| // SPDX-License-Identifier: MIT |
| /* |
| * Copyright © 2021 Intel Corporation |
| */ |
| |
| #include <drm/ttm/ttm_tt.h> |
| |
| #include "i915_deps.h" |
| #include "i915_drv.h" |
| #include "intel_memory_region.h" |
| #include "intel_region_ttm.h" |
| |
| #include "gem/i915_gem_object.h" |
| #include "gem/i915_gem_region.h" |
| #include "gem/i915_gem_ttm.h" |
| #include "gem/i915_gem_ttm_move.h" |
| |
| #include "gt/intel_engine_pm.h" |
| #include "gt/intel_gt.h" |
| #include "gt/intel_migrate.h" |
| |
| /** |
| * DOC: Selftest failure modes for failsafe migration: |
| * |
| * For fail_gpu_migration, the gpu blit scheduled is always a clear blit |
| * rather than a copy blit, and then we force the failure paths as if |
| * the blit fence returned an error. |
| * |
| * For fail_work_allocation we fail the kmalloc of the async worker, we |
| * sync the gpu blit. If it then fails, or fail_gpu_migration is set to |
| * true, then a memcpy operation is performed sync. |
| */ |
| #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) |
| static bool fail_gpu_migration; |
| static bool fail_work_allocation; |
| static bool ban_memcpy; |
| |
| void i915_ttm_migrate_set_failure_modes(bool gpu_migration, |
| bool work_allocation) |
| { |
| fail_gpu_migration = gpu_migration; |
| fail_work_allocation = work_allocation; |
| } |
| |
| void i915_ttm_migrate_set_ban_memcpy(bool ban) |
| { |
| ban_memcpy = ban; |
| } |
| #endif |
| |
| static enum i915_cache_level |
| i915_ttm_cache_level(struct drm_i915_private *i915, struct ttm_resource *res, |
| struct ttm_tt *ttm) |
| { |
| return ((HAS_LLC(i915) || HAS_SNOOP(i915)) && |
| !i915_ttm_gtt_binds_lmem(res) && |
| ttm->caching == ttm_cached) ? I915_CACHE_LLC : |
| I915_CACHE_NONE; |
| } |
| |
| static struct intel_memory_region * |
| i915_ttm_region(struct ttm_device *bdev, int ttm_mem_type) |
| { |
| struct drm_i915_private *i915 = container_of(bdev, typeof(*i915), bdev); |
| |
| /* There's some room for optimization here... */ |
| GEM_BUG_ON(ttm_mem_type != I915_PL_SYSTEM && |
| ttm_mem_type < I915_PL_LMEM0); |
| if (ttm_mem_type == I915_PL_SYSTEM) |
| return intel_memory_region_lookup(i915, INTEL_MEMORY_SYSTEM, |
| 0); |
| |
| return intel_memory_region_lookup(i915, INTEL_MEMORY_LOCAL, |
| ttm_mem_type - I915_PL_LMEM0); |
| } |
| |
| /** |
| * i915_ttm_adjust_domains_after_move - Adjust the GEM domains after a |
| * TTM move |
| * @obj: The gem object |
| */ |
| void i915_ttm_adjust_domains_after_move(struct drm_i915_gem_object *obj) |
| { |
| struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); |
| |
| if (i915_ttm_cpu_maps_iomem(bo->resource) || bo->ttm->caching != ttm_cached) { |
| obj->write_domain = I915_GEM_DOMAIN_WC; |
| obj->read_domains = I915_GEM_DOMAIN_WC; |
| } else { |
| obj->write_domain = I915_GEM_DOMAIN_CPU; |
| obj->read_domains = I915_GEM_DOMAIN_CPU; |
| } |
| } |
| |
| /** |
| * i915_ttm_adjust_gem_after_move - Adjust the GEM state after a TTM move |
| * @obj: The gem object |
| * |
| * Adjusts the GEM object's region, mem_flags and cache coherency after a |
| * TTM move. |
| */ |
| void i915_ttm_adjust_gem_after_move(struct drm_i915_gem_object *obj) |
| { |
| struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); |
| unsigned int cache_level; |
| unsigned int mem_flags; |
| unsigned int i; |
| int mem_type; |
| |
| /* |
| * We might have been purged (or swapped out) if the resource is NULL, |
| * in which case the SYSTEM placement is the closest match to describe |
| * the current domain. If the object is ever used in this state then we |
| * will require moving it again. |
| */ |
| if (!bo->resource) { |
| mem_flags = I915_BO_FLAG_STRUCT_PAGE; |
| mem_type = I915_PL_SYSTEM; |
| cache_level = I915_CACHE_NONE; |
| } else { |
| mem_flags = i915_ttm_cpu_maps_iomem(bo->resource) ? I915_BO_FLAG_IOMEM : |
| I915_BO_FLAG_STRUCT_PAGE; |
| mem_type = bo->resource->mem_type; |
| cache_level = i915_ttm_cache_level(to_i915(bo->base.dev), bo->resource, |
| bo->ttm); |
| } |
| |
| /* |
| * If object was moved to an allowable region, update the object |
| * region to consider it migrated. Note that if it's currently not |
| * in an allowable region, it's evicted and we don't update the |
| * object region. |
| */ |
| if (intel_region_to_ttm_type(obj->mm.region) != mem_type) { |
| for (i = 0; i < obj->mm.n_placements; ++i) { |
| struct intel_memory_region *mr = obj->mm.placements[i]; |
| |
| if (intel_region_to_ttm_type(mr) == mem_type && |
| mr != obj->mm.region) { |
| i915_gem_object_release_memory_region(obj); |
| i915_gem_object_init_memory_region(obj, mr); |
| break; |
| } |
| } |
| } |
| |
| obj->mem_flags &= ~(I915_BO_FLAG_STRUCT_PAGE | I915_BO_FLAG_IOMEM); |
| obj->mem_flags |= mem_flags; |
| |
| i915_gem_object_set_cache_coherency(obj, cache_level); |
| } |
| |
| /** |
| * i915_ttm_move_notify - Prepare an object for move |
| * @bo: The ttm buffer object. |
| * |
| * This function prepares an object for move by removing all GPU bindings, |
| * removing all CPU mapings and finally releasing the pages sg-table. |
| * |
| * Return: 0 if successful, negative error code on error. |
| */ |
| int i915_ttm_move_notify(struct ttm_buffer_object *bo) |
| { |
| struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); |
| int ret; |
| |
| /* |
| * Note: The async unbinding here will actually transform the |
| * blocking wait for unbind into a wait before finally submitting |
| * evict / migration blit and thus stall the migration timeline |
| * which may not be good for overall throughput. We should make |
| * sure we await the unbind fences *after* the migration blit |
| * instead of *before* as we currently do. |
| */ |
| ret = i915_gem_object_unbind(obj, I915_GEM_OBJECT_UNBIND_ACTIVE | |
| I915_GEM_OBJECT_UNBIND_ASYNC); |
| if (ret) |
| return ret; |
| |
| ret = __i915_gem_object_put_pages(obj); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| static struct dma_fence *i915_ttm_accel_move(struct ttm_buffer_object *bo, |
| bool clear, |
| struct ttm_resource *dst_mem, |
| struct ttm_tt *dst_ttm, |
| struct sg_table *dst_st, |
| const struct i915_deps *deps) |
| { |
| struct drm_i915_private *i915 = container_of(bo->bdev, typeof(*i915), |
| bdev); |
| struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); |
| struct i915_request *rq; |
| struct ttm_tt *src_ttm = bo->ttm; |
| enum i915_cache_level src_level, dst_level; |
| int ret; |
| |
| if (!to_gt(i915)->migrate.context || intel_gt_is_wedged(to_gt(i915))) |
| return ERR_PTR(-EINVAL); |
| |
| /* With fail_gpu_migration, we always perform a GPU clear. */ |
| if (I915_SELFTEST_ONLY(fail_gpu_migration)) |
| clear = true; |
| |
| dst_level = i915_ttm_cache_level(i915, dst_mem, dst_ttm); |
| if (clear) { |
| if (bo->type == ttm_bo_type_kernel && |
| !I915_SELFTEST_ONLY(fail_gpu_migration)) |
| return ERR_PTR(-EINVAL); |
| |
| intel_engine_pm_get(to_gt(i915)->migrate.context->engine); |
| ret = intel_context_migrate_clear(to_gt(i915)->migrate.context, deps, |
| dst_st->sgl, |
| i915_gem_get_pat_index(i915, dst_level), |
| i915_ttm_gtt_binds_lmem(dst_mem), |
| 0, &rq); |
| } else { |
| struct i915_refct_sgt *src_rsgt = |
| i915_ttm_resource_get_st(obj, bo->resource); |
| |
| if (IS_ERR(src_rsgt)) |
| return ERR_CAST(src_rsgt); |
| |
| src_level = i915_ttm_cache_level(i915, bo->resource, src_ttm); |
| intel_engine_pm_get(to_gt(i915)->migrate.context->engine); |
| ret = intel_context_migrate_copy(to_gt(i915)->migrate.context, |
| deps, src_rsgt->table.sgl, |
| i915_gem_get_pat_index(i915, src_level), |
| i915_ttm_gtt_binds_lmem(bo->resource), |
| dst_st->sgl, |
| i915_gem_get_pat_index(i915, dst_level), |
| i915_ttm_gtt_binds_lmem(dst_mem), |
| &rq); |
| |
| i915_refct_sgt_put(src_rsgt); |
| } |
| |
| intel_engine_pm_put(to_gt(i915)->migrate.context->engine); |
| |
| if (ret && rq) { |
| i915_request_wait(rq, 0, MAX_SCHEDULE_TIMEOUT); |
| i915_request_put(rq); |
| } |
| |
| return ret ? ERR_PTR(ret) : &rq->fence; |
| } |
| |
| /** |
| * struct i915_ttm_memcpy_arg - argument for the bo memcpy functionality. |
| * @_dst_iter: Storage space for the destination kmap iterator. |
| * @_src_iter: Storage space for the source kmap iterator. |
| * @dst_iter: Pointer to the destination kmap iterator. |
| * @src_iter: Pointer to the source kmap iterator. |
| * @num_pages: Number of pages |
| * @clear: Whether to clear instead of copy. |
| * @src_rsgt: Refcounted scatter-gather list of source memory. |
| * @dst_rsgt: Refcounted scatter-gather list of destination memory. |
| */ |
| struct i915_ttm_memcpy_arg { |
| union { |
| struct ttm_kmap_iter_tt tt; |
| struct ttm_kmap_iter_iomap io; |
| } _dst_iter, |
| _src_iter; |
| struct ttm_kmap_iter *dst_iter; |
| struct ttm_kmap_iter *src_iter; |
| unsigned long num_pages; |
| bool clear; |
| struct i915_refct_sgt *src_rsgt; |
| struct i915_refct_sgt *dst_rsgt; |
| }; |
| |
| /** |
| * struct i915_ttm_memcpy_work - Async memcpy worker under a dma-fence. |
| * @fence: The dma-fence. |
| * @work: The work struct use for the memcpy work. |
| * @lock: The fence lock. Not used to protect anything else ATM. |
| * @irq_work: Low latency worker to signal the fence since it can't be done |
| * from the callback for lockdep reasons. |
| * @cb: Callback for the accelerated migration fence. |
| * @arg: The argument for the memcpy functionality. |
| * @i915: The i915 pointer. |
| * @obj: The GEM object. |
| * @memcpy_allowed: Instead of processing the @arg, and falling back to memcpy |
| * or memset, we wedge the device and set the @obj unknown_state, to prevent |
| * further access to the object with the CPU or GPU. On some devices we might |
| * only be permitted to use the blitter engine for such operations. |
| */ |
| struct i915_ttm_memcpy_work { |
| struct dma_fence fence; |
| struct work_struct work; |
| spinlock_t lock; |
| struct irq_work irq_work; |
| struct dma_fence_cb cb; |
| struct i915_ttm_memcpy_arg arg; |
| struct drm_i915_private *i915; |
| struct drm_i915_gem_object *obj; |
| bool memcpy_allowed; |
| }; |
| |
| static void i915_ttm_move_memcpy(struct i915_ttm_memcpy_arg *arg) |
| { |
| ttm_move_memcpy(arg->clear, arg->num_pages, |
| arg->dst_iter, arg->src_iter); |
| } |
| |
| static void i915_ttm_memcpy_init(struct i915_ttm_memcpy_arg *arg, |
| struct ttm_buffer_object *bo, bool clear, |
| struct ttm_resource *dst_mem, |
| struct ttm_tt *dst_ttm, |
| struct i915_refct_sgt *dst_rsgt) |
| { |
| struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); |
| struct intel_memory_region *dst_reg, *src_reg; |
| |
| dst_reg = i915_ttm_region(bo->bdev, dst_mem->mem_type); |
| src_reg = i915_ttm_region(bo->bdev, bo->resource->mem_type); |
| GEM_BUG_ON(!dst_reg || !src_reg); |
| |
| arg->dst_iter = !i915_ttm_cpu_maps_iomem(dst_mem) ? |
| ttm_kmap_iter_tt_init(&arg->_dst_iter.tt, dst_ttm) : |
| ttm_kmap_iter_iomap_init(&arg->_dst_iter.io, &dst_reg->iomap, |
| &dst_rsgt->table, dst_reg->region.start); |
| |
| arg->src_iter = !i915_ttm_cpu_maps_iomem(bo->resource) ? |
| ttm_kmap_iter_tt_init(&arg->_src_iter.tt, bo->ttm) : |
| ttm_kmap_iter_iomap_init(&arg->_src_iter.io, &src_reg->iomap, |
| &obj->ttm.cached_io_rsgt->table, |
| src_reg->region.start); |
| arg->clear = clear; |
| arg->num_pages = bo->base.size >> PAGE_SHIFT; |
| |
| arg->dst_rsgt = i915_refct_sgt_get(dst_rsgt); |
| arg->src_rsgt = clear ? NULL : |
| i915_ttm_resource_get_st(obj, bo->resource); |
| } |
| |
| static void i915_ttm_memcpy_release(struct i915_ttm_memcpy_arg *arg) |
| { |
| i915_refct_sgt_put(arg->src_rsgt); |
| i915_refct_sgt_put(arg->dst_rsgt); |
| } |
| |
| static void __memcpy_work(struct work_struct *work) |
| { |
| struct i915_ttm_memcpy_work *copy_work = |
| container_of(work, typeof(*copy_work), work); |
| struct i915_ttm_memcpy_arg *arg = ©_work->arg; |
| bool cookie; |
| |
| /* |
| * FIXME: We need to take a closer look here. We should be able to plonk |
| * this into the fence critical section. |
| */ |
| if (!copy_work->memcpy_allowed) { |
| struct intel_gt *gt; |
| unsigned int id; |
| |
| for_each_gt(gt, copy_work->i915, id) |
| intel_gt_set_wedged(gt); |
| } |
| |
| cookie = dma_fence_begin_signalling(); |
| |
| if (copy_work->memcpy_allowed) { |
| i915_ttm_move_memcpy(arg); |
| } else { |
| /* |
| * Prevent further use of the object. Any future GTT binding or |
| * CPU access is not allowed once we signal the fence. Outside |
| * of the fence critical section, we then also then wedge the gpu |
| * to indicate the device is not functional. |
| * |
| * The below dma_fence_signal() is our write-memory-barrier. |
| */ |
| copy_work->obj->mm.unknown_state = true; |
| } |
| |
| dma_fence_end_signalling(cookie); |
| |
| dma_fence_signal(©_work->fence); |
| |
| i915_ttm_memcpy_release(arg); |
| i915_gem_object_put(copy_work->obj); |
| dma_fence_put(©_work->fence); |
| } |
| |
| static void __memcpy_irq_work(struct irq_work *irq_work) |
| { |
| struct i915_ttm_memcpy_work *copy_work = |
| container_of(irq_work, typeof(*copy_work), irq_work); |
| struct i915_ttm_memcpy_arg *arg = ©_work->arg; |
| |
| dma_fence_signal(©_work->fence); |
| i915_ttm_memcpy_release(arg); |
| i915_gem_object_put(copy_work->obj); |
| dma_fence_put(©_work->fence); |
| } |
| |
| static void __memcpy_cb(struct dma_fence *fence, struct dma_fence_cb *cb) |
| { |
| struct i915_ttm_memcpy_work *copy_work = |
| container_of(cb, typeof(*copy_work), cb); |
| |
| if (unlikely(fence->error || I915_SELFTEST_ONLY(fail_gpu_migration))) { |
| INIT_WORK(©_work->work, __memcpy_work); |
| queue_work(system_unbound_wq, ©_work->work); |
| } else { |
| init_irq_work(©_work->irq_work, __memcpy_irq_work); |
| irq_work_queue(©_work->irq_work); |
| } |
| } |
| |
| static const char *get_driver_name(struct dma_fence *fence) |
| { |
| return "i915_ttm_memcpy_work"; |
| } |
| |
| static const char *get_timeline_name(struct dma_fence *fence) |
| { |
| return "unbound"; |
| } |
| |
| static const struct dma_fence_ops dma_fence_memcpy_ops = { |
| .get_driver_name = get_driver_name, |
| .get_timeline_name = get_timeline_name, |
| }; |
| |
| static struct dma_fence * |
| i915_ttm_memcpy_work_arm(struct i915_ttm_memcpy_work *work, |
| struct dma_fence *dep) |
| { |
| int ret; |
| |
| spin_lock_init(&work->lock); |
| dma_fence_init(&work->fence, &dma_fence_memcpy_ops, &work->lock, 0, 0); |
| dma_fence_get(&work->fence); |
| ret = dma_fence_add_callback(dep, &work->cb, __memcpy_cb); |
| if (ret) { |
| if (ret != -ENOENT) |
| dma_fence_wait(dep, false); |
| |
| return ERR_PTR(I915_SELFTEST_ONLY(fail_gpu_migration) ? -EINVAL : |
| dep->error); |
| } |
| |
| return &work->fence; |
| } |
| |
| static bool i915_ttm_memcpy_allowed(struct ttm_buffer_object *bo, |
| struct ttm_resource *dst_mem) |
| { |
| if (i915_gem_object_needs_ccs_pages(i915_ttm_to_gem(bo))) |
| return false; |
| |
| if (!(i915_ttm_resource_mappable(bo->resource) && |
| i915_ttm_resource_mappable(dst_mem))) |
| return false; |
| |
| return I915_SELFTEST_ONLY(ban_memcpy) ? false : true; |
| } |
| |
| static struct dma_fence * |
| __i915_ttm_move(struct ttm_buffer_object *bo, |
| const struct ttm_operation_ctx *ctx, bool clear, |
| struct ttm_resource *dst_mem, struct ttm_tt *dst_ttm, |
| struct i915_refct_sgt *dst_rsgt, bool allow_accel, |
| const struct i915_deps *move_deps) |
| { |
| const bool memcpy_allowed = i915_ttm_memcpy_allowed(bo, dst_mem); |
| struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); |
| struct drm_i915_private *i915 = to_i915(bo->base.dev); |
| struct i915_ttm_memcpy_work *copy_work = NULL; |
| struct i915_ttm_memcpy_arg _arg, *arg = &_arg; |
| struct dma_fence *fence = ERR_PTR(-EINVAL); |
| |
| if (allow_accel) { |
| fence = i915_ttm_accel_move(bo, clear, dst_mem, dst_ttm, |
| &dst_rsgt->table, move_deps); |
| |
| /* |
| * We only need to intercept the error when moving to lmem. |
| * When moving to system, TTM or shmem will provide us with |
| * cleared pages. |
| */ |
| if (!IS_ERR(fence) && !i915_ttm_gtt_binds_lmem(dst_mem) && |
| !I915_SELFTEST_ONLY(fail_gpu_migration || |
| fail_work_allocation)) |
| goto out; |
| } |
| |
| /* If we've scheduled gpu migration. Try to arm error intercept. */ |
| if (!IS_ERR(fence)) { |
| struct dma_fence *dep = fence; |
| |
| if (!I915_SELFTEST_ONLY(fail_work_allocation)) |
| copy_work = kzalloc(sizeof(*copy_work), GFP_KERNEL); |
| |
| if (copy_work) { |
| copy_work->i915 = i915; |
| copy_work->memcpy_allowed = memcpy_allowed; |
| copy_work->obj = i915_gem_object_get(obj); |
| arg = ©_work->arg; |
| if (memcpy_allowed) |
| i915_ttm_memcpy_init(arg, bo, clear, dst_mem, |
| dst_ttm, dst_rsgt); |
| |
| fence = i915_ttm_memcpy_work_arm(copy_work, dep); |
| } else { |
| dma_fence_wait(dep, false); |
| fence = ERR_PTR(I915_SELFTEST_ONLY(fail_gpu_migration) ? |
| -EINVAL : fence->error); |
| } |
| dma_fence_put(dep); |
| |
| if (!IS_ERR(fence)) |
| goto out; |
| } else { |
| int err = PTR_ERR(fence); |
| |
| if (err == -EINTR || err == -ERESTARTSYS || err == -EAGAIN) |
| return fence; |
| |
| if (move_deps) { |
| err = i915_deps_sync(move_deps, ctx); |
| if (err) |
| return ERR_PTR(err); |
| } |
| } |
| |
| /* Error intercept failed or no accelerated migration to start with */ |
| |
| if (memcpy_allowed) { |
| if (!copy_work) |
| i915_ttm_memcpy_init(arg, bo, clear, dst_mem, dst_ttm, |
| dst_rsgt); |
| i915_ttm_move_memcpy(arg); |
| i915_ttm_memcpy_release(arg); |
| } |
| if (copy_work) |
| i915_gem_object_put(copy_work->obj); |
| kfree(copy_work); |
| |
| return memcpy_allowed ? NULL : ERR_PTR(-EIO); |
| out: |
| if (!fence && copy_work) { |
| i915_ttm_memcpy_release(arg); |
| i915_gem_object_put(copy_work->obj); |
| kfree(copy_work); |
| } |
| |
| return fence; |
| } |
| |
| /** |
| * i915_ttm_move - The TTM move callback used by i915. |
| * @bo: The buffer object. |
| * @evict: Whether this is an eviction. |
| * @ctx: Pointer to a struct ttm_operation_ctx indicating how the waits should be |
| * performed if waiting |
| * @dst_mem: The destination ttm resource. |
| * @hop: If we need multihop, what temporary memory type to move to. |
| * |
| * Return: 0 if successful, negative error code otherwise. |
| */ |
| int i915_ttm_move(struct ttm_buffer_object *bo, bool evict, |
| struct ttm_operation_ctx *ctx, |
| struct ttm_resource *dst_mem, |
| struct ttm_place *hop) |
| { |
| struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); |
| struct ttm_resource_manager *dst_man = |
| ttm_manager_type(bo->bdev, dst_mem->mem_type); |
| struct dma_fence *migration_fence = NULL; |
| struct ttm_tt *ttm = bo->ttm; |
| struct i915_refct_sgt *dst_rsgt; |
| bool clear, prealloc_bo; |
| int ret; |
| |
| if (GEM_WARN_ON(i915_ttm_is_ghost_object(bo))) { |
| ttm_bo_move_null(bo, dst_mem); |
| return 0; |
| } |
| |
| if (!bo->resource) { |
| if (dst_mem->mem_type != TTM_PL_SYSTEM) { |
| hop->mem_type = TTM_PL_SYSTEM; |
| hop->flags = TTM_PL_FLAG_TEMPORARY; |
| return -EMULTIHOP; |
| } |
| |
| /* |
| * This is only reached when first creating the object, or if |
| * the object was purged or swapped out (pipeline-gutting). For |
| * the former we can safely skip all of the below since we are |
| * only using a dummy SYSTEM placement here. And with the latter |
| * we will always re-enter here with bo->resource set correctly |
| * (as per the above), since this is part of a multi-hop |
| * sequence, where at the end we can do the move for real. |
| * |
| * The special case here is when the dst_mem is TTM_PL_SYSTEM, |
| * which doens't require any kind of move, so it should be safe |
| * to skip all the below and call ttm_bo_move_null() here, where |
| * the caller in __i915_ttm_get_pages() will take care of the |
| * rest, since we should have a valid ttm_tt. |
| */ |
| ttm_bo_move_null(bo, dst_mem); |
| return 0; |
| } |
| |
| ret = i915_ttm_move_notify(bo); |
| if (ret) |
| return ret; |
| |
| if (obj->mm.madv != I915_MADV_WILLNEED) { |
| i915_ttm_purge(obj); |
| ttm_resource_free(bo, &dst_mem); |
| return 0; |
| } |
| |
| /* Populate ttm with pages if needed. Typically system memory. */ |
| if (ttm && (dst_man->use_tt || (ttm->page_flags & TTM_TT_FLAG_SWAPPED))) { |
| ret = ttm_tt_populate(bo->bdev, ttm, ctx); |
| if (ret) |
| return ret; |
| } |
| |
| dst_rsgt = i915_ttm_resource_get_st(obj, dst_mem); |
| if (IS_ERR(dst_rsgt)) |
| return PTR_ERR(dst_rsgt); |
| |
| clear = !i915_ttm_cpu_maps_iomem(bo->resource) && (!ttm || !ttm_tt_is_populated(ttm)); |
| prealloc_bo = obj->flags & I915_BO_PREALLOC; |
| if (!(clear && ttm && !((ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC) && !prealloc_bo))) { |
| struct i915_deps deps; |
| |
| i915_deps_init(&deps, GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN); |
| ret = i915_deps_add_resv(&deps, bo->base.resv, ctx); |
| if (ret) { |
| i915_refct_sgt_put(dst_rsgt); |
| return ret; |
| } |
| |
| migration_fence = __i915_ttm_move(bo, ctx, clear, dst_mem, ttm, |
| dst_rsgt, true, &deps); |
| i915_deps_fini(&deps); |
| } |
| |
| /* We can possibly get an -ERESTARTSYS here */ |
| if (IS_ERR(migration_fence)) { |
| i915_refct_sgt_put(dst_rsgt); |
| return PTR_ERR(migration_fence); |
| } |
| |
| if (migration_fence) { |
| if (I915_SELFTEST_ONLY(evict && fail_gpu_migration)) |
| ret = -EIO; /* never feed non-migrate fences into ttm */ |
| else |
| ret = ttm_bo_move_accel_cleanup(bo, migration_fence, evict, |
| true, dst_mem); |
| if (ret) { |
| dma_fence_wait(migration_fence, false); |
| ttm_bo_move_sync_cleanup(bo, dst_mem); |
| } |
| dma_fence_put(migration_fence); |
| } else { |
| ttm_bo_move_sync_cleanup(bo, dst_mem); |
| } |
| |
| i915_ttm_adjust_domains_after_move(obj); |
| i915_ttm_free_cached_io_rsgt(obj); |
| |
| if (i915_ttm_gtt_binds_lmem(dst_mem) || i915_ttm_cpu_maps_iomem(dst_mem)) { |
| obj->ttm.cached_io_rsgt = dst_rsgt; |
| obj->ttm.get_io_page.sg_pos = dst_rsgt->table.sgl; |
| obj->ttm.get_io_page.sg_idx = 0; |
| } else { |
| i915_refct_sgt_put(dst_rsgt); |
| } |
| |
| i915_ttm_adjust_lru(obj); |
| i915_ttm_adjust_gem_after_move(obj); |
| return 0; |
| } |
| |
| /** |
| * i915_gem_obj_copy_ttm - Copy the contents of one ttm-based gem object to |
| * another |
| * @dst: The destination object |
| * @src: The source object |
| * @allow_accel: Allow using the blitter. Otherwise TTM memcpy is used. |
| * @intr: Whether to perform waits interruptible: |
| * |
| * Note: The caller is responsible for assuring that the underlying |
| * TTM objects are populated if needed and locked. |
| * |
| * Return: Zero on success. Negative error code on error. If @intr == true, |
| * then it may return -ERESTARTSYS or -EINTR. |
| */ |
| int i915_gem_obj_copy_ttm(struct drm_i915_gem_object *dst, |
| struct drm_i915_gem_object *src, |
| bool allow_accel, bool intr) |
| { |
| struct ttm_buffer_object *dst_bo = i915_gem_to_ttm(dst); |
| struct ttm_buffer_object *src_bo = i915_gem_to_ttm(src); |
| struct ttm_operation_ctx ctx = { |
| .interruptible = intr, |
| }; |
| struct i915_refct_sgt *dst_rsgt; |
| struct dma_fence *copy_fence; |
| struct i915_deps deps; |
| int ret; |
| |
| assert_object_held(dst); |
| assert_object_held(src); |
| |
| if (GEM_WARN_ON(!src_bo->resource || !dst_bo->resource)) |
| return -EINVAL; |
| |
| i915_deps_init(&deps, GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN); |
| |
| ret = dma_resv_reserve_fences(src_bo->base.resv, 1); |
| if (ret) |
| return ret; |
| |
| ret = dma_resv_reserve_fences(dst_bo->base.resv, 1); |
| if (ret) |
| return ret; |
| |
| ret = i915_deps_add_resv(&deps, dst_bo->base.resv, &ctx); |
| if (ret) |
| return ret; |
| |
| ret = i915_deps_add_resv(&deps, src_bo->base.resv, &ctx); |
| if (ret) |
| return ret; |
| |
| dst_rsgt = i915_ttm_resource_get_st(dst, dst_bo->resource); |
| copy_fence = __i915_ttm_move(src_bo, &ctx, false, dst_bo->resource, |
| dst_bo->ttm, dst_rsgt, allow_accel, |
| &deps); |
| |
| i915_deps_fini(&deps); |
| i915_refct_sgt_put(dst_rsgt); |
| if (IS_ERR_OR_NULL(copy_fence)) |
| return PTR_ERR_OR_ZERO(copy_fence); |
| |
| dma_resv_add_fence(dst_bo->base.resv, copy_fence, DMA_RESV_USAGE_WRITE); |
| dma_resv_add_fence(src_bo->base.resv, copy_fence, DMA_RESV_USAGE_READ); |
| dma_fence_put(copy_fence); |
| |
| return 0; |
| } |