blob: c17516c29b63b8b4ab65aacc6e1d381e51ecfa2f [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* otg_fsm.c - ChipIdea USB IP core OTG FSM driver
*
* Copyright (C) 2014 Freescale Semiconductor, Inc.
*
* Author: Jun Li
*/
/*
* This file mainly handles OTG fsm, it includes OTG fsm operations
* for HNP and SRP.
*
* TODO List
* - ADP
* - OTG test device
*/
#include <linux/usb/otg.h>
#include <linux/usb/gadget.h>
#include <linux/usb/hcd.h>
#include <linux/usb/chipidea.h>
#include <linux/regulator/consumer.h>
#include "ci.h"
#include "bits.h"
#include "otg.h"
#include "otg_fsm.h"
/* Add for otg: interact with user space app */
static ssize_t
a_bus_req_show(struct device *dev, struct device_attribute *attr, char *buf)
{
char *next;
unsigned size, t;
struct ci_hdrc *ci = dev_get_drvdata(dev);
next = buf;
size = PAGE_SIZE;
t = scnprintf(next, size, "%d\n", ci->fsm.a_bus_req);
size -= t;
next += t;
return PAGE_SIZE - size;
}
static ssize_t
a_bus_req_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct ci_hdrc *ci = dev_get_drvdata(dev);
if (count > 2)
return -1;
mutex_lock(&ci->fsm.lock);
if (buf[0] == '0') {
ci->fsm.a_bus_req = 0;
} else if (buf[0] == '1') {
/* If a_bus_drop is TRUE, a_bus_req can't be set */
if (ci->fsm.a_bus_drop) {
mutex_unlock(&ci->fsm.lock);
return count;
}
ci->fsm.a_bus_req = 1;
if (ci->fsm.otg->state == OTG_STATE_A_PERIPHERAL) {
ci->gadget.host_request_flag = 1;
mutex_unlock(&ci->fsm.lock);
return count;
}
}
ci_otg_queue_work(ci);
mutex_unlock(&ci->fsm.lock);
return count;
}
static DEVICE_ATTR_RW(a_bus_req);
static ssize_t
a_bus_drop_show(struct device *dev, struct device_attribute *attr, char *buf)
{
char *next;
unsigned size, t;
struct ci_hdrc *ci = dev_get_drvdata(dev);
next = buf;
size = PAGE_SIZE;
t = scnprintf(next, size, "%d\n", ci->fsm.a_bus_drop);
size -= t;
next += t;
return PAGE_SIZE - size;
}
static ssize_t
a_bus_drop_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct ci_hdrc *ci = dev_get_drvdata(dev);
if (count > 2)
return -1;
mutex_lock(&ci->fsm.lock);
if (buf[0] == '0') {
ci->fsm.a_bus_drop = 0;
} else if (buf[0] == '1') {
ci->fsm.a_bus_drop = 1;
ci->fsm.a_bus_req = 0;
}
ci_otg_queue_work(ci);
mutex_unlock(&ci->fsm.lock);
return count;
}
static DEVICE_ATTR_RW(a_bus_drop);
static ssize_t
b_bus_req_show(struct device *dev, struct device_attribute *attr, char *buf)
{
char *next;
unsigned size, t;
struct ci_hdrc *ci = dev_get_drvdata(dev);
next = buf;
size = PAGE_SIZE;
t = scnprintf(next, size, "%d\n", ci->fsm.b_bus_req);
size -= t;
next += t;
return PAGE_SIZE - size;
}
static ssize_t
b_bus_req_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct ci_hdrc *ci = dev_get_drvdata(dev);
if (count > 2)
return -1;
mutex_lock(&ci->fsm.lock);
if (buf[0] == '0')
ci->fsm.b_bus_req = 0;
else if (buf[0] == '1') {
ci->fsm.b_bus_req = 1;
if (ci->fsm.otg->state == OTG_STATE_B_PERIPHERAL) {
ci->gadget.host_request_flag = 1;
mutex_unlock(&ci->fsm.lock);
return count;
}
}
ci_otg_queue_work(ci);
mutex_unlock(&ci->fsm.lock);
return count;
}
static DEVICE_ATTR_RW(b_bus_req);
static ssize_t
a_clr_err_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct ci_hdrc *ci = dev_get_drvdata(dev);
if (count > 2)
return -1;
mutex_lock(&ci->fsm.lock);
if (buf[0] == '1')
ci->fsm.a_clr_err = 1;
ci_otg_queue_work(ci);
mutex_unlock(&ci->fsm.lock);
return count;
}
static DEVICE_ATTR_WO(a_clr_err);
static struct attribute *inputs_attrs[] = {
&dev_attr_a_bus_req.attr,
&dev_attr_a_bus_drop.attr,
&dev_attr_b_bus_req.attr,
&dev_attr_a_clr_err.attr,
NULL,
};
static const struct attribute_group inputs_attr_group = {
.name = "inputs",
.attrs = inputs_attrs,
};
/*
* Keep this list in the same order as timers indexed
* by enum otg_fsm_timer in include/linux/usb/otg-fsm.h
*/
static unsigned otg_timer_ms[] = {
TA_WAIT_VRISE,
TA_WAIT_VFALL,
TA_WAIT_BCON,
TA_AIDL_BDIS,
TB_ASE0_BRST,
TA_BIDL_ADIS,
TB_AIDL_BDIS,
TB_SE0_SRP,
TB_SRP_FAIL,
0,
TB_DATA_PLS,
TB_SSEND_SRP,
};
/*
* Add timer to active timer list
*/
static void ci_otg_add_timer(struct ci_hdrc *ci, enum otg_fsm_timer t)
{
unsigned long flags, timer_sec, timer_nsec;
if (t >= NUM_OTG_FSM_TIMERS)
return;
spin_lock_irqsave(&ci->lock, flags);
timer_sec = otg_timer_ms[t] / MSEC_PER_SEC;
timer_nsec = (otg_timer_ms[t] % MSEC_PER_SEC) * NSEC_PER_MSEC;
ci->hr_timeouts[t] = ktime_add(ktime_get(),
ktime_set(timer_sec, timer_nsec));
ci->enabled_otg_timer_bits |= (1 << t);
if ((ci->next_otg_timer == NUM_OTG_FSM_TIMERS) ||
ktime_after(ci->hr_timeouts[ci->next_otg_timer],
ci->hr_timeouts[t])) {
ci->next_otg_timer = t;
hrtimer_start_range_ns(&ci->otg_fsm_hrtimer,
ci->hr_timeouts[t], NSEC_PER_MSEC,
HRTIMER_MODE_ABS);
}
spin_unlock_irqrestore(&ci->lock, flags);
}
/*
* Remove timer from active timer list
*/
static void ci_otg_del_timer(struct ci_hdrc *ci, enum otg_fsm_timer t)
{
unsigned long flags, enabled_timer_bits;
enum otg_fsm_timer cur_timer, next_timer = NUM_OTG_FSM_TIMERS;
if ((t >= NUM_OTG_FSM_TIMERS) ||
!(ci->enabled_otg_timer_bits & (1 << t)))
return;
spin_lock_irqsave(&ci->lock, flags);
ci->enabled_otg_timer_bits &= ~(1 << t);
if (ci->next_otg_timer == t) {
if (ci->enabled_otg_timer_bits == 0) {
spin_unlock_irqrestore(&ci->lock, flags);
/* No enabled timers after delete it */
hrtimer_cancel(&ci->otg_fsm_hrtimer);
spin_lock_irqsave(&ci->lock, flags);
ci->next_otg_timer = NUM_OTG_FSM_TIMERS;
} else {
/* Find the next timer */
enabled_timer_bits = ci->enabled_otg_timer_bits;
for_each_set_bit(cur_timer, &enabled_timer_bits,
NUM_OTG_FSM_TIMERS) {
if ((next_timer == NUM_OTG_FSM_TIMERS) ||
ktime_before(ci->hr_timeouts[next_timer],
ci->hr_timeouts[cur_timer]))
next_timer = cur_timer;
}
}
}
if (next_timer != NUM_OTG_FSM_TIMERS) {
ci->next_otg_timer = next_timer;
hrtimer_start_range_ns(&ci->otg_fsm_hrtimer,
ci->hr_timeouts[next_timer], NSEC_PER_MSEC,
HRTIMER_MODE_ABS);
}
spin_unlock_irqrestore(&ci->lock, flags);
}
/* OTG FSM timer handlers */
static int a_wait_vrise_tmout(struct ci_hdrc *ci)
{
ci->fsm.a_wait_vrise_tmout = 1;
return 0;
}
static int a_wait_vfall_tmout(struct ci_hdrc *ci)
{
ci->fsm.a_wait_vfall_tmout = 1;
return 0;
}
static int a_wait_bcon_tmout(struct ci_hdrc *ci)
{
ci->fsm.a_wait_bcon_tmout = 1;
return 0;
}
static int a_aidl_bdis_tmout(struct ci_hdrc *ci)
{
ci->fsm.a_aidl_bdis_tmout = 1;
return 0;
}
static int b_ase0_brst_tmout(struct ci_hdrc *ci)
{
ci->fsm.b_ase0_brst_tmout = 1;
return 0;
}
static int a_bidl_adis_tmout(struct ci_hdrc *ci)
{
ci->fsm.a_bidl_adis_tmout = 1;
return 0;
}
static int b_aidl_bdis_tmout(struct ci_hdrc *ci)
{
ci->fsm.a_bus_suspend = 1;
return 0;
}
static int b_se0_srp_tmout(struct ci_hdrc *ci)
{
ci->fsm.b_se0_srp = 1;
return 0;
}
static int b_srp_fail_tmout(struct ci_hdrc *ci)
{
ci->fsm.b_srp_done = 1;
return 1;
}
static int b_data_pls_tmout(struct ci_hdrc *ci)
{
ci->fsm.b_srp_done = 1;
ci->fsm.b_bus_req = 0;
if (ci->fsm.power_up)
ci->fsm.power_up = 0;
hw_write_otgsc(ci, OTGSC_HABA, 0);
pm_runtime_put(ci->dev);
return 0;
}
static int b_ssend_srp_tmout(struct ci_hdrc *ci)
{
ci->fsm.b_ssend_srp = 1;
/* only vbus fall below B_sess_vld in b_idle state */
if (ci->fsm.otg->state == OTG_STATE_B_IDLE)
return 0;
else
return 1;
}
/*
* Keep this list in the same order as timers indexed
* by enum otg_fsm_timer in include/linux/usb/otg-fsm.h
*/
static int (*otg_timer_handlers[])(struct ci_hdrc *) = {
a_wait_vrise_tmout, /* A_WAIT_VRISE */
a_wait_vfall_tmout, /* A_WAIT_VFALL */
a_wait_bcon_tmout, /* A_WAIT_BCON */
a_aidl_bdis_tmout, /* A_AIDL_BDIS */
b_ase0_brst_tmout, /* B_ASE0_BRST */
a_bidl_adis_tmout, /* A_BIDL_ADIS */
b_aidl_bdis_tmout, /* B_AIDL_BDIS */
b_se0_srp_tmout, /* B_SE0_SRP */
b_srp_fail_tmout, /* B_SRP_FAIL */
NULL, /* A_WAIT_ENUM */
b_data_pls_tmout, /* B_DATA_PLS */
b_ssend_srp_tmout, /* B_SSEND_SRP */
};
/*
* Enable the next nearest enabled timer if have
*/
static enum hrtimer_restart ci_otg_hrtimer_func(struct hrtimer *t)
{
struct ci_hdrc *ci = container_of(t, struct ci_hdrc, otg_fsm_hrtimer);
ktime_t now, *timeout;
unsigned long enabled_timer_bits;
unsigned long flags;
enum otg_fsm_timer cur_timer, next_timer = NUM_OTG_FSM_TIMERS;
int ret = -EINVAL;
spin_lock_irqsave(&ci->lock, flags);
enabled_timer_bits = ci->enabled_otg_timer_bits;
ci->next_otg_timer = NUM_OTG_FSM_TIMERS;
now = ktime_get();
for_each_set_bit(cur_timer, &enabled_timer_bits, NUM_OTG_FSM_TIMERS) {
if (ktime_compare(now, ci->hr_timeouts[cur_timer]) >= 0) {
ci->enabled_otg_timer_bits &= ~(1 << cur_timer);
if (otg_timer_handlers[cur_timer])
ret = otg_timer_handlers[cur_timer](ci);
} else {
if ((next_timer == NUM_OTG_FSM_TIMERS) ||
ktime_before(ci->hr_timeouts[cur_timer],
ci->hr_timeouts[next_timer]))
next_timer = cur_timer;
}
}
/* Enable the next nearest timer */
if (next_timer < NUM_OTG_FSM_TIMERS) {
timeout = &ci->hr_timeouts[next_timer];
hrtimer_start_range_ns(&ci->otg_fsm_hrtimer, *timeout,
NSEC_PER_MSEC, HRTIMER_MODE_ABS);
ci->next_otg_timer = next_timer;
}
spin_unlock_irqrestore(&ci->lock, flags);
if (!ret)
ci_otg_queue_work(ci);
return HRTIMER_NORESTART;
}
/* Initialize timers */
static int ci_otg_init_timers(struct ci_hdrc *ci)
{
hrtimer_init(&ci->otg_fsm_hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
ci->otg_fsm_hrtimer.function = ci_otg_hrtimer_func;
return 0;
}
/* -------------------------------------------------------------*/
/* Operations that will be called from OTG Finite State Machine */
/* -------------------------------------------------------------*/
static void ci_otg_fsm_add_timer(struct otg_fsm *fsm, enum otg_fsm_timer t)
{
struct ci_hdrc *ci = container_of(fsm, struct ci_hdrc, fsm);
if (t < NUM_OTG_FSM_TIMERS)
ci_otg_add_timer(ci, t);
return;
}
static void ci_otg_fsm_del_timer(struct otg_fsm *fsm, enum otg_fsm_timer t)
{
struct ci_hdrc *ci = container_of(fsm, struct ci_hdrc, fsm);
if (t < NUM_OTG_FSM_TIMERS)
ci_otg_del_timer(ci, t);
return;
}
/*
* A-device drive vbus: turn on vbus regulator and enable port power
* Data pulse irq should be disabled while vbus is on.
*/
static void ci_otg_drv_vbus(struct otg_fsm *fsm, int on)
{
int ret;
struct ci_hdrc *ci = container_of(fsm, struct ci_hdrc, fsm);
if (on) {
/* Enable power */
hw_write(ci, OP_PORTSC, PORTSC_W1C_BITS | PORTSC_PP,
PORTSC_PP);
if (ci->platdata->reg_vbus) {
ret = regulator_enable(ci->platdata->reg_vbus);
if (ret) {
dev_err(ci->dev,
"Failed to enable vbus regulator, ret=%d\n",
ret);
return;
}
}
if (ci->platdata->flags & CI_HDRC_PHY_VBUS_CONTROL)
usb_phy_vbus_on(ci->usb_phy);
/* Disable data pulse irq */
hw_write_otgsc(ci, OTGSC_DPIE, 0);
fsm->a_srp_det = 0;
fsm->power_up = 0;
} else {
if (ci->platdata->reg_vbus)
regulator_disable(ci->platdata->reg_vbus);
if (ci->platdata->flags & CI_HDRC_PHY_VBUS_CONTROL)
usb_phy_vbus_off(ci->usb_phy);
fsm->a_bus_drop = 1;
fsm->a_bus_req = 0;
}
}
/*
* Control data line by Run Stop bit.
*/
static void ci_otg_loc_conn(struct otg_fsm *fsm, int on)
{
struct ci_hdrc *ci = container_of(fsm, struct ci_hdrc, fsm);
if (on)
hw_write(ci, OP_USBCMD, USBCMD_RS, USBCMD_RS);
else
hw_write(ci, OP_USBCMD, USBCMD_RS, 0);
}
/*
* Generate SOF by host.
* In host mode, controller will automatically send SOF.
* Suspend will block the data on the port.
*
* This is controlled through usbcore by usb autosuspend,
* so the usb device class driver need support autosuspend,
* otherwise the bus suspend will not happen.
*/
static void ci_otg_loc_sof(struct otg_fsm *fsm, int on)
{
struct usb_device *udev;
if (!fsm->otg->host)
return;
udev = usb_hub_find_child(fsm->otg->host->root_hub, 1);
if (!udev)
return;
if (on) {
usb_disable_autosuspend(udev);
} else {
pm_runtime_set_autosuspend_delay(&udev->dev, 0);
usb_enable_autosuspend(udev);
}
}
/*
* Start SRP pulsing by data-line pulsing,
* no v-bus pulsing followed
*/
static void ci_otg_start_pulse(struct otg_fsm *fsm)
{
struct ci_hdrc *ci = container_of(fsm, struct ci_hdrc, fsm);
/* Hardware Assistant Data pulse */
hw_write_otgsc(ci, OTGSC_HADP, OTGSC_HADP);
pm_runtime_get(ci->dev);
ci_otg_add_timer(ci, B_DATA_PLS);
}
static int ci_otg_start_host(struct otg_fsm *fsm, int on)
{
struct ci_hdrc *ci = container_of(fsm, struct ci_hdrc, fsm);
if (on) {
ci_role_stop(ci);
ci_role_start(ci, CI_ROLE_HOST);
} else {
ci_role_stop(ci);
ci_role_start(ci, CI_ROLE_GADGET);
}
return 0;
}
static int ci_otg_start_gadget(struct otg_fsm *fsm, int on)
{
struct ci_hdrc *ci = container_of(fsm, struct ci_hdrc, fsm);
if (on)
usb_gadget_vbus_connect(&ci->gadget);
else
usb_gadget_vbus_disconnect(&ci->gadget);
return 0;
}
static struct otg_fsm_ops ci_otg_ops = {
.drv_vbus = ci_otg_drv_vbus,
.loc_conn = ci_otg_loc_conn,
.loc_sof = ci_otg_loc_sof,
.start_pulse = ci_otg_start_pulse,
.add_timer = ci_otg_fsm_add_timer,
.del_timer = ci_otg_fsm_del_timer,
.start_host = ci_otg_start_host,
.start_gadget = ci_otg_start_gadget,
};
int ci_otg_fsm_work(struct ci_hdrc *ci)
{
/*
* Don't do fsm transition for B device
* when there is no gadget class driver
*/
if (ci->fsm.id && !(ci->driver) &&
ci->fsm.otg->state < OTG_STATE_A_IDLE)
return 0;
pm_runtime_get_sync(ci->dev);
if (otg_statemachine(&ci->fsm)) {
if (ci->fsm.otg->state == OTG_STATE_A_IDLE) {
/*
* Further state change for cases:
* a_idle to b_idle; or
* a_idle to a_wait_vrise due to ID change(1->0), so
* B-dev becomes A-dev can try to start new session
* consequently; or
* a_idle to a_wait_vrise when power up
*/
if ((ci->fsm.id) || (ci->id_event) ||
(ci->fsm.power_up)) {
ci_otg_queue_work(ci);
} else {
/* Enable data pulse irq */
hw_write(ci, OP_PORTSC, PORTSC_W1C_BITS |
PORTSC_PP, 0);
hw_write_otgsc(ci, OTGSC_DPIS, OTGSC_DPIS);
hw_write_otgsc(ci, OTGSC_DPIE, OTGSC_DPIE);
}
if (ci->id_event)
ci->id_event = false;
} else if (ci->fsm.otg->state == OTG_STATE_B_IDLE) {
if (ci->fsm.b_sess_vld) {
ci->fsm.power_up = 0;
/*
* Further transite to b_periphearl state
* when register gadget driver with vbus on
*/
ci_otg_queue_work(ci);
}
} else if (ci->fsm.otg->state == OTG_STATE_A_HOST) {
pm_runtime_mark_last_busy(ci->dev);
pm_runtime_put_autosuspend(ci->dev);
return 0;
}
}
pm_runtime_put_sync(ci->dev);
return 0;
}
/*
* Update fsm variables in each state if catching expected interrupts,
* called by otg fsm isr.
*/
static void ci_otg_fsm_event(struct ci_hdrc *ci)
{
u32 intr_sts, otg_bsess_vld, port_conn;
struct otg_fsm *fsm = &ci->fsm;
intr_sts = hw_read_intr_status(ci);
otg_bsess_vld = hw_read_otgsc(ci, OTGSC_BSV);
port_conn = hw_read(ci, OP_PORTSC, PORTSC_CCS);
switch (ci->fsm.otg->state) {
case OTG_STATE_A_WAIT_BCON:
if (port_conn) {
fsm->b_conn = 1;
fsm->a_bus_req = 1;
ci_otg_queue_work(ci);
}
break;
case OTG_STATE_B_IDLE:
if (otg_bsess_vld && (intr_sts & USBi_PCI) && port_conn) {
fsm->b_sess_vld = 1;
ci_otg_queue_work(ci);
}
break;
case OTG_STATE_B_PERIPHERAL:
if ((intr_sts & USBi_SLI) && port_conn && otg_bsess_vld) {
ci_otg_add_timer(ci, B_AIDL_BDIS);
} else if (intr_sts & USBi_PCI) {
ci_otg_del_timer(ci, B_AIDL_BDIS);
if (fsm->a_bus_suspend == 1)
fsm->a_bus_suspend = 0;
}
break;
case OTG_STATE_B_HOST:
if ((intr_sts & USBi_PCI) && !port_conn) {
fsm->a_conn = 0;
fsm->b_bus_req = 0;
ci_otg_queue_work(ci);
}
break;
case OTG_STATE_A_PERIPHERAL:
if (intr_sts & USBi_SLI) {
fsm->b_bus_suspend = 1;
/*
* Init a timer to know how long this suspend
* will continue, if time out, indicates B no longer
* wants to be host role
*/
ci_otg_add_timer(ci, A_BIDL_ADIS);
}
if (intr_sts & USBi_URI)
ci_otg_del_timer(ci, A_BIDL_ADIS);
if (intr_sts & USBi_PCI) {
if (fsm->b_bus_suspend == 1) {
ci_otg_del_timer(ci, A_BIDL_ADIS);
fsm->b_bus_suspend = 0;
}
}
break;
case OTG_STATE_A_SUSPEND:
if ((intr_sts & USBi_PCI) && !port_conn) {
fsm->b_conn = 0;
/* if gadget driver is binded */
if (ci->driver) {
/* A device to be peripheral mode */
ci->gadget.is_a_peripheral = 1;
}
ci_otg_queue_work(ci);
}
break;
case OTG_STATE_A_HOST:
if ((intr_sts & USBi_PCI) && !port_conn) {
fsm->b_conn = 0;
ci_otg_queue_work(ci);
}
break;
case OTG_STATE_B_WAIT_ACON:
if ((intr_sts & USBi_PCI) && port_conn) {
fsm->a_conn = 1;
ci_otg_queue_work(ci);
}
break;
default:
break;
}
}
/*
* ci_otg_irq - otg fsm related irq handling
* and also update otg fsm variable by monitoring usb host and udc
* state change interrupts.
* @ci: ci_hdrc
*/
irqreturn_t ci_otg_fsm_irq(struct ci_hdrc *ci)
{
irqreturn_t retval = IRQ_NONE;
u32 otgsc, otg_int_src = 0;
struct otg_fsm *fsm = &ci->fsm;
otgsc = hw_read_otgsc(ci, ~0);
otg_int_src = otgsc & OTGSC_INT_STATUS_BITS & (otgsc >> 8);
fsm->id = (otgsc & OTGSC_ID) ? 1 : 0;
if (otg_int_src) {
if (otg_int_src & OTGSC_DPIS) {
hw_write_otgsc(ci, OTGSC_DPIS, OTGSC_DPIS);
fsm->a_srp_det = 1;
fsm->a_bus_drop = 0;
} else if (otg_int_src & OTGSC_IDIS) {
hw_write_otgsc(ci, OTGSC_IDIS, OTGSC_IDIS);
if (fsm->id == 0) {
fsm->a_bus_drop = 0;
fsm->a_bus_req = 1;
ci->id_event = true;
}
} else if (otg_int_src & OTGSC_BSVIS) {
hw_write_otgsc(ci, OTGSC_BSVIS, OTGSC_BSVIS);
if (otgsc & OTGSC_BSV) {
fsm->b_sess_vld = 1;
ci_otg_del_timer(ci, B_SSEND_SRP);
ci_otg_del_timer(ci, B_SRP_FAIL);
fsm->b_ssend_srp = 0;
} else {
fsm->b_sess_vld = 0;
if (fsm->id)
ci_otg_add_timer(ci, B_SSEND_SRP);
}
} else if (otg_int_src & OTGSC_AVVIS) {
hw_write_otgsc(ci, OTGSC_AVVIS, OTGSC_AVVIS);
if (otgsc & OTGSC_AVV) {
fsm->a_vbus_vld = 1;
} else {
fsm->a_vbus_vld = 0;
fsm->b_conn = 0;
}
}
ci_otg_queue_work(ci);
return IRQ_HANDLED;
}
ci_otg_fsm_event(ci);
return retval;
}
void ci_hdrc_otg_fsm_start(struct ci_hdrc *ci)
{
ci_otg_queue_work(ci);
}
int ci_hdrc_otg_fsm_init(struct ci_hdrc *ci)
{
int retval = 0;
if (ci->phy)
ci->otg.phy = ci->phy;
else
ci->otg.usb_phy = ci->usb_phy;
ci->otg.gadget = &ci->gadget;
ci->fsm.otg = &ci->otg;
ci->fsm.power_up = 1;
ci->fsm.id = hw_read_otgsc(ci, OTGSC_ID) ? 1 : 0;
ci->fsm.otg->state = OTG_STATE_UNDEFINED;
ci->fsm.ops = &ci_otg_ops;
ci->gadget.hnp_polling_support = 1;
ci->fsm.host_req_flag = devm_kzalloc(ci->dev, 1, GFP_KERNEL);
if (!ci->fsm.host_req_flag)
return -ENOMEM;
mutex_init(&ci->fsm.lock);
retval = ci_otg_init_timers(ci);
if (retval) {
dev_err(ci->dev, "Couldn't init OTG timers\n");
return retval;
}
ci->enabled_otg_timer_bits = 0;
ci->next_otg_timer = NUM_OTG_FSM_TIMERS;
retval = sysfs_create_group(&ci->dev->kobj, &inputs_attr_group);
if (retval < 0) {
dev_dbg(ci->dev,
"Can't register sysfs attr group: %d\n", retval);
return retval;
}
/* Enable A vbus valid irq */
hw_write_otgsc(ci, OTGSC_AVVIE, OTGSC_AVVIE);
if (ci->fsm.id) {
ci->fsm.b_ssend_srp =
hw_read_otgsc(ci, OTGSC_BSV) ? 0 : 1;
ci->fsm.b_sess_vld =
hw_read_otgsc(ci, OTGSC_BSV) ? 1 : 0;
/* Enable BSV irq */
hw_write_otgsc(ci, OTGSC_BSVIE, OTGSC_BSVIE);
}
return 0;
}
void ci_hdrc_otg_fsm_remove(struct ci_hdrc *ci)
{
sysfs_remove_group(&ci->dev->kobj, &inputs_attr_group);
}