| // SPDX-License-Identifier: MIT |
| /* |
| * Copyright © 2016 Intel Corporation |
| */ |
| |
| #include <linux/string_helpers.h> |
| |
| #include <drm/drm_print.h> |
| |
| #include "gem/i915_gem_context.h" |
| #include "gem/i915_gem_internal.h" |
| #include "gt/intel_gt_print.h" |
| #include "gt/intel_gt_regs.h" |
| |
| #include "i915_cmd_parser.h" |
| #include "i915_drv.h" |
| #include "i915_irq.h" |
| #include "i915_reg.h" |
| #include "intel_breadcrumbs.h" |
| #include "intel_context.h" |
| #include "intel_engine.h" |
| #include "intel_engine_pm.h" |
| #include "intel_engine_regs.h" |
| #include "intel_engine_user.h" |
| #include "intel_execlists_submission.h" |
| #include "intel_gt.h" |
| #include "intel_gt_mcr.h" |
| #include "intel_gt_pm.h" |
| #include "intel_gt_requests.h" |
| #include "intel_lrc.h" |
| #include "intel_lrc_reg.h" |
| #include "intel_reset.h" |
| #include "intel_ring.h" |
| #include "uc/intel_guc_submission.h" |
| |
| /* Haswell does have the CXT_SIZE register however it does not appear to be |
| * valid. Now, docs explain in dwords what is in the context object. The full |
| * size is 70720 bytes, however, the power context and execlist context will |
| * never be saved (power context is stored elsewhere, and execlists don't work |
| * on HSW) - so the final size, including the extra state required for the |
| * Resource Streamer, is 66944 bytes, which rounds to 17 pages. |
| */ |
| #define HSW_CXT_TOTAL_SIZE (17 * PAGE_SIZE) |
| |
| #define DEFAULT_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE) |
| #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE) |
| #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE) |
| #define GEN11_LR_CONTEXT_RENDER_SIZE (14 * PAGE_SIZE) |
| |
| #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE) |
| |
| #define MAX_MMIO_BASES 3 |
| struct engine_info { |
| u8 class; |
| u8 instance; |
| /* mmio bases table *must* be sorted in reverse graphics_ver order */ |
| struct engine_mmio_base { |
| u32 graphics_ver : 8; |
| u32 base : 24; |
| } mmio_bases[MAX_MMIO_BASES]; |
| }; |
| |
| static const struct engine_info intel_engines[] = { |
| [RCS0] = { |
| .class = RENDER_CLASS, |
| .instance = 0, |
| .mmio_bases = { |
| { .graphics_ver = 1, .base = RENDER_RING_BASE } |
| }, |
| }, |
| [BCS0] = { |
| .class = COPY_ENGINE_CLASS, |
| .instance = 0, |
| .mmio_bases = { |
| { .graphics_ver = 6, .base = BLT_RING_BASE } |
| }, |
| }, |
| [BCS1] = { |
| .class = COPY_ENGINE_CLASS, |
| .instance = 1, |
| .mmio_bases = { |
| { .graphics_ver = 12, .base = XEHPC_BCS1_RING_BASE } |
| }, |
| }, |
| [BCS2] = { |
| .class = COPY_ENGINE_CLASS, |
| .instance = 2, |
| .mmio_bases = { |
| { .graphics_ver = 12, .base = XEHPC_BCS2_RING_BASE } |
| }, |
| }, |
| [BCS3] = { |
| .class = COPY_ENGINE_CLASS, |
| .instance = 3, |
| .mmio_bases = { |
| { .graphics_ver = 12, .base = XEHPC_BCS3_RING_BASE } |
| }, |
| }, |
| [BCS4] = { |
| .class = COPY_ENGINE_CLASS, |
| .instance = 4, |
| .mmio_bases = { |
| { .graphics_ver = 12, .base = XEHPC_BCS4_RING_BASE } |
| }, |
| }, |
| [BCS5] = { |
| .class = COPY_ENGINE_CLASS, |
| .instance = 5, |
| .mmio_bases = { |
| { .graphics_ver = 12, .base = XEHPC_BCS5_RING_BASE } |
| }, |
| }, |
| [BCS6] = { |
| .class = COPY_ENGINE_CLASS, |
| .instance = 6, |
| .mmio_bases = { |
| { .graphics_ver = 12, .base = XEHPC_BCS6_RING_BASE } |
| }, |
| }, |
| [BCS7] = { |
| .class = COPY_ENGINE_CLASS, |
| .instance = 7, |
| .mmio_bases = { |
| { .graphics_ver = 12, .base = XEHPC_BCS7_RING_BASE } |
| }, |
| }, |
| [BCS8] = { |
| .class = COPY_ENGINE_CLASS, |
| .instance = 8, |
| .mmio_bases = { |
| { .graphics_ver = 12, .base = XEHPC_BCS8_RING_BASE } |
| }, |
| }, |
| [VCS0] = { |
| .class = VIDEO_DECODE_CLASS, |
| .instance = 0, |
| .mmio_bases = { |
| { .graphics_ver = 11, .base = GEN11_BSD_RING_BASE }, |
| { .graphics_ver = 6, .base = GEN6_BSD_RING_BASE }, |
| { .graphics_ver = 4, .base = BSD_RING_BASE } |
| }, |
| }, |
| [VCS1] = { |
| .class = VIDEO_DECODE_CLASS, |
| .instance = 1, |
| .mmio_bases = { |
| { .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE }, |
| { .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE } |
| }, |
| }, |
| [VCS2] = { |
| .class = VIDEO_DECODE_CLASS, |
| .instance = 2, |
| .mmio_bases = { |
| { .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE } |
| }, |
| }, |
| [VCS3] = { |
| .class = VIDEO_DECODE_CLASS, |
| .instance = 3, |
| .mmio_bases = { |
| { .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE } |
| }, |
| }, |
| [VCS4] = { |
| .class = VIDEO_DECODE_CLASS, |
| .instance = 4, |
| .mmio_bases = { |
| { .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE } |
| }, |
| }, |
| [VCS5] = { |
| .class = VIDEO_DECODE_CLASS, |
| .instance = 5, |
| .mmio_bases = { |
| { .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE } |
| }, |
| }, |
| [VCS6] = { |
| .class = VIDEO_DECODE_CLASS, |
| .instance = 6, |
| .mmio_bases = { |
| { .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE } |
| }, |
| }, |
| [VCS7] = { |
| .class = VIDEO_DECODE_CLASS, |
| .instance = 7, |
| .mmio_bases = { |
| { .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE } |
| }, |
| }, |
| [VECS0] = { |
| .class = VIDEO_ENHANCEMENT_CLASS, |
| .instance = 0, |
| .mmio_bases = { |
| { .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE }, |
| { .graphics_ver = 7, .base = VEBOX_RING_BASE } |
| }, |
| }, |
| [VECS1] = { |
| .class = VIDEO_ENHANCEMENT_CLASS, |
| .instance = 1, |
| .mmio_bases = { |
| { .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE } |
| }, |
| }, |
| [VECS2] = { |
| .class = VIDEO_ENHANCEMENT_CLASS, |
| .instance = 2, |
| .mmio_bases = { |
| { .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE } |
| }, |
| }, |
| [VECS3] = { |
| .class = VIDEO_ENHANCEMENT_CLASS, |
| .instance = 3, |
| .mmio_bases = { |
| { .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE } |
| }, |
| }, |
| [CCS0] = { |
| .class = COMPUTE_CLASS, |
| .instance = 0, |
| .mmio_bases = { |
| { .graphics_ver = 12, .base = GEN12_COMPUTE0_RING_BASE } |
| } |
| }, |
| [CCS1] = { |
| .class = COMPUTE_CLASS, |
| .instance = 1, |
| .mmio_bases = { |
| { .graphics_ver = 12, .base = GEN12_COMPUTE1_RING_BASE } |
| } |
| }, |
| [CCS2] = { |
| .class = COMPUTE_CLASS, |
| .instance = 2, |
| .mmio_bases = { |
| { .graphics_ver = 12, .base = GEN12_COMPUTE2_RING_BASE } |
| } |
| }, |
| [CCS3] = { |
| .class = COMPUTE_CLASS, |
| .instance = 3, |
| .mmio_bases = { |
| { .graphics_ver = 12, .base = GEN12_COMPUTE3_RING_BASE } |
| } |
| }, |
| [GSC0] = { |
| .class = OTHER_CLASS, |
| .instance = OTHER_GSC_INSTANCE, |
| .mmio_bases = { |
| { .graphics_ver = 12, .base = MTL_GSC_RING_BASE } |
| } |
| }, |
| }; |
| |
| /** |
| * intel_engine_context_size() - return the size of the context for an engine |
| * @gt: the gt |
| * @class: engine class |
| * |
| * Each engine class may require a different amount of space for a context |
| * image. |
| * |
| * Return: size (in bytes) of an engine class specific context image |
| * |
| * Note: this size includes the HWSP, which is part of the context image |
| * in LRC mode, but does not include the "shared data page" used with |
| * GuC submission. The caller should account for this if using the GuC. |
| */ |
| u32 intel_engine_context_size(struct intel_gt *gt, u8 class) |
| { |
| struct intel_uncore *uncore = gt->uncore; |
| u32 cxt_size; |
| |
| BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE); |
| |
| switch (class) { |
| case COMPUTE_CLASS: |
| fallthrough; |
| case RENDER_CLASS: |
| switch (GRAPHICS_VER(gt->i915)) { |
| default: |
| MISSING_CASE(GRAPHICS_VER(gt->i915)); |
| return DEFAULT_LR_CONTEXT_RENDER_SIZE; |
| case 12: |
| case 11: |
| return GEN11_LR_CONTEXT_RENDER_SIZE; |
| case 9: |
| return GEN9_LR_CONTEXT_RENDER_SIZE; |
| case 8: |
| return GEN8_LR_CONTEXT_RENDER_SIZE; |
| case 7: |
| if (IS_HASWELL(gt->i915)) |
| return HSW_CXT_TOTAL_SIZE; |
| |
| cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE); |
| return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64, |
| PAGE_SIZE); |
| case 6: |
| cxt_size = intel_uncore_read(uncore, CXT_SIZE); |
| return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64, |
| PAGE_SIZE); |
| case 5: |
| case 4: |
| /* |
| * There is a discrepancy here between the size reported |
| * by the register and the size of the context layout |
| * in the docs. Both are described as authorative! |
| * |
| * The discrepancy is on the order of a few cachelines, |
| * but the total is under one page (4k), which is our |
| * minimum allocation anyway so it should all come |
| * out in the wash. |
| */ |
| cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1; |
| gt_dbg(gt, "graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n", |
| GRAPHICS_VER(gt->i915), cxt_size * 64, |
| cxt_size - 1); |
| return round_up(cxt_size * 64, PAGE_SIZE); |
| case 3: |
| case 2: |
| /* For the special day when i810 gets merged. */ |
| case 1: |
| return 0; |
| } |
| break; |
| default: |
| MISSING_CASE(class); |
| fallthrough; |
| case VIDEO_DECODE_CLASS: |
| case VIDEO_ENHANCEMENT_CLASS: |
| case COPY_ENGINE_CLASS: |
| case OTHER_CLASS: |
| if (GRAPHICS_VER(gt->i915) < 8) |
| return 0; |
| return GEN8_LR_CONTEXT_OTHER_SIZE; |
| } |
| } |
| |
| static u32 __engine_mmio_base(struct drm_i915_private *i915, |
| const struct engine_mmio_base *bases) |
| { |
| int i; |
| |
| for (i = 0; i < MAX_MMIO_BASES; i++) |
| if (GRAPHICS_VER(i915) >= bases[i].graphics_ver) |
| break; |
| |
| GEM_BUG_ON(i == MAX_MMIO_BASES); |
| GEM_BUG_ON(!bases[i].base); |
| |
| return bases[i].base; |
| } |
| |
| static void __sprint_engine_name(struct intel_engine_cs *engine) |
| { |
| /* |
| * Before we know what the uABI name for this engine will be, |
| * we still would like to keep track of this engine in the debug logs. |
| * We throw in a ' here as a reminder that this isn't its final name. |
| */ |
| GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u", |
| intel_engine_class_repr(engine->class), |
| engine->instance) >= sizeof(engine->name)); |
| } |
| |
| void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask) |
| { |
| /* |
| * Though they added more rings on g4x/ilk, they did not add |
| * per-engine HWSTAM until gen6. |
| */ |
| if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS) |
| return; |
| |
| if (GRAPHICS_VER(engine->i915) >= 3) |
| ENGINE_WRITE(engine, RING_HWSTAM, mask); |
| else |
| ENGINE_WRITE16(engine, RING_HWSTAM, mask); |
| } |
| |
| static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine) |
| { |
| /* Mask off all writes into the unknown HWSP */ |
| intel_engine_set_hwsp_writemask(engine, ~0u); |
| } |
| |
| static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir) |
| { |
| GEM_DEBUG_WARN_ON(iir); |
| } |
| |
| static u32 get_reset_domain(u8 ver, enum intel_engine_id id) |
| { |
| u32 reset_domain; |
| |
| if (ver >= 11) { |
| static const u32 engine_reset_domains[] = { |
| [RCS0] = GEN11_GRDOM_RENDER, |
| [BCS0] = GEN11_GRDOM_BLT, |
| [BCS1] = XEHPC_GRDOM_BLT1, |
| [BCS2] = XEHPC_GRDOM_BLT2, |
| [BCS3] = XEHPC_GRDOM_BLT3, |
| [BCS4] = XEHPC_GRDOM_BLT4, |
| [BCS5] = XEHPC_GRDOM_BLT5, |
| [BCS6] = XEHPC_GRDOM_BLT6, |
| [BCS7] = XEHPC_GRDOM_BLT7, |
| [BCS8] = XEHPC_GRDOM_BLT8, |
| [VCS0] = GEN11_GRDOM_MEDIA, |
| [VCS1] = GEN11_GRDOM_MEDIA2, |
| [VCS2] = GEN11_GRDOM_MEDIA3, |
| [VCS3] = GEN11_GRDOM_MEDIA4, |
| [VCS4] = GEN11_GRDOM_MEDIA5, |
| [VCS5] = GEN11_GRDOM_MEDIA6, |
| [VCS6] = GEN11_GRDOM_MEDIA7, |
| [VCS7] = GEN11_GRDOM_MEDIA8, |
| [VECS0] = GEN11_GRDOM_VECS, |
| [VECS1] = GEN11_GRDOM_VECS2, |
| [VECS2] = GEN11_GRDOM_VECS3, |
| [VECS3] = GEN11_GRDOM_VECS4, |
| [CCS0] = GEN11_GRDOM_RENDER, |
| [CCS1] = GEN11_GRDOM_RENDER, |
| [CCS2] = GEN11_GRDOM_RENDER, |
| [CCS3] = GEN11_GRDOM_RENDER, |
| [GSC0] = GEN12_GRDOM_GSC, |
| }; |
| GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) || |
| !engine_reset_domains[id]); |
| reset_domain = engine_reset_domains[id]; |
| } else { |
| static const u32 engine_reset_domains[] = { |
| [RCS0] = GEN6_GRDOM_RENDER, |
| [BCS0] = GEN6_GRDOM_BLT, |
| [VCS0] = GEN6_GRDOM_MEDIA, |
| [VCS1] = GEN8_GRDOM_MEDIA2, |
| [VECS0] = GEN6_GRDOM_VECS, |
| }; |
| GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) || |
| !engine_reset_domains[id]); |
| reset_domain = engine_reset_domains[id]; |
| } |
| |
| return reset_domain; |
| } |
| |
| static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id, |
| u8 logical_instance) |
| { |
| const struct engine_info *info = &intel_engines[id]; |
| struct drm_i915_private *i915 = gt->i915; |
| struct intel_engine_cs *engine; |
| u8 guc_class; |
| |
| BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH)); |
| BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH)); |
| BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1)); |
| BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1)); |
| |
| if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine))) |
| return -EINVAL; |
| |
| if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS)) |
| return -EINVAL; |
| |
| if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE)) |
| return -EINVAL; |
| |
| if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance])) |
| return -EINVAL; |
| |
| engine = kzalloc(sizeof(*engine), GFP_KERNEL); |
| if (!engine) |
| return -ENOMEM; |
| |
| BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES); |
| |
| INIT_LIST_HEAD(&engine->pinned_contexts_list); |
| engine->id = id; |
| engine->legacy_idx = INVALID_ENGINE; |
| engine->mask = BIT(id); |
| engine->reset_domain = get_reset_domain(GRAPHICS_VER(gt->i915), |
| id); |
| engine->i915 = i915; |
| engine->gt = gt; |
| engine->uncore = gt->uncore; |
| guc_class = engine_class_to_guc_class(info->class); |
| engine->guc_id = MAKE_GUC_ID(guc_class, info->instance); |
| engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases); |
| |
| engine->irq_handler = nop_irq_handler; |
| |
| engine->class = info->class; |
| engine->instance = info->instance; |
| engine->logical_mask = BIT(logical_instance); |
| __sprint_engine_name(engine); |
| |
| if ((engine->class == COMPUTE_CLASS && !RCS_MASK(engine->gt) && |
| __ffs(CCS_MASK(engine->gt)) == engine->instance) || |
| engine->class == RENDER_CLASS) |
| engine->flags |= I915_ENGINE_FIRST_RENDER_COMPUTE; |
| |
| /* features common between engines sharing EUs */ |
| if (engine->class == RENDER_CLASS || engine->class == COMPUTE_CLASS) { |
| engine->flags |= I915_ENGINE_HAS_RCS_REG_STATE; |
| engine->flags |= I915_ENGINE_HAS_EU_PRIORITY; |
| } |
| |
| engine->props.heartbeat_interval_ms = |
| CONFIG_DRM_I915_HEARTBEAT_INTERVAL; |
| engine->props.max_busywait_duration_ns = |
| CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT; |
| engine->props.preempt_timeout_ms = |
| CONFIG_DRM_I915_PREEMPT_TIMEOUT; |
| engine->props.stop_timeout_ms = |
| CONFIG_DRM_I915_STOP_TIMEOUT; |
| engine->props.timeslice_duration_ms = |
| CONFIG_DRM_I915_TIMESLICE_DURATION; |
| |
| /* |
| * Mid-thread pre-emption is not available in Gen12. Unfortunately, |
| * some compute workloads run quite long threads. That means they get |
| * reset due to not pre-empting in a timely manner. So, bump the |
| * pre-emption timeout value to be much higher for compute engines. |
| */ |
| if (GRAPHICS_VER(i915) == 12 && (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)) |
| engine->props.preempt_timeout_ms = CONFIG_DRM_I915_PREEMPT_TIMEOUT_COMPUTE; |
| |
| /* Cap properties according to any system limits */ |
| #define CLAMP_PROP(field) \ |
| do { \ |
| u64 clamp = intel_clamp_##field(engine, engine->props.field); \ |
| if (clamp != engine->props.field) { \ |
| drm_notice(&engine->i915->drm, \ |
| "Warning, clamping %s to %lld to prevent overflow\n", \ |
| #field, clamp); \ |
| engine->props.field = clamp; \ |
| } \ |
| } while (0) |
| |
| CLAMP_PROP(heartbeat_interval_ms); |
| CLAMP_PROP(max_busywait_duration_ns); |
| CLAMP_PROP(preempt_timeout_ms); |
| CLAMP_PROP(stop_timeout_ms); |
| CLAMP_PROP(timeslice_duration_ms); |
| |
| #undef CLAMP_PROP |
| |
| engine->defaults = engine->props; /* never to change again */ |
| |
| engine->context_size = intel_engine_context_size(gt, engine->class); |
| if (WARN_ON(engine->context_size > BIT(20))) |
| engine->context_size = 0; |
| if (engine->context_size) |
| DRIVER_CAPS(i915)->has_logical_contexts = true; |
| |
| ewma__engine_latency_init(&engine->latency); |
| |
| ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier); |
| |
| /* Scrub mmio state on takeover */ |
| intel_engine_sanitize_mmio(engine); |
| |
| gt->engine_class[info->class][info->instance] = engine; |
| gt->engine[id] = engine; |
| |
| return 0; |
| } |
| |
| u64 intel_clamp_heartbeat_interval_ms(struct intel_engine_cs *engine, u64 value) |
| { |
| value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT)); |
| |
| return value; |
| } |
| |
| u64 intel_clamp_max_busywait_duration_ns(struct intel_engine_cs *engine, u64 value) |
| { |
| value = min(value, jiffies_to_nsecs(2)); |
| |
| return value; |
| } |
| |
| u64 intel_clamp_preempt_timeout_ms(struct intel_engine_cs *engine, u64 value) |
| { |
| /* |
| * NB: The GuC API only supports 32bit values. However, the limit is further |
| * reduced due to internal calculations which would otherwise overflow. |
| */ |
| if (intel_guc_submission_is_wanted(&engine->gt->uc.guc)) |
| value = min_t(u64, value, guc_policy_max_preempt_timeout_ms()); |
| |
| value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT)); |
| |
| return value; |
| } |
| |
| u64 intel_clamp_stop_timeout_ms(struct intel_engine_cs *engine, u64 value) |
| { |
| value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT)); |
| |
| return value; |
| } |
| |
| u64 intel_clamp_timeslice_duration_ms(struct intel_engine_cs *engine, u64 value) |
| { |
| /* |
| * NB: The GuC API only supports 32bit values. However, the limit is further |
| * reduced due to internal calculations which would otherwise overflow. |
| */ |
| if (intel_guc_submission_is_wanted(&engine->gt->uc.guc)) |
| value = min_t(u64, value, guc_policy_max_exec_quantum_ms()); |
| |
| value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT)); |
| |
| return value; |
| } |
| |
| static void __setup_engine_capabilities(struct intel_engine_cs *engine) |
| { |
| struct drm_i915_private *i915 = engine->i915; |
| |
| if (engine->class == VIDEO_DECODE_CLASS) { |
| /* |
| * HEVC support is present on first engine instance |
| * before Gen11 and on all instances afterwards. |
| */ |
| if (GRAPHICS_VER(i915) >= 11 || |
| (GRAPHICS_VER(i915) >= 9 && engine->instance == 0)) |
| engine->uabi_capabilities |= |
| I915_VIDEO_CLASS_CAPABILITY_HEVC; |
| |
| /* |
| * SFC block is present only on even logical engine |
| * instances. |
| */ |
| if ((GRAPHICS_VER(i915) >= 11 && |
| (engine->gt->info.vdbox_sfc_access & |
| BIT(engine->instance))) || |
| (GRAPHICS_VER(i915) >= 9 && engine->instance == 0)) |
| engine->uabi_capabilities |= |
| I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC; |
| } else if (engine->class == VIDEO_ENHANCEMENT_CLASS) { |
| if (GRAPHICS_VER(i915) >= 9 && |
| engine->gt->info.sfc_mask & BIT(engine->instance)) |
| engine->uabi_capabilities |= |
| I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC; |
| } |
| } |
| |
| static void intel_setup_engine_capabilities(struct intel_gt *gt) |
| { |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| |
| for_each_engine(engine, gt, id) |
| __setup_engine_capabilities(engine); |
| } |
| |
| /** |
| * intel_engines_release() - free the resources allocated for Command Streamers |
| * @gt: pointer to struct intel_gt |
| */ |
| void intel_engines_release(struct intel_gt *gt) |
| { |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| |
| /* |
| * Before we release the resources held by engine, we must be certain |
| * that the HW is no longer accessing them -- having the GPU scribble |
| * to or read from a page being used for something else causes no end |
| * of fun. |
| * |
| * The GPU should be reset by this point, but assume the worst just |
| * in case we aborted before completely initialising the engines. |
| */ |
| GEM_BUG_ON(intel_gt_pm_is_awake(gt)); |
| if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) |
| __intel_gt_reset(gt, ALL_ENGINES); |
| |
| /* Decouple the backend; but keep the layout for late GPU resets */ |
| for_each_engine(engine, gt, id) { |
| if (!engine->release) |
| continue; |
| |
| intel_wakeref_wait_for_idle(&engine->wakeref); |
| GEM_BUG_ON(intel_engine_pm_is_awake(engine)); |
| |
| engine->release(engine); |
| engine->release = NULL; |
| |
| memset(&engine->reset, 0, sizeof(engine->reset)); |
| } |
| } |
| |
| void intel_engine_free_request_pool(struct intel_engine_cs *engine) |
| { |
| if (!engine->request_pool) |
| return; |
| |
| kmem_cache_free(i915_request_slab_cache(), engine->request_pool); |
| } |
| |
| void intel_engines_free(struct intel_gt *gt) |
| { |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| |
| /* Free the requests! dma-resv keeps fences around for an eternity */ |
| rcu_barrier(); |
| |
| for_each_engine(engine, gt, id) { |
| intel_engine_free_request_pool(engine); |
| kfree(engine); |
| gt->engine[id] = NULL; |
| } |
| } |
| |
| static |
| bool gen11_vdbox_has_sfc(struct intel_gt *gt, |
| unsigned int physical_vdbox, |
| unsigned int logical_vdbox, u16 vdbox_mask) |
| { |
| struct drm_i915_private *i915 = gt->i915; |
| |
| /* |
| * In Gen11, only even numbered logical VDBOXes are hooked |
| * up to an SFC (Scaler & Format Converter) unit. |
| * In Gen12, Even numbered physical instance always are connected |
| * to an SFC. Odd numbered physical instances have SFC only if |
| * previous even instance is fused off. |
| * |
| * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field |
| * in the fuse register that tells us whether a specific SFC is present. |
| */ |
| if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0) |
| return false; |
| else if (MEDIA_VER(i915) >= 12) |
| return (physical_vdbox % 2 == 0) || |
| !(BIT(physical_vdbox - 1) & vdbox_mask); |
| else if (MEDIA_VER(i915) == 11) |
| return logical_vdbox % 2 == 0; |
| |
| return false; |
| } |
| |
| static void engine_mask_apply_media_fuses(struct intel_gt *gt) |
| { |
| struct drm_i915_private *i915 = gt->i915; |
| unsigned int logical_vdbox = 0; |
| unsigned int i; |
| u32 media_fuse, fuse1; |
| u16 vdbox_mask; |
| u16 vebox_mask; |
| |
| if (MEDIA_VER(gt->i915) < 11) |
| return; |
| |
| /* |
| * On newer platforms the fusing register is called 'enable' and has |
| * enable semantics, while on older platforms it is called 'disable' |
| * and bits have disable semantices. |
| */ |
| media_fuse = intel_uncore_read(gt->uncore, GEN11_GT_VEBOX_VDBOX_DISABLE); |
| if (MEDIA_VER_FULL(i915) < IP_VER(12, 50)) |
| media_fuse = ~media_fuse; |
| |
| vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK; |
| vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >> |
| GEN11_GT_VEBOX_DISABLE_SHIFT; |
| |
| if (MEDIA_VER_FULL(i915) >= IP_VER(12, 50)) { |
| fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1); |
| gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1); |
| } else { |
| gt->info.sfc_mask = ~0; |
| } |
| |
| for (i = 0; i < I915_MAX_VCS; i++) { |
| if (!HAS_ENGINE(gt, _VCS(i))) { |
| vdbox_mask &= ~BIT(i); |
| continue; |
| } |
| |
| if (!(BIT(i) & vdbox_mask)) { |
| gt->info.engine_mask &= ~BIT(_VCS(i)); |
| gt_dbg(gt, "vcs%u fused off\n", i); |
| continue; |
| } |
| |
| if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask)) |
| gt->info.vdbox_sfc_access |= BIT(i); |
| logical_vdbox++; |
| } |
| gt_dbg(gt, "vdbox enable: %04x, instances: %04lx\n", vdbox_mask, VDBOX_MASK(gt)); |
| GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt)); |
| |
| for (i = 0; i < I915_MAX_VECS; i++) { |
| if (!HAS_ENGINE(gt, _VECS(i))) { |
| vebox_mask &= ~BIT(i); |
| continue; |
| } |
| |
| if (!(BIT(i) & vebox_mask)) { |
| gt->info.engine_mask &= ~BIT(_VECS(i)); |
| gt_dbg(gt, "vecs%u fused off\n", i); |
| } |
| } |
| gt_dbg(gt, "vebox enable: %04x, instances: %04lx\n", vebox_mask, VEBOX_MASK(gt)); |
| GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt)); |
| } |
| |
| static void engine_mask_apply_compute_fuses(struct intel_gt *gt) |
| { |
| struct drm_i915_private *i915 = gt->i915; |
| struct intel_gt_info *info = >->info; |
| int ss_per_ccs = info->sseu.max_subslices / I915_MAX_CCS; |
| unsigned long ccs_mask; |
| unsigned int i; |
| |
| if (GRAPHICS_VER(i915) < 11) |
| return; |
| |
| if (hweight32(CCS_MASK(gt)) <= 1) |
| return; |
| |
| ccs_mask = intel_slicemask_from_xehp_dssmask(info->sseu.compute_subslice_mask, |
| ss_per_ccs); |
| /* |
| * If all DSS in a quadrant are fused off, the corresponding CCS |
| * engine is not available for use. |
| */ |
| for_each_clear_bit(i, &ccs_mask, I915_MAX_CCS) { |
| info->engine_mask &= ~BIT(_CCS(i)); |
| gt_dbg(gt, "ccs%u fused off\n", i); |
| } |
| } |
| |
| static void engine_mask_apply_copy_fuses(struct intel_gt *gt) |
| { |
| struct drm_i915_private *i915 = gt->i915; |
| struct intel_gt_info *info = >->info; |
| unsigned long meml3_mask; |
| unsigned long quad; |
| |
| if (!(GRAPHICS_VER_FULL(i915) >= IP_VER(12, 60) && |
| GRAPHICS_VER_FULL(i915) < IP_VER(12, 70))) |
| return; |
| |
| meml3_mask = intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3); |
| meml3_mask = REG_FIELD_GET(GEN12_MEML3_EN_MASK, meml3_mask); |
| |
| /* |
| * Link Copy engines may be fused off according to meml3_mask. Each |
| * bit is a quad that houses 2 Link Copy and two Sub Copy engines. |
| */ |
| for_each_clear_bit(quad, &meml3_mask, GEN12_MAX_MSLICES) { |
| unsigned int instance = quad * 2 + 1; |
| intel_engine_mask_t mask = GENMASK(_BCS(instance + 1), |
| _BCS(instance)); |
| |
| if (mask & info->engine_mask) { |
| gt_dbg(gt, "bcs%u fused off\n", instance); |
| gt_dbg(gt, "bcs%u fused off\n", instance + 1); |
| |
| info->engine_mask &= ~mask; |
| } |
| } |
| } |
| |
| /* |
| * Determine which engines are fused off in our particular hardware. |
| * Note that we have a catch-22 situation where we need to be able to access |
| * the blitter forcewake domain to read the engine fuses, but at the same time |
| * we need to know which engines are available on the system to know which |
| * forcewake domains are present. We solve this by intializing the forcewake |
| * domains based on the full engine mask in the platform capabilities before |
| * calling this function and pruning the domains for fused-off engines |
| * afterwards. |
| */ |
| static intel_engine_mask_t init_engine_mask(struct intel_gt *gt) |
| { |
| struct intel_gt_info *info = >->info; |
| |
| GEM_BUG_ON(!info->engine_mask); |
| |
| engine_mask_apply_media_fuses(gt); |
| engine_mask_apply_compute_fuses(gt); |
| engine_mask_apply_copy_fuses(gt); |
| |
| /* |
| * The only use of the GSC CS is to load and communicate with the GSC |
| * FW, so we have no use for it if we don't have the FW. |
| * |
| * IMPORTANT: in cases where we don't have the GSC FW, we have a |
| * catch-22 situation that breaks media C6 due to 2 requirements: |
| * 1) once turned on, the GSC power well will not go to sleep unless the |
| * GSC FW is loaded. |
| * 2) to enable idling (which is required for media C6) we need to |
| * initialize the IDLE_MSG register for the GSC CS and do at least 1 |
| * submission, which will wake up the GSC power well. |
| */ |
| if (__HAS_ENGINE(info->engine_mask, GSC0) && !intel_uc_wants_gsc_uc(>->uc)) { |
| gt_notice(gt, "No GSC FW selected, disabling GSC CS and media C6\n"); |
| info->engine_mask &= ~BIT(GSC0); |
| } |
| |
| return info->engine_mask; |
| } |
| |
| static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids, |
| u8 class, const u8 *map, u8 num_instances) |
| { |
| int i, j; |
| u8 current_logical_id = 0; |
| |
| for (j = 0; j < num_instances; ++j) { |
| for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) { |
| if (!HAS_ENGINE(gt, i) || |
| intel_engines[i].class != class) |
| continue; |
| |
| if (intel_engines[i].instance == map[j]) { |
| logical_ids[intel_engines[i].instance] = |
| current_logical_id++; |
| break; |
| } |
| } |
| } |
| } |
| |
| static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class) |
| { |
| /* |
| * Logical to physical mapping is needed for proper support |
| * to split-frame feature. |
| */ |
| if (MEDIA_VER(gt->i915) >= 11 && class == VIDEO_DECODE_CLASS) { |
| const u8 map[] = { 0, 2, 4, 6, 1, 3, 5, 7 }; |
| |
| populate_logical_ids(gt, logical_ids, class, |
| map, ARRAY_SIZE(map)); |
| } else { |
| int i; |
| u8 map[MAX_ENGINE_INSTANCE + 1]; |
| |
| for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i) |
| map[i] = i; |
| populate_logical_ids(gt, logical_ids, class, |
| map, ARRAY_SIZE(map)); |
| } |
| } |
| |
| /** |
| * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers |
| * @gt: pointer to struct intel_gt |
| * |
| * Return: non-zero if the initialization failed. |
| */ |
| int intel_engines_init_mmio(struct intel_gt *gt) |
| { |
| struct drm_i915_private *i915 = gt->i915; |
| const unsigned int engine_mask = init_engine_mask(gt); |
| unsigned int mask = 0; |
| unsigned int i, class; |
| u8 logical_ids[MAX_ENGINE_INSTANCE + 1]; |
| int err; |
| |
| drm_WARN_ON(&i915->drm, engine_mask == 0); |
| drm_WARN_ON(&i915->drm, engine_mask & |
| GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES)); |
| |
| if (i915_inject_probe_failure(i915)) |
| return -ENODEV; |
| |
| for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) { |
| setup_logical_ids(gt, logical_ids, class); |
| |
| for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) { |
| u8 instance = intel_engines[i].instance; |
| |
| if (intel_engines[i].class != class || |
| !HAS_ENGINE(gt, i)) |
| continue; |
| |
| err = intel_engine_setup(gt, i, |
| logical_ids[instance]); |
| if (err) |
| goto cleanup; |
| |
| mask |= BIT(i); |
| } |
| } |
| |
| /* |
| * Catch failures to update intel_engines table when the new engines |
| * are added to the driver by a warning and disabling the forgotten |
| * engines. |
| */ |
| if (drm_WARN_ON(&i915->drm, mask != engine_mask)) |
| gt->info.engine_mask = mask; |
| |
| gt->info.num_engines = hweight32(mask); |
| |
| intel_gt_check_and_clear_faults(gt); |
| |
| intel_setup_engine_capabilities(gt); |
| |
| intel_uncore_prune_engine_fw_domains(gt->uncore, gt); |
| |
| return 0; |
| |
| cleanup: |
| intel_engines_free(gt); |
| return err; |
| } |
| |
| void intel_engine_init_execlists(struct intel_engine_cs *engine) |
| { |
| struct intel_engine_execlists * const execlists = &engine->execlists; |
| |
| execlists->port_mask = 1; |
| GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists))); |
| GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS); |
| |
| memset(execlists->pending, 0, sizeof(execlists->pending)); |
| execlists->active = |
| memset(execlists->inflight, 0, sizeof(execlists->inflight)); |
| } |
| |
| static void cleanup_status_page(struct intel_engine_cs *engine) |
| { |
| struct i915_vma *vma; |
| |
| /* Prevent writes into HWSP after returning the page to the system */ |
| intel_engine_set_hwsp_writemask(engine, ~0u); |
| |
| vma = fetch_and_zero(&engine->status_page.vma); |
| if (!vma) |
| return; |
| |
| if (!HWS_NEEDS_PHYSICAL(engine->i915)) |
| i915_vma_unpin(vma); |
| |
| i915_gem_object_unpin_map(vma->obj); |
| i915_gem_object_put(vma->obj); |
| } |
| |
| static int pin_ggtt_status_page(struct intel_engine_cs *engine, |
| struct i915_gem_ww_ctx *ww, |
| struct i915_vma *vma) |
| { |
| unsigned int flags; |
| |
| if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt)) |
| /* |
| * On g33, we cannot place HWS above 256MiB, so |
| * restrict its pinning to the low mappable arena. |
| * Though this restriction is not documented for |
| * gen4, gen5, or byt, they also behave similarly |
| * and hang if the HWS is placed at the top of the |
| * GTT. To generalise, it appears that all !llc |
| * platforms have issues with us placing the HWS |
| * above the mappable region (even though we never |
| * actually map it). |
| */ |
| flags = PIN_MAPPABLE; |
| else |
| flags = PIN_HIGH; |
| |
| return i915_ggtt_pin(vma, ww, 0, flags); |
| } |
| |
| static int init_status_page(struct intel_engine_cs *engine) |
| { |
| struct drm_i915_gem_object *obj; |
| struct i915_gem_ww_ctx ww; |
| struct i915_vma *vma; |
| void *vaddr; |
| int ret; |
| |
| INIT_LIST_HEAD(&engine->status_page.timelines); |
| |
| /* |
| * Though the HWS register does support 36bit addresses, historically |
| * we have had hangs and corruption reported due to wild writes if |
| * the HWS is placed above 4G. We only allow objects to be allocated |
| * in GFP_DMA32 for i965, and no earlier physical address users had |
| * access to more than 4G. |
| */ |
| obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE); |
| if (IS_ERR(obj)) { |
| gt_err(engine->gt, "Failed to allocate status page\n"); |
| return PTR_ERR(obj); |
| } |
| |
| i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC); |
| |
| vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL); |
| if (IS_ERR(vma)) { |
| ret = PTR_ERR(vma); |
| goto err_put; |
| } |
| |
| i915_gem_ww_ctx_init(&ww, true); |
| retry: |
| ret = i915_gem_object_lock(obj, &ww); |
| if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915)) |
| ret = pin_ggtt_status_page(engine, &ww, vma); |
| if (ret) |
| goto err; |
| |
| vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB); |
| if (IS_ERR(vaddr)) { |
| ret = PTR_ERR(vaddr); |
| goto err_unpin; |
| } |
| |
| engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE); |
| engine->status_page.vma = vma; |
| |
| err_unpin: |
| if (ret) |
| i915_vma_unpin(vma); |
| err: |
| if (ret == -EDEADLK) { |
| ret = i915_gem_ww_ctx_backoff(&ww); |
| if (!ret) |
| goto retry; |
| } |
| i915_gem_ww_ctx_fini(&ww); |
| err_put: |
| if (ret) |
| i915_gem_object_put(obj); |
| return ret; |
| } |
| |
| static int intel_engine_init_tlb_invalidation(struct intel_engine_cs *engine) |
| { |
| static const union intel_engine_tlb_inv_reg gen8_regs[] = { |
| [RENDER_CLASS].reg = GEN8_RTCR, |
| [VIDEO_DECODE_CLASS].reg = GEN8_M1TCR, /* , GEN8_M2TCR */ |
| [VIDEO_ENHANCEMENT_CLASS].reg = GEN8_VTCR, |
| [COPY_ENGINE_CLASS].reg = GEN8_BTCR, |
| }; |
| static const union intel_engine_tlb_inv_reg gen12_regs[] = { |
| [RENDER_CLASS].reg = GEN12_GFX_TLB_INV_CR, |
| [VIDEO_DECODE_CLASS].reg = GEN12_VD_TLB_INV_CR, |
| [VIDEO_ENHANCEMENT_CLASS].reg = GEN12_VE_TLB_INV_CR, |
| [COPY_ENGINE_CLASS].reg = GEN12_BLT_TLB_INV_CR, |
| [COMPUTE_CLASS].reg = GEN12_COMPCTX_TLB_INV_CR, |
| }; |
| static const union intel_engine_tlb_inv_reg xehp_regs[] = { |
| [RENDER_CLASS].mcr_reg = XEHP_GFX_TLB_INV_CR, |
| [VIDEO_DECODE_CLASS].mcr_reg = XEHP_VD_TLB_INV_CR, |
| [VIDEO_ENHANCEMENT_CLASS].mcr_reg = XEHP_VE_TLB_INV_CR, |
| [COPY_ENGINE_CLASS].mcr_reg = XEHP_BLT_TLB_INV_CR, |
| [COMPUTE_CLASS].mcr_reg = XEHP_COMPCTX_TLB_INV_CR, |
| }; |
| static const union intel_engine_tlb_inv_reg xelpmp_regs[] = { |
| [VIDEO_DECODE_CLASS].reg = GEN12_VD_TLB_INV_CR, |
| [VIDEO_ENHANCEMENT_CLASS].reg = GEN12_VE_TLB_INV_CR, |
| [OTHER_CLASS].reg = XELPMP_GSC_TLB_INV_CR, |
| }; |
| struct drm_i915_private *i915 = engine->i915; |
| const unsigned int instance = engine->instance; |
| const unsigned int class = engine->class; |
| const union intel_engine_tlb_inv_reg *regs; |
| union intel_engine_tlb_inv_reg reg; |
| unsigned int num = 0; |
| u32 val; |
| |
| /* |
| * New platforms should not be added with catch-all-newer (>=) |
| * condition so that any later platform added triggers the below warning |
| * and in turn mandates a human cross-check of whether the invalidation |
| * flows have compatible semantics. |
| * |
| * For instance with the 11.00 -> 12.00 transition three out of five |
| * respective engine registers were moved to masked type. Then after the |
| * 12.00 -> 12.50 transition multi cast handling is required too. |
| */ |
| |
| if (engine->gt->type == GT_MEDIA) { |
| if (MEDIA_VER_FULL(i915) == IP_VER(13, 0)) { |
| regs = xelpmp_regs; |
| num = ARRAY_SIZE(xelpmp_regs); |
| } |
| } else { |
| if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 74) || |
| GRAPHICS_VER_FULL(i915) == IP_VER(12, 71) || |
| GRAPHICS_VER_FULL(i915) == IP_VER(12, 70) || |
| GRAPHICS_VER_FULL(i915) == IP_VER(12, 50) || |
| GRAPHICS_VER_FULL(i915) == IP_VER(12, 55)) { |
| regs = xehp_regs; |
| num = ARRAY_SIZE(xehp_regs); |
| } else if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 0) || |
| GRAPHICS_VER_FULL(i915) == IP_VER(12, 10)) { |
| regs = gen12_regs; |
| num = ARRAY_SIZE(gen12_regs); |
| } else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) { |
| regs = gen8_regs; |
| num = ARRAY_SIZE(gen8_regs); |
| } else if (GRAPHICS_VER(i915) < 8) { |
| return 0; |
| } |
| } |
| |
| if (gt_WARN_ONCE(engine->gt, !num, |
| "Platform does not implement TLB invalidation!")) |
| return -ENODEV; |
| |
| if (gt_WARN_ON_ONCE(engine->gt, |
| class >= num || |
| (!regs[class].reg.reg && |
| !regs[class].mcr_reg.reg))) |
| return -ERANGE; |
| |
| reg = regs[class]; |
| |
| if (regs == xelpmp_regs && class == OTHER_CLASS) { |
| /* |
| * There's only a single GSC instance, but it uses register bit |
| * 1 instead of either 0 or OTHER_GSC_INSTANCE. |
| */ |
| GEM_WARN_ON(instance != OTHER_GSC_INSTANCE); |
| val = 1; |
| } else if (regs == gen8_regs && class == VIDEO_DECODE_CLASS && instance == 1) { |
| reg.reg = GEN8_M2TCR; |
| val = 0; |
| } else { |
| val = instance; |
| } |
| |
| val = BIT(val); |
| |
| engine->tlb_inv.mcr = regs == xehp_regs; |
| engine->tlb_inv.reg = reg; |
| engine->tlb_inv.done = val; |
| |
| if (GRAPHICS_VER(i915) >= 12 && |
| (engine->class == VIDEO_DECODE_CLASS || |
| engine->class == VIDEO_ENHANCEMENT_CLASS || |
| engine->class == COMPUTE_CLASS || |
| engine->class == OTHER_CLASS)) |
| engine->tlb_inv.request = _MASKED_BIT_ENABLE(val); |
| else |
| engine->tlb_inv.request = val; |
| |
| return 0; |
| } |
| |
| static int engine_setup_common(struct intel_engine_cs *engine) |
| { |
| int err; |
| |
| init_llist_head(&engine->barrier_tasks); |
| |
| err = intel_engine_init_tlb_invalidation(engine); |
| if (err) |
| return err; |
| |
| err = init_status_page(engine); |
| if (err) |
| return err; |
| |
| engine->breadcrumbs = intel_breadcrumbs_create(engine); |
| if (!engine->breadcrumbs) { |
| err = -ENOMEM; |
| goto err_status; |
| } |
| |
| engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL); |
| if (!engine->sched_engine) { |
| err = -ENOMEM; |
| goto err_sched_engine; |
| } |
| engine->sched_engine->private_data = engine; |
| |
| err = intel_engine_init_cmd_parser(engine); |
| if (err) |
| goto err_cmd_parser; |
| |
| intel_engine_init_execlists(engine); |
| intel_engine_init__pm(engine); |
| intel_engine_init_retire(engine); |
| |
| /* Use the whole device by default */ |
| engine->sseu = |
| intel_sseu_from_device_info(&engine->gt->info.sseu); |
| |
| intel_engine_init_workarounds(engine); |
| intel_engine_init_whitelist(engine); |
| intel_engine_init_ctx_wa(engine); |
| |
| if (GRAPHICS_VER(engine->i915) >= 12) |
| engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO; |
| |
| return 0; |
| |
| err_cmd_parser: |
| i915_sched_engine_put(engine->sched_engine); |
| err_sched_engine: |
| intel_breadcrumbs_put(engine->breadcrumbs); |
| err_status: |
| cleanup_status_page(engine); |
| return err; |
| } |
| |
| struct measure_breadcrumb { |
| struct i915_request rq; |
| struct intel_ring ring; |
| u32 cs[2048]; |
| }; |
| |
| static int measure_breadcrumb_dw(struct intel_context *ce) |
| { |
| struct intel_engine_cs *engine = ce->engine; |
| struct measure_breadcrumb *frame; |
| int dw; |
| |
| GEM_BUG_ON(!engine->gt->scratch); |
| |
| frame = kzalloc(sizeof(*frame), GFP_KERNEL); |
| if (!frame) |
| return -ENOMEM; |
| |
| frame->rq.i915 = engine->i915; |
| frame->rq.engine = engine; |
| frame->rq.context = ce; |
| rcu_assign_pointer(frame->rq.timeline, ce->timeline); |
| frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno; |
| |
| frame->ring.vaddr = frame->cs; |
| frame->ring.size = sizeof(frame->cs); |
| frame->ring.wrap = |
| BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size); |
| frame->ring.effective_size = frame->ring.size; |
| intel_ring_update_space(&frame->ring); |
| frame->rq.ring = &frame->ring; |
| |
| mutex_lock(&ce->timeline->mutex); |
| spin_lock_irq(&engine->sched_engine->lock); |
| |
| dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs; |
| |
| spin_unlock_irq(&engine->sched_engine->lock); |
| mutex_unlock(&ce->timeline->mutex); |
| |
| GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */ |
| |
| kfree(frame); |
| return dw; |
| } |
| |
| struct intel_context * |
| intel_engine_create_pinned_context(struct intel_engine_cs *engine, |
| struct i915_address_space *vm, |
| unsigned int ring_size, |
| unsigned int hwsp, |
| struct lock_class_key *key, |
| const char *name) |
| { |
| struct intel_context *ce; |
| int err; |
| |
| ce = intel_context_create(engine); |
| if (IS_ERR(ce)) |
| return ce; |
| |
| __set_bit(CONTEXT_BARRIER_BIT, &ce->flags); |
| ce->timeline = page_pack_bits(NULL, hwsp); |
| ce->ring = NULL; |
| ce->ring_size = ring_size; |
| |
| i915_vm_put(ce->vm); |
| ce->vm = i915_vm_get(vm); |
| |
| err = intel_context_pin(ce); /* perma-pin so it is always available */ |
| if (err) { |
| intel_context_put(ce); |
| return ERR_PTR(err); |
| } |
| |
| list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list); |
| |
| /* |
| * Give our perma-pinned kernel timelines a separate lockdep class, |
| * so that we can use them from within the normal user timelines |
| * should we need to inject GPU operations during their request |
| * construction. |
| */ |
| lockdep_set_class_and_name(&ce->timeline->mutex, key, name); |
| |
| return ce; |
| } |
| |
| void intel_engine_destroy_pinned_context(struct intel_context *ce) |
| { |
| struct intel_engine_cs *engine = ce->engine; |
| struct i915_vma *hwsp = engine->status_page.vma; |
| |
| GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp); |
| |
| mutex_lock(&hwsp->vm->mutex); |
| list_del(&ce->timeline->engine_link); |
| mutex_unlock(&hwsp->vm->mutex); |
| |
| list_del(&ce->pinned_contexts_link); |
| intel_context_unpin(ce); |
| intel_context_put(ce); |
| } |
| |
| static struct intel_context * |
| create_ggtt_bind_context(struct intel_engine_cs *engine) |
| { |
| static struct lock_class_key kernel; |
| |
| /* |
| * MI_UPDATE_GTT can insert up to 511 PTE entries and there could be multiple |
| * bind requets at a time so get a bigger ring. |
| */ |
| return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_512K, |
| I915_GEM_HWS_GGTT_BIND_ADDR, |
| &kernel, "ggtt_bind_context"); |
| } |
| |
| static struct intel_context * |
| create_kernel_context(struct intel_engine_cs *engine) |
| { |
| static struct lock_class_key kernel; |
| |
| return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K, |
| I915_GEM_HWS_SEQNO_ADDR, |
| &kernel, "kernel_context"); |
| } |
| |
| /* |
| * engine_init_common - initialize engine state which might require hw access |
| * @engine: Engine to initialize. |
| * |
| * Initializes @engine@ structure members shared between legacy and execlists |
| * submission modes which do require hardware access. |
| * |
| * Typcally done at later stages of submission mode specific engine setup. |
| * |
| * Returns zero on success or an error code on failure. |
| */ |
| static int engine_init_common(struct intel_engine_cs *engine) |
| { |
| struct intel_context *ce, *bce = NULL; |
| int ret; |
| |
| engine->set_default_submission(engine); |
| |
| /* |
| * We may need to do things with the shrinker which |
| * require us to immediately switch back to the default |
| * context. This can cause a problem as pinning the |
| * default context also requires GTT space which may not |
| * be available. To avoid this we always pin the default |
| * context. |
| */ |
| ce = create_kernel_context(engine); |
| if (IS_ERR(ce)) |
| return PTR_ERR(ce); |
| /* |
| * Create a separate pinned context for GGTT update with blitter engine |
| * if a platform require such service. MI_UPDATE_GTT works on other |
| * engines as well but BCS should be less busy engine so pick that for |
| * GGTT updates. |
| */ |
| if (i915_ggtt_require_binder(engine->i915) && engine->id == BCS0) { |
| bce = create_ggtt_bind_context(engine); |
| if (IS_ERR(bce)) { |
| ret = PTR_ERR(bce); |
| goto err_ce_context; |
| } |
| } |
| |
| ret = measure_breadcrumb_dw(ce); |
| if (ret < 0) |
| goto err_bce_context; |
| |
| engine->emit_fini_breadcrumb_dw = ret; |
| engine->kernel_context = ce; |
| engine->bind_context = bce; |
| |
| return 0; |
| |
| err_bce_context: |
| if (bce) |
| intel_engine_destroy_pinned_context(bce); |
| err_ce_context: |
| intel_engine_destroy_pinned_context(ce); |
| return ret; |
| } |
| |
| int intel_engines_init(struct intel_gt *gt) |
| { |
| int (*setup)(struct intel_engine_cs *engine); |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| int err; |
| |
| if (intel_uc_uses_guc_submission(>->uc)) { |
| gt->submission_method = INTEL_SUBMISSION_GUC; |
| setup = intel_guc_submission_setup; |
| } else if (HAS_EXECLISTS(gt->i915)) { |
| gt->submission_method = INTEL_SUBMISSION_ELSP; |
| setup = intel_execlists_submission_setup; |
| } else { |
| gt->submission_method = INTEL_SUBMISSION_RING; |
| setup = intel_ring_submission_setup; |
| } |
| |
| for_each_engine(engine, gt, id) { |
| err = engine_setup_common(engine); |
| if (err) |
| return err; |
| |
| err = setup(engine); |
| if (err) { |
| intel_engine_cleanup_common(engine); |
| return err; |
| } |
| |
| /* The backend should now be responsible for cleanup */ |
| GEM_BUG_ON(engine->release == NULL); |
| |
| err = engine_init_common(engine); |
| if (err) |
| return err; |
| |
| intel_engine_add_user(engine); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * intel_engine_cleanup_common - cleans up the engine state created by |
| * the common initiailizers. |
| * @engine: Engine to cleanup. |
| * |
| * This cleans up everything created by the common helpers. |
| */ |
| void intel_engine_cleanup_common(struct intel_engine_cs *engine) |
| { |
| GEM_BUG_ON(!list_empty(&engine->sched_engine->requests)); |
| |
| i915_sched_engine_put(engine->sched_engine); |
| intel_breadcrumbs_put(engine->breadcrumbs); |
| |
| intel_engine_fini_retire(engine); |
| intel_engine_cleanup_cmd_parser(engine); |
| |
| if (engine->default_state) |
| fput(engine->default_state); |
| |
| if (engine->kernel_context) |
| intel_engine_destroy_pinned_context(engine->kernel_context); |
| |
| if (engine->bind_context) |
| intel_engine_destroy_pinned_context(engine->bind_context); |
| |
| |
| GEM_BUG_ON(!llist_empty(&engine->barrier_tasks)); |
| cleanup_status_page(engine); |
| |
| intel_wa_list_free(&engine->ctx_wa_list); |
| intel_wa_list_free(&engine->wa_list); |
| intel_wa_list_free(&engine->whitelist); |
| } |
| |
| /** |
| * intel_engine_resume - re-initializes the HW state of the engine |
| * @engine: Engine to resume. |
| * |
| * Returns zero on success or an error code on failure. |
| */ |
| int intel_engine_resume(struct intel_engine_cs *engine) |
| { |
| intel_engine_apply_workarounds(engine); |
| intel_engine_apply_whitelist(engine); |
| |
| return engine->resume(engine); |
| } |
| |
| u64 intel_engine_get_active_head(const struct intel_engine_cs *engine) |
| { |
| struct drm_i915_private *i915 = engine->i915; |
| |
| u64 acthd; |
| |
| if (GRAPHICS_VER(i915) >= 8) |
| acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW); |
| else if (GRAPHICS_VER(i915) >= 4) |
| acthd = ENGINE_READ(engine, RING_ACTHD); |
| else |
| acthd = ENGINE_READ(engine, ACTHD); |
| |
| return acthd; |
| } |
| |
| u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine) |
| { |
| u64 bbaddr; |
| |
| if (GRAPHICS_VER(engine->i915) >= 8) |
| bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW); |
| else |
| bbaddr = ENGINE_READ(engine, RING_BBADDR); |
| |
| return bbaddr; |
| } |
| |
| static unsigned long stop_timeout(const struct intel_engine_cs *engine) |
| { |
| if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */ |
| return 0; |
| |
| /* |
| * If we are doing a normal GPU reset, we can take our time and allow |
| * the engine to quiesce. We've stopped submission to the engine, and |
| * if we wait long enough an innocent context should complete and |
| * leave the engine idle. So they should not be caught unaware by |
| * the forthcoming GPU reset (which usually follows the stop_cs)! |
| */ |
| return READ_ONCE(engine->props.stop_timeout_ms); |
| } |
| |
| static int __intel_engine_stop_cs(struct intel_engine_cs *engine, |
| int fast_timeout_us, |
| int slow_timeout_ms) |
| { |
| struct intel_uncore *uncore = engine->uncore; |
| const i915_reg_t mode = RING_MI_MODE(engine->mmio_base); |
| int err; |
| |
| intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING)); |
| |
| /* |
| * Wa_22011802037: Prior to doing a reset, ensure CS is |
| * stopped, set ring stop bit and prefetch disable bit to halt CS |
| */ |
| if (intel_engine_reset_needs_wa_22011802037(engine->gt)) |
| intel_uncore_write_fw(uncore, RING_MODE_GEN7(engine->mmio_base), |
| _MASKED_BIT_ENABLE(GEN12_GFX_PREFETCH_DISABLE)); |
| |
| err = __intel_wait_for_register_fw(engine->uncore, mode, |
| MODE_IDLE, MODE_IDLE, |
| fast_timeout_us, |
| slow_timeout_ms, |
| NULL); |
| |
| /* A final mmio read to let GPU writes be hopefully flushed to memory */ |
| intel_uncore_posting_read_fw(uncore, mode); |
| return err; |
| } |
| |
| int intel_engine_stop_cs(struct intel_engine_cs *engine) |
| { |
| int err = 0; |
| |
| if (GRAPHICS_VER(engine->i915) < 3) |
| return -ENODEV; |
| |
| ENGINE_TRACE(engine, "\n"); |
| /* |
| * TODO: Find out why occasionally stopping the CS times out. Seen |
| * especially with gem_eio tests. |
| * |
| * Occasionally trying to stop the cs times out, but does not adversely |
| * affect functionality. The timeout is set as a config parameter that |
| * defaults to 100ms. In most cases the follow up operation is to wait |
| * for pending MI_FORCE_WAKES. The assumption is that this timeout is |
| * sufficient for any pending MI_FORCEWAKEs to complete. Once root |
| * caused, the caller must check and handle the return from this |
| * function. |
| */ |
| if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) { |
| ENGINE_TRACE(engine, |
| "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n", |
| ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR, |
| ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR); |
| |
| /* |
| * Sometimes we observe that the idle flag is not |
| * set even though the ring is empty. So double |
| * check before giving up. |
| */ |
| if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) != |
| (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR)) |
| err = -ETIMEDOUT; |
| } |
| |
| return err; |
| } |
| |
| void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine) |
| { |
| ENGINE_TRACE(engine, "\n"); |
| |
| ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING)); |
| } |
| |
| static u32 __cs_pending_mi_force_wakes(struct intel_engine_cs *engine) |
| { |
| static const i915_reg_t _reg[I915_NUM_ENGINES] = { |
| [RCS0] = MSG_IDLE_CS, |
| [BCS0] = MSG_IDLE_BCS, |
| [VCS0] = MSG_IDLE_VCS0, |
| [VCS1] = MSG_IDLE_VCS1, |
| [VCS2] = MSG_IDLE_VCS2, |
| [VCS3] = MSG_IDLE_VCS3, |
| [VCS4] = MSG_IDLE_VCS4, |
| [VCS5] = MSG_IDLE_VCS5, |
| [VCS6] = MSG_IDLE_VCS6, |
| [VCS7] = MSG_IDLE_VCS7, |
| [VECS0] = MSG_IDLE_VECS0, |
| [VECS1] = MSG_IDLE_VECS1, |
| [VECS2] = MSG_IDLE_VECS2, |
| [VECS3] = MSG_IDLE_VECS3, |
| [CCS0] = MSG_IDLE_CS, |
| [CCS1] = MSG_IDLE_CS, |
| [CCS2] = MSG_IDLE_CS, |
| [CCS3] = MSG_IDLE_CS, |
| }; |
| u32 val; |
| |
| if (!_reg[engine->id].reg) |
| return 0; |
| |
| val = intel_uncore_read(engine->uncore, _reg[engine->id]); |
| |
| /* bits[29:25] & bits[13:9] >> shift */ |
| return (val & (val >> 16) & MSG_IDLE_FW_MASK) >> MSG_IDLE_FW_SHIFT; |
| } |
| |
| static void __gpm_wait_for_fw_complete(struct intel_gt *gt, u32 fw_mask) |
| { |
| int ret; |
| |
| /* Ensure GPM receives fw up/down after CS is stopped */ |
| udelay(1); |
| |
| /* Wait for forcewake request to complete in GPM */ |
| ret = __intel_wait_for_register_fw(gt->uncore, |
| GEN9_PWRGT_DOMAIN_STATUS, |
| fw_mask, fw_mask, 5000, 0, NULL); |
| |
| /* Ensure CS receives fw ack from GPM */ |
| udelay(1); |
| |
| if (ret) |
| GT_TRACE(gt, "Failed to complete pending forcewake %d\n", ret); |
| } |
| |
| /* |
| * Wa_22011802037:gen12: In addition to stopping the cs, we need to wait for any |
| * pending MI_FORCE_WAKEUP requests that the CS has initiated to complete. The |
| * pending status is indicated by bits[13:9] (masked by bits[29:25]) in the |
| * MSG_IDLE register. There's one MSG_IDLE register per reset domain. Since we |
| * are concerned only with the gt reset here, we use a logical OR of pending |
| * forcewakeups from all reset domains and then wait for them to complete by |
| * querying PWRGT_DOMAIN_STATUS. |
| */ |
| void intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs *engine) |
| { |
| u32 fw_pending = __cs_pending_mi_force_wakes(engine); |
| |
| if (fw_pending) |
| __gpm_wait_for_fw_complete(engine->gt, fw_pending); |
| } |
| |
| /* NB: please notice the memset */ |
| void intel_engine_get_instdone(const struct intel_engine_cs *engine, |
| struct intel_instdone *instdone) |
| { |
| struct drm_i915_private *i915 = engine->i915; |
| struct intel_uncore *uncore = engine->uncore; |
| u32 mmio_base = engine->mmio_base; |
| int slice; |
| int subslice; |
| int iter; |
| |
| memset(instdone, 0, sizeof(*instdone)); |
| |
| if (GRAPHICS_VER(i915) >= 8) { |
| instdone->instdone = |
| intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); |
| |
| if (engine->id != RCS0) |
| return; |
| |
| instdone->slice_common = |
| intel_uncore_read(uncore, GEN7_SC_INSTDONE); |
| if (GRAPHICS_VER(i915) >= 12) { |
| instdone->slice_common_extra[0] = |
| intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA); |
| instdone->slice_common_extra[1] = |
| intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2); |
| } |
| |
| for_each_ss_steering(iter, engine->gt, slice, subslice) { |
| instdone->sampler[slice][subslice] = |
| intel_gt_mcr_read(engine->gt, |
| GEN8_SAMPLER_INSTDONE, |
| slice, subslice); |
| instdone->row[slice][subslice] = |
| intel_gt_mcr_read(engine->gt, |
| GEN8_ROW_INSTDONE, |
| slice, subslice); |
| } |
| |
| if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) { |
| for_each_ss_steering(iter, engine->gt, slice, subslice) |
| instdone->geom_svg[slice][subslice] = |
| intel_gt_mcr_read(engine->gt, |
| XEHPG_INSTDONE_GEOM_SVG, |
| slice, subslice); |
| } |
| } else if (GRAPHICS_VER(i915) >= 7) { |
| instdone->instdone = |
| intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); |
| |
| if (engine->id != RCS0) |
| return; |
| |
| instdone->slice_common = |
| intel_uncore_read(uncore, GEN7_SC_INSTDONE); |
| instdone->sampler[0][0] = |
| intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE); |
| instdone->row[0][0] = |
| intel_uncore_read(uncore, GEN7_ROW_INSTDONE); |
| } else if (GRAPHICS_VER(i915) >= 4) { |
| instdone->instdone = |
| intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); |
| if (engine->id == RCS0) |
| /* HACK: Using the wrong struct member */ |
| instdone->slice_common = |
| intel_uncore_read(uncore, GEN4_INSTDONE1); |
| } else { |
| instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE); |
| } |
| } |
| |
| static bool ring_is_idle(struct intel_engine_cs *engine) |
| { |
| bool idle = true; |
| |
| if (I915_SELFTEST_ONLY(!engine->mmio_base)) |
| return true; |
| |
| if (!intel_engine_pm_get_if_awake(engine)) |
| return true; |
| |
| /* First check that no commands are left in the ring */ |
| if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) != |
| (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR)) |
| idle = false; |
| |
| /* No bit for gen2, so assume the CS parser is idle */ |
| if (GRAPHICS_VER(engine->i915) > 2 && |
| !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE)) |
| idle = false; |
| |
| intel_engine_pm_put(engine); |
| |
| return idle; |
| } |
| |
| void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync) |
| { |
| struct tasklet_struct *t = &engine->sched_engine->tasklet; |
| |
| if (!t->callback) |
| return; |
| |
| local_bh_disable(); |
| if (tasklet_trylock(t)) { |
| /* Must wait for any GPU reset in progress. */ |
| if (__tasklet_is_enabled(t)) |
| t->callback(t); |
| tasklet_unlock(t); |
| } |
| local_bh_enable(); |
| |
| /* Synchronise and wait for the tasklet on another CPU */ |
| if (sync) |
| tasklet_unlock_wait(t); |
| } |
| |
| /** |
| * intel_engine_is_idle() - Report if the engine has finished process all work |
| * @engine: the intel_engine_cs |
| * |
| * Return true if there are no requests pending, nothing left to be submitted |
| * to hardware, and that the engine is idle. |
| */ |
| bool intel_engine_is_idle(struct intel_engine_cs *engine) |
| { |
| /* More white lies, if wedged, hw state is inconsistent */ |
| if (intel_gt_is_wedged(engine->gt)) |
| return true; |
| |
| if (!intel_engine_pm_is_awake(engine)) |
| return true; |
| |
| /* Waiting to drain ELSP? */ |
| intel_synchronize_hardirq(engine->i915); |
| intel_engine_flush_submission(engine); |
| |
| /* ELSP is empty, but there are ready requests? E.g. after reset */ |
| if (!i915_sched_engine_is_empty(engine->sched_engine)) |
| return false; |
| |
| /* Ring stopped? */ |
| return ring_is_idle(engine); |
| } |
| |
| bool intel_engines_are_idle(struct intel_gt *gt) |
| { |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| |
| /* |
| * If the driver is wedged, HW state may be very inconsistent and |
| * report that it is still busy, even though we have stopped using it. |
| */ |
| if (intel_gt_is_wedged(gt)) |
| return true; |
| |
| /* Already parked (and passed an idleness test); must still be idle */ |
| if (!READ_ONCE(gt->awake)) |
| return true; |
| |
| for_each_engine(engine, gt, id) { |
| if (!intel_engine_is_idle(engine)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool intel_engine_irq_enable(struct intel_engine_cs *engine) |
| { |
| if (!engine->irq_enable) |
| return false; |
| |
| /* Caller disables interrupts */ |
| spin_lock(engine->gt->irq_lock); |
| engine->irq_enable(engine); |
| spin_unlock(engine->gt->irq_lock); |
| |
| return true; |
| } |
| |
| void intel_engine_irq_disable(struct intel_engine_cs *engine) |
| { |
| if (!engine->irq_disable) |
| return; |
| |
| /* Caller disables interrupts */ |
| spin_lock(engine->gt->irq_lock); |
| engine->irq_disable(engine); |
| spin_unlock(engine->gt->irq_lock); |
| } |
| |
| void intel_engines_reset_default_submission(struct intel_gt *gt) |
| { |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| |
| for_each_engine(engine, gt, id) { |
| if (engine->sanitize) |
| engine->sanitize(engine); |
| |
| engine->set_default_submission(engine); |
| } |
| } |
| |
| bool intel_engine_can_store_dword(struct intel_engine_cs *engine) |
| { |
| switch (GRAPHICS_VER(engine->i915)) { |
| case 2: |
| return false; /* uses physical not virtual addresses */ |
| case 3: |
| /* maybe only uses physical not virtual addresses */ |
| return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915)); |
| case 4: |
| return !IS_I965G(engine->i915); /* who knows! */ |
| case 6: |
| return engine->class != VIDEO_DECODE_CLASS; /* b0rked */ |
| default: |
| return true; |
| } |
| } |
| |
| static struct intel_timeline *get_timeline(struct i915_request *rq) |
| { |
| struct intel_timeline *tl; |
| |
| /* |
| * Even though we are holding the engine->sched_engine->lock here, there |
| * is no control over the submission queue per-se and we are |
| * inspecting the active state at a random point in time, with an |
| * unknown queue. Play safe and make sure the timeline remains valid. |
| * (Only being used for pretty printing, one extra kref shouldn't |
| * cause a camel stampede!) |
| */ |
| rcu_read_lock(); |
| tl = rcu_dereference(rq->timeline); |
| if (!kref_get_unless_zero(&tl->kref)) |
| tl = NULL; |
| rcu_read_unlock(); |
| |
| return tl; |
| } |
| |
| static int print_ring(char *buf, int sz, struct i915_request *rq) |
| { |
| int len = 0; |
| |
| if (!i915_request_signaled(rq)) { |
| struct intel_timeline *tl = get_timeline(rq); |
| |
| len = scnprintf(buf, sz, |
| "ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ", |
| i915_ggtt_offset(rq->ring->vma), |
| tl ? tl->hwsp_offset : 0, |
| hwsp_seqno(rq), |
| DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context), |
| 1000 * 1000)); |
| |
| if (tl) |
| intel_timeline_put(tl); |
| } |
| |
| return len; |
| } |
| |
| static void hexdump(struct drm_printer *m, const void *buf, size_t len) |
| { |
| const size_t rowsize = 8 * sizeof(u32); |
| const void *prev = NULL; |
| bool skip = false; |
| size_t pos; |
| |
| for (pos = 0; pos < len; pos += rowsize) { |
| char line[128]; |
| |
| if (prev && !memcmp(prev, buf + pos, rowsize)) { |
| if (!skip) { |
| drm_printf(m, "*\n"); |
| skip = true; |
| } |
| continue; |
| } |
| |
| WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos, |
| rowsize, sizeof(u32), |
| line, sizeof(line), |
| false) >= sizeof(line)); |
| drm_printf(m, "[%04zx] %s\n", pos, line); |
| |
| prev = buf + pos; |
| skip = false; |
| } |
| } |
| |
| static const char *repr_timer(const struct timer_list *t) |
| { |
| if (!READ_ONCE(t->expires)) |
| return "inactive"; |
| |
| if (timer_pending(t)) |
| return "active"; |
| |
| return "expired"; |
| } |
| |
| static void intel_engine_print_registers(struct intel_engine_cs *engine, |
| struct drm_printer *m) |
| { |
| struct drm_i915_private *i915 = engine->i915; |
| struct intel_engine_execlists * const execlists = &engine->execlists; |
| u64 addr; |
| |
| if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(i915, 4, 7)) |
| drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID)); |
| if (HAS_EXECLISTS(i915)) { |
| drm_printf(m, "\tEL_STAT_HI: 0x%08x\n", |
| ENGINE_READ(engine, RING_EXECLIST_STATUS_HI)); |
| drm_printf(m, "\tEL_STAT_LO: 0x%08x\n", |
| ENGINE_READ(engine, RING_EXECLIST_STATUS_LO)); |
| } |
| drm_printf(m, "\tRING_START: 0x%08x\n", |
| ENGINE_READ(engine, RING_START)); |
| drm_printf(m, "\tRING_HEAD: 0x%08x\n", |
| ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR); |
| drm_printf(m, "\tRING_TAIL: 0x%08x\n", |
| ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR); |
| drm_printf(m, "\tRING_CTL: 0x%08x%s\n", |
| ENGINE_READ(engine, RING_CTL), |
| ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : ""); |
| if (GRAPHICS_VER(engine->i915) > 2) { |
| drm_printf(m, "\tRING_MODE: 0x%08x%s\n", |
| ENGINE_READ(engine, RING_MI_MODE), |
| ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : ""); |
| } |
| |
| if (GRAPHICS_VER(i915) >= 6) { |
| drm_printf(m, "\tRING_IMR: 0x%08x\n", |
| ENGINE_READ(engine, RING_IMR)); |
| drm_printf(m, "\tRING_ESR: 0x%08x\n", |
| ENGINE_READ(engine, RING_ESR)); |
| drm_printf(m, "\tRING_EMR: 0x%08x\n", |
| ENGINE_READ(engine, RING_EMR)); |
| drm_printf(m, "\tRING_EIR: 0x%08x\n", |
| ENGINE_READ(engine, RING_EIR)); |
| } |
| |
| addr = intel_engine_get_active_head(engine); |
| drm_printf(m, "\tACTHD: 0x%08x_%08x\n", |
| upper_32_bits(addr), lower_32_bits(addr)); |
| addr = intel_engine_get_last_batch_head(engine); |
| drm_printf(m, "\tBBADDR: 0x%08x_%08x\n", |
| upper_32_bits(addr), lower_32_bits(addr)); |
| if (GRAPHICS_VER(i915) >= 8) |
| addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW); |
| else if (GRAPHICS_VER(i915) >= 4) |
| addr = ENGINE_READ(engine, RING_DMA_FADD); |
| else |
| addr = ENGINE_READ(engine, DMA_FADD_I8XX); |
| drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n", |
| upper_32_bits(addr), lower_32_bits(addr)); |
| if (GRAPHICS_VER(i915) >= 4) { |
| drm_printf(m, "\tIPEIR: 0x%08x\n", |
| ENGINE_READ(engine, RING_IPEIR)); |
| drm_printf(m, "\tIPEHR: 0x%08x\n", |
| ENGINE_READ(engine, RING_IPEHR)); |
| } else { |
| drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR)); |
| drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR)); |
| } |
| |
| if (HAS_EXECLISTS(i915) && !intel_engine_uses_guc(engine)) { |
| struct i915_request * const *port, *rq; |
| const u32 *hws = |
| &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX]; |
| const u8 num_entries = execlists->csb_size; |
| unsigned int idx; |
| u8 read, write; |
| |
| drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n", |
| str_yes_no(test_bit(TASKLET_STATE_SCHED, &engine->sched_engine->tasklet.state)), |
| str_enabled_disabled(!atomic_read(&engine->sched_engine->tasklet.count)), |
| repr_timer(&engine->execlists.preempt), |
| repr_timer(&engine->execlists.timer)); |
| |
| read = execlists->csb_head; |
| write = READ_ONCE(*execlists->csb_write); |
| |
| drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n", |
| ENGINE_READ(engine, RING_EXECLIST_STATUS_LO), |
| ENGINE_READ(engine, RING_EXECLIST_STATUS_HI), |
| read, write, num_entries); |
| |
| if (read >= num_entries) |
| read = 0; |
| if (write >= num_entries) |
| write = 0; |
| if (read > write) |
| write += num_entries; |
| while (read < write) { |
| idx = ++read % num_entries; |
| drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n", |
| idx, hws[idx * 2], hws[idx * 2 + 1]); |
| } |
| |
| i915_sched_engine_active_lock_bh(engine->sched_engine); |
| rcu_read_lock(); |
| for (port = execlists->active; (rq = *port); port++) { |
| char hdr[160]; |
| int len; |
| |
| len = scnprintf(hdr, sizeof(hdr), |
| "\t\tActive[%d]: ccid:%08x%s%s, ", |
| (int)(port - execlists->active), |
| rq->context->lrc.ccid, |
| intel_context_is_closed(rq->context) ? "!" : "", |
| intel_context_is_banned(rq->context) ? "*" : ""); |
| len += print_ring(hdr + len, sizeof(hdr) - len, rq); |
| scnprintf(hdr + len, sizeof(hdr) - len, "rq: "); |
| i915_request_show(m, rq, hdr, 0); |
| } |
| for (port = execlists->pending; (rq = *port); port++) { |
| char hdr[160]; |
| int len; |
| |
| len = scnprintf(hdr, sizeof(hdr), |
| "\t\tPending[%d]: ccid:%08x%s%s, ", |
| (int)(port - execlists->pending), |
| rq->context->lrc.ccid, |
| intel_context_is_closed(rq->context) ? "!" : "", |
| intel_context_is_banned(rq->context) ? "*" : ""); |
| len += print_ring(hdr + len, sizeof(hdr) - len, rq); |
| scnprintf(hdr + len, sizeof(hdr) - len, "rq: "); |
| i915_request_show(m, rq, hdr, 0); |
| } |
| rcu_read_unlock(); |
| i915_sched_engine_active_unlock_bh(engine->sched_engine); |
| } else if (GRAPHICS_VER(i915) > 6) { |
| drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n", |
| ENGINE_READ(engine, RING_PP_DIR_BASE)); |
| drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n", |
| ENGINE_READ(engine, RING_PP_DIR_BASE_READ)); |
| drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n", |
| ENGINE_READ(engine, RING_PP_DIR_DCLV)); |
| } |
| } |
| |
| static void print_request_ring(struct drm_printer *m, struct i915_request *rq) |
| { |
| struct i915_vma_resource *vma_res = rq->batch_res; |
| void *ring; |
| int size; |
| |
| drm_printf(m, |
| "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n", |
| rq->head, rq->postfix, rq->tail, |
| vma_res ? upper_32_bits(vma_res->start) : ~0u, |
| vma_res ? lower_32_bits(vma_res->start) : ~0u); |
| |
| size = rq->tail - rq->head; |
| if (rq->tail < rq->head) |
| size += rq->ring->size; |
| |
| ring = kmalloc(size, GFP_ATOMIC); |
| if (ring) { |
| const void *vaddr = rq->ring->vaddr; |
| unsigned int head = rq->head; |
| unsigned int len = 0; |
| |
| if (rq->tail < head) { |
| len = rq->ring->size - head; |
| memcpy(ring, vaddr + head, len); |
| head = 0; |
| } |
| memcpy(ring + len, vaddr + head, size - len); |
| |
| hexdump(m, ring, size); |
| kfree(ring); |
| } |
| } |
| |
| static unsigned long read_ul(void *p, size_t x) |
| { |
| return *(unsigned long *)(p + x); |
| } |
| |
| static void print_properties(struct intel_engine_cs *engine, |
| struct drm_printer *m) |
| { |
| static const struct pmap { |
| size_t offset; |
| const char *name; |
| } props[] = { |
| #define P(x) { \ |
| .offset = offsetof(typeof(engine->props), x), \ |
| .name = #x \ |
| } |
| P(heartbeat_interval_ms), |
| P(max_busywait_duration_ns), |
| P(preempt_timeout_ms), |
| P(stop_timeout_ms), |
| P(timeslice_duration_ms), |
| |
| {}, |
| #undef P |
| }; |
| const struct pmap *p; |
| |
| drm_printf(m, "\tProperties:\n"); |
| for (p = props; p->name; p++) |
| drm_printf(m, "\t\t%s: %lu [default %lu]\n", |
| p->name, |
| read_ul(&engine->props, p->offset), |
| read_ul(&engine->defaults, p->offset)); |
| } |
| |
| static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg) |
| { |
| struct intel_timeline *tl = get_timeline(rq); |
| |
| i915_request_show(m, rq, msg, 0); |
| |
| drm_printf(m, "\t\tring->start: 0x%08x\n", |
| i915_ggtt_offset(rq->ring->vma)); |
| drm_printf(m, "\t\tring->head: 0x%08x\n", |
| rq->ring->head); |
| drm_printf(m, "\t\tring->tail: 0x%08x\n", |
| rq->ring->tail); |
| drm_printf(m, "\t\tring->emit: 0x%08x\n", |
| rq->ring->emit); |
| drm_printf(m, "\t\tring->space: 0x%08x\n", |
| rq->ring->space); |
| |
| if (tl) { |
| drm_printf(m, "\t\tring->hwsp: 0x%08x\n", |
| tl->hwsp_offset); |
| intel_timeline_put(tl); |
| } |
| |
| print_request_ring(m, rq); |
| |
| if (rq->context->lrc_reg_state) { |
| drm_printf(m, "Logical Ring Context:\n"); |
| hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE); |
| } |
| } |
| |
| void intel_engine_dump_active_requests(struct list_head *requests, |
| struct i915_request *hung_rq, |
| struct drm_printer *m) |
| { |
| struct i915_request *rq; |
| const char *msg; |
| enum i915_request_state state; |
| |
| list_for_each_entry(rq, requests, sched.link) { |
| if (rq == hung_rq) |
| continue; |
| |
| state = i915_test_request_state(rq); |
| if (state < I915_REQUEST_QUEUED) |
| continue; |
| |
| if (state == I915_REQUEST_ACTIVE) |
| msg = "\t\tactive on engine"; |
| else |
| msg = "\t\tactive in queue"; |
| |
| engine_dump_request(rq, m, msg); |
| } |
| } |
| |
| static void engine_dump_active_requests(struct intel_engine_cs *engine, |
| struct drm_printer *m) |
| { |
| struct intel_context *hung_ce = NULL; |
| struct i915_request *hung_rq = NULL; |
| |
| /* |
| * No need for an engine->irq_seqno_barrier() before the seqno reads. |
| * The GPU is still running so requests are still executing and any |
| * hardware reads will be out of date by the time they are reported. |
| * But the intention here is just to report an instantaneous snapshot |
| * so that's fine. |
| */ |
| intel_engine_get_hung_entity(engine, &hung_ce, &hung_rq); |
| |
| drm_printf(m, "\tRequests:\n"); |
| |
| if (hung_rq) |
| engine_dump_request(hung_rq, m, "\t\thung"); |
| else if (hung_ce) |
| drm_printf(m, "\t\tGot hung ce but no hung rq!\n"); |
| |
| if (intel_uc_uses_guc_submission(&engine->gt->uc)) |
| intel_guc_dump_active_requests(engine, hung_rq, m); |
| else |
| intel_execlists_dump_active_requests(engine, hung_rq, m); |
| |
| if (hung_rq) |
| i915_request_put(hung_rq); |
| } |
| |
| void intel_engine_dump(struct intel_engine_cs *engine, |
| struct drm_printer *m, |
| const char *header, ...) |
| { |
| struct i915_gpu_error * const error = &engine->i915->gpu_error; |
| struct i915_request *rq; |
| intel_wakeref_t wakeref; |
| ktime_t dummy; |
| |
| if (header) { |
| va_list ap; |
| |
| va_start(ap, header); |
| drm_vprintf(m, header, &ap); |
| va_end(ap); |
| } |
| |
| if (intel_gt_is_wedged(engine->gt)) |
| drm_printf(m, "*** WEDGED ***\n"); |
| |
| drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count)); |
| drm_printf(m, "\tBarriers?: %s\n", |
| str_yes_no(!llist_empty(&engine->barrier_tasks))); |
| drm_printf(m, "\tLatency: %luus\n", |
| ewma__engine_latency_read(&engine->latency)); |
| if (intel_engine_supports_stats(engine)) |
| drm_printf(m, "\tRuntime: %llums\n", |
| ktime_to_ms(intel_engine_get_busy_time(engine, |
| &dummy))); |
| drm_printf(m, "\tForcewake: %x domains, %d active\n", |
| engine->fw_domain, READ_ONCE(engine->fw_active)); |
| |
| rcu_read_lock(); |
| rq = READ_ONCE(engine->heartbeat.systole); |
| if (rq) |
| drm_printf(m, "\tHeartbeat: %d ms ago\n", |
| jiffies_to_msecs(jiffies - rq->emitted_jiffies)); |
| rcu_read_unlock(); |
| drm_printf(m, "\tReset count: %d (global %d)\n", |
| i915_reset_engine_count(error, engine), |
| i915_reset_count(error)); |
| print_properties(engine, m); |
| |
| engine_dump_active_requests(engine, m); |
| |
| drm_printf(m, "\tMMIO base: 0x%08x\n", engine->mmio_base); |
| wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm); |
| if (wakeref) { |
| intel_engine_print_registers(engine, m); |
| intel_runtime_pm_put(engine->uncore->rpm, wakeref); |
| } else { |
| drm_printf(m, "\tDevice is asleep; skipping register dump\n"); |
| } |
| |
| intel_execlists_show_requests(engine, m, i915_request_show, 8); |
| |
| drm_printf(m, "HWSP:\n"); |
| hexdump(m, engine->status_page.addr, PAGE_SIZE); |
| |
| drm_printf(m, "Idle? %s\n", str_yes_no(intel_engine_is_idle(engine))); |
| |
| intel_engine_print_breadcrumbs(engine, m); |
| } |
| |
| /** |
| * intel_engine_get_busy_time() - Return current accumulated engine busyness |
| * @engine: engine to report on |
| * @now: monotonic timestamp of sampling |
| * |
| * Returns accumulated time @engine was busy since engine stats were enabled. |
| */ |
| ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now) |
| { |
| return engine->busyness(engine, now); |
| } |
| |
| struct intel_context * |
| intel_engine_create_virtual(struct intel_engine_cs **siblings, |
| unsigned int count, unsigned long flags) |
| { |
| if (count == 0) |
| return ERR_PTR(-EINVAL); |
| |
| if (count == 1 && !(flags & FORCE_VIRTUAL)) |
| return intel_context_create(siblings[0]); |
| |
| GEM_BUG_ON(!siblings[0]->cops->create_virtual); |
| return siblings[0]->cops->create_virtual(siblings, count, flags); |
| } |
| |
| static struct i915_request *engine_execlist_find_hung_request(struct intel_engine_cs *engine) |
| { |
| struct i915_request *request, *active = NULL; |
| |
| /* |
| * This search does not work in GuC submission mode. However, the GuC |
| * will report the hanging context directly to the driver itself. So |
| * the driver should never get here when in GuC mode. |
| */ |
| GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc)); |
| |
| /* |
| * We are called by the error capture, reset and to dump engine |
| * state at random points in time. In particular, note that neither is |
| * crucially ordered with an interrupt. After a hang, the GPU is dead |
| * and we assume that no more writes can happen (we waited long enough |
| * for all writes that were in transaction to be flushed) - adding an |
| * extra delay for a recent interrupt is pointless. Hence, we do |
| * not need an engine->irq_seqno_barrier() before the seqno reads. |
| * At all other times, we must assume the GPU is still running, but |
| * we only care about the snapshot of this moment. |
| */ |
| lockdep_assert_held(&engine->sched_engine->lock); |
| |
| rcu_read_lock(); |
| request = execlists_active(&engine->execlists); |
| if (request) { |
| struct intel_timeline *tl = request->context->timeline; |
| |
| list_for_each_entry_from_reverse(request, &tl->requests, link) { |
| if (__i915_request_is_complete(request)) |
| break; |
| |
| active = request; |
| } |
| } |
| rcu_read_unlock(); |
| if (active) |
| return active; |
| |
| list_for_each_entry(request, &engine->sched_engine->requests, |
| sched.link) { |
| if (i915_test_request_state(request) != I915_REQUEST_ACTIVE) |
| continue; |
| |
| active = request; |
| break; |
| } |
| |
| return active; |
| } |
| |
| void intel_engine_get_hung_entity(struct intel_engine_cs *engine, |
| struct intel_context **ce, struct i915_request **rq) |
| { |
| unsigned long flags; |
| |
| *ce = intel_engine_get_hung_context(engine); |
| if (*ce) { |
| intel_engine_clear_hung_context(engine); |
| |
| *rq = intel_context_get_active_request(*ce); |
| return; |
| } |
| |
| /* |
| * Getting here with GuC enabled means it is a forced error capture |
| * with no actual hang. So, no need to attempt the execlist search. |
| */ |
| if (intel_uc_uses_guc_submission(&engine->gt->uc)) |
| return; |
| |
| spin_lock_irqsave(&engine->sched_engine->lock, flags); |
| *rq = engine_execlist_find_hung_request(engine); |
| if (*rq) |
| *rq = i915_request_get_rcu(*rq); |
| spin_unlock_irqrestore(&engine->sched_engine->lock, flags); |
| } |
| |
| void xehp_enable_ccs_engines(struct intel_engine_cs *engine) |
| { |
| /* |
| * If there are any non-fused-off CCS engines, we need to enable CCS |
| * support in the RCU_MODE register. This only needs to be done once, |
| * so for simplicity we'll take care of this in the RCS engine's |
| * resume handler; since the RCS and all CCS engines belong to the |
| * same reset domain and are reset together, this will also take care |
| * of re-applying the setting after i915-triggered resets. |
| */ |
| if (!CCS_MASK(engine->gt)) |
| return; |
| |
| intel_uncore_write(engine->uncore, GEN12_RCU_MODE, |
| _MASKED_BIT_ENABLE(GEN12_RCU_MODE_CCS_ENABLE)); |
| } |
| |
| #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) |
| #include "mock_engine.c" |
| #include "selftest_engine.c" |
| #include "selftest_engine_cs.c" |
| #endif |