| /* |
| * NAND Flash Controller Device Driver |
| * Copyright © 2009-2010, Intel Corporation and its suppliers. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program; if not, write to the Free Software Foundation, Inc., |
| * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| * |
| */ |
| |
| #include <linux/interrupt.h> |
| #include <linux/delay.h> |
| #include <linux/wait.h> |
| #include <linux/mutex.h> |
| #include <linux/slab.h> |
| #include <linux/pci.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/module.h> |
| |
| #include "denali.h" |
| |
| MODULE_LICENSE("GPL"); |
| |
| /* We define a module parameter that allows the user to override |
| * the hardware and decide what timing mode should be used. |
| */ |
| #define NAND_DEFAULT_TIMINGS -1 |
| |
| static int onfi_timing_mode = NAND_DEFAULT_TIMINGS; |
| module_param(onfi_timing_mode, int, S_IRUGO); |
| MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting." |
| " -1 indicates use default timings"); |
| |
| #define DENALI_NAND_NAME "denali-nand" |
| |
| /* We define a macro here that combines all interrupts this driver uses into |
| * a single constant value, for convenience. */ |
| #define DENALI_IRQ_ALL (INTR_STATUS0__DMA_CMD_COMP | \ |
| INTR_STATUS0__ECC_TRANSACTION_DONE | \ |
| INTR_STATUS0__ECC_ERR | \ |
| INTR_STATUS0__PROGRAM_FAIL | \ |
| INTR_STATUS0__LOAD_COMP | \ |
| INTR_STATUS0__PROGRAM_COMP | \ |
| INTR_STATUS0__TIME_OUT | \ |
| INTR_STATUS0__ERASE_FAIL | \ |
| INTR_STATUS0__RST_COMP | \ |
| INTR_STATUS0__ERASE_COMP) |
| |
| /* indicates whether or not the internal value for the flash bank is |
| valid or not */ |
| #define CHIP_SELECT_INVALID -1 |
| |
| #define SUPPORT_8BITECC 1 |
| |
| /* This macro divides two integers and rounds fractional values up |
| * to the nearest integer value. */ |
| #define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y))) |
| |
| /* this macro allows us to convert from an MTD structure to our own |
| * device context (denali) structure. |
| */ |
| #define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd) |
| |
| /* These constants are defined by the driver to enable common driver |
| configuration options. */ |
| #define SPARE_ACCESS 0x41 |
| #define MAIN_ACCESS 0x42 |
| #define MAIN_SPARE_ACCESS 0x43 |
| |
| #define DENALI_READ 0 |
| #define DENALI_WRITE 0x100 |
| |
| /* types of device accesses. We can issue commands and get status */ |
| #define COMMAND_CYCLE 0 |
| #define ADDR_CYCLE 1 |
| #define STATUS_CYCLE 2 |
| |
| /* this is a helper macro that allows us to |
| * format the bank into the proper bits for the controller */ |
| #define BANK(x) ((x) << 24) |
| |
| /* List of platforms this NAND controller has be integrated into */ |
| static const struct pci_device_id denali_pci_ids[] = { |
| { PCI_VDEVICE(INTEL, 0x0701), INTEL_CE4100 }, |
| { PCI_VDEVICE(INTEL, 0x0809), INTEL_MRST }, |
| { /* end: all zeroes */ } |
| }; |
| |
| |
| /* these are static lookup tables that give us easy access to |
| registers in the NAND controller. |
| */ |
| static const uint32_t intr_status_addresses[4] = {INTR_STATUS0, |
| INTR_STATUS1, |
| INTR_STATUS2, |
| INTR_STATUS3}; |
| |
| static const uint32_t device_reset_banks[4] = {DEVICE_RESET__BANK0, |
| DEVICE_RESET__BANK1, |
| DEVICE_RESET__BANK2, |
| DEVICE_RESET__BANK3}; |
| |
| static const uint32_t operation_timeout[4] = {INTR_STATUS0__TIME_OUT, |
| INTR_STATUS1__TIME_OUT, |
| INTR_STATUS2__TIME_OUT, |
| INTR_STATUS3__TIME_OUT}; |
| |
| static const uint32_t reset_complete[4] = {INTR_STATUS0__RST_COMP, |
| INTR_STATUS1__RST_COMP, |
| INTR_STATUS2__RST_COMP, |
| INTR_STATUS3__RST_COMP}; |
| |
| /* specifies the debug level of the driver */ |
| static int nand_debug_level; |
| |
| /* forward declarations */ |
| static void clear_interrupts(struct denali_nand_info *denali); |
| static uint32_t wait_for_irq(struct denali_nand_info *denali, |
| uint32_t irq_mask); |
| static void denali_irq_enable(struct denali_nand_info *denali, |
| uint32_t int_mask); |
| static uint32_t read_interrupt_status(struct denali_nand_info *denali); |
| |
| #define DEBUG_DENALI 0 |
| |
| /* This is a wrapper for writing to the denali registers. |
| * this allows us to create debug information so we can |
| * observe how the driver is programming the device. |
| * it uses standard linux convention for (val, addr) */ |
| static void denali_write32(uint32_t value, void *addr) |
| { |
| iowrite32(value, addr); |
| |
| #if DEBUG_DENALI |
| printk(KERN_INFO "wrote: 0x%x -> 0x%x\n", value, |
| (uint32_t)((uint32_t)addr & 0x1fff)); |
| #endif |
| } |
| |
| /* Certain operations for the denali NAND controller use |
| * an indexed mode to read/write data. The operation is |
| * performed by writing the address value of the command |
| * to the device memory followed by the data. This function |
| * abstracts this common operation. |
| */ |
| static void index_addr(struct denali_nand_info *denali, |
| uint32_t address, uint32_t data) |
| { |
| denali_write32(address, denali->flash_mem); |
| denali_write32(data, denali->flash_mem + 0x10); |
| } |
| |
| /* Perform an indexed read of the device */ |
| static void index_addr_read_data(struct denali_nand_info *denali, |
| uint32_t address, uint32_t *pdata) |
| { |
| denali_write32(address, denali->flash_mem); |
| *pdata = ioread32(denali->flash_mem + 0x10); |
| } |
| |
| /* We need to buffer some data for some of the NAND core routines. |
| * The operations manage buffering that data. */ |
| static void reset_buf(struct denali_nand_info *denali) |
| { |
| denali->buf.head = denali->buf.tail = 0; |
| } |
| |
| static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte) |
| { |
| BUG_ON(denali->buf.tail >= sizeof(denali->buf.buf)); |
| denali->buf.buf[denali->buf.tail++] = byte; |
| } |
| |
| /* reads the status of the device */ |
| static void read_status(struct denali_nand_info *denali) |
| { |
| uint32_t cmd = 0x0; |
| |
| /* initialize the data buffer to store status */ |
| reset_buf(denali); |
| |
| /* initiate a device status read */ |
| cmd = MODE_11 | BANK(denali->flash_bank); |
| index_addr(denali, cmd | COMMAND_CYCLE, 0x70); |
| denali_write32(cmd | STATUS_CYCLE, denali->flash_mem); |
| |
| /* update buffer with status value */ |
| write_byte_to_buf(denali, ioread32(denali->flash_mem + 0x10)); |
| |
| #if DEBUG_DENALI |
| printk(KERN_INFO "device reporting status value of 0x%2x\n", |
| denali->buf.buf[0]); |
| #endif |
| } |
| |
| /* resets a specific device connected to the core */ |
| static void reset_bank(struct denali_nand_info *denali) |
| { |
| uint32_t irq_status = 0; |
| uint32_t irq_mask = reset_complete[denali->flash_bank] | |
| operation_timeout[denali->flash_bank]; |
| int bank = 0; |
| |
| clear_interrupts(denali); |
| |
| bank = device_reset_banks[denali->flash_bank]; |
| denali_write32(bank, denali->flash_reg + DEVICE_RESET); |
| |
| irq_status = wait_for_irq(denali, irq_mask); |
| |
| if (irq_status & operation_timeout[denali->flash_bank]) |
| printk(KERN_ERR "reset bank failed.\n"); |
| } |
| |
| /* Reset the flash controller */ |
| static uint16_t denali_nand_reset(struct denali_nand_info *denali) |
| { |
| uint32_t i; |
| |
| nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n", |
| __FILE__, __LINE__, __func__); |
| |
| for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++) |
| denali_write32(reset_complete[i] | operation_timeout[i], |
| denali->flash_reg + intr_status_addresses[i]); |
| |
| for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++) { |
| denali_write32(device_reset_banks[i], |
| denali->flash_reg + DEVICE_RESET); |
| while (!(ioread32(denali->flash_reg + |
| intr_status_addresses[i]) & |
| (reset_complete[i] | operation_timeout[i]))) |
| ; |
| if (ioread32(denali->flash_reg + intr_status_addresses[i]) & |
| operation_timeout[i]) |
| nand_dbg_print(NAND_DBG_WARN, |
| "NAND Reset operation timed out on bank %d\n", i); |
| } |
| |
| for (i = 0; i < LLD_MAX_FLASH_BANKS; i++) |
| denali_write32(reset_complete[i] | operation_timeout[i], |
| denali->flash_reg + intr_status_addresses[i]); |
| |
| return PASS; |
| } |
| |
| /* this routine calculates the ONFI timing values for a given mode and |
| * programs the clocking register accordingly. The mode is determined by |
| * the get_onfi_nand_para routine. |
| */ |
| static void nand_onfi_timing_set(struct denali_nand_info *denali, |
| uint16_t mode) |
| { |
| uint16_t Trea[6] = {40, 30, 25, 20, 20, 16}; |
| uint16_t Trp[6] = {50, 25, 17, 15, 12, 10}; |
| uint16_t Treh[6] = {30, 15, 15, 10, 10, 7}; |
| uint16_t Trc[6] = {100, 50, 35, 30, 25, 20}; |
| uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15}; |
| uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5}; |
| uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25}; |
| uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70}; |
| uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100}; |
| uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100}; |
| uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60}; |
| uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15}; |
| |
| uint16_t TclsRising = 1; |
| uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid; |
| uint16_t dv_window = 0; |
| uint16_t en_lo, en_hi; |
| uint16_t acc_clks; |
| uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt; |
| |
| nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n", |
| __FILE__, __LINE__, __func__); |
| |
| en_lo = CEIL_DIV(Trp[mode], CLK_X); |
| en_hi = CEIL_DIV(Treh[mode], CLK_X); |
| #if ONFI_BLOOM_TIME |
| if ((en_hi * CLK_X) < (Treh[mode] + 2)) |
| en_hi++; |
| #endif |
| |
| if ((en_lo + en_hi) * CLK_X < Trc[mode]) |
| en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X); |
| |
| if ((en_lo + en_hi) < CLK_MULTI) |
| en_lo += CLK_MULTI - en_lo - en_hi; |
| |
| while (dv_window < 8) { |
| data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode]; |
| |
| data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode]; |
| |
| data_invalid = |
| data_invalid_rhoh < |
| data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh; |
| |
| dv_window = data_invalid - Trea[mode]; |
| |
| if (dv_window < 8) |
| en_lo++; |
| } |
| |
| acc_clks = CEIL_DIV(Trea[mode], CLK_X); |
| |
| while (((acc_clks * CLK_X) - Trea[mode]) < 3) |
| acc_clks++; |
| |
| if ((data_invalid - acc_clks * CLK_X) < 2) |
| nand_dbg_print(NAND_DBG_WARN, "%s, Line %d: Warning!\n", |
| __FILE__, __LINE__); |
| |
| addr_2_data = CEIL_DIV(Tadl[mode], CLK_X); |
| re_2_we = CEIL_DIV(Trhw[mode], CLK_X); |
| re_2_re = CEIL_DIV(Trhz[mode], CLK_X); |
| we_2_re = CEIL_DIV(Twhr[mode], CLK_X); |
| cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X); |
| if (!TclsRising) |
| cs_cnt = CEIL_DIV(Tcs[mode], CLK_X); |
| if (cs_cnt == 0) |
| cs_cnt = 1; |
| |
| if (Tcea[mode]) { |
| while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode]) |
| cs_cnt++; |
| } |
| |
| #if MODE5_WORKAROUND |
| if (mode == 5) |
| acc_clks = 5; |
| #endif |
| |
| /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */ |
| if ((ioread32(denali->flash_reg + MANUFACTURER_ID) == 0) && |
| (ioread32(denali->flash_reg + DEVICE_ID) == 0x88)) |
| acc_clks = 6; |
| |
| denali_write32(acc_clks, denali->flash_reg + ACC_CLKS); |
| denali_write32(re_2_we, denali->flash_reg + RE_2_WE); |
| denali_write32(re_2_re, denali->flash_reg + RE_2_RE); |
| denali_write32(we_2_re, denali->flash_reg + WE_2_RE); |
| denali_write32(addr_2_data, denali->flash_reg + ADDR_2_DATA); |
| denali_write32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT); |
| denali_write32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT); |
| denali_write32(cs_cnt, denali->flash_reg + CS_SETUP_CNT); |
| } |
| |
| /* configures the initial ECC settings for the controller */ |
| static void set_ecc_config(struct denali_nand_info *denali) |
| { |
| #if SUPPORT_8BITECC |
| if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) < 4096) || |
| (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) <= 128)) |
| denali_write32(8, denali->flash_reg + ECC_CORRECTION); |
| #endif |
| |
| } |
| |
| /* queries the NAND device to see what ONFI modes it supports. */ |
| static uint16_t get_onfi_nand_para(struct denali_nand_info *denali) |
| { |
| int i; |
| |
| denali_write32(DEVICE_RESET__BANK0, denali->flash_reg + DEVICE_RESET); |
| |
| while (!((ioread32(denali->flash_reg + INTR_STATUS0) & |
| INTR_STATUS0__RST_COMP) | |
| (ioread32(denali->flash_reg + INTR_STATUS0) & |
| INTR_STATUS0__TIME_OUT))) |
| ; |
| |
| if (ioread32(denali->flash_reg + INTR_STATUS0) & |
| INTR_STATUS0__RST_COMP) { |
| denali_write32(DEVICE_RESET__BANK1, |
| denali->flash_reg + DEVICE_RESET); |
| while (!((ioread32(denali->flash_reg + INTR_STATUS1) & |
| INTR_STATUS1__RST_COMP) | |
| (ioread32(denali->flash_reg + INTR_STATUS1) & |
| INTR_STATUS1__TIME_OUT))) |
| ; |
| |
| if (ioread32(denali->flash_reg + INTR_STATUS1) & |
| INTR_STATUS1__RST_COMP) { |
| denali_write32(DEVICE_RESET__BANK2, |
| denali->flash_reg + DEVICE_RESET); |
| while (!((ioread32(denali->flash_reg + INTR_STATUS2) & |
| INTR_STATUS2__RST_COMP) | |
| (ioread32(denali->flash_reg + INTR_STATUS2) & |
| INTR_STATUS2__TIME_OUT))) |
| ; |
| |
| if (ioread32(denali->flash_reg + INTR_STATUS2) & |
| INTR_STATUS2__RST_COMP) { |
| denali_write32(DEVICE_RESET__BANK3, |
| denali->flash_reg + DEVICE_RESET); |
| while (!((ioread32(denali->flash_reg + |
| INTR_STATUS3) & |
| INTR_STATUS3__RST_COMP) | |
| (ioread32(denali->flash_reg + |
| INTR_STATUS3) & |
| INTR_STATUS3__TIME_OUT))) |
| ; |
| } else { |
| printk(KERN_ERR "Getting a time out for bank 2!\n"); |
| } |
| } else { |
| printk(KERN_ERR "Getting a time out for bank 1!\n"); |
| } |
| } |
| |
| denali_write32(INTR_STATUS0__TIME_OUT, |
| denali->flash_reg + INTR_STATUS0); |
| denali_write32(INTR_STATUS1__TIME_OUT, |
| denali->flash_reg + INTR_STATUS1); |
| denali_write32(INTR_STATUS2__TIME_OUT, |
| denali->flash_reg + INTR_STATUS2); |
| denali_write32(INTR_STATUS3__TIME_OUT, |
| denali->flash_reg + INTR_STATUS3); |
| |
| if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) & |
| ONFI_TIMING_MODE__VALUE)) |
| return FAIL; |
| |
| for (i = 5; i > 0; i--) { |
| if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) & |
| (0x01 << i)) |
| break; |
| } |
| |
| nand_onfi_timing_set(denali, i); |
| |
| /* By now, all the ONFI devices we know support the page cache */ |
| /* rw feature. So here we enable the pipeline_rw_ahead feature */ |
| /* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */ |
| /* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE); */ |
| |
| return PASS; |
| } |
| |
| static void get_samsung_nand_para(struct denali_nand_info *denali) |
| { |
| uint32_t id_bytes[5]; |
| int i; |
| |
| index_addr(denali, (uint32_t)(MODE_11 | 0), 0x90); |
| index_addr(denali, (uint32_t)(MODE_11 | 1), 0); |
| for (i = 0; i < 5; i++) |
| index_addr_read_data(denali, (uint32_t)(MODE_11 | 2), |
| &id_bytes[i]); |
| |
| nand_dbg_print(NAND_DBG_DEBUG, |
| "ID bytes: 0x%x, 0x%x, 0x%x, 0x%x, 0x%x\n", |
| id_bytes[0], id_bytes[1], id_bytes[2], |
| id_bytes[3], id_bytes[4]); |
| |
| if ((id_bytes[1] & 0xff) == 0xd3) { /* Samsung K9WAG08U1A */ |
| /* Set timing register values according to datasheet */ |
| denali_write32(5, denali->flash_reg + ACC_CLKS); |
| denali_write32(20, denali->flash_reg + RE_2_WE); |
| denali_write32(12, denali->flash_reg + WE_2_RE); |
| denali_write32(14, denali->flash_reg + ADDR_2_DATA); |
| denali_write32(3, denali->flash_reg + RDWR_EN_LO_CNT); |
| denali_write32(2, denali->flash_reg + RDWR_EN_HI_CNT); |
| denali_write32(2, denali->flash_reg + CS_SETUP_CNT); |
| } |
| } |
| |
| static void get_toshiba_nand_para(struct denali_nand_info *denali) |
| { |
| uint32_t tmp; |
| |
| /* Workaround to fix a controller bug which reports a wrong */ |
| /* spare area size for some kind of Toshiba NAND device */ |
| if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) && |
| (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) { |
| denali_write32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE); |
| tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) * |
| ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE); |
| denali_write32(tmp, |
| denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); |
| #if SUPPORT_15BITECC |
| denali_write32(15, denali->flash_reg + ECC_CORRECTION); |
| #elif SUPPORT_8BITECC |
| denali_write32(8, denali->flash_reg + ECC_CORRECTION); |
| #endif |
| } |
| } |
| |
| static void get_hynix_nand_para(struct denali_nand_info *denali, |
| uint8_t device_id) |
| { |
| uint32_t main_size, spare_size; |
| |
| switch (device_id) { |
| case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */ |
| case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */ |
| denali_write32(128, denali->flash_reg + PAGES_PER_BLOCK); |
| denali_write32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE); |
| denali_write32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE); |
| main_size = 4096 * |
| ioread32(denali->flash_reg + DEVICES_CONNECTED); |
| spare_size = 224 * |
| ioread32(denali->flash_reg + DEVICES_CONNECTED); |
| denali_write32(main_size, |
| denali->flash_reg + LOGICAL_PAGE_DATA_SIZE); |
| denali_write32(spare_size, |
| denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); |
| denali_write32(0, denali->flash_reg + DEVICE_WIDTH); |
| #if SUPPORT_15BITECC |
| denali_write32(15, denali->flash_reg + ECC_CORRECTION); |
| #elif SUPPORT_8BITECC |
| denali_write32(8, denali->flash_reg + ECC_CORRECTION); |
| #endif |
| break; |
| default: |
| nand_dbg_print(NAND_DBG_WARN, |
| "Spectra: Unknown Hynix NAND (Device ID: 0x%x)." |
| "Will use default parameter values instead.\n", |
| device_id); |
| } |
| } |
| |
| /* determines how many NAND chips are connected to the controller. Note for |
| Intel CE4100 devices we don't support more than one device. |
| */ |
| static void find_valid_banks(struct denali_nand_info *denali) |
| { |
| uint32_t id[LLD_MAX_FLASH_BANKS]; |
| int i; |
| |
| denali->total_used_banks = 1; |
| for (i = 0; i < LLD_MAX_FLASH_BANKS; i++) { |
| index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90); |
| index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0); |
| index_addr_read_data(denali, |
| (uint32_t)(MODE_11 | (i << 24) | 2), &id[i]); |
| |
| nand_dbg_print(NAND_DBG_DEBUG, |
| "Return 1st ID for bank[%d]: %x\n", i, id[i]); |
| |
| if (i == 0) { |
| if (!(id[i] & 0x0ff)) |
| break; /* WTF? */ |
| } else { |
| if ((id[i] & 0x0ff) == (id[0] & 0x0ff)) |
| denali->total_used_banks++; |
| else |
| break; |
| } |
| } |
| |
| if (denali->platform == INTEL_CE4100) { |
| /* Platform limitations of the CE4100 device limit |
| * users to a single chip solution for NAND. |
| * Multichip support is not enabled. |
| */ |
| if (denali->total_used_banks != 1) { |
| printk(KERN_ERR "Sorry, Intel CE4100 only supports " |
| "a single NAND device.\n"); |
| BUG(); |
| } |
| } |
| nand_dbg_print(NAND_DBG_DEBUG, |
| "denali->total_used_banks: %d\n", denali->total_used_banks); |
| } |
| |
| static void detect_partition_feature(struct denali_nand_info *denali) |
| { |
| /* For MRST platform, denali->fwblks represent the |
| * number of blocks firmware is taken, |
| * FW is in protect partition and MTD driver has no |
| * permission to access it. So let driver know how many |
| * blocks it can't touch. |
| * */ |
| if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) { |
| if ((ioread32(denali->flash_reg + PERM_SRC_ID_1) & |
| PERM_SRC_ID_1__SRCID) == SPECTRA_PARTITION_ID) { |
| denali->fwblks = |
| ((ioread32(denali->flash_reg + MIN_MAX_BANK_1) & |
| MIN_MAX_BANK_1__MIN_VALUE) * |
| denali->blksperchip) |
| + |
| (ioread32(denali->flash_reg + MIN_BLK_ADDR_1) & |
| MIN_BLK_ADDR_1__VALUE); |
| } else |
| denali->fwblks = SPECTRA_START_BLOCK; |
| } else |
| denali->fwblks = SPECTRA_START_BLOCK; |
| } |
| |
| static uint16_t denali_nand_timing_set(struct denali_nand_info *denali) |
| { |
| uint16_t status = PASS; |
| uint32_t id_bytes[5], addr; |
| uint8_t i, maf_id, device_id; |
| |
| nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n", |
| __FILE__, __LINE__, __func__); |
| |
| /* Use read id method to get device ID and other |
| * params. For some NAND chips, controller can't |
| * report the correct device ID by reading from |
| * DEVICE_ID register |
| * */ |
| addr = (uint32_t)MODE_11 | BANK(denali->flash_bank); |
| index_addr(denali, (uint32_t)addr | 0, 0x90); |
| index_addr(denali, (uint32_t)addr | 1, 0); |
| for (i = 0; i < 5; i++) |
| index_addr_read_data(denali, addr | 2, &id_bytes[i]); |
| maf_id = id_bytes[0]; |
| device_id = id_bytes[1]; |
| |
| if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) & |
| ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */ |
| if (FAIL == get_onfi_nand_para(denali)) |
| return FAIL; |
| } else if (maf_id == 0xEC) { /* Samsung NAND */ |
| get_samsung_nand_para(denali); |
| } else if (maf_id == 0x98) { /* Toshiba NAND */ |
| get_toshiba_nand_para(denali); |
| } else if (maf_id == 0xAD) { /* Hynix NAND */ |
| get_hynix_nand_para(denali, device_id); |
| } |
| |
| nand_dbg_print(NAND_DBG_DEBUG, "Dump timing register values:" |
| "acc_clks: %d, re_2_we: %d, we_2_re: %d," |
| "addr_2_data: %d, rdwr_en_lo_cnt: %d, " |
| "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n", |
| ioread32(denali->flash_reg + ACC_CLKS), |
| ioread32(denali->flash_reg + RE_2_WE), |
| ioread32(denali->flash_reg + WE_2_RE), |
| ioread32(denali->flash_reg + ADDR_2_DATA), |
| ioread32(denali->flash_reg + RDWR_EN_LO_CNT), |
| ioread32(denali->flash_reg + RDWR_EN_HI_CNT), |
| ioread32(denali->flash_reg + CS_SETUP_CNT)); |
| |
| set_ecc_config(denali); |
| |
| find_valid_banks(denali); |
| |
| detect_partition_feature(denali); |
| |
| /* If the user specified to override the default timings |
| * with a specific ONFI mode, we apply those changes here. |
| */ |
| if (onfi_timing_mode != NAND_DEFAULT_TIMINGS) |
| nand_onfi_timing_set(denali, onfi_timing_mode); |
| |
| return status; |
| } |
| |
| static void denali_set_intr_modes(struct denali_nand_info *denali, |
| uint16_t INT_ENABLE) |
| { |
| nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n", |
| __FILE__, __LINE__, __func__); |
| |
| if (INT_ENABLE) |
| denali_write32(1, denali->flash_reg + GLOBAL_INT_ENABLE); |
| else |
| denali_write32(0, denali->flash_reg + GLOBAL_INT_ENABLE); |
| } |
| |
| /* validation function to verify that the controlling software is making |
| a valid request |
| */ |
| static inline bool is_flash_bank_valid(int flash_bank) |
| { |
| return (flash_bank >= 0 && flash_bank < 4); |
| } |
| |
| static void denali_irq_init(struct denali_nand_info *denali) |
| { |
| uint32_t int_mask = 0; |
| |
| /* Disable global interrupts */ |
| denali_set_intr_modes(denali, false); |
| |
| int_mask = DENALI_IRQ_ALL; |
| |
| /* Clear all status bits */ |
| denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS0); |
| denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS1); |
| denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS2); |
| denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS3); |
| |
| denali_irq_enable(denali, int_mask); |
| } |
| |
| static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali) |
| { |
| denali_set_intr_modes(denali, false); |
| free_irq(irqnum, denali); |
| } |
| |
| static void denali_irq_enable(struct denali_nand_info *denali, |
| uint32_t int_mask) |
| { |
| denali_write32(int_mask, denali->flash_reg + INTR_EN0); |
| denali_write32(int_mask, denali->flash_reg + INTR_EN1); |
| denali_write32(int_mask, denali->flash_reg + INTR_EN2); |
| denali_write32(int_mask, denali->flash_reg + INTR_EN3); |
| } |
| |
| /* This function only returns when an interrupt that this driver cares about |
| * occurs. This is to reduce the overhead of servicing interrupts |
| */ |
| static inline uint32_t denali_irq_detected(struct denali_nand_info *denali) |
| { |
| return read_interrupt_status(denali) & DENALI_IRQ_ALL; |
| } |
| |
| /* Interrupts are cleared by writing a 1 to the appropriate status bit */ |
| static inline void clear_interrupt(struct denali_nand_info *denali, |
| uint32_t irq_mask) |
| { |
| uint32_t intr_status_reg = 0; |
| |
| intr_status_reg = intr_status_addresses[denali->flash_bank]; |
| |
| denali_write32(irq_mask, denali->flash_reg + intr_status_reg); |
| } |
| |
| static void clear_interrupts(struct denali_nand_info *denali) |
| { |
| uint32_t status = 0x0; |
| spin_lock_irq(&denali->irq_lock); |
| |
| status = read_interrupt_status(denali); |
| |
| #if DEBUG_DENALI |
| denali->irq_debug_array[denali->idx++] = 0x30000000 | status; |
| denali->idx %= 32; |
| #endif |
| |
| denali->irq_status = 0x0; |
| spin_unlock_irq(&denali->irq_lock); |
| } |
| |
| static uint32_t read_interrupt_status(struct denali_nand_info *denali) |
| { |
| uint32_t intr_status_reg = 0; |
| |
| intr_status_reg = intr_status_addresses[denali->flash_bank]; |
| |
| return ioread32(denali->flash_reg + intr_status_reg); |
| } |
| |
| #if DEBUG_DENALI |
| static void print_irq_log(struct denali_nand_info *denali) |
| { |
| int i = 0; |
| |
| printk(KERN_INFO "ISR debug log index = %X\n", denali->idx); |
| for (i = 0; i < 32; i++) |
| printk(KERN_INFO "%08X: %08X\n", i, denali->irq_debug_array[i]); |
| } |
| #endif |
| |
| /* This is the interrupt service routine. It handles all interrupts |
| * sent to this device. Note that on CE4100, this is a shared |
| * interrupt. |
| */ |
| static irqreturn_t denali_isr(int irq, void *dev_id) |
| { |
| struct denali_nand_info *denali = dev_id; |
| uint32_t irq_status = 0x0; |
| irqreturn_t result = IRQ_NONE; |
| |
| spin_lock(&denali->irq_lock); |
| |
| /* check to see if a valid NAND chip has |
| * been selected. |
| */ |
| if (is_flash_bank_valid(denali->flash_bank)) { |
| /* check to see if controller generated |
| * the interrupt, since this is a shared interrupt */ |
| irq_status = denali_irq_detected(denali); |
| if (irq_status != 0) { |
| #if DEBUG_DENALI |
| denali->irq_debug_array[denali->idx++] = |
| 0x10000000 | irq_status; |
| denali->idx %= 32; |
| |
| printk(KERN_INFO "IRQ status = 0x%04x\n", irq_status); |
| #endif |
| /* handle interrupt */ |
| /* first acknowledge it */ |
| clear_interrupt(denali, irq_status); |
| /* store the status in the device context for someone |
| to read */ |
| denali->irq_status |= irq_status; |
| /* notify anyone who cares that it happened */ |
| complete(&denali->complete); |
| /* tell the OS that we've handled this */ |
| result = IRQ_HANDLED; |
| } |
| } |
| spin_unlock(&denali->irq_lock); |
| return result; |
| } |
| #define BANK(x) ((x) << 24) |
| |
| static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask) |
| { |
| unsigned long comp_res = 0; |
| uint32_t intr_status = 0; |
| bool retry = false; |
| unsigned long timeout = msecs_to_jiffies(1000); |
| |
| do { |
| #if DEBUG_DENALI |
| printk(KERN_INFO "waiting for 0x%x\n", irq_mask); |
| #endif |
| comp_res = |
| wait_for_completion_timeout(&denali->complete, timeout); |
| spin_lock_irq(&denali->irq_lock); |
| intr_status = denali->irq_status; |
| |
| #if DEBUG_DENALI |
| denali->irq_debug_array[denali->idx++] = |
| 0x20000000 | (irq_mask << 16) | intr_status; |
| denali->idx %= 32; |
| #endif |
| |
| if (intr_status & irq_mask) { |
| denali->irq_status &= ~irq_mask; |
| spin_unlock_irq(&denali->irq_lock); |
| #if DEBUG_DENALI |
| if (retry) |
| printk(KERN_INFO "status on retry = 0x%x\n", |
| intr_status); |
| #endif |
| /* our interrupt was detected */ |
| break; |
| } else { |
| /* these are not the interrupts you are looking for - |
| * need to wait again */ |
| spin_unlock_irq(&denali->irq_lock); |
| #if DEBUG_DENALI |
| print_irq_log(denali); |
| printk(KERN_INFO "received irq nobody cared:" |
| " irq_status = 0x%x, irq_mask = 0x%x," |
| " timeout = %ld\n", intr_status, |
| irq_mask, comp_res); |
| #endif |
| retry = true; |
| } |
| } while (comp_res != 0); |
| |
| if (comp_res == 0) { |
| /* timeout */ |
| printk(KERN_ERR "timeout occurred, status = 0x%x, mask = 0x%x\n", |
| intr_status, irq_mask); |
| |
| intr_status = 0; |
| } |
| return intr_status; |
| } |
| |
| /* This helper function setups the registers for ECC and whether or not |
| the spare area will be transfered. */ |
| static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en, |
| bool transfer_spare) |
| { |
| int ecc_en_flag = 0, transfer_spare_flag = 0; |
| |
| /* set ECC, transfer spare bits if needed */ |
| ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0; |
| transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0; |
| |
| /* Enable spare area/ECC per user's request. */ |
| denali_write32(ecc_en_flag, denali->flash_reg + ECC_ENABLE); |
| denali_write32(transfer_spare_flag, |
| denali->flash_reg + TRANSFER_SPARE_REG); |
| } |
| |
| /* sends a pipeline command operation to the controller. See the Denali NAND |
| controller's user guide for more information (section 4.2.3.6). |
| */ |
| static int denali_send_pipeline_cmd(struct denali_nand_info *denali, |
| bool ecc_en, |
| bool transfer_spare, |
| int access_type, |
| int op) |
| { |
| int status = PASS; |
| uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0, |
| irq_mask = 0; |
| |
| if (op == DENALI_READ) |
| irq_mask = INTR_STATUS0__LOAD_COMP; |
| else if (op == DENALI_WRITE) |
| irq_mask = 0; |
| else |
| BUG(); |
| |
| setup_ecc_for_xfer(denali, ecc_en, transfer_spare); |
| |
| #if DEBUG_DENALI |
| spin_lock_irq(&denali->irq_lock); |
| denali->irq_debug_array[denali->idx++] = |
| 0x40000000 | ioread32(denali->flash_reg + ECC_ENABLE) | |
| (access_type << 4); |
| denali->idx %= 32; |
| spin_unlock_irq(&denali->irq_lock); |
| #endif |
| |
| |
| /* clear interrupts */ |
| clear_interrupts(denali); |
| |
| addr = BANK(denali->flash_bank) | denali->page; |
| |
| if (op == DENALI_WRITE && access_type != SPARE_ACCESS) { |
| cmd = MODE_01 | addr; |
| denali_write32(cmd, denali->flash_mem); |
| } else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) { |
| /* read spare area */ |
| cmd = MODE_10 | addr; |
| index_addr(denali, (uint32_t)cmd, access_type); |
| |
| cmd = MODE_01 | addr; |
| denali_write32(cmd, denali->flash_mem); |
| } else if (op == DENALI_READ) { |
| /* setup page read request for access type */ |
| cmd = MODE_10 | addr; |
| index_addr(denali, (uint32_t)cmd, access_type); |
| |
| /* page 33 of the NAND controller spec indicates we should not |
| use the pipeline commands in Spare area only mode. So we |
| don't. |
| */ |
| if (access_type == SPARE_ACCESS) { |
| cmd = MODE_01 | addr; |
| denali_write32(cmd, denali->flash_mem); |
| } else { |
| index_addr(denali, (uint32_t)cmd, |
| 0x2000 | op | page_count); |
| |
| /* wait for command to be accepted |
| * can always use status0 bit as the |
| * mask is identical for each |
| * bank. */ |
| irq_status = wait_for_irq(denali, irq_mask); |
| |
| if (irq_status == 0) { |
| printk(KERN_ERR "cmd, page, addr on timeout " |
| "(0x%x, 0x%x, 0x%x)\n", cmd, |
| denali->page, addr); |
| status = FAIL; |
| } else { |
| cmd = MODE_01 | addr; |
| denali_write32(cmd, denali->flash_mem); |
| } |
| } |
| } |
| return status; |
| } |
| |
| /* helper function that simply writes a buffer to the flash */ |
| static int write_data_to_flash_mem(struct denali_nand_info *denali, |
| const uint8_t *buf, |
| int len) |
| { |
| uint32_t i = 0, *buf32; |
| |
| /* verify that the len is a multiple of 4. see comment in |
| * read_data_from_flash_mem() */ |
| BUG_ON((len % 4) != 0); |
| |
| /* write the data to the flash memory */ |
| buf32 = (uint32_t *)buf; |
| for (i = 0; i < len / 4; i++) |
| denali_write32(*buf32++, denali->flash_mem + 0x10); |
| return i*4; /* intent is to return the number of bytes read */ |
| } |
| |
| /* helper function that simply reads a buffer from the flash */ |
| static int read_data_from_flash_mem(struct denali_nand_info *denali, |
| uint8_t *buf, |
| int len) |
| { |
| uint32_t i = 0, *buf32; |
| |
| /* we assume that len will be a multiple of 4, if not |
| * it would be nice to know about it ASAP rather than |
| * have random failures... |
| * This assumption is based on the fact that this |
| * function is designed to be used to read flash pages, |
| * which are typically multiples of 4... |
| */ |
| |
| BUG_ON((len % 4) != 0); |
| |
| /* transfer the data from the flash */ |
| buf32 = (uint32_t *)buf; |
| for (i = 0; i < len / 4; i++) |
| *buf32++ = ioread32(denali->flash_mem + 0x10); |
| return i*4; /* intent is to return the number of bytes read */ |
| } |
| |
| /* writes OOB data to the device */ |
| static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) |
| { |
| struct denali_nand_info *denali = mtd_to_denali(mtd); |
| uint32_t irq_status = 0; |
| uint32_t irq_mask = INTR_STATUS0__PROGRAM_COMP | |
| INTR_STATUS0__PROGRAM_FAIL; |
| int status = 0; |
| |
| denali->page = page; |
| |
| if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS, |
| DENALI_WRITE) == PASS) { |
| write_data_to_flash_mem(denali, buf, mtd->oobsize); |
| |
| #if DEBUG_DENALI |
| spin_lock_irq(&denali->irq_lock); |
| denali->irq_debug_array[denali->idx++] = |
| 0x80000000 | mtd->oobsize; |
| denali->idx %= 32; |
| spin_unlock_irq(&denali->irq_lock); |
| #endif |
| |
| |
| /* wait for operation to complete */ |
| irq_status = wait_for_irq(denali, irq_mask); |
| |
| if (irq_status == 0) { |
| printk(KERN_ERR "OOB write failed\n"); |
| status = -EIO; |
| } |
| } else { |
| printk(KERN_ERR "unable to send pipeline command\n"); |
| status = -EIO; |
| } |
| return status; |
| } |
| |
| /* reads OOB data from the device */ |
| static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) |
| { |
| struct denali_nand_info *denali = mtd_to_denali(mtd); |
| uint32_t irq_mask = INTR_STATUS0__LOAD_COMP, |
| irq_status = 0, addr = 0x0, cmd = 0x0; |
| |
| denali->page = page; |
| |
| #if DEBUG_DENALI |
| printk(KERN_INFO "read_oob %d\n", page); |
| #endif |
| if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS, |
| DENALI_READ) == PASS) { |
| read_data_from_flash_mem(denali, buf, mtd->oobsize); |
| |
| /* wait for command to be accepted |
| * can always use status0 bit as the mask is identical for each |
| * bank. */ |
| irq_status = wait_for_irq(denali, irq_mask); |
| |
| if (irq_status == 0) |
| printk(KERN_ERR "page on OOB timeout %d\n", |
| denali->page); |
| |
| /* We set the device back to MAIN_ACCESS here as I observed |
| * instability with the controller if you do a block erase |
| * and the last transaction was a SPARE_ACCESS. Block erase |
| * is reliable (according to the MTD test infrastructure) |
| * if you are in MAIN_ACCESS. |
| */ |
| addr = BANK(denali->flash_bank) | denali->page; |
| cmd = MODE_10 | addr; |
| index_addr(denali, (uint32_t)cmd, MAIN_ACCESS); |
| |
| #if DEBUG_DENALI |
| spin_lock_irq(&denali->irq_lock); |
| denali->irq_debug_array[denali->idx++] = |
| 0x60000000 | mtd->oobsize; |
| denali->idx %= 32; |
| spin_unlock_irq(&denali->irq_lock); |
| #endif |
| } |
| } |
| |
| /* this function examines buffers to see if they contain data that |
| * indicate that the buffer is part of an erased region of flash. |
| */ |
| bool is_erased(uint8_t *buf, int len) |
| { |
| int i = 0; |
| for (i = 0; i < len; i++) |
| if (buf[i] != 0xFF) |
| return false; |
| return true; |
| } |
| #define ECC_SECTOR_SIZE 512 |
| |
| #define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12) |
| #define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET)) |
| #define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK) |
| #define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO)) |
| #define ECC_ERR_DEVICE(x) ((x) & ERR_CORRECTION_INFO__DEVICE_NR >> 8) |
| #define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO) |
| |
| static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf, |
| uint8_t *oobbuf, uint32_t irq_status) |
| { |
| bool check_erased_page = false; |
| |
| if (irq_status & INTR_STATUS0__ECC_ERR) { |
| /* read the ECC errors. we'll ignore them for now */ |
| uint32_t err_address = 0, err_correction_info = 0; |
| uint32_t err_byte = 0, err_sector = 0, err_device = 0; |
| uint32_t err_correction_value = 0; |
| |
| do { |
| err_address = ioread32(denali->flash_reg + |
| ECC_ERROR_ADDRESS); |
| err_sector = ECC_SECTOR(err_address); |
| err_byte = ECC_BYTE(err_address); |
| |
| |
| err_correction_info = ioread32(denali->flash_reg + |
| ERR_CORRECTION_INFO); |
| err_correction_value = |
| ECC_CORRECTION_VALUE(err_correction_info); |
| err_device = ECC_ERR_DEVICE(err_correction_info); |
| |
| if (ECC_ERROR_CORRECTABLE(err_correction_info)) { |
| /* offset in our buffer is computed as: |
| sector number * sector size + offset in |
| sector |
| */ |
| int offset = err_sector * ECC_SECTOR_SIZE + |
| err_byte; |
| if (offset < denali->mtd.writesize) { |
| /* correct the ECC error */ |
| buf[offset] ^= err_correction_value; |
| denali->mtd.ecc_stats.corrected++; |
| } else { |
| /* bummer, couldn't correct the error */ |
| printk(KERN_ERR "ECC offset invalid\n"); |
| denali->mtd.ecc_stats.failed++; |
| } |
| } else { |
| /* if the error is not correctable, need to |
| * look at the page to see if it is an erased |
| * page. if so, then it's not a real ECC error |
| * */ |
| check_erased_page = true; |
| } |
| |
| #if DEBUG_DENALI |
| printk(KERN_INFO "Detected ECC error in page %d:" |
| " err_addr = 0x%08x, info to fix is" |
| " 0x%08x\n", denali->page, err_address, |
| err_correction_info); |
| #endif |
| } while (!ECC_LAST_ERR(err_correction_info)); |
| } |
| return check_erased_page; |
| } |
| |
| /* programs the controller to either enable/disable DMA transfers */ |
| static void denali_enable_dma(struct denali_nand_info *denali, bool en) |
| { |
| uint32_t reg_val = 0x0; |
| |
| if (en) |
| reg_val = DMA_ENABLE__FLAG; |
| |
| denali_write32(reg_val, denali->flash_reg + DMA_ENABLE); |
| ioread32(denali->flash_reg + DMA_ENABLE); |
| } |
| |
| /* setups the HW to perform the data DMA */ |
| static void denali_setup_dma(struct denali_nand_info *denali, int op) |
| { |
| uint32_t mode = 0x0; |
| const int page_count = 1; |
| dma_addr_t addr = denali->buf.dma_buf; |
| |
| mode = MODE_10 | BANK(denali->flash_bank); |
| |
| /* DMA is a four step process */ |
| |
| /* 1. setup transfer type and # of pages */ |
| index_addr(denali, mode | denali->page, 0x2000 | op | page_count); |
| |
| /* 2. set memory high address bits 23:8 */ |
| index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200); |
| |
| /* 3. set memory low address bits 23:8 */ |
| index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300); |
| |
| /* 4. interrupt when complete, burst len = 64 bytes*/ |
| index_addr(denali, mode | 0x14000, 0x2400); |
| } |
| |
| /* writes a page. user specifies type, and this function handles the |
| configuration details. */ |
| static void write_page(struct mtd_info *mtd, struct nand_chip *chip, |
| const uint8_t *buf, bool raw_xfer) |
| { |
| struct denali_nand_info *denali = mtd_to_denali(mtd); |
| struct pci_dev *pci_dev = denali->dev; |
| |
| dma_addr_t addr = denali->buf.dma_buf; |
| size_t size = denali->mtd.writesize + denali->mtd.oobsize; |
| |
| uint32_t irq_status = 0; |
| uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP | |
| INTR_STATUS0__PROGRAM_FAIL; |
| |
| /* if it is a raw xfer, we want to disable ecc, and send |
| * the spare area. |
| * !raw_xfer - enable ecc |
| * raw_xfer - transfer spare |
| */ |
| setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer); |
| |
| /* copy buffer into DMA buffer */ |
| memcpy(denali->buf.buf, buf, mtd->writesize); |
| |
| if (raw_xfer) { |
| /* transfer the data to the spare area */ |
| memcpy(denali->buf.buf + mtd->writesize, |
| chip->oob_poi, |
| mtd->oobsize); |
| } |
| |
| pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_TODEVICE); |
| |
| clear_interrupts(denali); |
| denali_enable_dma(denali, true); |
| |
| denali_setup_dma(denali, DENALI_WRITE); |
| |
| /* wait for operation to complete */ |
| irq_status = wait_for_irq(denali, irq_mask); |
| |
| if (irq_status == 0) { |
| printk(KERN_ERR "timeout on write_page" |
| " (type = %d)\n", raw_xfer); |
| denali->status = |
| (irq_status & INTR_STATUS0__PROGRAM_FAIL) ? |
| NAND_STATUS_FAIL : PASS; |
| } |
| |
| denali_enable_dma(denali, false); |
| pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_TODEVICE); |
| } |
| |
| /* NAND core entry points */ |
| |
| /* this is the callback that the NAND core calls to write a page. Since |
| writing a page with ECC or without is similar, all the work is done |
| by write_page above. */ |
| static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip, |
| const uint8_t *buf) |
| { |
| /* for regular page writes, we let HW handle all the ECC |
| * data written to the device. */ |
| write_page(mtd, chip, buf, false); |
| } |
| |
| /* This is the callback that the NAND core calls to write a page without ECC. |
| raw access is similiar to ECC page writes, so all the work is done in the |
| write_page() function above. |
| */ |
| static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, |
| const uint8_t *buf) |
| { |
| /* for raw page writes, we want to disable ECC and simply write |
| whatever data is in the buffer. */ |
| write_page(mtd, chip, buf, true); |
| } |
| |
| static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip, |
| int page) |
| { |
| return write_oob_data(mtd, chip->oob_poi, page); |
| } |
| |
| static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip, |
| int page, int sndcmd) |
| { |
| read_oob_data(mtd, chip->oob_poi, page); |
| |
| return 0; /* notify NAND core to send command to |
| NAND device. */ |
| } |
| |
| static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip, |
| uint8_t *buf, int page) |
| { |
| struct denali_nand_info *denali = mtd_to_denali(mtd); |
| struct pci_dev *pci_dev = denali->dev; |
| |
| dma_addr_t addr = denali->buf.dma_buf; |
| size_t size = denali->mtd.writesize + denali->mtd.oobsize; |
| |
| uint32_t irq_status = 0; |
| uint32_t irq_mask = INTR_STATUS0__ECC_TRANSACTION_DONE | |
| INTR_STATUS0__ECC_ERR; |
| bool check_erased_page = false; |
| |
| setup_ecc_for_xfer(denali, true, false); |
| |
| denali_enable_dma(denali, true); |
| pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE); |
| |
| clear_interrupts(denali); |
| denali_setup_dma(denali, DENALI_READ); |
| |
| /* wait for operation to complete */ |
| irq_status = wait_for_irq(denali, irq_mask); |
| |
| pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE); |
| |
| memcpy(buf, denali->buf.buf, mtd->writesize); |
| |
| check_erased_page = handle_ecc(denali, buf, chip->oob_poi, irq_status); |
| denali_enable_dma(denali, false); |
| |
| if (check_erased_page) { |
| read_oob_data(&denali->mtd, chip->oob_poi, denali->page); |
| |
| /* check ECC failures that may have occurred on erased pages */ |
| if (check_erased_page) { |
| if (!is_erased(buf, denali->mtd.writesize)) |
| denali->mtd.ecc_stats.failed++; |
| if (!is_erased(buf, denali->mtd.oobsize)) |
| denali->mtd.ecc_stats.failed++; |
| } |
| } |
| return 0; |
| } |
| |
| static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, |
| uint8_t *buf, int page) |
| { |
| struct denali_nand_info *denali = mtd_to_denali(mtd); |
| struct pci_dev *pci_dev = denali->dev; |
| |
| dma_addr_t addr = denali->buf.dma_buf; |
| size_t size = denali->mtd.writesize + denali->mtd.oobsize; |
| |
| uint32_t irq_status = 0; |
| uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP; |
| |
| setup_ecc_for_xfer(denali, false, true); |
| denali_enable_dma(denali, true); |
| |
| pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE); |
| |
| clear_interrupts(denali); |
| denali_setup_dma(denali, DENALI_READ); |
| |
| /* wait for operation to complete */ |
| irq_status = wait_for_irq(denali, irq_mask); |
| |
| pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE); |
| |
| denali_enable_dma(denali, false); |
| |
| memcpy(buf, denali->buf.buf, mtd->writesize); |
| memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize); |
| |
| return 0; |
| } |
| |
| static uint8_t denali_read_byte(struct mtd_info *mtd) |
| { |
| struct denali_nand_info *denali = mtd_to_denali(mtd); |
| uint8_t result = 0xff; |
| |
| if (denali->buf.head < denali->buf.tail) |
| result = denali->buf.buf[denali->buf.head++]; |
| |
| #if DEBUG_DENALI |
| printk(KERN_INFO "read byte -> 0x%02x\n", result); |
| #endif |
| return result; |
| } |
| |
| static void denali_select_chip(struct mtd_info *mtd, int chip) |
| { |
| struct denali_nand_info *denali = mtd_to_denali(mtd); |
| #if DEBUG_DENALI |
| printk(KERN_INFO "denali select chip %d\n", chip); |
| #endif |
| spin_lock_irq(&denali->irq_lock); |
| denali->flash_bank = chip; |
| spin_unlock_irq(&denali->irq_lock); |
| } |
| |
| static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip) |
| { |
| struct denali_nand_info *denali = mtd_to_denali(mtd); |
| int status = denali->status; |
| denali->status = 0; |
| |
| #if DEBUG_DENALI |
| printk(KERN_INFO "waitfunc %d\n", status); |
| #endif |
| return status; |
| } |
| |
| static void denali_erase(struct mtd_info *mtd, int page) |
| { |
| struct denali_nand_info *denali = mtd_to_denali(mtd); |
| |
| uint32_t cmd = 0x0, irq_status = 0; |
| |
| #if DEBUG_DENALI |
| printk(KERN_INFO "erase page: %d\n", page); |
| #endif |
| /* clear interrupts */ |
| clear_interrupts(denali); |
| |
| /* setup page read request for access type */ |
| cmd = MODE_10 | BANK(denali->flash_bank) | page; |
| index_addr(denali, (uint32_t)cmd, 0x1); |
| |
| /* wait for erase to complete or failure to occur */ |
| irq_status = wait_for_irq(denali, INTR_STATUS0__ERASE_COMP | |
| INTR_STATUS0__ERASE_FAIL); |
| |
| denali->status = (irq_status & INTR_STATUS0__ERASE_FAIL) ? |
| NAND_STATUS_FAIL : PASS; |
| } |
| |
| static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col, |
| int page) |
| { |
| struct denali_nand_info *denali = mtd_to_denali(mtd); |
| uint32_t addr, id; |
| int i; |
| |
| #if DEBUG_DENALI |
| printk(KERN_INFO "cmdfunc: 0x%x %d %d\n", cmd, col, page); |
| #endif |
| switch (cmd) { |
| case NAND_CMD_PAGEPROG: |
| break; |
| case NAND_CMD_STATUS: |
| read_status(denali); |
| break; |
| case NAND_CMD_READID: |
| reset_buf(denali); |
| /*sometimes ManufactureId read from register is not right |
| * e.g. some of Micron MT29F32G08QAA MLC NAND chips |
| * So here we send READID cmd to NAND insteand |
| * */ |
| addr = (uint32_t)MODE_11 | BANK(denali->flash_bank); |
| index_addr(denali, (uint32_t)addr | 0, 0x90); |
| index_addr(denali, (uint32_t)addr | 1, 0); |
| for (i = 0; i < 5; i++) { |
| index_addr_read_data(denali, |
| (uint32_t)addr | 2, |
| &id); |
| write_byte_to_buf(denali, id); |
| } |
| break; |
| case NAND_CMD_READ0: |
| case NAND_CMD_SEQIN: |
| denali->page = page; |
| break; |
| case NAND_CMD_RESET: |
| reset_bank(denali); |
| break; |
| case NAND_CMD_READOOB: |
| /* TODO: Read OOB data */ |
| break; |
| default: |
| printk(KERN_ERR ": unsupported command" |
| " received 0x%x\n", cmd); |
| break; |
| } |
| } |
| |
| /* stubs for ECC functions not used by the NAND core */ |
| static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data, |
| uint8_t *ecc_code) |
| { |
| printk(KERN_ERR "denali_ecc_calculate called unexpectedly\n"); |
| BUG(); |
| return -EIO; |
| } |
| |
| static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data, |
| uint8_t *read_ecc, uint8_t *calc_ecc) |
| { |
| printk(KERN_ERR "denali_ecc_correct called unexpectedly\n"); |
| BUG(); |
| return -EIO; |
| } |
| |
| static void denali_ecc_hwctl(struct mtd_info *mtd, int mode) |
| { |
| printk(KERN_ERR "denali_ecc_hwctl called unexpectedly\n"); |
| BUG(); |
| } |
| /* end NAND core entry points */ |
| |
| /* Initialization code to bring the device up to a known good state */ |
| static void denali_hw_init(struct denali_nand_info *denali) |
| { |
| denali_irq_init(denali); |
| denali_nand_reset(denali); |
| denali_write32(0x0F, denali->flash_reg + RB_PIN_ENABLED); |
| denali_write32(CHIP_EN_DONT_CARE__FLAG, |
| denali->flash_reg + CHIP_ENABLE_DONT_CARE); |
| |
| denali_write32(0x0, denali->flash_reg + SPARE_AREA_SKIP_BYTES); |
| denali_write32(0xffff, denali->flash_reg + SPARE_AREA_MARKER); |
| |
| /* Should set value for these registers when init */ |
| denali_write32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES); |
| denali_write32(1, denali->flash_reg + ECC_ENABLE); |
| } |
| |
| /* ECC layout for SLC devices. Denali spec indicates SLC fixed at 4 bytes */ |
| #define ECC_BYTES_SLC (4 * (2048 / ECC_SECTOR_SIZE)) |
| static struct nand_ecclayout nand_oob_slc = { |
| .eccbytes = 4, |
| .eccpos = { 0, 1, 2, 3 }, /* not used */ |
| .oobfree = { |
| { |
| .offset = ECC_BYTES_SLC, |
| .length = 64 - ECC_BYTES_SLC |
| } |
| } |
| }; |
| |
| #define ECC_BYTES_MLC (14 * (2048 / ECC_SECTOR_SIZE)) |
| static struct nand_ecclayout nand_oob_mlc_14bit = { |
| .eccbytes = 14, |
| .eccpos = { 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13 }, /* not used */ |
| .oobfree = { |
| { |
| .offset = ECC_BYTES_MLC, |
| .length = 64 - ECC_BYTES_MLC |
| } |
| } |
| }; |
| |
| static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' }; |
| static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' }; |
| |
| static struct nand_bbt_descr bbt_main_descr = { |
| .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
| | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, |
| .offs = 8, |
| .len = 4, |
| .veroffs = 12, |
| .maxblocks = 4, |
| .pattern = bbt_pattern, |
| }; |
| |
| static struct nand_bbt_descr bbt_mirror_descr = { |
| .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
| | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, |
| .offs = 8, |
| .len = 4, |
| .veroffs = 12, |
| .maxblocks = 4, |
| .pattern = mirror_pattern, |
| }; |
| |
| /* initalize driver data structures */ |
| void denali_drv_init(struct denali_nand_info *denali) |
| { |
| denali->idx = 0; |
| |
| /* setup interrupt handler */ |
| /* the completion object will be used to notify |
| * the callee that the interrupt is done */ |
| init_completion(&denali->complete); |
| |
| /* the spinlock will be used to synchronize the ISR |
| * with any element that might be access shared |
| * data (interrupt status) */ |
| spin_lock_init(&denali->irq_lock); |
| |
| /* indicate that MTD has not selected a valid bank yet */ |
| denali->flash_bank = CHIP_SELECT_INVALID; |
| |
| /* initialize our irq_status variable to indicate no interrupts */ |
| denali->irq_status = 0; |
| } |
| |
| /* driver entry point */ |
| static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) |
| { |
| int ret = -ENODEV; |
| resource_size_t csr_base, mem_base; |
| unsigned long csr_len, mem_len; |
| struct denali_nand_info *denali; |
| |
| nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n", |
| __FILE__, __LINE__, __func__); |
| |
| denali = kzalloc(sizeof(*denali), GFP_KERNEL); |
| if (!denali) |
| return -ENOMEM; |
| |
| ret = pci_enable_device(dev); |
| if (ret) { |
| printk(KERN_ERR "Spectra: pci_enable_device failed.\n"); |
| goto failed_enable; |
| } |
| |
| if (id->driver_data == INTEL_CE4100) { |
| /* Due to a silicon limitation, we can only support |
| * ONFI timing mode 1 and below. |
| */ |
| if (onfi_timing_mode < -1 || onfi_timing_mode > 1) { |
| printk(KERN_ERR "Intel CE4100 only supports" |
| " ONFI timing mode 1 or below\n"); |
| ret = -EINVAL; |
| goto failed_enable; |
| } |
| denali->platform = INTEL_CE4100; |
| mem_base = pci_resource_start(dev, 0); |
| mem_len = pci_resource_len(dev, 1); |
| csr_base = pci_resource_start(dev, 1); |
| csr_len = pci_resource_len(dev, 1); |
| } else { |
| denali->platform = INTEL_MRST; |
| csr_base = pci_resource_start(dev, 0); |
| csr_len = pci_resource_start(dev, 0); |
| mem_base = pci_resource_start(dev, 1); |
| mem_len = pci_resource_len(dev, 1); |
| if (!mem_len) { |
| mem_base = csr_base + csr_len; |
| mem_len = csr_len; |
| nand_dbg_print(NAND_DBG_WARN, |
| "Spectra: No second" |
| " BAR for PCI device;" |
| " assuming %08Lx\n", |
| (uint64_t)csr_base); |
| } |
| } |
| |
| /* Is 32-bit DMA supported? */ |
| ret = pci_set_dma_mask(dev, DMA_BIT_MASK(32)); |
| |
| if (ret) { |
| printk(KERN_ERR "Spectra: no usable DMA configuration\n"); |
| goto failed_enable; |
| } |
| denali->buf.dma_buf = |
| pci_map_single(dev, denali->buf.buf, |
| DENALI_BUF_SIZE, |
| PCI_DMA_BIDIRECTIONAL); |
| |
| if (pci_dma_mapping_error(dev, denali->buf.dma_buf)) { |
| printk(KERN_ERR "Spectra: failed to map DMA buffer\n"); |
| goto failed_enable; |
| } |
| |
| pci_set_master(dev); |
| denali->dev = dev; |
| |
| ret = pci_request_regions(dev, DENALI_NAND_NAME); |
| if (ret) { |
| printk(KERN_ERR "Spectra: Unable to request memory regions\n"); |
| goto failed_req_csr; |
| } |
| |
| denali->flash_reg = ioremap_nocache(csr_base, csr_len); |
| if (!denali->flash_reg) { |
| printk(KERN_ERR "Spectra: Unable to remap memory region\n"); |
| ret = -ENOMEM; |
| goto failed_remap_csr; |
| } |
| nand_dbg_print(NAND_DBG_DEBUG, "Spectra: CSR 0x%08Lx -> 0x%p (0x%lx)\n", |
| (uint64_t)csr_base, denali->flash_reg, csr_len); |
| |
| denali->flash_mem = ioremap_nocache(mem_base, mem_len); |
| if (!denali->flash_mem) { |
| printk(KERN_ERR "Spectra: ioremap_nocache failed!"); |
| iounmap(denali->flash_reg); |
| ret = -ENOMEM; |
| goto failed_remap_csr; |
| } |
| |
| nand_dbg_print(NAND_DBG_WARN, |
| "Spectra: Remapped flash base address: " |
| "0x%p, len: %ld\n", |
| denali->flash_mem, csr_len); |
| |
| denali_hw_init(denali); |
| denali_drv_init(denali); |
| |
| nand_dbg_print(NAND_DBG_DEBUG, "Spectra: IRQ %d\n", dev->irq); |
| if (request_irq(dev->irq, denali_isr, IRQF_SHARED, |
| DENALI_NAND_NAME, denali)) { |
| printk(KERN_ERR "Spectra: Unable to allocate IRQ\n"); |
| ret = -ENODEV; |
| goto failed_request_irq; |
| } |
| |
| /* now that our ISR is registered, we can enable interrupts */ |
| denali_set_intr_modes(denali, true); |
| |
| pci_set_drvdata(dev, denali); |
| |
| denali_nand_timing_set(denali); |
| |
| nand_dbg_print(NAND_DBG_DEBUG, "Dump timing register values:" |
| "acc_clks: %d, re_2_we: %d, we_2_re: %d," |
| "addr_2_data: %d, rdwr_en_lo_cnt: %d, " |
| "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n", |
| ioread32(denali->flash_reg + ACC_CLKS), |
| ioread32(denali->flash_reg + RE_2_WE), |
| ioread32(denali->flash_reg + WE_2_RE), |
| ioread32(denali->flash_reg + ADDR_2_DATA), |
| ioread32(denali->flash_reg + RDWR_EN_LO_CNT), |
| ioread32(denali->flash_reg + RDWR_EN_HI_CNT), |
| ioread32(denali->flash_reg + CS_SETUP_CNT)); |
| |
| denali->mtd.name = "Denali NAND"; |
| denali->mtd.owner = THIS_MODULE; |
| denali->mtd.priv = &denali->nand; |
| |
| /* register the driver with the NAND core subsystem */ |
| denali->nand.select_chip = denali_select_chip; |
| denali->nand.cmdfunc = denali_cmdfunc; |
| denali->nand.read_byte = denali_read_byte; |
| denali->nand.waitfunc = denali_waitfunc; |
| |
| /* scan for NAND devices attached to the controller |
| * this is the first stage in a two step process to register |
| * with the nand subsystem */ |
| if (nand_scan_ident(&denali->mtd, LLD_MAX_FLASH_BANKS, NULL)) { |
| ret = -ENXIO; |
| goto failed_nand; |
| } |
| |
| /* MTD supported page sizes vary by kernel. We validate our |
| * kernel supports the device here. |
| */ |
| if (denali->mtd.writesize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE) { |
| ret = -ENODEV; |
| printk(KERN_ERR "Spectra: device size not supported by this " |
| "version of MTD."); |
| goto failed_nand; |
| } |
| |
| /* second stage of the NAND scan |
| * this stage requires information regarding ECC and |
| * bad block management. */ |
| |
| /* Bad block management */ |
| denali->nand.bbt_td = &bbt_main_descr; |
| denali->nand.bbt_md = &bbt_mirror_descr; |
| |
| /* skip the scan for now until we have OOB read and write support */ |
| denali->nand.options |= NAND_USE_FLASH_BBT | NAND_SKIP_BBTSCAN; |
| denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME; |
| |
| if (denali->nand.cellinfo & 0xc) { |
| denali->nand.ecc.layout = &nand_oob_mlc_14bit; |
| denali->nand.ecc.bytes = ECC_BYTES_MLC; |
| } else {/* SLC */ |
| denali->nand.ecc.layout = &nand_oob_slc; |
| denali->nand.ecc.bytes = ECC_BYTES_SLC; |
| } |
| |
| /* Let driver know the total blocks number and |
| * how many blocks contained by each nand chip. |
| * blksperchip will help driver to know how many |
| * blocks is taken by FW. |
| * */ |
| denali->totalblks = denali->mtd.size >> |
| denali->nand.phys_erase_shift; |
| denali->blksperchip = denali->totalblks / denali->nand.numchips; |
| |
| /* These functions are required by the NAND core framework, otherwise, |
| * the NAND core will assert. However, we don't need them, so we'll stub |
| * them out. */ |
| denali->nand.ecc.calculate = denali_ecc_calculate; |
| denali->nand.ecc.correct = denali_ecc_correct; |
| denali->nand.ecc.hwctl = denali_ecc_hwctl; |
| |
| /* override the default read operations */ |
| denali->nand.ecc.size = denali->mtd.writesize; |
| denali->nand.ecc.read_page = denali_read_page; |
| denali->nand.ecc.read_page_raw = denali_read_page_raw; |
| denali->nand.ecc.write_page = denali_write_page; |
| denali->nand.ecc.write_page_raw = denali_write_page_raw; |
| denali->nand.ecc.read_oob = denali_read_oob; |
| denali->nand.ecc.write_oob = denali_write_oob; |
| denali->nand.erase_cmd = denali_erase; |
| |
| if (nand_scan_tail(&denali->mtd)) { |
| ret = -ENXIO; |
| goto failed_nand; |
| } |
| |
| ret = add_mtd_device(&denali->mtd); |
| if (ret) { |
| printk(KERN_ERR "Spectra: Failed to register" |
| " MTD device: %d\n", ret); |
| goto failed_nand; |
| } |
| return 0; |
| |
| failed_nand: |
| denali_irq_cleanup(dev->irq, denali); |
| failed_request_irq: |
| iounmap(denali->flash_reg); |
| iounmap(denali->flash_mem); |
| failed_remap_csr: |
| pci_release_regions(dev); |
| failed_req_csr: |
| pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE, |
| PCI_DMA_BIDIRECTIONAL); |
| failed_enable: |
| kfree(denali); |
| return ret; |
| } |
| |
| /* driver exit point */ |
| static void denali_pci_remove(struct pci_dev *dev) |
| { |
| struct denali_nand_info *denali = pci_get_drvdata(dev); |
| |
| nand_dbg_print(NAND_DBG_WARN, "%s, Line %d, Function: %s\n", |
| __FILE__, __LINE__, __func__); |
| |
| nand_release(&denali->mtd); |
| del_mtd_device(&denali->mtd); |
| |
| denali_irq_cleanup(dev->irq, denali); |
| |
| iounmap(denali->flash_reg); |
| iounmap(denali->flash_mem); |
| pci_release_regions(dev); |
| pci_disable_device(dev); |
| pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE, |
| PCI_DMA_BIDIRECTIONAL); |
| pci_set_drvdata(dev, NULL); |
| kfree(denali); |
| } |
| |
| MODULE_DEVICE_TABLE(pci, denali_pci_ids); |
| |
| static struct pci_driver denali_pci_driver = { |
| .name = DENALI_NAND_NAME, |
| .id_table = denali_pci_ids, |
| .probe = denali_pci_probe, |
| .remove = denali_pci_remove, |
| }; |
| |
| static int __devinit denali_init(void) |
| { |
| printk(KERN_INFO "Spectra MTD driver built on %s @ %s\n", |
| __DATE__, __TIME__); |
| return pci_register_driver(&denali_pci_driver); |
| } |
| |
| /* Free memory */ |
| static void __devexit denali_exit(void) |
| { |
| pci_unregister_driver(&denali_pci_driver); |
| } |
| |
| module_init(denali_init); |
| module_exit(denali_exit); |