int rc;
struct ffa_notify_bitmaps bitmaps;
rc = ffa_notification_get(SECURE_PARTITION_BITMAP |
SPM_FRAMEWORK_BITMAP, &bitmaps);
if (rc) {
pr_err("Failed to retrieve notifications with %d!\n", rc);
return;
}
handle_notif_callbacks(bitmaps.vm_map, NON_SECURE_VM);
handle_notif_callbacks(bitmaps.sp_map, SECURE_PARTITION);
handle_notif_callbacks(bitmaps.arch_map, FRAMEWORK);
}
static void
ffa_self_notif_handle(u16 vcpu, bool is_per_vcpu, void *cb_data)
{
struct ffa_drv_info *info = cb_data;
if (!is_per_vcpu)
notif_pcpu_irq_work_fn(&info->notif_pcpu_work);
else
queue_work_on(vcpu, info->notif_pcpu_wq,
&info->notif_pcpu_work);
}
static const struct ffa_info_ops ffa_drv_info_ops = {
.api_version_get = ffa_api_version_get,
.partition_info_get = ffa_partition_info_get,
};
static const struct ffa_msg_ops ffa_drv_msg_ops = {
.mode_32bit_set = ffa_mode_32bit_set,
.sync_send_receive = ffa_sync_send_receive,
};
static const struct ffa_mem_ops ffa_drv_mem_ops = {
.memory_reclaim = ffa_memory_reclaim,
.memory_share = ffa_memory_share,
.memory_lend = ffa_memory_lend,
};
static const struct ffa_cpu_ops ffa_drv_cpu_ops = {
.run = ffa_run,
};
static const struct ffa_notifier_ops ffa_drv_notifier_ops = {
.sched_recv_cb_register = ffa_sched_recv_cb_register,
.sched_recv_cb_unregister = ffa_sched_recv_cb_unregister,
.notify_request = ffa_notify_request,
.notify_relinquish = ffa_notify_relinquish,
.notify_send = ffa_notify_send,
};
static const struct ffa_ops ffa_drv_ops = {
.info_ops = &ffa_drv_info_ops,
.msg_ops = &ffa_drv_msg_ops,
.mem_ops = &ffa_drv_mem_ops,
.cpu_ops = &ffa_drv_cpu_ops,
.notifier_ops = &ffa_drv_notifier_ops,
};
void ffa_device_match_uuid(struct ffa_device *ffa_dev, const uuid_t *uuid)
{
int count, idx;
struct ffa_partition_info *pbuf, *tpbuf;
/*
* FF-A v1.1 provides UUID for each partition as part of the discovery
* API, the discovered UUID must be populated in the device's UUID and
* there is no need to copy the same from the driver table.
*/
if (drv_info->version > FFA_VERSION_1_0)
return;
count = ffa_partition_probe(uuid, &pbuf);
if (count <= 0)
return;
for (idx = 0, tpbuf = pbuf; idx < count; idx++, tpbuf++)
if (tpbuf->id == ffa_dev->vm_id)
uuid_copy(&ffa_dev->uuid, uuid);
kfree(pbuf);
}
static void ffa_setup_partitions(void)
{
int count, idx;
uuid_t uuid;
struct ffa_device *ffa_dev;
struct ffa_dev_part_info *info;
struct ffa_partition_info *pbuf, *tpbuf;
count = ffa_partition_probe(&uuid_null, &pbuf);
if (count <= 0) {
pr_info("%s: No partitions found, error %d\n", __func__, count);
return;
}
xa_init(&drv_info->partition_info);
for (idx = 0, tpbuf = pbuf; idx < count; idx++, tpbuf++) {
import_uuid(&uuid, (u8 *)tpbuf->uuid);
/* Note that if the UUID will be uuid_null, that will require
* ffa_device_match() to find the UUID of this partition id
* with help of ffa_device_match_uuid(). FF-A v1.1 and above
* provides UUID here for each partition as part of the
* discovery API and the same is passed.
*/
ffa_dev = ffa_device_register(&uuid, tpbuf->id, &ffa_drv_ops);
if (!ffa_dev) {
pr_err("%s: failed to register partition ID 0x%x\n",
__func__, tpbuf->id);
continue;
}
if (drv_info->version > FFA_VERSION_1_0 &&
!(tpbuf->properties & FFA_PARTITION_AARCH64_EXEC))
ffa_mode_32bit_set(ffa_dev);
info = kzalloc(sizeof(*info), GFP_KERNEL);
if (!info) {
ffa_device_unregister(ffa_dev);
continue;
}
xa_store(&drv_info->partition_info, tpbuf->id, info, GFP_KERNEL);
}
drv_info->partition_count = count;
kfree(pbuf);
/* Allocate for the host */
info = kzalloc(sizeof(*info), GFP_KERNEL);
if (!info)
return;
xa_store(&drv_info->partition_info, drv_info->vm_id, info, GFP_KERNEL);
drv_info->partition_count++;
}
static void ffa_partitions_cleanup(void)
{
struct ffa_dev_part_info **info;
int idx, count = drv_info->partition_count;
if (!count)
return;
info = kcalloc(count, sizeof(*info), GFP_KERNEL);
if (!info)
return;
xa_extract(&drv_info->partition_info, (void **)info, 0, VM_ID_MASK,
count, XA_PRESENT);
for (idx = 0; idx < count; idx++)
kfree(info[idx]);
kfree(info);
drv_info->partition_count = 0;
xa_destroy(&drv_info->partition_info);
}
/* FFA FEATURE IDs */
#define FFA_FEAT_NOTIFICATION_PENDING_INT (1)
#define FFA_FEAT_SCHEDULE_RECEIVER_INT (2)
#define FFA_FEAT_MANAGED_EXIT_INT (3)
static irqreturn_t irq_handler(int irq, void *irq_data)
{
struct ffa_pcpu_irq *pcpu = irq_data;
struct ffa_drv_info *info = pcpu->info;
queue_work(info->notif_pcpu_wq, &info->irq_work);
return IRQ_HANDLED;
}
static void ffa_sched_recv_irq_work_fn(struct work_struct *work)
{
ffa_notification_info_get();
}
static int ffa_sched_recv_irq_map(void)
{
int ret, irq, sr_intid;
/* The returned sr_intid is assumed to be SGI donated to NS world */
ret = ffa_features(FFA_FEAT_SCHEDULE_RECEIVER_INT, 0, &sr_intid, NULL);
if (ret < 0) {
if (ret != -EOPNOTSUPP)
pr_err("Failed to retrieve scheduler Rx interrupt\n");
return ret;
}
if (acpi_disabled) {
struct of_phandle_args oirq = {};
struct device_node *gic;
/* Only GICv3 supported currently with the device tree */
gic = of_find_compatible_node(NULL, NULL, "arm,gic-v3");
if (!gic)
return -ENXIO;
oirq.np = gic;
oirq.args_count = 1;
oirq.args[0] = sr_intid;
irq = irq_create_of_mapping(&oirq);
of_node_put(gic);
#ifdef CONFIG_ACPI
} else {
irq = acpi_register_gsi(NULL, sr_intid, ACPI_EDGE_SENSITIVE,
ACPI_ACTIVE_HIGH);
#endif
}
if (irq <= 0) {
pr_err("Failed to create IRQ mapping!\n");
return -ENODATA;
}
return irq;
}
static void ffa_sched_recv_irq_unmap(void)
{
if (drv_info->sched_recv_irq) {
irq_dispose_mapping(drv_info->sched_recv_irq);
drv_info->sched_recv_irq = 0;
}
}
static int ffa_cpuhp_pcpu_irq_enable(unsigned int cpu)
{
enable_percpu_irq(drv_info->sched_recv_irq, IRQ_TYPE_NONE);
return 0;
}
static int ffa_cpuhp_pcpu_irq_disable(unsigned int cpu)
{
disable_percpu_irq(drv_info->sched_recv_irq);
return 0;
}
static void ffa_uninit_pcpu_irq(void)
{
if (drv_info->cpuhp_state) {
cpuhp_remove_state(drv_info->cpuhp_state);
drv_info->cpuhp_state = 0;
}
if (drv_info->notif_pcpu_wq) {
destroy_workqueue(drv_info->notif_pcpu_wq);
drv_info->notif_pcpu_wq = NULL;
}
if (drv_info->sched_recv_irq)
free_percpu_irq(drv_info->sched_recv_irq, drv_info->irq_pcpu);
if (drv_info->irq_pcpu) {
free_percpu(drv_info->irq_pcpu);
drv_info->irq_pcpu = NULL;
}
}
static int ffa_init_pcpu_irq(unsigned int irq)
{
struct ffa_pcpu_irq __percpu *irq_pcpu;
int ret, cpu;
irq_pcpu = alloc_percpu(struct ffa_pcpu_irq);
if (!irq_pcpu)
return -ENOMEM;
for_each_present_cpu(cpu)
per_cpu_ptr(irq_pcpu, cpu)->info = drv_info;
drv_info->irq_pcpu = irq_pcpu;
ret = request_percpu_irq(irq, irq_handler, "ARM-FFA", irq_pcpu);
if (ret) {
pr_err("Error registering notification IRQ %d: %d\n", irq, ret);
return ret;
}
INIT_WORK(&drv_info->irq_work, ffa_sched_recv_irq_work_fn);
INIT_WORK(&drv_info->notif_pcpu_work, notif_pcpu_irq_work_fn);
drv_info->notif_pcpu_wq = create_workqueue("ffa_pcpu_irq_notification");
if (!drv_info->notif_pcpu_wq)
return -EINVAL;
ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ffa/pcpu-irq:starting",
ffa_cpuhp_pcpu_irq_enable,
ffa_cpuhp_pcpu_irq_disable);
if (ret < 0)
return ret;
drv_info->cpuhp_state = ret;
return 0;
}
static void ffa_notifications_cleanup(void)
{
ffa_uninit_pcpu_irq();
ffa_sched_recv_irq_unmap();
if (drv_info->bitmap_created) {
ffa_notification_bitmap_destroy();
drv_info->bitmap_created = false;
}
drv_info->notif_enabled = false;
}
static void ffa_notifications_setup(void)
{
int ret, irq;
ret = ffa_features(FFA_NOTIFICATION_BITMAP_CREATE, 0, NULL, NULL);
if (ret) {
pr_info("Notifications not supported, continuing with it ..\n");
return;
}
ret = ffa_notification_bitmap_create();
if (ret) {
pr_info("Notification bitmap create error %d\n", ret);
return;
}
drv_info->bitmap_created = true;
irq = ffa_sched_recv_irq_map();
if (irq <= 0) {
ret = irq;
goto cleanup;
}
drv_info->sched_recv_irq = irq;
ret = ffa_init_pcpu_irq(irq);
if (ret)
goto cleanup;
hash_init(drv_info->notifier_hash);
mutex_init(&drv_info->notify_lock);
drv_info->notif_enabled = true;
return;
cleanup:
pr_info("Notification setup failed %d, not enabled\n", ret);
ffa_notifications_cleanup();
}
static int __init ffa_init(void)
{
int ret;
ret = ffa_transport_init(&invoke_ffa_fn);
if (ret)
return ret;
ret = arm_ffa_bus_init();
if (ret)
return ret;
drv_info = kzalloc(sizeof(*drv_info), GFP_KERNEL);
if (!drv_info) {
ret = -ENOMEM;
goto ffa_bus_exit;
}
ret = ffa_version_check(&drv_info->version);
if (ret)
goto free_drv_info;
if (ffa_id_get(&drv_info->vm_id)) {
pr_err("failed to obtain VM id for self\n");
ret = -ENODEV;
goto free_drv_info;
}
drv_info->rx_buffer = alloc_pages_exact(RXTX_BUFFER_SIZE, GFP_KERNEL);
if (!drv_info->rx_buffer) {
ret = -ENOMEM;
goto free_pages;
}
drv_info->tx_buffer = alloc_pages_exact(RXTX_BUFFER_SIZE, GFP_KERNEL);
if (!drv_info->tx_buffer) {
ret = -ENOMEM;
goto free_pages;
}
ret = ffa_rxtx_map(virt_to_phys(drv_info->tx_buffer),
virt_to_phys(drv_info->rx_buffer),
RXTX_BUFFER_SIZE / FFA_PAGE_SIZE);
if (ret) {
pr_err("failed to register FFA RxTx buffers\n");
goto free_pages;
}
mutex_init(&drv_info->rx_lock);
mutex_init(&drv_info->tx_lock);
ffa_set_up_mem_ops_native_flag();
ffa_notifications_setup();
ffa_setup_partitions();
ret = ffa_sched_recv_cb_update(drv_info->vm_id, ffa_self_notif_handle,
drv_info, true);
if (ret)
pr_info("Failed to register driver sched callback %d\n", ret);
return 0;
free_pages:
if (drv_info->tx_buffer)
free_pages_exact(drv_info->tx_buffer, RXTX_BUFFER_SIZE);
free_pages_exact(drv_info->rx_buffer, RXTX_BUFFER_SIZE);
free_drv_info:
kfree(drv_info);
ffa_bus_exit:
arm_ffa_bus_exit();
return ret;
}
subsys_initcall(ffa_init);
static void __exit ffa_exit(void)
{
ffa_notifications_cleanup();
ffa_partitions_cleanup();
ffa_rxtx_unmap(drv_info->vm_id);
free_pages_exact(drv_info->tx_buffer, RXTX_BUFFER_SIZE);
free_pages_exact(drv_info->rx_buffer, RXTX_BUFFER_SIZE);
xa_destroy(&drv_info->partition_info);
kfree(drv_info);
arm_ffa_bus_exit();
}
module_exit(ffa_exit);
MODULE_ALIAS("arm-ffa");
MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>");
MODULE_DESCRIPTION("Arm FF-A interface driver");
MODULE_LICENSE("GPL v2");