| /* |
| * PXA2xx SPI DMA engine support. |
| * |
| * Copyright (C) 2013, Intel Corporation |
| * Author: Mika Westerberg <mika.westerberg@linux.intel.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/device.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/dmaengine.h> |
| #include <linux/pxa2xx_ssp.h> |
| #include <linux/scatterlist.h> |
| #include <linux/sizes.h> |
| #include <linux/spi/spi.h> |
| #include <linux/spi/pxa2xx_spi.h> |
| |
| #include "spi-pxa2xx.h" |
| |
| static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data, |
| bool error) |
| { |
| struct spi_message *msg = drv_data->controller->cur_msg; |
| |
| /* |
| * It is possible that one CPU is handling ROR interrupt and other |
| * just gets DMA completion. Calling pump_transfers() twice for the |
| * same transfer leads to problems thus we prevent concurrent calls |
| * by using ->dma_running. |
| */ |
| if (atomic_dec_and_test(&drv_data->dma_running)) { |
| /* |
| * If the other CPU is still handling the ROR interrupt we |
| * might not know about the error yet. So we re-check the |
| * ROR bit here before we clear the status register. |
| */ |
| if (!error) { |
| u32 status = pxa2xx_spi_read(drv_data, SSSR) |
| & drv_data->mask_sr; |
| error = status & SSSR_ROR; |
| } |
| |
| /* Clear status & disable interrupts */ |
| pxa2xx_spi_write(drv_data, SSCR1, |
| pxa2xx_spi_read(drv_data, SSCR1) |
| & ~drv_data->dma_cr1); |
| write_SSSR_CS(drv_data, drv_data->clear_sr); |
| if (!pxa25x_ssp_comp(drv_data)) |
| pxa2xx_spi_write(drv_data, SSTO, 0); |
| |
| if (error) { |
| /* In case we got an error we disable the SSP now */ |
| pxa2xx_spi_write(drv_data, SSCR0, |
| pxa2xx_spi_read(drv_data, SSCR0) |
| & ~SSCR0_SSE); |
| msg->status = -EIO; |
| } |
| |
| spi_finalize_current_transfer(drv_data->controller); |
| } |
| } |
| |
| static void pxa2xx_spi_dma_callback(void *data) |
| { |
| pxa2xx_spi_dma_transfer_complete(data, false); |
| } |
| |
| static struct dma_async_tx_descriptor * |
| pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data, |
| enum dma_transfer_direction dir, |
| struct spi_transfer *xfer) |
| { |
| struct chip_data *chip = |
| spi_get_ctldata(drv_data->controller->cur_msg->spi); |
| enum dma_slave_buswidth width; |
| struct dma_slave_config cfg; |
| struct dma_chan *chan; |
| struct sg_table *sgt; |
| int ret; |
| |
| switch (drv_data->n_bytes) { |
| case 1: |
| width = DMA_SLAVE_BUSWIDTH_1_BYTE; |
| break; |
| case 2: |
| width = DMA_SLAVE_BUSWIDTH_2_BYTES; |
| break; |
| default: |
| width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| break; |
| } |
| |
| memset(&cfg, 0, sizeof(cfg)); |
| cfg.direction = dir; |
| |
| if (dir == DMA_MEM_TO_DEV) { |
| cfg.dst_addr = drv_data->ssdr_physical; |
| cfg.dst_addr_width = width; |
| cfg.dst_maxburst = chip->dma_burst_size; |
| |
| sgt = &xfer->tx_sg; |
| chan = drv_data->controller->dma_tx; |
| } else { |
| cfg.src_addr = drv_data->ssdr_physical; |
| cfg.src_addr_width = width; |
| cfg.src_maxburst = chip->dma_burst_size; |
| |
| sgt = &xfer->rx_sg; |
| chan = drv_data->controller->dma_rx; |
| } |
| |
| ret = dmaengine_slave_config(chan, &cfg); |
| if (ret) { |
| dev_warn(&drv_data->pdev->dev, "DMA slave config failed\n"); |
| return NULL; |
| } |
| |
| return dmaengine_prep_slave_sg(chan, sgt->sgl, sgt->nents, dir, |
| DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
| } |
| |
| irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data) |
| { |
| u32 status; |
| |
| status = pxa2xx_spi_read(drv_data, SSSR) & drv_data->mask_sr; |
| if (status & SSSR_ROR) { |
| dev_err(&drv_data->pdev->dev, "FIFO overrun\n"); |
| |
| dmaengine_terminate_async(drv_data->controller->dma_rx); |
| dmaengine_terminate_async(drv_data->controller->dma_tx); |
| |
| pxa2xx_spi_dma_transfer_complete(drv_data, true); |
| return IRQ_HANDLED; |
| } |
| |
| return IRQ_NONE; |
| } |
| |
| int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, |
| struct spi_transfer *xfer) |
| { |
| struct dma_async_tx_descriptor *tx_desc, *rx_desc; |
| int err; |
| |
| tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV, xfer); |
| if (!tx_desc) { |
| dev_err(&drv_data->pdev->dev, |
| "failed to get DMA TX descriptor\n"); |
| err = -EBUSY; |
| goto err_tx; |
| } |
| |
| rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM, xfer); |
| if (!rx_desc) { |
| dev_err(&drv_data->pdev->dev, |
| "failed to get DMA RX descriptor\n"); |
| err = -EBUSY; |
| goto err_rx; |
| } |
| |
| /* We are ready when RX completes */ |
| rx_desc->callback = pxa2xx_spi_dma_callback; |
| rx_desc->callback_param = drv_data; |
| |
| dmaengine_submit(rx_desc); |
| dmaengine_submit(tx_desc); |
| return 0; |
| |
| err_rx: |
| dmaengine_terminate_async(drv_data->controller->dma_tx); |
| err_tx: |
| return err; |
| } |
| |
| void pxa2xx_spi_dma_start(struct driver_data *drv_data) |
| { |
| dma_async_issue_pending(drv_data->controller->dma_rx); |
| dma_async_issue_pending(drv_data->controller->dma_tx); |
| |
| atomic_set(&drv_data->dma_running, 1); |
| } |
| |
| void pxa2xx_spi_dma_stop(struct driver_data *drv_data) |
| { |
| atomic_set(&drv_data->dma_running, 0); |
| dmaengine_terminate_sync(drv_data->controller->dma_rx); |
| dmaengine_terminate_sync(drv_data->controller->dma_tx); |
| } |
| |
| int pxa2xx_spi_dma_setup(struct driver_data *drv_data) |
| { |
| struct pxa2xx_spi_controller *pdata = drv_data->controller_info; |
| struct device *dev = &drv_data->pdev->dev; |
| struct spi_controller *controller = drv_data->controller; |
| dma_cap_mask_t mask; |
| |
| dma_cap_zero(mask); |
| dma_cap_set(DMA_SLAVE, mask); |
| |
| controller->dma_tx = dma_request_slave_channel_compat(mask, |
| pdata->dma_filter, pdata->tx_param, dev, "tx"); |
| if (!controller->dma_tx) |
| return -ENODEV; |
| |
| controller->dma_rx = dma_request_slave_channel_compat(mask, |
| pdata->dma_filter, pdata->rx_param, dev, "rx"); |
| if (!controller->dma_rx) { |
| dma_release_channel(controller->dma_tx); |
| controller->dma_tx = NULL; |
| return -ENODEV; |
| } |
| |
| return 0; |
| } |
| |
| void pxa2xx_spi_dma_release(struct driver_data *drv_data) |
| { |
| struct spi_controller *controller = drv_data->controller; |
| |
| if (controller->dma_rx) { |
| dmaengine_terminate_sync(controller->dma_rx); |
| dma_release_channel(controller->dma_rx); |
| controller->dma_rx = NULL; |
| } |
| if (controller->dma_tx) { |
| dmaengine_terminate_sync(controller->dma_tx); |
| dma_release_channel(controller->dma_tx); |
| controller->dma_tx = NULL; |
| } |
| } |
| |
| int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip, |
| struct spi_device *spi, |
| u8 bits_per_word, u32 *burst_code, |
| u32 *threshold) |
| { |
| struct pxa2xx_spi_chip *chip_info = spi->controller_data; |
| |
| /* |
| * If the DMA burst size is given in chip_info we use that, |
| * otherwise we use the default. Also we use the default FIFO |
| * thresholds for now. |
| */ |
| *burst_code = chip_info ? chip_info->dma_burst_size : 1; |
| *threshold = SSCR1_RxTresh(RX_THRESH_DFLT) |
| | SSCR1_TxTresh(TX_THRESH_DFLT); |
| |
| return 0; |
| } |