| /* |
| * Copyright 2014 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| */ |
| |
| #include <linux/slab.h> |
| #include <linux/list.h> |
| #include <linux/types.h> |
| #include <linux/printk.h> |
| #include <linux/bitops.h> |
| #include <linux/sched.h> |
| #include "kfd_priv.h" |
| #include "kfd_device_queue_manager.h" |
| #include "kfd_mqd_manager.h" |
| #include "cik_regs.h" |
| #include "kfd_kernel_queue.h" |
| |
| /* Size of the per-pipe EOP queue */ |
| #define CIK_HPD_EOP_BYTES_LOG2 11 |
| #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2) |
| |
| static int set_pasid_vmid_mapping(struct device_queue_manager *dqm, |
| unsigned int pasid, unsigned int vmid); |
| |
| static int create_compute_queue_nocpsch(struct device_queue_manager *dqm, |
| struct queue *q, |
| struct qcm_process_device *qpd); |
| |
| static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock); |
| static int destroy_queues_cpsch(struct device_queue_manager *dqm, |
| bool preempt_static_queues, bool lock); |
| |
| static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm, |
| struct queue *q, |
| struct qcm_process_device *qpd); |
| |
| static void deallocate_sdma_queue(struct device_queue_manager *dqm, |
| unsigned int sdma_queue_id); |
| |
| static inline |
| enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type) |
| { |
| if (type == KFD_QUEUE_TYPE_SDMA) |
| return KFD_MQD_TYPE_SDMA; |
| return KFD_MQD_TYPE_CP; |
| } |
| |
| unsigned int get_first_pipe(struct device_queue_manager *dqm) |
| { |
| BUG_ON(!dqm || !dqm->dev); |
| return dqm->dev->shared_resources.first_compute_pipe; |
| } |
| |
| unsigned int get_pipes_num(struct device_queue_manager *dqm) |
| { |
| BUG_ON(!dqm || !dqm->dev); |
| return dqm->dev->shared_resources.compute_pipe_count; |
| } |
| |
| static inline unsigned int get_pipes_num_cpsch(void) |
| { |
| return PIPE_PER_ME_CP_SCHEDULING; |
| } |
| |
| void program_sh_mem_settings(struct device_queue_manager *dqm, |
| struct qcm_process_device *qpd) |
| { |
| return dqm->dev->kfd2kgd->program_sh_mem_settings( |
| dqm->dev->kgd, qpd->vmid, |
| qpd->sh_mem_config, |
| qpd->sh_mem_ape1_base, |
| qpd->sh_mem_ape1_limit, |
| qpd->sh_mem_bases); |
| } |
| |
| static int allocate_vmid(struct device_queue_manager *dqm, |
| struct qcm_process_device *qpd, |
| struct queue *q) |
| { |
| int bit, allocated_vmid; |
| |
| if (dqm->vmid_bitmap == 0) |
| return -ENOMEM; |
| |
| bit = find_first_bit((unsigned long *)&dqm->vmid_bitmap, CIK_VMID_NUM); |
| clear_bit(bit, (unsigned long *)&dqm->vmid_bitmap); |
| |
| /* Kaveri kfd vmid's starts from vmid 8 */ |
| allocated_vmid = bit + KFD_VMID_START_OFFSET; |
| pr_debug("kfd: vmid allocation %d\n", allocated_vmid); |
| qpd->vmid = allocated_vmid; |
| q->properties.vmid = allocated_vmid; |
| |
| set_pasid_vmid_mapping(dqm, q->process->pasid, q->properties.vmid); |
| program_sh_mem_settings(dqm, qpd); |
| |
| return 0; |
| } |
| |
| static void deallocate_vmid(struct device_queue_manager *dqm, |
| struct qcm_process_device *qpd, |
| struct queue *q) |
| { |
| int bit = qpd->vmid - KFD_VMID_START_OFFSET; |
| |
| /* Release the vmid mapping */ |
| set_pasid_vmid_mapping(dqm, 0, qpd->vmid); |
| |
| set_bit(bit, (unsigned long *)&dqm->vmid_bitmap); |
| qpd->vmid = 0; |
| q->properties.vmid = 0; |
| } |
| |
| static int create_queue_nocpsch(struct device_queue_manager *dqm, |
| struct queue *q, |
| struct qcm_process_device *qpd, |
| int *allocated_vmid) |
| { |
| int retval; |
| |
| BUG_ON(!dqm || !q || !qpd || !allocated_vmid); |
| |
| pr_debug("kfd: In func %s\n", __func__); |
| print_queue(q); |
| |
| mutex_lock(&dqm->lock); |
| |
| if (dqm->total_queue_count >= max_num_of_queues_per_device) { |
| pr_warn("amdkfd: Can't create new usermode queue because %d queues were already created\n", |
| dqm->total_queue_count); |
| mutex_unlock(&dqm->lock); |
| return -EPERM; |
| } |
| |
| if (list_empty(&qpd->queues_list)) { |
| retval = allocate_vmid(dqm, qpd, q); |
| if (retval != 0) { |
| mutex_unlock(&dqm->lock); |
| return retval; |
| } |
| } |
| *allocated_vmid = qpd->vmid; |
| q->properties.vmid = qpd->vmid; |
| |
| if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) |
| retval = create_compute_queue_nocpsch(dqm, q, qpd); |
| if (q->properties.type == KFD_QUEUE_TYPE_SDMA) |
| retval = create_sdma_queue_nocpsch(dqm, q, qpd); |
| |
| if (retval != 0) { |
| if (list_empty(&qpd->queues_list)) { |
| deallocate_vmid(dqm, qpd, q); |
| *allocated_vmid = 0; |
| } |
| mutex_unlock(&dqm->lock); |
| return retval; |
| } |
| |
| list_add(&q->list, &qpd->queues_list); |
| if (q->properties.is_active) |
| dqm->queue_count++; |
| |
| if (q->properties.type == KFD_QUEUE_TYPE_SDMA) |
| dqm->sdma_queue_count++; |
| |
| /* |
| * Unconditionally increment this counter, regardless of the queue's |
| * type or whether the queue is active. |
| */ |
| dqm->total_queue_count++; |
| pr_debug("Total of %d queues are accountable so far\n", |
| dqm->total_queue_count); |
| |
| mutex_unlock(&dqm->lock); |
| return 0; |
| } |
| |
| static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q) |
| { |
| bool set; |
| int pipe, bit, i; |
| |
| set = false; |
| |
| for (pipe = dqm->next_pipe_to_allocate, i = 0; i < get_pipes_num(dqm); |
| pipe = ((pipe + 1) % get_pipes_num(dqm)), ++i) { |
| if (dqm->allocated_queues[pipe] != 0) { |
| bit = find_first_bit( |
| (unsigned long *)&dqm->allocated_queues[pipe], |
| QUEUES_PER_PIPE); |
| |
| clear_bit(bit, |
| (unsigned long *)&dqm->allocated_queues[pipe]); |
| q->pipe = pipe; |
| q->queue = bit; |
| set = true; |
| break; |
| } |
| } |
| |
| if (set == false) |
| return -EBUSY; |
| |
| pr_debug("kfd: DQM %s hqd slot - pipe (%d) queue(%d)\n", |
| __func__, q->pipe, q->queue); |
| /* horizontal hqd allocation */ |
| dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_num(dqm); |
| |
| return 0; |
| } |
| |
| static inline void deallocate_hqd(struct device_queue_manager *dqm, |
| struct queue *q) |
| { |
| set_bit(q->queue, (unsigned long *)&dqm->allocated_queues[q->pipe]); |
| } |
| |
| static int create_compute_queue_nocpsch(struct device_queue_manager *dqm, |
| struct queue *q, |
| struct qcm_process_device *qpd) |
| { |
| int retval; |
| struct mqd_manager *mqd; |
| |
| BUG_ON(!dqm || !q || !qpd); |
| |
| mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE); |
| if (mqd == NULL) |
| return -ENOMEM; |
| |
| retval = allocate_hqd(dqm, q); |
| if (retval != 0) |
| return retval; |
| |
| retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj, |
| &q->gart_mqd_addr, &q->properties); |
| if (retval != 0) { |
| deallocate_hqd(dqm, q); |
| return retval; |
| } |
| |
| pr_debug("kfd: loading mqd to hqd on pipe (%d) queue (%d)\n", |
| q->pipe, |
| q->queue); |
| |
| retval = mqd->load_mqd(mqd, q->mqd, q->pipe, |
| q->queue, (uint32_t __user *) q->properties.write_ptr); |
| if (retval != 0) { |
| deallocate_hqd(dqm, q); |
| mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj); |
| return retval; |
| } |
| |
| return 0; |
| } |
| |
| static int destroy_queue_nocpsch(struct device_queue_manager *dqm, |
| struct qcm_process_device *qpd, |
| struct queue *q) |
| { |
| int retval; |
| struct mqd_manager *mqd; |
| |
| BUG_ON(!dqm || !q || !q->mqd || !qpd); |
| |
| retval = 0; |
| |
| pr_debug("kfd: In Func %s\n", __func__); |
| |
| mutex_lock(&dqm->lock); |
| |
| if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) { |
| mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE); |
| if (mqd == NULL) { |
| retval = -ENOMEM; |
| goto out; |
| } |
| deallocate_hqd(dqm, q); |
| } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) { |
| mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA); |
| if (mqd == NULL) { |
| retval = -ENOMEM; |
| goto out; |
| } |
| dqm->sdma_queue_count--; |
| deallocate_sdma_queue(dqm, q->sdma_id); |
| } else { |
| pr_debug("q->properties.type is invalid (%d)\n", |
| q->properties.type); |
| retval = -EINVAL; |
| goto out; |
| } |
| |
| retval = mqd->destroy_mqd(mqd, q->mqd, |
| KFD_PREEMPT_TYPE_WAVEFRONT_RESET, |
| QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS, |
| q->pipe, q->queue); |
| |
| if (retval != 0) |
| goto out; |
| |
| mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj); |
| |
| list_del(&q->list); |
| if (list_empty(&qpd->queues_list)) |
| deallocate_vmid(dqm, qpd, q); |
| if (q->properties.is_active) |
| dqm->queue_count--; |
| |
| /* |
| * Unconditionally decrement this counter, regardless of the queue's |
| * type |
| */ |
| dqm->total_queue_count--; |
| pr_debug("Total of %d queues are accountable so far\n", |
| dqm->total_queue_count); |
| |
| out: |
| mutex_unlock(&dqm->lock); |
| return retval; |
| } |
| |
| static int update_queue(struct device_queue_manager *dqm, struct queue *q) |
| { |
| int retval; |
| struct mqd_manager *mqd; |
| bool prev_active = false; |
| |
| BUG_ON(!dqm || !q || !q->mqd); |
| |
| mutex_lock(&dqm->lock); |
| mqd = dqm->ops.get_mqd_manager(dqm, |
| get_mqd_type_from_queue_type(q->properties.type)); |
| if (mqd == NULL) { |
| mutex_unlock(&dqm->lock); |
| return -ENOMEM; |
| } |
| |
| if (q->properties.is_active == true) |
| prev_active = true; |
| |
| /* |
| * |
| * check active state vs. the previous state |
| * and modify counter accordingly |
| */ |
| retval = mqd->update_mqd(mqd, q->mqd, &q->properties); |
| if ((q->properties.is_active == true) && (prev_active == false)) |
| dqm->queue_count++; |
| else if ((q->properties.is_active == false) && (prev_active == true)) |
| dqm->queue_count--; |
| |
| if (sched_policy != KFD_SCHED_POLICY_NO_HWS) |
| retval = execute_queues_cpsch(dqm, false); |
| |
| mutex_unlock(&dqm->lock); |
| return retval; |
| } |
| |
| static struct mqd_manager *get_mqd_manager_nocpsch( |
| struct device_queue_manager *dqm, enum KFD_MQD_TYPE type) |
| { |
| struct mqd_manager *mqd; |
| |
| BUG_ON(!dqm || type >= KFD_MQD_TYPE_MAX); |
| |
| pr_debug("kfd: In func %s mqd type %d\n", __func__, type); |
| |
| mqd = dqm->mqds[type]; |
| if (!mqd) { |
| mqd = mqd_manager_init(type, dqm->dev); |
| if (mqd == NULL) |
| pr_err("kfd: mqd manager is NULL"); |
| dqm->mqds[type] = mqd; |
| } |
| |
| return mqd; |
| } |
| |
| static int register_process_nocpsch(struct device_queue_manager *dqm, |
| struct qcm_process_device *qpd) |
| { |
| struct device_process_node *n; |
| int retval; |
| |
| BUG_ON(!dqm || !qpd); |
| |
| pr_debug("kfd: In func %s\n", __func__); |
| |
| n = kzalloc(sizeof(struct device_process_node), GFP_KERNEL); |
| if (!n) |
| return -ENOMEM; |
| |
| n->qpd = qpd; |
| |
| mutex_lock(&dqm->lock); |
| list_add(&n->list, &dqm->queues); |
| |
| retval = dqm->ops_asic_specific.register_process(dqm, qpd); |
| |
| dqm->processes_count++; |
| |
| mutex_unlock(&dqm->lock); |
| |
| return retval; |
| } |
| |
| static int unregister_process_nocpsch(struct device_queue_manager *dqm, |
| struct qcm_process_device *qpd) |
| { |
| int retval; |
| struct device_process_node *cur, *next; |
| |
| BUG_ON(!dqm || !qpd); |
| |
| pr_debug("In func %s\n", __func__); |
| |
| pr_debug("qpd->queues_list is %s\n", |
| list_empty(&qpd->queues_list) ? "empty" : "not empty"); |
| |
| retval = 0; |
| mutex_lock(&dqm->lock); |
| |
| list_for_each_entry_safe(cur, next, &dqm->queues, list) { |
| if (qpd == cur->qpd) { |
| list_del(&cur->list); |
| kfree(cur); |
| dqm->processes_count--; |
| goto out; |
| } |
| } |
| /* qpd not found in dqm list */ |
| retval = 1; |
| out: |
| mutex_unlock(&dqm->lock); |
| return retval; |
| } |
| |
| static int |
| set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid, |
| unsigned int vmid) |
| { |
| uint32_t pasid_mapping; |
| |
| pasid_mapping = (pasid == 0) ? 0 : |
| (uint32_t)pasid | |
| ATC_VMID_PASID_MAPPING_VALID; |
| |
| return dqm->dev->kfd2kgd->set_pasid_vmid_mapping( |
| dqm->dev->kgd, pasid_mapping, |
| vmid); |
| } |
| |
| int init_pipelines(struct device_queue_manager *dqm, |
| unsigned int pipes_num, unsigned int first_pipe) |
| { |
| void *hpdptr; |
| struct mqd_manager *mqd; |
| unsigned int i, err, inx; |
| uint64_t pipe_hpd_addr; |
| |
| BUG_ON(!dqm || !dqm->dev); |
| |
| pr_debug("kfd: In func %s\n", __func__); |
| |
| /* |
| * Allocate memory for the HPDs. This is hardware-owned per-pipe data. |
| * The driver never accesses this memory after zeroing it. |
| * It doesn't even have to be saved/restored on suspend/resume |
| * because it contains no data when there are no active queues. |
| */ |
| |
| err = kfd_gtt_sa_allocate(dqm->dev, CIK_HPD_EOP_BYTES * pipes_num, |
| &dqm->pipeline_mem); |
| |
| if (err) { |
| pr_err("kfd: error allocate vidmem num pipes: %d\n", |
| pipes_num); |
| return -ENOMEM; |
| } |
| |
| hpdptr = dqm->pipeline_mem->cpu_ptr; |
| dqm->pipelines_addr = dqm->pipeline_mem->gpu_addr; |
| |
| memset(hpdptr, 0, CIK_HPD_EOP_BYTES * pipes_num); |
| |
| mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE); |
| if (mqd == NULL) { |
| kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem); |
| return -ENOMEM; |
| } |
| |
| for (i = 0; i < pipes_num; i++) { |
| inx = i + first_pipe; |
| /* |
| * HPD buffer on GTT is allocated by amdkfd, no need to waste |
| * space in GTT for pipelines we don't initialize |
| */ |
| pipe_hpd_addr = dqm->pipelines_addr + i * CIK_HPD_EOP_BYTES; |
| pr_debug("kfd: pipeline address %llX\n", pipe_hpd_addr); |
| /* = log2(bytes/4)-1 */ |
| dqm->dev->kfd2kgd->init_pipeline(dqm->dev->kgd, inx, |
| CIK_HPD_EOP_BYTES_LOG2 - 3, pipe_hpd_addr); |
| } |
| |
| return 0; |
| } |
| |
| static void init_interrupts(struct device_queue_manager *dqm) |
| { |
| unsigned int i; |
| |
| BUG_ON(dqm == NULL); |
| |
| for (i = 0 ; i < get_pipes_num(dqm) ; i++) |
| dqm->dev->kfd2kgd->init_interrupts(dqm->dev->kgd, |
| i + get_first_pipe(dqm)); |
| } |
| |
| static int init_scheduler(struct device_queue_manager *dqm) |
| { |
| int retval; |
| |
| BUG_ON(!dqm); |
| |
| pr_debug("kfd: In %s\n", __func__); |
| |
| retval = init_pipelines(dqm, get_pipes_num(dqm), get_first_pipe(dqm)); |
| return retval; |
| } |
| |
| static int initialize_nocpsch(struct device_queue_manager *dqm) |
| { |
| int i; |
| |
| BUG_ON(!dqm); |
| |
| pr_debug("kfd: In func %s num of pipes: %d\n", |
| __func__, get_pipes_num(dqm)); |
| |
| mutex_init(&dqm->lock); |
| INIT_LIST_HEAD(&dqm->queues); |
| dqm->queue_count = dqm->next_pipe_to_allocate = 0; |
| dqm->sdma_queue_count = 0; |
| dqm->allocated_queues = kcalloc(get_pipes_num(dqm), |
| sizeof(unsigned int), GFP_KERNEL); |
| if (!dqm->allocated_queues) { |
| mutex_destroy(&dqm->lock); |
| return -ENOMEM; |
| } |
| |
| for (i = 0; i < get_pipes_num(dqm); i++) |
| dqm->allocated_queues[i] = (1 << QUEUES_PER_PIPE) - 1; |
| |
| dqm->vmid_bitmap = (1 << VMID_PER_DEVICE) - 1; |
| dqm->sdma_bitmap = (1 << CIK_SDMA_QUEUES) - 1; |
| |
| init_scheduler(dqm); |
| return 0; |
| } |
| |
| static void uninitialize_nocpsch(struct device_queue_manager *dqm) |
| { |
| int i; |
| |
| BUG_ON(!dqm); |
| |
| BUG_ON(dqm->queue_count > 0 || dqm->processes_count > 0); |
| |
| kfree(dqm->allocated_queues); |
| for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++) |
| kfree(dqm->mqds[i]); |
| mutex_destroy(&dqm->lock); |
| kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem); |
| } |
| |
| static int start_nocpsch(struct device_queue_manager *dqm) |
| { |
| init_interrupts(dqm); |
| return 0; |
| } |
| |
| static int stop_nocpsch(struct device_queue_manager *dqm) |
| { |
| return 0; |
| } |
| |
| static int allocate_sdma_queue(struct device_queue_manager *dqm, |
| unsigned int *sdma_queue_id) |
| { |
| int bit; |
| |
| if (dqm->sdma_bitmap == 0) |
| return -ENOMEM; |
| |
| bit = find_first_bit((unsigned long *)&dqm->sdma_bitmap, |
| CIK_SDMA_QUEUES); |
| |
| clear_bit(bit, (unsigned long *)&dqm->sdma_bitmap); |
| *sdma_queue_id = bit; |
| |
| return 0; |
| } |
| |
| static void deallocate_sdma_queue(struct device_queue_manager *dqm, |
| unsigned int sdma_queue_id) |
| { |
| if (sdma_queue_id >= CIK_SDMA_QUEUES) |
| return; |
| set_bit(sdma_queue_id, (unsigned long *)&dqm->sdma_bitmap); |
| } |
| |
| static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm, |
| struct queue *q, |
| struct qcm_process_device *qpd) |
| { |
| struct mqd_manager *mqd; |
| int retval; |
| |
| mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA); |
| if (!mqd) |
| return -ENOMEM; |
| |
| retval = allocate_sdma_queue(dqm, &q->sdma_id); |
| if (retval != 0) |
| return retval; |
| |
| q->properties.sdma_queue_id = q->sdma_id % CIK_SDMA_QUEUES_PER_ENGINE; |
| q->properties.sdma_engine_id = q->sdma_id / CIK_SDMA_ENGINE_NUM; |
| |
| pr_debug("kfd: sdma id is: %d\n", q->sdma_id); |
| pr_debug(" sdma queue id: %d\n", q->properties.sdma_queue_id); |
| pr_debug(" sdma engine id: %d\n", q->properties.sdma_engine_id); |
| |
| dqm->ops_asic_specific.init_sdma_vm(dqm, q, qpd); |
| retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj, |
| &q->gart_mqd_addr, &q->properties); |
| if (retval != 0) { |
| deallocate_sdma_queue(dqm, q->sdma_id); |
| return retval; |
| } |
| |
| retval = mqd->load_mqd(mqd, q->mqd, 0, |
| 0, NULL); |
| if (retval != 0) { |
| deallocate_sdma_queue(dqm, q->sdma_id); |
| mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj); |
| return retval; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Device Queue Manager implementation for cp scheduler |
| */ |
| |
| static int set_sched_resources(struct device_queue_manager *dqm) |
| { |
| struct scheduling_resources res; |
| unsigned int queue_num, queue_mask; |
| |
| BUG_ON(!dqm); |
| |
| pr_debug("kfd: In func %s\n", __func__); |
| |
| queue_num = get_pipes_num_cpsch() * QUEUES_PER_PIPE; |
| queue_mask = (1 << queue_num) - 1; |
| res.vmid_mask = (1 << VMID_PER_DEVICE) - 1; |
| res.vmid_mask <<= KFD_VMID_START_OFFSET; |
| res.queue_mask = queue_mask << (get_first_pipe(dqm) * QUEUES_PER_PIPE); |
| res.gws_mask = res.oac_mask = res.gds_heap_base = |
| res.gds_heap_size = 0; |
| |
| pr_debug("kfd: scheduling resources:\n" |
| " vmid mask: 0x%8X\n" |
| " queue mask: 0x%8llX\n", |
| res.vmid_mask, res.queue_mask); |
| |
| return pm_send_set_resources(&dqm->packets, &res); |
| } |
| |
| static int initialize_cpsch(struct device_queue_manager *dqm) |
| { |
| int retval; |
| |
| BUG_ON(!dqm); |
| |
| pr_debug("kfd: In func %s num of pipes: %d\n", |
| __func__, get_pipes_num_cpsch()); |
| |
| mutex_init(&dqm->lock); |
| INIT_LIST_HEAD(&dqm->queues); |
| dqm->queue_count = dqm->processes_count = 0; |
| dqm->sdma_queue_count = 0; |
| dqm->active_runlist = false; |
| retval = dqm->ops_asic_specific.initialize(dqm); |
| if (retval != 0) |
| goto fail_init_pipelines; |
| |
| return 0; |
| |
| fail_init_pipelines: |
| mutex_destroy(&dqm->lock); |
| return retval; |
| } |
| |
| static int start_cpsch(struct device_queue_manager *dqm) |
| { |
| struct device_process_node *node; |
| int retval; |
| |
| BUG_ON(!dqm); |
| |
| retval = 0; |
| |
| retval = pm_init(&dqm->packets, dqm); |
| if (retval != 0) |
| goto fail_packet_manager_init; |
| |
| retval = set_sched_resources(dqm); |
| if (retval != 0) |
| goto fail_set_sched_resources; |
| |
| pr_debug("kfd: allocating fence memory\n"); |
| |
| /* allocate fence memory on the gart */ |
| retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr), |
| &dqm->fence_mem); |
| |
| if (retval != 0) |
| goto fail_allocate_vidmem; |
| |
| dqm->fence_addr = dqm->fence_mem->cpu_ptr; |
| dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr; |
| |
| init_interrupts(dqm); |
| |
| list_for_each_entry(node, &dqm->queues, list) |
| if (node->qpd->pqm->process && dqm->dev) |
| kfd_bind_process_to_device(dqm->dev, |
| node->qpd->pqm->process); |
| |
| execute_queues_cpsch(dqm, true); |
| |
| return 0; |
| fail_allocate_vidmem: |
| fail_set_sched_resources: |
| pm_uninit(&dqm->packets); |
| fail_packet_manager_init: |
| return retval; |
| } |
| |
| static int stop_cpsch(struct device_queue_manager *dqm) |
| { |
| struct device_process_node *node; |
| struct kfd_process_device *pdd; |
| |
| BUG_ON(!dqm); |
| |
| destroy_queues_cpsch(dqm, true, true); |
| |
| list_for_each_entry(node, &dqm->queues, list) { |
| pdd = qpd_to_pdd(node->qpd); |
| pdd->bound = false; |
| } |
| kfd_gtt_sa_free(dqm->dev, dqm->fence_mem); |
| pm_uninit(&dqm->packets); |
| |
| return 0; |
| } |
| |
| static int create_kernel_queue_cpsch(struct device_queue_manager *dqm, |
| struct kernel_queue *kq, |
| struct qcm_process_device *qpd) |
| { |
| BUG_ON(!dqm || !kq || !qpd); |
| |
| pr_debug("kfd: In func %s\n", __func__); |
| |
| mutex_lock(&dqm->lock); |
| if (dqm->total_queue_count >= max_num_of_queues_per_device) { |
| pr_warn("amdkfd: Can't create new kernel queue because %d queues were already created\n", |
| dqm->total_queue_count); |
| mutex_unlock(&dqm->lock); |
| return -EPERM; |
| } |
| |
| /* |
| * Unconditionally increment this counter, regardless of the queue's |
| * type or whether the queue is active. |
| */ |
| dqm->total_queue_count++; |
| pr_debug("Total of %d queues are accountable so far\n", |
| dqm->total_queue_count); |
| |
| list_add(&kq->list, &qpd->priv_queue_list); |
| dqm->queue_count++; |
| qpd->is_debug = true; |
| execute_queues_cpsch(dqm, false); |
| mutex_unlock(&dqm->lock); |
| |
| return 0; |
| } |
| |
| static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm, |
| struct kernel_queue *kq, |
| struct qcm_process_device *qpd) |
| { |
| BUG_ON(!dqm || !kq); |
| |
| pr_debug("kfd: In %s\n", __func__); |
| |
| mutex_lock(&dqm->lock); |
| /* here we actually preempt the DIQ */ |
| destroy_queues_cpsch(dqm, true, false); |
| list_del(&kq->list); |
| dqm->queue_count--; |
| qpd->is_debug = false; |
| execute_queues_cpsch(dqm, false); |
| /* |
| * Unconditionally decrement this counter, regardless of the queue's |
| * type. |
| */ |
| dqm->total_queue_count--; |
| pr_debug("Total of %d queues are accountable so far\n", |
| dqm->total_queue_count); |
| mutex_unlock(&dqm->lock); |
| } |
| |
| static void select_sdma_engine_id(struct queue *q) |
| { |
| static int sdma_id; |
| |
| q->sdma_id = sdma_id; |
| sdma_id = (sdma_id + 1) % 2; |
| } |
| |
| static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q, |
| struct qcm_process_device *qpd, int *allocate_vmid) |
| { |
| int retval; |
| struct mqd_manager *mqd; |
| |
| BUG_ON(!dqm || !q || !qpd); |
| |
| retval = 0; |
| |
| if (allocate_vmid) |
| *allocate_vmid = 0; |
| |
| mutex_lock(&dqm->lock); |
| |
| if (dqm->total_queue_count >= max_num_of_queues_per_device) { |
| pr_warn("amdkfd: Can't create new usermode queue because %d queues were already created\n", |
| dqm->total_queue_count); |
| retval = -EPERM; |
| goto out; |
| } |
| |
| if (q->properties.type == KFD_QUEUE_TYPE_SDMA) |
| select_sdma_engine_id(q); |
| |
| mqd = dqm->ops.get_mqd_manager(dqm, |
| get_mqd_type_from_queue_type(q->properties.type)); |
| |
| if (mqd == NULL) { |
| mutex_unlock(&dqm->lock); |
| return -ENOMEM; |
| } |
| |
| dqm->ops_asic_specific.init_sdma_vm(dqm, q, qpd); |
| retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj, |
| &q->gart_mqd_addr, &q->properties); |
| if (retval != 0) |
| goto out; |
| |
| list_add(&q->list, &qpd->queues_list); |
| if (q->properties.is_active) { |
| dqm->queue_count++; |
| retval = execute_queues_cpsch(dqm, false); |
| } |
| |
| if (q->properties.type == KFD_QUEUE_TYPE_SDMA) |
| dqm->sdma_queue_count++; |
| /* |
| * Unconditionally increment this counter, regardless of the queue's |
| * type or whether the queue is active. |
| */ |
| dqm->total_queue_count++; |
| |
| pr_debug("Total of %d queues are accountable so far\n", |
| dqm->total_queue_count); |
| |
| out: |
| mutex_unlock(&dqm->lock); |
| return retval; |
| } |
| |
| int amdkfd_fence_wait_timeout(unsigned int *fence_addr, |
| unsigned int fence_value, |
| unsigned long timeout) |
| { |
| BUG_ON(!fence_addr); |
| timeout += jiffies; |
| |
| while (*fence_addr != fence_value) { |
| if (time_after(jiffies, timeout)) { |
| pr_err("kfd: qcm fence wait loop timeout expired\n"); |
| return -ETIME; |
| } |
| schedule(); |
| } |
| |
| return 0; |
| } |
| |
| static int destroy_sdma_queues(struct device_queue_manager *dqm, |
| unsigned int sdma_engine) |
| { |
| return pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_SDMA, |
| KFD_PREEMPT_TYPE_FILTER_DYNAMIC_QUEUES, 0, false, |
| sdma_engine); |
| } |
| |
| static int destroy_queues_cpsch(struct device_queue_manager *dqm, |
| bool preempt_static_queues, bool lock) |
| { |
| int retval; |
| enum kfd_preempt_type_filter preempt_type; |
| struct kfd_process_device *pdd; |
| |
| BUG_ON(!dqm); |
| |
| retval = 0; |
| |
| if (lock) |
| mutex_lock(&dqm->lock); |
| if (dqm->active_runlist == false) |
| goto out; |
| |
| pr_debug("kfd: Before destroying queues, sdma queue count is : %u\n", |
| dqm->sdma_queue_count); |
| |
| if (dqm->sdma_queue_count > 0) { |
| destroy_sdma_queues(dqm, 0); |
| destroy_sdma_queues(dqm, 1); |
| } |
| |
| preempt_type = preempt_static_queues ? |
| KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES : |
| KFD_PREEMPT_TYPE_FILTER_DYNAMIC_QUEUES; |
| |
| retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE, |
| preempt_type, 0, false, 0); |
| if (retval != 0) |
| goto out; |
| |
| *dqm->fence_addr = KFD_FENCE_INIT; |
| pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr, |
| KFD_FENCE_COMPLETED); |
| /* should be timed out */ |
| retval = amdkfd_fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED, |
| QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS); |
| if (retval != 0) { |
| pdd = kfd_get_process_device_data(dqm->dev, |
| kfd_get_process(current)); |
| pdd->reset_wavefronts = true; |
| goto out; |
| } |
| pm_release_ib(&dqm->packets); |
| dqm->active_runlist = false; |
| |
| out: |
| if (lock) |
| mutex_unlock(&dqm->lock); |
| return retval; |
| } |
| |
| static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock) |
| { |
| int retval; |
| |
| BUG_ON(!dqm); |
| |
| if (lock) |
| mutex_lock(&dqm->lock); |
| |
| retval = destroy_queues_cpsch(dqm, false, false); |
| if (retval != 0) { |
| pr_err("kfd: the cp might be in an unrecoverable state due to an unsuccessful queues preemption"); |
| goto out; |
| } |
| |
| if (dqm->queue_count <= 0 || dqm->processes_count <= 0) { |
| retval = 0; |
| goto out; |
| } |
| |
| if (dqm->active_runlist) { |
| retval = 0; |
| goto out; |
| } |
| |
| retval = pm_send_runlist(&dqm->packets, &dqm->queues); |
| if (retval != 0) { |
| pr_err("kfd: failed to execute runlist"); |
| goto out; |
| } |
| dqm->active_runlist = true; |
| |
| out: |
| if (lock) |
| mutex_unlock(&dqm->lock); |
| return retval; |
| } |
| |
| static int destroy_queue_cpsch(struct device_queue_manager *dqm, |
| struct qcm_process_device *qpd, |
| struct queue *q) |
| { |
| int retval; |
| struct mqd_manager *mqd; |
| bool preempt_all_queues; |
| |
| BUG_ON(!dqm || !qpd || !q); |
| |
| preempt_all_queues = false; |
| |
| retval = 0; |
| |
| /* remove queue from list to prevent rescheduling after preemption */ |
| mutex_lock(&dqm->lock); |
| |
| if (qpd->is_debug) { |
| /* |
| * error, currently we do not allow to destroy a queue |
| * of a currently debugged process |
| */ |
| retval = -EBUSY; |
| goto failed_try_destroy_debugged_queue; |
| |
| } |
| |
| mqd = dqm->ops.get_mqd_manager(dqm, |
| get_mqd_type_from_queue_type(q->properties.type)); |
| if (!mqd) { |
| retval = -ENOMEM; |
| goto failed; |
| } |
| |
| if (q->properties.type == KFD_QUEUE_TYPE_SDMA) |
| dqm->sdma_queue_count--; |
| |
| list_del(&q->list); |
| if (q->properties.is_active) |
| dqm->queue_count--; |
| |
| execute_queues_cpsch(dqm, false); |
| |
| mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj); |
| |
| /* |
| * Unconditionally decrement this counter, regardless of the queue's |
| * type |
| */ |
| dqm->total_queue_count--; |
| pr_debug("Total of %d queues are accountable so far\n", |
| dqm->total_queue_count); |
| |
| mutex_unlock(&dqm->lock); |
| |
| return 0; |
| |
| failed: |
| failed_try_destroy_debugged_queue: |
| |
| mutex_unlock(&dqm->lock); |
| return retval; |
| } |
| |
| /* |
| * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to |
| * stay in user mode. |
| */ |
| #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL |
| /* APE1 limit is inclusive and 64K aligned. */ |
| #define APE1_LIMIT_ALIGNMENT 0xFFFF |
| |
| static bool set_cache_memory_policy(struct device_queue_manager *dqm, |
| struct qcm_process_device *qpd, |
| enum cache_policy default_policy, |
| enum cache_policy alternate_policy, |
| void __user *alternate_aperture_base, |
| uint64_t alternate_aperture_size) |
| { |
| bool retval; |
| |
| pr_debug("kfd: In func %s\n", __func__); |
| |
| mutex_lock(&dqm->lock); |
| |
| if (alternate_aperture_size == 0) { |
| /* base > limit disables APE1 */ |
| qpd->sh_mem_ape1_base = 1; |
| qpd->sh_mem_ape1_limit = 0; |
| } else { |
| /* |
| * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]}, |
| * SH_MEM_APE1_BASE[31:0], 0x0000 } |
| * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]}, |
| * SH_MEM_APE1_LIMIT[31:0], 0xFFFF } |
| * Verify that the base and size parameters can be |
| * represented in this format and convert them. |
| * Additionally restrict APE1 to user-mode addresses. |
| */ |
| |
| uint64_t base = (uintptr_t)alternate_aperture_base; |
| uint64_t limit = base + alternate_aperture_size - 1; |
| |
| if (limit <= base) |
| goto out; |
| |
| if ((base & APE1_FIXED_BITS_MASK) != 0) |
| goto out; |
| |
| if ((limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT) |
| goto out; |
| |
| qpd->sh_mem_ape1_base = base >> 16; |
| qpd->sh_mem_ape1_limit = limit >> 16; |
| } |
| |
| retval = dqm->ops_asic_specific.set_cache_memory_policy( |
| dqm, |
| qpd, |
| default_policy, |
| alternate_policy, |
| alternate_aperture_base, |
| alternate_aperture_size); |
| |
| if ((sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0)) |
| program_sh_mem_settings(dqm, qpd); |
| |
| pr_debug("kfd: sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n", |
| qpd->sh_mem_config, qpd->sh_mem_ape1_base, |
| qpd->sh_mem_ape1_limit); |
| |
| mutex_unlock(&dqm->lock); |
| return retval; |
| |
| out: |
| mutex_unlock(&dqm->lock); |
| return false; |
| } |
| |
| struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev) |
| { |
| struct device_queue_manager *dqm; |
| |
| BUG_ON(!dev); |
| |
| pr_debug("kfd: loading device queue manager\n"); |
| |
| dqm = kzalloc(sizeof(struct device_queue_manager), GFP_KERNEL); |
| if (!dqm) |
| return NULL; |
| |
| dqm->dev = dev; |
| switch (sched_policy) { |
| case KFD_SCHED_POLICY_HWS: |
| case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION: |
| /* initialize dqm for cp scheduling */ |
| dqm->ops.create_queue = create_queue_cpsch; |
| dqm->ops.initialize = initialize_cpsch; |
| dqm->ops.start = start_cpsch; |
| dqm->ops.stop = stop_cpsch; |
| dqm->ops.destroy_queue = destroy_queue_cpsch; |
| dqm->ops.update_queue = update_queue; |
| dqm->ops.get_mqd_manager = get_mqd_manager_nocpsch; |
| dqm->ops.register_process = register_process_nocpsch; |
| dqm->ops.unregister_process = unregister_process_nocpsch; |
| dqm->ops.uninitialize = uninitialize_nocpsch; |
| dqm->ops.create_kernel_queue = create_kernel_queue_cpsch; |
| dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch; |
| dqm->ops.set_cache_memory_policy = set_cache_memory_policy; |
| break; |
| case KFD_SCHED_POLICY_NO_HWS: |
| /* initialize dqm for no cp scheduling */ |
| dqm->ops.start = start_nocpsch; |
| dqm->ops.stop = stop_nocpsch; |
| dqm->ops.create_queue = create_queue_nocpsch; |
| dqm->ops.destroy_queue = destroy_queue_nocpsch; |
| dqm->ops.update_queue = update_queue; |
| dqm->ops.get_mqd_manager = get_mqd_manager_nocpsch; |
| dqm->ops.register_process = register_process_nocpsch; |
| dqm->ops.unregister_process = unregister_process_nocpsch; |
| dqm->ops.initialize = initialize_nocpsch; |
| dqm->ops.uninitialize = uninitialize_nocpsch; |
| dqm->ops.set_cache_memory_policy = set_cache_memory_policy; |
| break; |
| default: |
| BUG(); |
| break; |
| } |
| |
| switch (dev->device_info->asic_family) { |
| case CHIP_CARRIZO: |
| device_queue_manager_init_vi(&dqm->ops_asic_specific); |
| break; |
| |
| case CHIP_KAVERI: |
| device_queue_manager_init_cik(&dqm->ops_asic_specific); |
| break; |
| } |
| |
| if (dqm->ops.initialize(dqm) != 0) { |
| kfree(dqm); |
| return NULL; |
| } |
| |
| return dqm; |
| } |
| |
| void device_queue_manager_uninit(struct device_queue_manager *dqm) |
| { |
| BUG_ON(!dqm); |
| |
| dqm->ops.uninitialize(dqm); |
| kfree(dqm); |
| } |