blob: 0f097f4829d1a8efe3829aded8ff9f454fadd472 [file] [log] [blame]
// SPDX-License-Identifier: (GPL-2.0 OR MIT)
/*
* SPI core driver for the Ocelot chip family.
*
* This driver will handle everything necessary to allow for communication over
* SPI to the VSC7511, VSC7512, VSC7513 and VSC7514 chips. The main functions
* are to prepare the chip's SPI interface for a specific bus speed, and a host
* processor's endianness. This will create and distribute regmaps for any
* children.
*
* Copyright 2021-2022 Innovative Advantage Inc.
*
* Author: Colin Foster <colin.foster@in-advantage.com>
*/
#include <linux/device.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/export.h>
#include <linux/ioport.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/spi/spi.h>
#include <linux/types.h>
#include <linux/units.h>
#include "ocelot.h"
#define REG_DEV_CPUORG_IF_CTRL 0x0000
#define REG_DEV_CPUORG_IF_CFGSTAT 0x0004
#define CFGSTAT_IF_NUM_VCORE (0 << 24)
#define CFGSTAT_IF_NUM_VRAP (1 << 24)
#define CFGSTAT_IF_NUM_SI (2 << 24)
#define CFGSTAT_IF_NUM_MIIM (3 << 24)
#define VSC7512_DEVCPU_ORG_RES_START 0x71000000
#define VSC7512_DEVCPU_ORG_RES_SIZE 0x38
#define VSC7512_CHIP_REGS_RES_START 0x71070000
#define VSC7512_CHIP_REGS_RES_SIZE 0x14
static const struct resource vsc7512_dev_cpuorg_resource =
DEFINE_RES_REG_NAMED(VSC7512_DEVCPU_ORG_RES_START,
VSC7512_DEVCPU_ORG_RES_SIZE,
"devcpu_org");
static const struct resource vsc7512_gcb_resource =
DEFINE_RES_REG_NAMED(VSC7512_CHIP_REGS_RES_START,
VSC7512_CHIP_REGS_RES_SIZE,
"devcpu_gcb_chip_regs");
static int ocelot_spi_initialize(struct device *dev)
{
struct ocelot_ddata *ddata = dev_get_drvdata(dev);
u32 val, check;
int err;
val = OCELOT_SPI_BYTE_ORDER;
/*
* The SPI address must be big-endian, but we want the payload to match
* our CPU. These are two bits (0 and 1) but they're repeated such that
* the write from any configuration will be valid. The four
* configurations are:
*
* 0b00: little-endian, MSB first
* | 111111 | 22221111 | 33222222 |
* | 76543210 | 54321098 | 32109876 | 10987654 |
*
* 0b01: big-endian, MSB first
* | 33222222 | 22221111 | 111111 | |
* | 10987654 | 32109876 | 54321098 | 76543210 |
*
* 0b10: little-endian, LSB first
* | 111111 | 11112222 | 22222233 |
* | 01234567 | 89012345 | 67890123 | 45678901 |
*
* 0b11: big-endian, LSB first
* | 22222233 | 11112222 | 111111 | |
* | 45678901 | 67890123 | 89012345 | 01234567 |
*/
err = regmap_write(ddata->cpuorg_regmap, REG_DEV_CPUORG_IF_CTRL, val);
if (err)
return err;
/*
* Apply the number of padding bytes between a read request and the data
* payload. Some registers have access times of up to 1us, so if the
* first payload bit is shifted out too quickly, the read will fail.
*/
val = ddata->spi_padding_bytes;
err = regmap_write(ddata->cpuorg_regmap, REG_DEV_CPUORG_IF_CFGSTAT, val);
if (err)
return err;
/*
* After we write the interface configuration, read it back here. This
* will verify several different things. The first is that the number of
* padding bytes actually got written correctly. These are found in bits
* 0:3.
*
* The second is that bit 16 is cleared. Bit 16 is IF_CFGSTAT:IF_STAT,
* and will be set if the register access is too fast. This would be in
* the condition that the number of padding bytes is insufficient for
* the SPI bus frequency.
*
* The last check is for bits 31:24, which define the interface by which
* the registers are being accessed. Since we're accessing them via the
* serial interface, it must return IF_NUM_SI.
*/
check = val | CFGSTAT_IF_NUM_SI;
err = regmap_read(ddata->cpuorg_regmap, REG_DEV_CPUORG_IF_CFGSTAT, &val);
if (err)
return err;
if (check != val)
return -ENODEV;
return 0;
}
static const struct regmap_config ocelot_spi_regmap_config = {
.reg_bits = 24,
.reg_stride = 4,
.reg_downshift = 2,
.val_bits = 32,
.write_flag_mask = 0x80,
.use_single_write = true,
.can_multi_write = false,
.reg_format_endian = REGMAP_ENDIAN_BIG,
.val_format_endian = REGMAP_ENDIAN_NATIVE,
};
static int ocelot_spi_regmap_bus_read(void *context, const void *reg, size_t reg_size,
void *val, size_t val_size)
{
struct spi_transfer xfers[3] = {0};
struct device *dev = context;
struct ocelot_ddata *ddata;
struct spi_device *spi;
struct spi_message msg;
unsigned int index = 0;
ddata = dev_get_drvdata(dev);
spi = to_spi_device(dev);
xfers[index].tx_buf = reg;
xfers[index].len = reg_size;
index++;
if (ddata->spi_padding_bytes) {
xfers[index].len = ddata->spi_padding_bytes;
xfers[index].tx_buf = ddata->dummy_buf;
xfers[index].dummy_data = 1;
index++;
}
xfers[index].rx_buf = val;
xfers[index].len = val_size;
index++;
spi_message_init_with_transfers(&msg, xfers, index);
return spi_sync(spi, &msg);
}
static int ocelot_spi_regmap_bus_write(void *context, const void *data, size_t count)
{
struct device *dev = context;
struct spi_device *spi = to_spi_device(dev);
return spi_write(spi, data, count);
}
static const struct regmap_bus ocelot_spi_regmap_bus = {
.write = ocelot_spi_regmap_bus_write,
.read = ocelot_spi_regmap_bus_read,
};
struct regmap *ocelot_spi_init_regmap(struct device *dev, const struct resource *res)
{
struct regmap_config regmap_config;
memcpy(&regmap_config, &ocelot_spi_regmap_config, sizeof(regmap_config));
regmap_config.name = res->name;
regmap_config.max_register = resource_size(res) - 1;
regmap_config.reg_base = res->start;
return devm_regmap_init(dev, &ocelot_spi_regmap_bus, dev, &regmap_config);
}
EXPORT_SYMBOL_NS(ocelot_spi_init_regmap, MFD_OCELOT_SPI);
static int ocelot_spi_probe(struct spi_device *spi)
{
struct device *dev = &spi->dev;
struct ocelot_ddata *ddata;
struct regmap *r;
int err;
ddata = devm_kzalloc(dev, sizeof(*ddata), GFP_KERNEL);
if (!ddata)
return -ENOMEM;
spi_set_drvdata(spi, ddata);
if (spi->max_speed_hz <= 500000) {
ddata->spi_padding_bytes = 0;
} else {
/*
* Calculation taken from the manual for IF_CFGSTAT:IF_CFG.
* Register access time is 1us, so we need to configure and send
* out enough padding bytes between the read request and data
* transmission that lasts at least 1 microsecond.
*/
ddata->spi_padding_bytes = 1 + (spi->max_speed_hz / HZ_PER_MHZ + 2) / 8;
ddata->dummy_buf = devm_kzalloc(dev, ddata->spi_padding_bytes, GFP_KERNEL);
if (!ddata->dummy_buf)
return -ENOMEM;
}
spi->bits_per_word = 8;
err = spi_setup(spi);
if (err)
return dev_err_probe(&spi->dev, err, "Error performing SPI setup\n");
r = ocelot_spi_init_regmap(dev, &vsc7512_dev_cpuorg_resource);
if (IS_ERR(r))
return PTR_ERR(r);
ddata->cpuorg_regmap = r;
r = ocelot_spi_init_regmap(dev, &vsc7512_gcb_resource);
if (IS_ERR(r))
return PTR_ERR(r);
ddata->gcb_regmap = r;
/*
* The chip must be set up for SPI before it gets initialized and reset.
* This must be done before calling init, and after a chip reset is
* performed.
*/
err = ocelot_spi_initialize(dev);
if (err)
return dev_err_probe(dev, err, "Error initializing SPI bus\n");
err = ocelot_chip_reset(dev);
if (err)
return dev_err_probe(dev, err, "Error resetting device\n");
/*
* A chip reset will clear the SPI configuration, so it needs to be done
* again before we can access any registers.
*/
err = ocelot_spi_initialize(dev);
if (err)
return dev_err_probe(dev, err, "Error initializing SPI bus after reset\n");
err = ocelot_core_init(dev);
if (err)
return dev_err_probe(dev, err, "Error initializing Ocelot core\n");
return 0;
}
static const struct spi_device_id ocelot_spi_ids[] = {
{ "vsc7512", 0 },
{ }
};
static const struct of_device_id ocelot_spi_of_match[] = {
{ .compatible = "mscc,vsc7512" },
{ }
};
MODULE_DEVICE_TABLE(of, ocelot_spi_of_match);
static struct spi_driver ocelot_spi_driver = {
.driver = {
.name = "ocelot-soc",
.of_match_table = ocelot_spi_of_match,
},
.id_table = ocelot_spi_ids,
.probe = ocelot_spi_probe,
};
module_spi_driver(ocelot_spi_driver);
MODULE_DESCRIPTION("SPI Controlled Ocelot Chip Driver");
MODULE_AUTHOR("Colin Foster <colin.foster@in-advantage.com>");
MODULE_LICENSE("Dual MIT/GPL");
MODULE_IMPORT_NS(MFD_OCELOT);