| // SPDX-License-Identifier: MIT |
| /* |
| * Copyright © 2020 Intel Corporation |
| */ |
| |
| #include <asm/set_memory.h> |
| #include <asm/smp.h> |
| #include <linux/types.h> |
| #include <linux/stop_machine.h> |
| |
| #include <drm/drm_managed.h> |
| #include <drm/i915_drm.h> |
| #include <drm/intel-gtt.h> |
| |
| #include "display/intel_display.h" |
| #include "gem/i915_gem_lmem.h" |
| |
| #include "intel_context.h" |
| #include "intel_ggtt_gmch.h" |
| #include "intel_gpu_commands.h" |
| #include "intel_gt.h" |
| #include "intel_gt_regs.h" |
| #include "intel_pci_config.h" |
| #include "intel_ring.h" |
| #include "i915_drv.h" |
| #include "i915_pci.h" |
| #include "i915_reg.h" |
| #include "i915_request.h" |
| #include "i915_scatterlist.h" |
| #include "i915_utils.h" |
| #include "i915_vgpu.h" |
| |
| #include "intel_gtt.h" |
| #include "gen8_ppgtt.h" |
| #include "intel_engine_pm.h" |
| |
| static void i915_ggtt_color_adjust(const struct drm_mm_node *node, |
| unsigned long color, |
| u64 *start, |
| u64 *end) |
| { |
| if (i915_node_color_differs(node, color)) |
| *start += I915_GTT_PAGE_SIZE; |
| |
| /* |
| * Also leave a space between the unallocated reserved node after the |
| * GTT and any objects within the GTT, i.e. we use the color adjustment |
| * to insert a guard page to prevent prefetches crossing over the |
| * GTT boundary. |
| */ |
| node = list_next_entry(node, node_list); |
| if (node->color != color) |
| *end -= I915_GTT_PAGE_SIZE; |
| } |
| |
| static int ggtt_init_hw(struct i915_ggtt *ggtt) |
| { |
| struct drm_i915_private *i915 = ggtt->vm.i915; |
| |
| i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT); |
| |
| ggtt->vm.is_ggtt = true; |
| |
| /* Only VLV supports read-only GGTT mappings */ |
| ggtt->vm.has_read_only = IS_VALLEYVIEW(i915); |
| |
| if (!HAS_LLC(i915) && !HAS_PPGTT(i915)) |
| ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust; |
| |
| if (ggtt->mappable_end) { |
| if (!io_mapping_init_wc(&ggtt->iomap, |
| ggtt->gmadr.start, |
| ggtt->mappable_end)) { |
| ggtt->vm.cleanup(&ggtt->vm); |
| return -EIO; |
| } |
| |
| ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, |
| ggtt->mappable_end); |
| } |
| |
| intel_ggtt_init_fences(ggtt); |
| |
| return 0; |
| } |
| |
| /** |
| * i915_ggtt_init_hw - Initialize GGTT hardware |
| * @i915: i915 device |
| */ |
| int i915_ggtt_init_hw(struct drm_i915_private *i915) |
| { |
| int ret; |
| |
| /* |
| * Note that we use page colouring to enforce a guard page at the |
| * end of the address space. This is required as the CS may prefetch |
| * beyond the end of the batch buffer, across the page boundary, |
| * and beyond the end of the GTT if we do not provide a guard. |
| */ |
| ret = ggtt_init_hw(to_gt(i915)->ggtt); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| /** |
| * i915_ggtt_suspend_vm - Suspend the memory mappings for a GGTT or DPT VM |
| * @vm: The VM to suspend the mappings for |
| * |
| * Suspend the memory mappings for all objects mapped to HW via the GGTT or a |
| * DPT page table. |
| */ |
| void i915_ggtt_suspend_vm(struct i915_address_space *vm) |
| { |
| struct i915_vma *vma, *vn; |
| int save_skip_rewrite; |
| |
| drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt); |
| |
| retry: |
| i915_gem_drain_freed_objects(vm->i915); |
| |
| mutex_lock(&vm->mutex); |
| |
| /* |
| * Skip rewriting PTE on VMA unbind. |
| * FIXME: Use an argument to i915_vma_unbind() instead? |
| */ |
| save_skip_rewrite = vm->skip_pte_rewrite; |
| vm->skip_pte_rewrite = true; |
| |
| list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) { |
| struct drm_i915_gem_object *obj = vma->obj; |
| |
| GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); |
| |
| if (i915_vma_is_pinned(vma) || !i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) |
| continue; |
| |
| /* unlikely to race when GPU is idle, so no worry about slowpath.. */ |
| if (WARN_ON(!i915_gem_object_trylock(obj, NULL))) { |
| /* |
| * No dead objects should appear here, GPU should be |
| * completely idle, and userspace suspended |
| */ |
| i915_gem_object_get(obj); |
| |
| mutex_unlock(&vm->mutex); |
| |
| i915_gem_object_lock(obj, NULL); |
| GEM_WARN_ON(i915_vma_unbind(vma)); |
| i915_gem_object_unlock(obj); |
| i915_gem_object_put(obj); |
| |
| vm->skip_pte_rewrite = save_skip_rewrite; |
| goto retry; |
| } |
| |
| if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) { |
| i915_vma_wait_for_bind(vma); |
| |
| __i915_vma_evict(vma, false); |
| drm_mm_remove_node(&vma->node); |
| } |
| |
| i915_gem_object_unlock(obj); |
| } |
| |
| vm->clear_range(vm, 0, vm->total); |
| |
| vm->skip_pte_rewrite = save_skip_rewrite; |
| |
| mutex_unlock(&vm->mutex); |
| } |
| |
| void i915_ggtt_suspend(struct i915_ggtt *ggtt) |
| { |
| struct intel_gt *gt; |
| |
| i915_ggtt_suspend_vm(&ggtt->vm); |
| ggtt->invalidate(ggtt); |
| |
| list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) |
| intel_gt_check_and_clear_faults(gt); |
| } |
| |
| void gen6_ggtt_invalidate(struct i915_ggtt *ggtt) |
| { |
| struct intel_uncore *uncore = ggtt->vm.gt->uncore; |
| |
| spin_lock_irq(&uncore->lock); |
| intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); |
| intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6); |
| spin_unlock_irq(&uncore->lock); |
| } |
| |
| static bool needs_wc_ggtt_mapping(struct drm_i915_private *i915) |
| { |
| /* |
| * On BXT+/ICL+ writes larger than 64 bit to the GTT pagetable range |
| * will be dropped. For WC mappings in general we have 64 byte burst |
| * writes when the WC buffer is flushed, so we can't use it, but have to |
| * resort to an uncached mapping. The WC issue is easily caught by the |
| * readback check when writing GTT PTE entries. |
| */ |
| if (!IS_GEN9_LP(i915) && GRAPHICS_VER(i915) < 11) |
| return true; |
| |
| return false; |
| } |
| |
| static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt) |
| { |
| struct intel_uncore *uncore = ggtt->vm.gt->uncore; |
| |
| /* |
| * Note that as an uncached mmio write, this will flush the |
| * WCB of the writes into the GGTT before it triggers the invalidate. |
| * |
| * Only perform this when GGTT is mapped as WC, see ggtt_probe_common(). |
| */ |
| if (needs_wc_ggtt_mapping(ggtt->vm.i915)) |
| intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, |
| GFX_FLSH_CNTL_EN); |
| } |
| |
| static void guc_ggtt_ct_invalidate(struct intel_gt *gt) |
| { |
| struct intel_uncore *uncore = gt->uncore; |
| intel_wakeref_t wakeref; |
| |
| with_intel_runtime_pm_if_active(uncore->rpm, wakeref) { |
| struct intel_guc *guc = >->uc.guc; |
| |
| intel_guc_invalidate_tlb_guc(guc); |
| } |
| } |
| |
| static void guc_ggtt_invalidate(struct i915_ggtt *ggtt) |
| { |
| struct drm_i915_private *i915 = ggtt->vm.i915; |
| struct intel_gt *gt; |
| |
| gen8_ggtt_invalidate(ggtt); |
| |
| list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) { |
| if (intel_guc_tlb_invalidation_is_available(>->uc.guc)) |
| guc_ggtt_ct_invalidate(gt); |
| else if (GRAPHICS_VER(i915) >= 12) |
| intel_uncore_write_fw(gt->uncore, |
| GEN12_GUC_TLB_INV_CR, |
| GEN12_GUC_TLB_INV_CR_INVALIDATE); |
| else |
| intel_uncore_write_fw(gt->uncore, |
| GEN8_GTCR, GEN8_GTCR_INVALIDATE); |
| } |
| } |
| |
| static u64 mtl_ggtt_pte_encode(dma_addr_t addr, |
| unsigned int pat_index, |
| u32 flags) |
| { |
| gen8_pte_t pte = addr | GEN8_PAGE_PRESENT; |
| |
| WARN_ON_ONCE(addr & ~GEN12_GGTT_PTE_ADDR_MASK); |
| |
| if (flags & PTE_LM) |
| pte |= GEN12_GGTT_PTE_LM; |
| |
| if (pat_index & BIT(0)) |
| pte |= MTL_GGTT_PTE_PAT0; |
| |
| if (pat_index & BIT(1)) |
| pte |= MTL_GGTT_PTE_PAT1; |
| |
| return pte; |
| } |
| |
| u64 gen8_ggtt_pte_encode(dma_addr_t addr, |
| unsigned int pat_index, |
| u32 flags) |
| { |
| gen8_pte_t pte = addr | GEN8_PAGE_PRESENT; |
| |
| if (flags & PTE_LM) |
| pte |= GEN12_GGTT_PTE_LM; |
| |
| return pte; |
| } |
| |
| static bool should_update_ggtt_with_bind(struct i915_ggtt *ggtt) |
| { |
| struct intel_gt *gt = ggtt->vm.gt; |
| |
| return intel_gt_is_bind_context_ready(gt); |
| } |
| |
| static struct intel_context *gen8_ggtt_bind_get_ce(struct i915_ggtt *ggtt, intel_wakeref_t *wakeref) |
| { |
| struct intel_context *ce; |
| struct intel_gt *gt = ggtt->vm.gt; |
| |
| if (intel_gt_is_wedged(gt)) |
| return NULL; |
| |
| ce = gt->engine[BCS0]->bind_context; |
| GEM_BUG_ON(!ce); |
| |
| /* |
| * If the GT is not awake already at this stage then fallback |
| * to pci based GGTT update otherwise __intel_wakeref_get_first() |
| * would conflict with fs_reclaim trying to allocate memory while |
| * doing rpm_resume(). |
| */ |
| *wakeref = intel_gt_pm_get_if_awake(gt); |
| if (!*wakeref) |
| return NULL; |
| |
| intel_engine_pm_get(ce->engine); |
| |
| return ce; |
| } |
| |
| static void gen8_ggtt_bind_put_ce(struct intel_context *ce, intel_wakeref_t wakeref) |
| { |
| intel_engine_pm_put(ce->engine); |
| intel_gt_pm_put(ce->engine->gt, wakeref); |
| } |
| |
| static bool gen8_ggtt_bind_ptes(struct i915_ggtt *ggtt, u32 offset, |
| struct sg_table *pages, u32 num_entries, |
| const gen8_pte_t pte) |
| { |
| struct i915_sched_attr attr = {}; |
| struct intel_gt *gt = ggtt->vm.gt; |
| const gen8_pte_t scratch_pte = ggtt->vm.scratch[0]->encode; |
| struct sgt_iter iter; |
| struct i915_request *rq; |
| struct intel_context *ce; |
| intel_wakeref_t wakeref; |
| u32 *cs; |
| |
| if (!num_entries) |
| return true; |
| |
| ce = gen8_ggtt_bind_get_ce(ggtt, &wakeref); |
| if (!ce) |
| return false; |
| |
| if (pages) |
| iter = __sgt_iter(pages->sgl, true); |
| |
| while (num_entries) { |
| int count = 0; |
| dma_addr_t addr; |
| /* |
| * MI_UPDATE_GTT can update 512 entries in a single command but |
| * that end up with engine reset, 511 works. |
| */ |
| u32 n_ptes = min_t(u32, 511, num_entries); |
| |
| if (mutex_lock_interruptible(&ce->timeline->mutex)) |
| goto put_ce; |
| |
| intel_context_enter(ce); |
| rq = __i915_request_create(ce, GFP_NOWAIT | GFP_ATOMIC); |
| intel_context_exit(ce); |
| if (IS_ERR(rq)) { |
| GT_TRACE(gt, "Failed to get bind request\n"); |
| mutex_unlock(&ce->timeline->mutex); |
| goto put_ce; |
| } |
| |
| cs = intel_ring_begin(rq, 2 * n_ptes + 2); |
| if (IS_ERR(cs)) { |
| GT_TRACE(gt, "Failed to ring space for GGTT bind\n"); |
| i915_request_set_error_once(rq, PTR_ERR(cs)); |
| /* once a request is created, it must be queued */ |
| goto queue_err_rq; |
| } |
| |
| *cs++ = MI_UPDATE_GTT | (2 * n_ptes); |
| *cs++ = offset << 12; |
| |
| if (pages) { |
| for_each_sgt_daddr_next(addr, iter) { |
| if (count == n_ptes) |
| break; |
| *cs++ = lower_32_bits(pte | addr); |
| *cs++ = upper_32_bits(pte | addr); |
| count++; |
| } |
| /* fill remaining with scratch pte, if any */ |
| if (count < n_ptes) { |
| memset64((u64 *)cs, scratch_pte, |
| n_ptes - count); |
| cs += (n_ptes - count) * 2; |
| } |
| } else { |
| memset64((u64 *)cs, pte, n_ptes); |
| cs += n_ptes * 2; |
| } |
| |
| intel_ring_advance(rq, cs); |
| queue_err_rq: |
| i915_request_get(rq); |
| __i915_request_commit(rq); |
| __i915_request_queue(rq, &attr); |
| |
| mutex_unlock(&ce->timeline->mutex); |
| /* This will break if the request is complete or after engine reset */ |
| i915_request_wait(rq, 0, MAX_SCHEDULE_TIMEOUT); |
| if (rq->fence.error) |
| goto err_rq; |
| |
| i915_request_put(rq); |
| |
| num_entries -= n_ptes; |
| offset += n_ptes; |
| } |
| |
| gen8_ggtt_bind_put_ce(ce, wakeref); |
| return true; |
| |
| err_rq: |
| i915_request_put(rq); |
| put_ce: |
| gen8_ggtt_bind_put_ce(ce, wakeref); |
| return false; |
| } |
| |
| static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte) |
| { |
| writeq(pte, addr); |
| } |
| |
| static void gen8_ggtt_insert_page(struct i915_address_space *vm, |
| dma_addr_t addr, |
| u64 offset, |
| unsigned int pat_index, |
| u32 flags) |
| { |
| struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); |
| gen8_pte_t __iomem *pte = |
| (gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE; |
| |
| gen8_set_pte(pte, ggtt->vm.pte_encode(addr, pat_index, flags)); |
| |
| ggtt->invalidate(ggtt); |
| } |
| |
| static void gen8_ggtt_insert_page_bind(struct i915_address_space *vm, |
| dma_addr_t addr, u64 offset, |
| unsigned int pat_index, u32 flags) |
| { |
| struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); |
| gen8_pte_t pte; |
| |
| pte = ggtt->vm.pte_encode(addr, pat_index, flags); |
| if (should_update_ggtt_with_bind(i915_vm_to_ggtt(vm)) && |
| gen8_ggtt_bind_ptes(ggtt, offset, NULL, 1, pte)) |
| return ggtt->invalidate(ggtt); |
| |
| gen8_ggtt_insert_page(vm, addr, offset, pat_index, flags); |
| } |
| |
| static void gen8_ggtt_insert_entries(struct i915_address_space *vm, |
| struct i915_vma_resource *vma_res, |
| unsigned int pat_index, |
| u32 flags) |
| { |
| struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); |
| const gen8_pte_t pte_encode = ggtt->vm.pte_encode(0, pat_index, flags); |
| gen8_pte_t __iomem *gte; |
| gen8_pte_t __iomem *end; |
| struct sgt_iter iter; |
| dma_addr_t addr; |
| |
| /* |
| * Note that we ignore PTE_READ_ONLY here. The caller must be careful |
| * not to allow the user to override access to a read only page. |
| */ |
| |
| gte = (gen8_pte_t __iomem *)ggtt->gsm; |
| gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE; |
| end = gte + vma_res->guard / I915_GTT_PAGE_SIZE; |
| while (gte < end) |
| gen8_set_pte(gte++, vm->scratch[0]->encode); |
| end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE; |
| |
| for_each_sgt_daddr(addr, iter, vma_res->bi.pages) |
| gen8_set_pte(gte++, pte_encode | addr); |
| GEM_BUG_ON(gte > end); |
| |
| /* Fill the allocated but "unused" space beyond the end of the buffer */ |
| while (gte < end) |
| gen8_set_pte(gte++, vm->scratch[0]->encode); |
| |
| /* |
| * We want to flush the TLBs only after we're certain all the PTE |
| * updates have finished. |
| */ |
| ggtt->invalidate(ggtt); |
| } |
| |
| static bool __gen8_ggtt_insert_entries_bind(struct i915_address_space *vm, |
| struct i915_vma_resource *vma_res, |
| unsigned int pat_index, u32 flags) |
| { |
| struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); |
| gen8_pte_t scratch_pte = vm->scratch[0]->encode; |
| gen8_pte_t pte_encode; |
| u64 start, end; |
| |
| pte_encode = ggtt->vm.pte_encode(0, pat_index, flags); |
| start = (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE; |
| end = start + vma_res->guard / I915_GTT_PAGE_SIZE; |
| if (!gen8_ggtt_bind_ptes(ggtt, start, NULL, end - start, scratch_pte)) |
| goto err; |
| |
| start = end; |
| end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE; |
| if (!gen8_ggtt_bind_ptes(ggtt, start, vma_res->bi.pages, |
| vma_res->node_size / I915_GTT_PAGE_SIZE, pte_encode)) |
| goto err; |
| |
| start += vma_res->node_size / I915_GTT_PAGE_SIZE; |
| if (!gen8_ggtt_bind_ptes(ggtt, start, NULL, end - start, scratch_pte)) |
| goto err; |
| |
| return true; |
| |
| err: |
| return false; |
| } |
| |
| static void gen8_ggtt_insert_entries_bind(struct i915_address_space *vm, |
| struct i915_vma_resource *vma_res, |
| unsigned int pat_index, u32 flags) |
| { |
| struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); |
| |
| if (should_update_ggtt_with_bind(i915_vm_to_ggtt(vm)) && |
| __gen8_ggtt_insert_entries_bind(vm, vma_res, pat_index, flags)) |
| return ggtt->invalidate(ggtt); |
| |
| gen8_ggtt_insert_entries(vm, vma_res, pat_index, flags); |
| } |
| |
| static void gen8_ggtt_clear_range(struct i915_address_space *vm, |
| u64 start, u64 length) |
| { |
| struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); |
| unsigned int first_entry = start / I915_GTT_PAGE_SIZE; |
| unsigned int num_entries = length / I915_GTT_PAGE_SIZE; |
| const gen8_pte_t scratch_pte = vm->scratch[0]->encode; |
| gen8_pte_t __iomem *gtt_base = |
| (gen8_pte_t __iomem *)ggtt->gsm + first_entry; |
| const int max_entries = ggtt_total_entries(ggtt) - first_entry; |
| int i; |
| |
| if (WARN(num_entries > max_entries, |
| "First entry = %d; Num entries = %d (max=%d)\n", |
| first_entry, num_entries, max_entries)) |
| num_entries = max_entries; |
| |
| for (i = 0; i < num_entries; i++) |
| gen8_set_pte(>t_base[i], scratch_pte); |
| } |
| |
| static void gen8_ggtt_scratch_range_bind(struct i915_address_space *vm, |
| u64 start, u64 length) |
| { |
| struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); |
| unsigned int first_entry = start / I915_GTT_PAGE_SIZE; |
| unsigned int num_entries = length / I915_GTT_PAGE_SIZE; |
| const gen8_pte_t scratch_pte = vm->scratch[0]->encode; |
| const int max_entries = ggtt_total_entries(ggtt) - first_entry; |
| |
| if (WARN(num_entries > max_entries, |
| "First entry = %d; Num entries = %d (max=%d)\n", |
| first_entry, num_entries, max_entries)) |
| num_entries = max_entries; |
| |
| if (should_update_ggtt_with_bind(ggtt) && gen8_ggtt_bind_ptes(ggtt, first_entry, |
| NULL, num_entries, scratch_pte)) |
| return ggtt->invalidate(ggtt); |
| |
| gen8_ggtt_clear_range(vm, start, length); |
| } |
| |
| static void gen6_ggtt_insert_page(struct i915_address_space *vm, |
| dma_addr_t addr, |
| u64 offset, |
| unsigned int pat_index, |
| u32 flags) |
| { |
| struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); |
| gen6_pte_t __iomem *pte = |
| (gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE; |
| |
| iowrite32(vm->pte_encode(addr, pat_index, flags), pte); |
| |
| ggtt->invalidate(ggtt); |
| } |
| |
| /* |
| * Binds an object into the global gtt with the specified cache level. |
| * The object will be accessible to the GPU via commands whose operands |
| * reference offsets within the global GTT as well as accessible by the GPU |
| * through the GMADR mapped BAR (i915->mm.gtt->gtt). |
| */ |
| static void gen6_ggtt_insert_entries(struct i915_address_space *vm, |
| struct i915_vma_resource *vma_res, |
| unsigned int pat_index, |
| u32 flags) |
| { |
| struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); |
| gen6_pte_t __iomem *gte; |
| gen6_pte_t __iomem *end; |
| struct sgt_iter iter; |
| dma_addr_t addr; |
| |
| gte = (gen6_pte_t __iomem *)ggtt->gsm; |
| gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE; |
| |
| end = gte + vma_res->guard / I915_GTT_PAGE_SIZE; |
| while (gte < end) |
| iowrite32(vm->scratch[0]->encode, gte++); |
| end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE; |
| for_each_sgt_daddr(addr, iter, vma_res->bi.pages) |
| iowrite32(vm->pte_encode(addr, pat_index, flags), gte++); |
| GEM_BUG_ON(gte > end); |
| |
| /* Fill the allocated but "unused" space beyond the end of the buffer */ |
| while (gte < end) |
| iowrite32(vm->scratch[0]->encode, gte++); |
| |
| /* |
| * We want to flush the TLBs only after we're certain all the PTE |
| * updates have finished. |
| */ |
| ggtt->invalidate(ggtt); |
| } |
| |
| static void nop_clear_range(struct i915_address_space *vm, |
| u64 start, u64 length) |
| { |
| } |
| |
| static void bxt_vtd_ggtt_wa(struct i915_address_space *vm) |
| { |
| /* |
| * Make sure the internal GAM fifo has been cleared of all GTT |
| * writes before exiting stop_machine(). This guarantees that |
| * any aperture accesses waiting to start in another process |
| * cannot back up behind the GTT writes causing a hang. |
| * The register can be any arbitrary GAM register. |
| */ |
| intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6); |
| } |
| |
| struct insert_page { |
| struct i915_address_space *vm; |
| dma_addr_t addr; |
| u64 offset; |
| unsigned int pat_index; |
| }; |
| |
| static int bxt_vtd_ggtt_insert_page__cb(void *_arg) |
| { |
| struct insert_page *arg = _arg; |
| |
| gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, |
| arg->pat_index, 0); |
| bxt_vtd_ggtt_wa(arg->vm); |
| |
| return 0; |
| } |
| |
| static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm, |
| dma_addr_t addr, |
| u64 offset, |
| unsigned int pat_index, |
| u32 unused) |
| { |
| struct insert_page arg = { vm, addr, offset, pat_index }; |
| |
| stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL); |
| } |
| |
| struct insert_entries { |
| struct i915_address_space *vm; |
| struct i915_vma_resource *vma_res; |
| unsigned int pat_index; |
| u32 flags; |
| }; |
| |
| static int bxt_vtd_ggtt_insert_entries__cb(void *_arg) |
| { |
| struct insert_entries *arg = _arg; |
| |
| gen8_ggtt_insert_entries(arg->vm, arg->vma_res, |
| arg->pat_index, arg->flags); |
| bxt_vtd_ggtt_wa(arg->vm); |
| |
| return 0; |
| } |
| |
| static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm, |
| struct i915_vma_resource *vma_res, |
| unsigned int pat_index, |
| u32 flags) |
| { |
| struct insert_entries arg = { vm, vma_res, pat_index, flags }; |
| |
| stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL); |
| } |
| |
| static void gen6_ggtt_clear_range(struct i915_address_space *vm, |
| u64 start, u64 length) |
| { |
| struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); |
| unsigned int first_entry = start / I915_GTT_PAGE_SIZE; |
| unsigned int num_entries = length / I915_GTT_PAGE_SIZE; |
| gen6_pte_t scratch_pte, __iomem *gtt_base = |
| (gen6_pte_t __iomem *)ggtt->gsm + first_entry; |
| const int max_entries = ggtt_total_entries(ggtt) - first_entry; |
| int i; |
| |
| if (WARN(num_entries > max_entries, |
| "First entry = %d; Num entries = %d (max=%d)\n", |
| first_entry, num_entries, max_entries)) |
| num_entries = max_entries; |
| |
| scratch_pte = vm->scratch[0]->encode; |
| for (i = 0; i < num_entries; i++) |
| iowrite32(scratch_pte, >t_base[i]); |
| } |
| |
| void intel_ggtt_bind_vma(struct i915_address_space *vm, |
| struct i915_vm_pt_stash *stash, |
| struct i915_vma_resource *vma_res, |
| unsigned int pat_index, |
| u32 flags) |
| { |
| u32 pte_flags; |
| |
| if (vma_res->bound_flags & (~flags & I915_VMA_BIND_MASK)) |
| return; |
| |
| vma_res->bound_flags |= flags; |
| |
| /* Applicable to VLV (gen8+ do not support RO in the GGTT) */ |
| pte_flags = 0; |
| if (vma_res->bi.readonly) |
| pte_flags |= PTE_READ_ONLY; |
| if (vma_res->bi.lmem) |
| pte_flags |= PTE_LM; |
| |
| vm->insert_entries(vm, vma_res, pat_index, pte_flags); |
| vma_res->page_sizes_gtt = I915_GTT_PAGE_SIZE; |
| } |
| |
| void intel_ggtt_unbind_vma(struct i915_address_space *vm, |
| struct i915_vma_resource *vma_res) |
| { |
| vm->clear_range(vm, vma_res->start, vma_res->vma_size); |
| } |
| |
| /* |
| * Reserve the top of the GuC address space for firmware images. Addresses |
| * beyond GUC_GGTT_TOP in the GuC address space are inaccessible by GuC, |
| * which makes for a suitable range to hold GuC/HuC firmware images if the |
| * size of the GGTT is 4G. However, on a 32-bit platform the size of the GGTT |
| * is limited to 2G, which is less than GUC_GGTT_TOP, but we reserve a chunk |
| * of the same size anyway, which is far more than needed, to keep the logic |
| * in uc_fw_ggtt_offset() simple. |
| */ |
| #define GUC_TOP_RESERVE_SIZE (SZ_4G - GUC_GGTT_TOP) |
| |
| static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt) |
| { |
| u64 offset; |
| int ret; |
| |
| if (!intel_uc_uses_guc(&ggtt->vm.gt->uc)) |
| return 0; |
| |
| GEM_BUG_ON(ggtt->vm.total <= GUC_TOP_RESERVE_SIZE); |
| offset = ggtt->vm.total - GUC_TOP_RESERVE_SIZE; |
| |
| ret = i915_gem_gtt_reserve(&ggtt->vm, NULL, &ggtt->uc_fw, |
| GUC_TOP_RESERVE_SIZE, offset, |
| I915_COLOR_UNEVICTABLE, PIN_NOEVICT); |
| if (ret) |
| drm_dbg(&ggtt->vm.i915->drm, |
| "Failed to reserve top of GGTT for GuC\n"); |
| |
| return ret; |
| } |
| |
| static void ggtt_release_guc_top(struct i915_ggtt *ggtt) |
| { |
| if (drm_mm_node_allocated(&ggtt->uc_fw)) |
| drm_mm_remove_node(&ggtt->uc_fw); |
| } |
| |
| static void cleanup_init_ggtt(struct i915_ggtt *ggtt) |
| { |
| ggtt_release_guc_top(ggtt); |
| if (drm_mm_node_allocated(&ggtt->error_capture)) |
| drm_mm_remove_node(&ggtt->error_capture); |
| mutex_destroy(&ggtt->error_mutex); |
| } |
| |
| static int init_ggtt(struct i915_ggtt *ggtt) |
| { |
| /* |
| * Let GEM Manage all of the aperture. |
| * |
| * However, leave one page at the end still bound to the scratch page. |
| * There are a number of places where the hardware apparently prefetches |
| * past the end of the object, and we've seen multiple hangs with the |
| * GPU head pointer stuck in a batchbuffer bound at the last page of the |
| * aperture. One page should be enough to keep any prefetching inside |
| * of the aperture. |
| */ |
| unsigned long hole_start, hole_end; |
| struct drm_mm_node *entry; |
| int ret; |
| |
| /* |
| * GuC requires all resources that we're sharing with it to be placed in |
| * non-WOPCM memory. If GuC is not present or not in use we still need a |
| * small bias as ring wraparound at offset 0 sometimes hangs. No idea |
| * why. |
| */ |
| ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE, |
| intel_wopcm_guc_size(&ggtt->vm.gt->wopcm)); |
| |
| ret = intel_vgt_balloon(ggtt); |
| if (ret) |
| return ret; |
| |
| mutex_init(&ggtt->error_mutex); |
| if (ggtt->mappable_end) { |
| /* |
| * Reserve a mappable slot for our lockless error capture. |
| * |
| * We strongly prefer taking address 0x0 in order to protect |
| * other critical buffers against accidental overwrites, |
| * as writing to address 0 is a very common mistake. |
| * |
| * Since 0 may already be in use by the system (e.g. the BIOS |
| * framebuffer), we let the reservation fail quietly and hope |
| * 0 remains reserved always. |
| * |
| * If we fail to reserve 0, and then fail to find any space |
| * for an error-capture, remain silent. We can afford not |
| * to reserve an error_capture node as we have fallback |
| * paths, and we trust that 0 will remain reserved. However, |
| * the only likely reason for failure to insert is a driver |
| * bug, which we expect to cause other failures... |
| * |
| * Since CPU can perform speculative reads on error capture |
| * (write-combining allows it) add scratch page after error |
| * capture to avoid DMAR errors. |
| */ |
| ggtt->error_capture.size = 2 * I915_GTT_PAGE_SIZE; |
| ggtt->error_capture.color = I915_COLOR_UNEVICTABLE; |
| if (drm_mm_reserve_node(&ggtt->vm.mm, &ggtt->error_capture)) |
| drm_mm_insert_node_in_range(&ggtt->vm.mm, |
| &ggtt->error_capture, |
| ggtt->error_capture.size, 0, |
| ggtt->error_capture.color, |
| 0, ggtt->mappable_end, |
| DRM_MM_INSERT_LOW); |
| } |
| if (drm_mm_node_allocated(&ggtt->error_capture)) { |
| u64 start = ggtt->error_capture.start; |
| u64 size = ggtt->error_capture.size; |
| |
| ggtt->vm.scratch_range(&ggtt->vm, start, size); |
| drm_dbg(&ggtt->vm.i915->drm, |
| "Reserved GGTT:[%llx, %llx] for use by error capture\n", |
| start, start + size); |
| } |
| |
| /* |
| * The upper portion of the GuC address space has a sizeable hole |
| * (several MB) that is inaccessible by GuC. Reserve this range within |
| * GGTT as it can comfortably hold GuC/HuC firmware images. |
| */ |
| ret = ggtt_reserve_guc_top(ggtt); |
| if (ret) |
| goto err; |
| |
| /* Clear any non-preallocated blocks */ |
| drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) { |
| drm_dbg(&ggtt->vm.i915->drm, |
| "clearing unused GTT space: [%lx, %lx]\n", |
| hole_start, hole_end); |
| ggtt->vm.clear_range(&ggtt->vm, hole_start, |
| hole_end - hole_start); |
| } |
| |
| /* And finally clear the reserved guard page */ |
| ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE); |
| |
| return 0; |
| |
| err: |
| cleanup_init_ggtt(ggtt); |
| return ret; |
| } |
| |
| static void aliasing_gtt_bind_vma(struct i915_address_space *vm, |
| struct i915_vm_pt_stash *stash, |
| struct i915_vma_resource *vma_res, |
| unsigned int pat_index, |
| u32 flags) |
| { |
| u32 pte_flags; |
| |
| /* Currently applicable only to VLV */ |
| pte_flags = 0; |
| if (vma_res->bi.readonly) |
| pte_flags |= PTE_READ_ONLY; |
| |
| if (flags & I915_VMA_LOCAL_BIND) |
| ppgtt_bind_vma(&i915_vm_to_ggtt(vm)->alias->vm, |
| stash, vma_res, pat_index, flags); |
| |
| if (flags & I915_VMA_GLOBAL_BIND) |
| vm->insert_entries(vm, vma_res, pat_index, pte_flags); |
| |
| vma_res->bound_flags |= flags; |
| } |
| |
| static void aliasing_gtt_unbind_vma(struct i915_address_space *vm, |
| struct i915_vma_resource *vma_res) |
| { |
| if (vma_res->bound_flags & I915_VMA_GLOBAL_BIND) |
| vm->clear_range(vm, vma_res->start, vma_res->vma_size); |
| |
| if (vma_res->bound_flags & I915_VMA_LOCAL_BIND) |
| ppgtt_unbind_vma(&i915_vm_to_ggtt(vm)->alias->vm, vma_res); |
| } |
| |
| static int init_aliasing_ppgtt(struct i915_ggtt *ggtt) |
| { |
| struct i915_vm_pt_stash stash = {}; |
| struct i915_ppgtt *ppgtt; |
| int err; |
| |
| ppgtt = i915_ppgtt_create(ggtt->vm.gt, 0); |
| if (IS_ERR(ppgtt)) |
| return PTR_ERR(ppgtt); |
| |
| if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) { |
| err = -ENODEV; |
| goto err_ppgtt; |
| } |
| |
| err = i915_vm_alloc_pt_stash(&ppgtt->vm, &stash, ggtt->vm.total); |
| if (err) |
| goto err_ppgtt; |
| |
| i915_gem_object_lock(ppgtt->vm.scratch[0], NULL); |
| err = i915_vm_map_pt_stash(&ppgtt->vm, &stash); |
| i915_gem_object_unlock(ppgtt->vm.scratch[0]); |
| if (err) |
| goto err_stash; |
| |
| /* |
| * Note we only pre-allocate as far as the end of the global |
| * GTT. On 48b / 4-level page-tables, the difference is very, |
| * very significant! We have to preallocate as GVT/vgpu does |
| * not like the page directory disappearing. |
| */ |
| ppgtt->vm.allocate_va_range(&ppgtt->vm, &stash, 0, ggtt->vm.total); |
| |
| ggtt->alias = ppgtt; |
| ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags; |
| |
| GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != intel_ggtt_bind_vma); |
| ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma; |
| |
| GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != intel_ggtt_unbind_vma); |
| ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma; |
| |
| i915_vm_free_pt_stash(&ppgtt->vm, &stash); |
| return 0; |
| |
| err_stash: |
| i915_vm_free_pt_stash(&ppgtt->vm, &stash); |
| err_ppgtt: |
| i915_vm_put(&ppgtt->vm); |
| return err; |
| } |
| |
| static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt) |
| { |
| struct i915_ppgtt *ppgtt; |
| |
| ppgtt = fetch_and_zero(&ggtt->alias); |
| if (!ppgtt) |
| return; |
| |
| i915_vm_put(&ppgtt->vm); |
| |
| ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma; |
| ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma; |
| } |
| |
| int i915_init_ggtt(struct drm_i915_private *i915) |
| { |
| int ret; |
| |
| ret = init_ggtt(to_gt(i915)->ggtt); |
| if (ret) |
| return ret; |
| |
| if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) { |
| ret = init_aliasing_ppgtt(to_gt(i915)->ggtt); |
| if (ret) |
| cleanup_init_ggtt(to_gt(i915)->ggtt); |
| } |
| |
| return 0; |
| } |
| |
| static void ggtt_cleanup_hw(struct i915_ggtt *ggtt) |
| { |
| struct i915_vma *vma, *vn; |
| |
| flush_workqueue(ggtt->vm.i915->wq); |
| i915_gem_drain_freed_objects(ggtt->vm.i915); |
| |
| mutex_lock(&ggtt->vm.mutex); |
| |
| ggtt->vm.skip_pte_rewrite = true; |
| |
| list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) { |
| struct drm_i915_gem_object *obj = vma->obj; |
| bool trylock; |
| |
| trylock = i915_gem_object_trylock(obj, NULL); |
| WARN_ON(!trylock); |
| |
| WARN_ON(__i915_vma_unbind(vma)); |
| if (trylock) |
| i915_gem_object_unlock(obj); |
| } |
| |
| if (drm_mm_node_allocated(&ggtt->error_capture)) |
| drm_mm_remove_node(&ggtt->error_capture); |
| mutex_destroy(&ggtt->error_mutex); |
| |
| ggtt_release_guc_top(ggtt); |
| intel_vgt_deballoon(ggtt); |
| |
| ggtt->vm.cleanup(&ggtt->vm); |
| |
| mutex_unlock(&ggtt->vm.mutex); |
| i915_address_space_fini(&ggtt->vm); |
| |
| arch_phys_wc_del(ggtt->mtrr); |
| |
| if (ggtt->iomap.size) |
| io_mapping_fini(&ggtt->iomap); |
| } |
| |
| /** |
| * i915_ggtt_driver_release - Clean up GGTT hardware initialization |
| * @i915: i915 device |
| */ |
| void i915_ggtt_driver_release(struct drm_i915_private *i915) |
| { |
| struct i915_ggtt *ggtt = to_gt(i915)->ggtt; |
| |
| fini_aliasing_ppgtt(ggtt); |
| |
| intel_ggtt_fini_fences(ggtt); |
| ggtt_cleanup_hw(ggtt); |
| } |
| |
| /** |
| * i915_ggtt_driver_late_release - Cleanup of GGTT that needs to be done after |
| * all free objects have been drained. |
| * @i915: i915 device |
| */ |
| void i915_ggtt_driver_late_release(struct drm_i915_private *i915) |
| { |
| struct i915_ggtt *ggtt = to_gt(i915)->ggtt; |
| |
| GEM_WARN_ON(kref_read(&ggtt->vm.resv_ref) != 1); |
| dma_resv_fini(&ggtt->vm._resv); |
| } |
| |
| static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl) |
| { |
| snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT; |
| snb_gmch_ctl &= SNB_GMCH_GGMS_MASK; |
| return snb_gmch_ctl << 20; |
| } |
| |
| static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl) |
| { |
| bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT; |
| bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK; |
| if (bdw_gmch_ctl) |
| bdw_gmch_ctl = 1 << bdw_gmch_ctl; |
| |
| #ifdef CONFIG_X86_32 |
| /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */ |
| if (bdw_gmch_ctl > 4) |
| bdw_gmch_ctl = 4; |
| #endif |
| |
| return bdw_gmch_ctl << 20; |
| } |
| |
| static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl) |
| { |
| gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT; |
| gmch_ctrl &= SNB_GMCH_GGMS_MASK; |
| |
| if (gmch_ctrl) |
| return 1 << (20 + gmch_ctrl); |
| |
| return 0; |
| } |
| |
| static unsigned int gen6_gttmmadr_size(struct drm_i915_private *i915) |
| { |
| /* |
| * GEN6: GTTMMADR size is 4MB and GTTADR starts at 2MB offset |
| * GEN8: GTTMMADR size is 16MB and GTTADR starts at 8MB offset |
| */ |
| GEM_BUG_ON(GRAPHICS_VER(i915) < 6); |
| return (GRAPHICS_VER(i915) < 8) ? SZ_4M : SZ_16M; |
| } |
| |
| static unsigned int gen6_gttadr_offset(struct drm_i915_private *i915) |
| { |
| return gen6_gttmmadr_size(i915) / 2; |
| } |
| |
| static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size) |
| { |
| struct drm_i915_private *i915 = ggtt->vm.i915; |
| struct intel_uncore *uncore = ggtt->vm.gt->uncore; |
| struct pci_dev *pdev = to_pci_dev(i915->drm.dev); |
| phys_addr_t phys_addr; |
| u32 pte_flags; |
| int ret; |
| |
| GEM_WARN_ON(pci_resource_len(pdev, GEN4_GTTMMADR_BAR) != gen6_gttmmadr_size(i915)); |
| |
| if (i915_direct_stolen_access(i915)) { |
| drm_dbg(&i915->drm, "Using direct GSM access\n"); |
| phys_addr = intel_uncore_read64(uncore, GEN6_GSMBASE) & GEN11_BDSM_MASK; |
| } else { |
| phys_addr = pci_resource_start(pdev, GEN4_GTTMMADR_BAR) + gen6_gttadr_offset(i915); |
| } |
| |
| if (needs_wc_ggtt_mapping(i915)) |
| ggtt->gsm = ioremap_wc(phys_addr, size); |
| else |
| ggtt->gsm = ioremap(phys_addr, size); |
| |
| if (!ggtt->gsm) { |
| drm_err(&i915->drm, "Failed to map the ggtt page table\n"); |
| return -ENOMEM; |
| } |
| |
| kref_init(&ggtt->vm.resv_ref); |
| ret = setup_scratch_page(&ggtt->vm); |
| if (ret) { |
| drm_err(&i915->drm, "Scratch setup failed\n"); |
| /* iounmap will also get called at remove, but meh */ |
| iounmap(ggtt->gsm); |
| return ret; |
| } |
| |
| pte_flags = 0; |
| if (i915_gem_object_is_lmem(ggtt->vm.scratch[0])) |
| pte_flags |= PTE_LM; |
| |
| ggtt->vm.scratch[0]->encode = |
| ggtt->vm.pte_encode(px_dma(ggtt->vm.scratch[0]), |
| i915_gem_get_pat_index(i915, |
| I915_CACHE_NONE), |
| pte_flags); |
| |
| return 0; |
| } |
| |
| static void gen6_gmch_remove(struct i915_address_space *vm) |
| { |
| struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); |
| |
| iounmap(ggtt->gsm); |
| free_scratch(vm); |
| } |
| |
| static struct resource pci_resource(struct pci_dev *pdev, int bar) |
| { |
| return DEFINE_RES_MEM(pci_resource_start(pdev, bar), |
| pci_resource_len(pdev, bar)); |
| } |
| |
| static int gen8_gmch_probe(struct i915_ggtt *ggtt) |
| { |
| struct drm_i915_private *i915 = ggtt->vm.i915; |
| struct pci_dev *pdev = to_pci_dev(i915->drm.dev); |
| unsigned int size; |
| u16 snb_gmch_ctl; |
| |
| if (!HAS_LMEM(i915) && !HAS_LMEMBAR_SMEM_STOLEN(i915)) { |
| if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR)) |
| return -ENXIO; |
| |
| ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR); |
| ggtt->mappable_end = resource_size(&ggtt->gmadr); |
| } |
| |
| pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); |
| if (IS_CHERRYVIEW(i915)) |
| size = chv_get_total_gtt_size(snb_gmch_ctl); |
| else |
| size = gen8_get_total_gtt_size(snb_gmch_ctl); |
| |
| ggtt->vm.alloc_pt_dma = alloc_pt_dma; |
| ggtt->vm.alloc_scratch_dma = alloc_pt_dma; |
| ggtt->vm.lmem_pt_obj_flags = I915_BO_ALLOC_PM_EARLY; |
| |
| ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE; |
| ggtt->vm.cleanup = gen6_gmch_remove; |
| ggtt->vm.insert_page = gen8_ggtt_insert_page; |
| ggtt->vm.clear_range = nop_clear_range; |
| ggtt->vm.scratch_range = gen8_ggtt_clear_range; |
| |
| ggtt->vm.insert_entries = gen8_ggtt_insert_entries; |
| |
| /* |
| * Serialize GTT updates with aperture access on BXT if VT-d is on, |
| * and always on CHV. |
| */ |
| if (intel_vm_no_concurrent_access_wa(i915)) { |
| ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL; |
| ggtt->vm.insert_page = bxt_vtd_ggtt_insert_page__BKL; |
| |
| /* |
| * Calling stop_machine() version of GGTT update function |
| * at error capture/reset path will raise lockdep warning. |
| * Allow calling gen8_ggtt_insert_* directly at reset path |
| * which is safe from parallel GGTT updates. |
| */ |
| ggtt->vm.raw_insert_page = gen8_ggtt_insert_page; |
| ggtt->vm.raw_insert_entries = gen8_ggtt_insert_entries; |
| |
| ggtt->vm.bind_async_flags = |
| I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; |
| } |
| |
| if (i915_ggtt_require_binder(i915)) { |
| ggtt->vm.scratch_range = gen8_ggtt_scratch_range_bind; |
| ggtt->vm.insert_page = gen8_ggtt_insert_page_bind; |
| ggtt->vm.insert_entries = gen8_ggtt_insert_entries_bind; |
| /* |
| * On GPU is hung, we might bind VMAs for error capture. |
| * Fallback to CPU GGTT updates in that case. |
| */ |
| ggtt->vm.raw_insert_page = gen8_ggtt_insert_page; |
| } |
| |
| if (intel_uc_wants_guc_submission(&ggtt->vm.gt->uc)) |
| ggtt->invalidate = guc_ggtt_invalidate; |
| else |
| ggtt->invalidate = gen8_ggtt_invalidate; |
| |
| ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma; |
| ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma; |
| |
| if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)) |
| ggtt->vm.pte_encode = mtl_ggtt_pte_encode; |
| else |
| ggtt->vm.pte_encode = gen8_ggtt_pte_encode; |
| |
| return ggtt_probe_common(ggtt, size); |
| } |
| |
| /* |
| * For pre-gen8 platforms pat_index is the same as enum i915_cache_level, |
| * so the switch-case statements in these PTE encode functions are still valid. |
| * See translation table LEGACY_CACHELEVEL. |
| */ |
| static u64 snb_pte_encode(dma_addr_t addr, |
| unsigned int pat_index, |
| u32 flags) |
| { |
| gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; |
| |
| switch (pat_index) { |
| case I915_CACHE_L3_LLC: |
| case I915_CACHE_LLC: |
| pte |= GEN6_PTE_CACHE_LLC; |
| break; |
| case I915_CACHE_NONE: |
| pte |= GEN6_PTE_UNCACHED; |
| break; |
| default: |
| MISSING_CASE(pat_index); |
| } |
| |
| return pte; |
| } |
| |
| static u64 ivb_pte_encode(dma_addr_t addr, |
| unsigned int pat_index, |
| u32 flags) |
| { |
| gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; |
| |
| switch (pat_index) { |
| case I915_CACHE_L3_LLC: |
| pte |= GEN7_PTE_CACHE_L3_LLC; |
| break; |
| case I915_CACHE_LLC: |
| pte |= GEN6_PTE_CACHE_LLC; |
| break; |
| case I915_CACHE_NONE: |
| pte |= GEN6_PTE_UNCACHED; |
| break; |
| default: |
| MISSING_CASE(pat_index); |
| } |
| |
| return pte; |
| } |
| |
| static u64 byt_pte_encode(dma_addr_t addr, |
| unsigned int pat_index, |
| u32 flags) |
| { |
| gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; |
| |
| if (!(flags & PTE_READ_ONLY)) |
| pte |= BYT_PTE_WRITEABLE; |
| |
| if (pat_index != I915_CACHE_NONE) |
| pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES; |
| |
| return pte; |
| } |
| |
| static u64 hsw_pte_encode(dma_addr_t addr, |
| unsigned int pat_index, |
| u32 flags) |
| { |
| gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; |
| |
| if (pat_index != I915_CACHE_NONE) |
| pte |= HSW_WB_LLC_AGE3; |
| |
| return pte; |
| } |
| |
| static u64 iris_pte_encode(dma_addr_t addr, |
| unsigned int pat_index, |
| u32 flags) |
| { |
| gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; |
| |
| switch (pat_index) { |
| case I915_CACHE_NONE: |
| break; |
| case I915_CACHE_WT: |
| pte |= HSW_WT_ELLC_LLC_AGE3; |
| break; |
| default: |
| pte |= HSW_WB_ELLC_LLC_AGE3; |
| break; |
| } |
| |
| return pte; |
| } |
| |
| static int gen6_gmch_probe(struct i915_ggtt *ggtt) |
| { |
| struct drm_i915_private *i915 = ggtt->vm.i915; |
| struct pci_dev *pdev = to_pci_dev(i915->drm.dev); |
| unsigned int size; |
| u16 snb_gmch_ctl; |
| |
| if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR)) |
| return -ENXIO; |
| |
| ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR); |
| ggtt->mappable_end = resource_size(&ggtt->gmadr); |
| |
| /* |
| * 64/512MB is the current min/max we actually know of, but this is |
| * just a coarse sanity check. |
| */ |
| if (ggtt->mappable_end < (64 << 20) || |
| ggtt->mappable_end > (512 << 20)) { |
| drm_err(&i915->drm, "Unknown GMADR size (%pa)\n", |
| &ggtt->mappable_end); |
| return -ENXIO; |
| } |
| |
| pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); |
| |
| size = gen6_get_total_gtt_size(snb_gmch_ctl); |
| ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE; |
| |
| ggtt->vm.alloc_pt_dma = alloc_pt_dma; |
| ggtt->vm.alloc_scratch_dma = alloc_pt_dma; |
| |
| ggtt->vm.clear_range = nop_clear_range; |
| if (!HAS_FULL_PPGTT(i915)) |
| ggtt->vm.clear_range = gen6_ggtt_clear_range; |
| ggtt->vm.scratch_range = gen6_ggtt_clear_range; |
| ggtt->vm.insert_page = gen6_ggtt_insert_page; |
| ggtt->vm.insert_entries = gen6_ggtt_insert_entries; |
| ggtt->vm.cleanup = gen6_gmch_remove; |
| |
| ggtt->invalidate = gen6_ggtt_invalidate; |
| |
| if (HAS_EDRAM(i915)) |
| ggtt->vm.pte_encode = iris_pte_encode; |
| else if (IS_HASWELL(i915)) |
| ggtt->vm.pte_encode = hsw_pte_encode; |
| else if (IS_VALLEYVIEW(i915)) |
| ggtt->vm.pte_encode = byt_pte_encode; |
| else if (GRAPHICS_VER(i915) >= 7) |
| ggtt->vm.pte_encode = ivb_pte_encode; |
| else |
| ggtt->vm.pte_encode = snb_pte_encode; |
| |
| ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma; |
| ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma; |
| |
| return ggtt_probe_common(ggtt, size); |
| } |
| |
| static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt) |
| { |
| struct drm_i915_private *i915 = gt->i915; |
| int ret; |
| |
| ggtt->vm.gt = gt; |
| ggtt->vm.i915 = i915; |
| ggtt->vm.dma = i915->drm.dev; |
| dma_resv_init(&ggtt->vm._resv); |
| |
| if (GRAPHICS_VER(i915) >= 8) |
| ret = gen8_gmch_probe(ggtt); |
| else if (GRAPHICS_VER(i915) >= 6) |
| ret = gen6_gmch_probe(ggtt); |
| else |
| ret = intel_ggtt_gmch_probe(ggtt); |
| |
| if (ret) { |
| dma_resv_fini(&ggtt->vm._resv); |
| return ret; |
| } |
| |
| if ((ggtt->vm.total - 1) >> 32) { |
| drm_err(&i915->drm, |
| "We never expected a Global GTT with more than 32bits" |
| " of address space! Found %lldM!\n", |
| ggtt->vm.total >> 20); |
| ggtt->vm.total = 1ULL << 32; |
| ggtt->mappable_end = |
| min_t(u64, ggtt->mappable_end, ggtt->vm.total); |
| } |
| |
| if (ggtt->mappable_end > ggtt->vm.total) { |
| drm_err(&i915->drm, |
| "mappable aperture extends past end of GGTT," |
| " aperture=%pa, total=%llx\n", |
| &ggtt->mappable_end, ggtt->vm.total); |
| ggtt->mappable_end = ggtt->vm.total; |
| } |
| |
| /* GMADR is the PCI mmio aperture into the global GTT. */ |
| drm_dbg(&i915->drm, "GGTT size = %lluM\n", ggtt->vm.total >> 20); |
| drm_dbg(&i915->drm, "GMADR size = %lluM\n", |
| (u64)ggtt->mappable_end >> 20); |
| drm_dbg(&i915->drm, "DSM size = %lluM\n", |
| (u64)resource_size(&intel_graphics_stolen_res) >> 20); |
| |
| return 0; |
| } |
| |
| /** |
| * i915_ggtt_probe_hw - Probe GGTT hardware location |
| * @i915: i915 device |
| */ |
| int i915_ggtt_probe_hw(struct drm_i915_private *i915) |
| { |
| struct intel_gt *gt; |
| int ret, i; |
| |
| for_each_gt(gt, i915, i) { |
| ret = intel_gt_assign_ggtt(gt); |
| if (ret) |
| return ret; |
| } |
| |
| ret = ggtt_probe_hw(to_gt(i915)->ggtt, to_gt(i915)); |
| if (ret) |
| return ret; |
| |
| if (i915_vtd_active(i915)) |
| drm_info(&i915->drm, "VT-d active for gfx access\n"); |
| |
| return 0; |
| } |
| |
| struct i915_ggtt *i915_ggtt_create(struct drm_i915_private *i915) |
| { |
| struct i915_ggtt *ggtt; |
| |
| ggtt = drmm_kzalloc(&i915->drm, sizeof(*ggtt), GFP_KERNEL); |
| if (!ggtt) |
| return ERR_PTR(-ENOMEM); |
| |
| INIT_LIST_HEAD(&ggtt->gt_list); |
| |
| return ggtt; |
| } |
| |
| int i915_ggtt_enable_hw(struct drm_i915_private *i915) |
| { |
| if (GRAPHICS_VER(i915) < 6) |
| return intel_ggtt_gmch_enable_hw(i915); |
| |
| return 0; |
| } |
| |
| /** |
| * i915_ggtt_resume_vm - Restore the memory mappings for a GGTT or DPT VM |
| * @vm: The VM to restore the mappings for |
| * |
| * Restore the memory mappings for all objects mapped to HW via the GGTT or a |
| * DPT page table. |
| * |
| * Returns %true if restoring the mapping for any object that was in a write |
| * domain before suspend. |
| */ |
| bool i915_ggtt_resume_vm(struct i915_address_space *vm) |
| { |
| struct i915_vma *vma; |
| bool write_domain_objs = false; |
| |
| drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt); |
| |
| /* First fill our portion of the GTT with scratch pages */ |
| vm->clear_range(vm, 0, vm->total); |
| |
| /* clflush objects bound into the GGTT and rebind them. */ |
| list_for_each_entry(vma, &vm->bound_list, vm_link) { |
| struct drm_i915_gem_object *obj = vma->obj; |
| unsigned int was_bound = |
| atomic_read(&vma->flags) & I915_VMA_BIND_MASK; |
| |
| GEM_BUG_ON(!was_bound); |
| |
| /* |
| * Clear the bound flags of the vma resource to allow |
| * ptes to be repopulated. |
| */ |
| vma->resource->bound_flags = 0; |
| vma->ops->bind_vma(vm, NULL, vma->resource, |
| obj ? obj->pat_index : |
| i915_gem_get_pat_index(vm->i915, |
| I915_CACHE_NONE), |
| was_bound); |
| |
| if (obj) { /* only used during resume => exclusive access */ |
| write_domain_objs |= fetch_and_zero(&obj->write_domain); |
| obj->read_domains |= I915_GEM_DOMAIN_GTT; |
| } |
| } |
| |
| return write_domain_objs; |
| } |
| |
| void i915_ggtt_resume(struct i915_ggtt *ggtt) |
| { |
| struct intel_gt *gt; |
| bool flush; |
| |
| list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) |
| intel_gt_check_and_clear_faults(gt); |
| |
| flush = i915_ggtt_resume_vm(&ggtt->vm); |
| |
| if (drm_mm_node_allocated(&ggtt->error_capture)) |
| ggtt->vm.scratch_range(&ggtt->vm, ggtt->error_capture.start, |
| ggtt->error_capture.size); |
| |
| list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) |
| intel_uc_resume_mappings(>->uc); |
| |
| ggtt->invalidate(ggtt); |
| |
| if (flush) |
| wbinvd_on_all_cpus(); |
| |
| intel_ggtt_restore_fences(ggtt); |
| } |