| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with |
| * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c |
| * |
| * Copyright (C) 2005, Intec Automation Inc. |
| * Copyright (C) 2014, Freescale Semiconductor, Inc. |
| */ |
| |
| #include <linux/err.h> |
| #include <linux/errno.h> |
| #include <linux/module.h> |
| #include <linux/device.h> |
| #include <linux/mutex.h> |
| #include <linux/math64.h> |
| #include <linux/sizes.h> |
| #include <linux/slab.h> |
| #include <linux/sort.h> |
| |
| #include <linux/mtd/mtd.h> |
| #include <linux/of_platform.h> |
| #include <linux/spi/flash.h> |
| #include <linux/mtd/spi-nor.h> |
| |
| /* Define max times to check status register before we give up. */ |
| |
| /* |
| * For everything but full-chip erase; probably could be much smaller, but kept |
| * around for safety for now |
| */ |
| #define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ) |
| |
| /* |
| * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up |
| * for larger flash |
| */ |
| #define CHIP_ERASE_2MB_READY_WAIT_JIFFIES (40UL * HZ) |
| |
| #define SPI_NOR_MAX_ID_LEN 6 |
| #define SPI_NOR_MAX_ADDR_WIDTH 4 |
| |
| struct spi_nor_read_command { |
| u8 num_mode_clocks; |
| u8 num_wait_states; |
| u8 opcode; |
| enum spi_nor_protocol proto; |
| }; |
| |
| struct spi_nor_pp_command { |
| u8 opcode; |
| enum spi_nor_protocol proto; |
| }; |
| |
| enum spi_nor_read_command_index { |
| SNOR_CMD_READ, |
| SNOR_CMD_READ_FAST, |
| SNOR_CMD_READ_1_1_1_DTR, |
| |
| /* Dual SPI */ |
| SNOR_CMD_READ_1_1_2, |
| SNOR_CMD_READ_1_2_2, |
| SNOR_CMD_READ_2_2_2, |
| SNOR_CMD_READ_1_2_2_DTR, |
| |
| /* Quad SPI */ |
| SNOR_CMD_READ_1_1_4, |
| SNOR_CMD_READ_1_4_4, |
| SNOR_CMD_READ_4_4_4, |
| SNOR_CMD_READ_1_4_4_DTR, |
| |
| /* Octal SPI */ |
| SNOR_CMD_READ_1_1_8, |
| SNOR_CMD_READ_1_8_8, |
| SNOR_CMD_READ_8_8_8, |
| SNOR_CMD_READ_1_8_8_DTR, |
| |
| SNOR_CMD_READ_MAX |
| }; |
| |
| enum spi_nor_pp_command_index { |
| SNOR_CMD_PP, |
| |
| /* Quad SPI */ |
| SNOR_CMD_PP_1_1_4, |
| SNOR_CMD_PP_1_4_4, |
| SNOR_CMD_PP_4_4_4, |
| |
| /* Octal SPI */ |
| SNOR_CMD_PP_1_1_8, |
| SNOR_CMD_PP_1_8_8, |
| SNOR_CMD_PP_8_8_8, |
| |
| SNOR_CMD_PP_MAX |
| }; |
| |
| struct spi_nor_flash_parameter { |
| u64 size; |
| u32 page_size; |
| |
| struct spi_nor_hwcaps hwcaps; |
| struct spi_nor_read_command reads[SNOR_CMD_READ_MAX]; |
| struct spi_nor_pp_command page_programs[SNOR_CMD_PP_MAX]; |
| |
| int (*quad_enable)(struct spi_nor *nor); |
| }; |
| |
| struct sfdp_parameter_header { |
| u8 id_lsb; |
| u8 minor; |
| u8 major; |
| u8 length; /* in double words */ |
| u8 parameter_table_pointer[3]; /* byte address */ |
| u8 id_msb; |
| }; |
| |
| #define SFDP_PARAM_HEADER_ID(p) (((p)->id_msb << 8) | (p)->id_lsb) |
| #define SFDP_PARAM_HEADER_PTP(p) \ |
| (((p)->parameter_table_pointer[2] << 16) | \ |
| ((p)->parameter_table_pointer[1] << 8) | \ |
| ((p)->parameter_table_pointer[0] << 0)) |
| |
| #define SFDP_BFPT_ID 0xff00 /* Basic Flash Parameter Table */ |
| #define SFDP_SECTOR_MAP_ID 0xff81 /* Sector Map Table */ |
| #define SFDP_4BAIT_ID 0xff84 /* 4-byte Address Instruction Table */ |
| |
| #define SFDP_SIGNATURE 0x50444653U |
| #define SFDP_JESD216_MAJOR 1 |
| #define SFDP_JESD216_MINOR 0 |
| #define SFDP_JESD216A_MINOR 5 |
| #define SFDP_JESD216B_MINOR 6 |
| |
| struct sfdp_header { |
| u32 signature; /* Ox50444653U <=> "SFDP" */ |
| u8 minor; |
| u8 major; |
| u8 nph; /* 0-base number of parameter headers */ |
| u8 unused; |
| |
| /* Basic Flash Parameter Table. */ |
| struct sfdp_parameter_header bfpt_header; |
| }; |
| |
| /* Basic Flash Parameter Table */ |
| |
| /* |
| * JESD216 rev B defines a Basic Flash Parameter Table of 16 DWORDs. |
| * They are indexed from 1 but C arrays are indexed from 0. |
| */ |
| #define BFPT_DWORD(i) ((i) - 1) |
| #define BFPT_DWORD_MAX 16 |
| |
| /* The first version of JESB216 defined only 9 DWORDs. */ |
| #define BFPT_DWORD_MAX_JESD216 9 |
| |
| /* 1st DWORD. */ |
| #define BFPT_DWORD1_FAST_READ_1_1_2 BIT(16) |
| #define BFPT_DWORD1_ADDRESS_BYTES_MASK GENMASK(18, 17) |
| #define BFPT_DWORD1_ADDRESS_BYTES_3_ONLY (0x0UL << 17) |
| #define BFPT_DWORD1_ADDRESS_BYTES_3_OR_4 (0x1UL << 17) |
| #define BFPT_DWORD1_ADDRESS_BYTES_4_ONLY (0x2UL << 17) |
| #define BFPT_DWORD1_DTR BIT(19) |
| #define BFPT_DWORD1_FAST_READ_1_2_2 BIT(20) |
| #define BFPT_DWORD1_FAST_READ_1_4_4 BIT(21) |
| #define BFPT_DWORD1_FAST_READ_1_1_4 BIT(22) |
| |
| /* 5th DWORD. */ |
| #define BFPT_DWORD5_FAST_READ_2_2_2 BIT(0) |
| #define BFPT_DWORD5_FAST_READ_4_4_4 BIT(4) |
| |
| /* 11th DWORD. */ |
| #define BFPT_DWORD11_PAGE_SIZE_SHIFT 4 |
| #define BFPT_DWORD11_PAGE_SIZE_MASK GENMASK(7, 4) |
| |
| /* 15th DWORD. */ |
| |
| /* |
| * (from JESD216 rev B) |
| * Quad Enable Requirements (QER): |
| * - 000b: Device does not have a QE bit. Device detects 1-1-4 and 1-4-4 |
| * reads based on instruction. DQ3/HOLD# functions are hold during |
| * instruction phase. |
| * - 001b: QE is bit 1 of status register 2. It is set via Write Status with |
| * two data bytes where bit 1 of the second byte is one. |
| * [...] |
| * Writing only one byte to the status register has the side-effect of |
| * clearing status register 2, including the QE bit. The 100b code is |
| * used if writing one byte to the status register does not modify |
| * status register 2. |
| * - 010b: QE is bit 6 of status register 1. It is set via Write Status with |
| * one data byte where bit 6 is one. |
| * [...] |
| * - 011b: QE is bit 7 of status register 2. It is set via Write status |
| * register 2 instruction 3Eh with one data byte where bit 7 is one. |
| * [...] |
| * The status register 2 is read using instruction 3Fh. |
| * - 100b: QE is bit 1 of status register 2. It is set via Write Status with |
| * two data bytes where bit 1 of the second byte is one. |
| * [...] |
| * In contrast to the 001b code, writing one byte to the status |
| * register does not modify status register 2. |
| * - 101b: QE is bit 1 of status register 2. Status register 1 is read using |
| * Read Status instruction 05h. Status register2 is read using |
| * instruction 35h. QE is set via Writ Status instruction 01h with |
| * two data bytes where bit 1 of the second byte is one. |
| * [...] |
| */ |
| #define BFPT_DWORD15_QER_MASK GENMASK(22, 20) |
| #define BFPT_DWORD15_QER_NONE (0x0UL << 20) /* Micron */ |
| #define BFPT_DWORD15_QER_SR2_BIT1_BUGGY (0x1UL << 20) |
| #define BFPT_DWORD15_QER_SR1_BIT6 (0x2UL << 20) /* Macronix */ |
| #define BFPT_DWORD15_QER_SR2_BIT7 (0x3UL << 20) |
| #define BFPT_DWORD15_QER_SR2_BIT1_NO_RD (0x4UL << 20) |
| #define BFPT_DWORD15_QER_SR2_BIT1 (0x5UL << 20) /* Spansion */ |
| |
| struct sfdp_bfpt { |
| u32 dwords[BFPT_DWORD_MAX]; |
| }; |
| |
| /** |
| * struct spi_nor_fixups - SPI NOR fixup hooks |
| * @post_bfpt: called after the BFPT table has been parsed |
| * |
| * Those hooks can be used to tweak the SPI NOR configuration when the SFDP |
| * table is broken or not available. |
| */ |
| struct spi_nor_fixups { |
| int (*post_bfpt)(struct spi_nor *nor, |
| const struct sfdp_parameter_header *bfpt_header, |
| const struct sfdp_bfpt *bfpt, |
| struct spi_nor_flash_parameter *params); |
| }; |
| |
| struct flash_info { |
| char *name; |
| |
| /* |
| * This array stores the ID bytes. |
| * The first three bytes are the JEDIC ID. |
| * JEDEC ID zero means "no ID" (mostly older chips). |
| */ |
| u8 id[SPI_NOR_MAX_ID_LEN]; |
| u8 id_len; |
| |
| /* The size listed here is what works with SPINOR_OP_SE, which isn't |
| * necessarily called a "sector" by the vendor. |
| */ |
| unsigned sector_size; |
| u16 n_sectors; |
| |
| u16 page_size; |
| u16 addr_width; |
| |
| u16 flags; |
| #define SECT_4K BIT(0) /* SPINOR_OP_BE_4K works uniformly */ |
| #define SPI_NOR_NO_ERASE BIT(1) /* No erase command needed */ |
| #define SST_WRITE BIT(2) /* use SST byte programming */ |
| #define SPI_NOR_NO_FR BIT(3) /* Can't do fastread */ |
| #define SECT_4K_PMC BIT(4) /* SPINOR_OP_BE_4K_PMC works uniformly */ |
| #define SPI_NOR_DUAL_READ BIT(5) /* Flash supports Dual Read */ |
| #define SPI_NOR_QUAD_READ BIT(6) /* Flash supports Quad Read */ |
| #define USE_FSR BIT(7) /* use flag status register */ |
| #define SPI_NOR_HAS_LOCK BIT(8) /* Flash supports lock/unlock via SR */ |
| #define SPI_NOR_HAS_TB BIT(9) /* |
| * Flash SR has Top/Bottom (TB) protect |
| * bit. Must be used with |
| * SPI_NOR_HAS_LOCK. |
| */ |
| #define SPI_S3AN BIT(10) /* |
| * Xilinx Spartan 3AN In-System Flash |
| * (MFR cannot be used for probing |
| * because it has the same value as |
| * ATMEL flashes) |
| */ |
| #define SPI_NOR_4B_OPCODES BIT(11) /* |
| * Use dedicated 4byte address op codes |
| * to support memory size above 128Mib. |
| */ |
| #define NO_CHIP_ERASE BIT(12) /* Chip does not support chip erase */ |
| #define SPI_NOR_SKIP_SFDP BIT(13) /* Skip parsing of SFDP tables */ |
| #define USE_CLSR BIT(14) /* use CLSR command */ |
| #define SPI_NOR_OCTAL_READ BIT(15) /* Flash supports Octal Read */ |
| |
| /* Part specific fixup hooks. */ |
| const struct spi_nor_fixups *fixups; |
| |
| int (*quad_enable)(struct spi_nor *nor); |
| }; |
| |
| #define JEDEC_MFR(info) ((info)->id[0]) |
| |
| /* |
| * Read the status register, returning its value in the location |
| * Return the status register value. |
| * Returns negative if error occurred. |
| */ |
| static int read_sr(struct spi_nor *nor) |
| { |
| int ret; |
| u8 val; |
| |
| ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1); |
| if (ret < 0) { |
| pr_err("error %d reading SR\n", (int) ret); |
| return ret; |
| } |
| |
| return val; |
| } |
| |
| /* |
| * Read the flag status register, returning its value in the location |
| * Return the status register value. |
| * Returns negative if error occurred. |
| */ |
| static int read_fsr(struct spi_nor *nor) |
| { |
| int ret; |
| u8 val; |
| |
| ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1); |
| if (ret < 0) { |
| pr_err("error %d reading FSR\n", ret); |
| return ret; |
| } |
| |
| return val; |
| } |
| |
| /* |
| * Read configuration register, returning its value in the |
| * location. Return the configuration register value. |
| * Returns negative if error occurred. |
| */ |
| static int read_cr(struct spi_nor *nor) |
| { |
| int ret; |
| u8 val; |
| |
| ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1); |
| if (ret < 0) { |
| dev_err(nor->dev, "error %d reading CR\n", ret); |
| return ret; |
| } |
| |
| return val; |
| } |
| |
| /* |
| * Write status register 1 byte |
| * Returns negative if error occurred. |
| */ |
| static int write_sr(struct spi_nor *nor, u8 val) |
| { |
| nor->cmd_buf[0] = val; |
| return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1); |
| } |
| |
| /* |
| * Set write enable latch with Write Enable command. |
| * Returns negative if error occurred. |
| */ |
| static int write_enable(struct spi_nor *nor) |
| { |
| return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0); |
| } |
| |
| /* |
| * Send write disable instruction to the chip. |
| */ |
| static int write_disable(struct spi_nor *nor) |
| { |
| return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0); |
| } |
| |
| static struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd) |
| { |
| return mtd->priv; |
| } |
| |
| |
| static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size) |
| { |
| size_t i; |
| |
| for (i = 0; i < size; i++) |
| if (table[i][0] == opcode) |
| return table[i][1]; |
| |
| /* No conversion found, keep input op code. */ |
| return opcode; |
| } |
| |
| static u8 spi_nor_convert_3to4_read(u8 opcode) |
| { |
| static const u8 spi_nor_3to4_read[][2] = { |
| { SPINOR_OP_READ, SPINOR_OP_READ_4B }, |
| { SPINOR_OP_READ_FAST, SPINOR_OP_READ_FAST_4B }, |
| { SPINOR_OP_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B }, |
| { SPINOR_OP_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B }, |
| { SPINOR_OP_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B }, |
| { SPINOR_OP_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B }, |
| { SPINOR_OP_READ_1_1_8, SPINOR_OP_READ_1_1_8_4B }, |
| { SPINOR_OP_READ_1_8_8, SPINOR_OP_READ_1_8_8_4B }, |
| |
| { SPINOR_OP_READ_1_1_1_DTR, SPINOR_OP_READ_1_1_1_DTR_4B }, |
| { SPINOR_OP_READ_1_2_2_DTR, SPINOR_OP_READ_1_2_2_DTR_4B }, |
| { SPINOR_OP_READ_1_4_4_DTR, SPINOR_OP_READ_1_4_4_DTR_4B }, |
| }; |
| |
| return spi_nor_convert_opcode(opcode, spi_nor_3to4_read, |
| ARRAY_SIZE(spi_nor_3to4_read)); |
| } |
| |
| static u8 spi_nor_convert_3to4_program(u8 opcode) |
| { |
| static const u8 spi_nor_3to4_program[][2] = { |
| { SPINOR_OP_PP, SPINOR_OP_PP_4B }, |
| { SPINOR_OP_PP_1_1_4, SPINOR_OP_PP_1_1_4_4B }, |
| { SPINOR_OP_PP_1_4_4, SPINOR_OP_PP_1_4_4_4B }, |
| { SPINOR_OP_PP_1_1_8, SPINOR_OP_PP_1_1_8_4B }, |
| { SPINOR_OP_PP_1_8_8, SPINOR_OP_PP_1_8_8_4B }, |
| }; |
| |
| return spi_nor_convert_opcode(opcode, spi_nor_3to4_program, |
| ARRAY_SIZE(spi_nor_3to4_program)); |
| } |
| |
| static u8 spi_nor_convert_3to4_erase(u8 opcode) |
| { |
| static const u8 spi_nor_3to4_erase[][2] = { |
| { SPINOR_OP_BE_4K, SPINOR_OP_BE_4K_4B }, |
| { SPINOR_OP_BE_32K, SPINOR_OP_BE_32K_4B }, |
| { SPINOR_OP_SE, SPINOR_OP_SE_4B }, |
| }; |
| |
| return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase, |
| ARRAY_SIZE(spi_nor_3to4_erase)); |
| } |
| |
| static void spi_nor_set_4byte_opcodes(struct spi_nor *nor) |
| { |
| /* Do some manufacturer fixups first */ |
| switch (JEDEC_MFR(nor->info)) { |
| case SNOR_MFR_SPANSION: |
| /* No small sector erase for 4-byte command set */ |
| nor->erase_opcode = SPINOR_OP_SE; |
| nor->mtd.erasesize = nor->info->sector_size; |
| break; |
| |
| default: |
| break; |
| } |
| |
| nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode); |
| nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode); |
| nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode); |
| |
| if (!spi_nor_has_uniform_erase(nor)) { |
| struct spi_nor_erase_map *map = &nor->erase_map; |
| struct spi_nor_erase_type *erase; |
| int i; |
| |
| for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { |
| erase = &map->erase_type[i]; |
| erase->opcode = |
| spi_nor_convert_3to4_erase(erase->opcode); |
| } |
| } |
| } |
| |
| /* Enable/disable 4-byte addressing mode. */ |
| static int set_4byte(struct spi_nor *nor, bool enable) |
| { |
| int status; |
| bool need_wren = false; |
| u8 cmd; |
| |
| switch (JEDEC_MFR(nor->info)) { |
| case SNOR_MFR_ST: |
| case SNOR_MFR_MICRON: |
| /* Some Micron need WREN command; all will accept it */ |
| need_wren = true; |
| /* fall through */ |
| case SNOR_MFR_MACRONIX: |
| case SNOR_MFR_WINBOND: |
| if (need_wren) |
| write_enable(nor); |
| |
| cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B; |
| status = nor->write_reg(nor, cmd, NULL, 0); |
| if (need_wren) |
| write_disable(nor); |
| |
| if (!status && !enable && |
| JEDEC_MFR(nor->info) == SNOR_MFR_WINBOND) { |
| /* |
| * On Winbond W25Q256FV, leaving 4byte mode causes |
| * the Extended Address Register to be set to 1, so all |
| * 3-byte-address reads come from the second 16M. |
| * We must clear the register to enable normal behavior. |
| */ |
| write_enable(nor); |
| nor->cmd_buf[0] = 0; |
| nor->write_reg(nor, SPINOR_OP_WREAR, nor->cmd_buf, 1); |
| write_disable(nor); |
| } |
| |
| return status; |
| default: |
| /* Spansion style */ |
| nor->cmd_buf[0] = enable << 7; |
| return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1); |
| } |
| } |
| |
| static int s3an_sr_ready(struct spi_nor *nor) |
| { |
| int ret; |
| u8 val; |
| |
| ret = nor->read_reg(nor, SPINOR_OP_XRDSR, &val, 1); |
| if (ret < 0) { |
| dev_err(nor->dev, "error %d reading XRDSR\n", (int) ret); |
| return ret; |
| } |
| |
| return !!(val & XSR_RDY); |
| } |
| |
| static int spi_nor_sr_ready(struct spi_nor *nor) |
| { |
| int sr = read_sr(nor); |
| if (sr < 0) |
| return sr; |
| |
| if (nor->flags & SNOR_F_USE_CLSR && sr & (SR_E_ERR | SR_P_ERR)) { |
| if (sr & SR_E_ERR) |
| dev_err(nor->dev, "Erase Error occurred\n"); |
| else |
| dev_err(nor->dev, "Programming Error occurred\n"); |
| |
| nor->write_reg(nor, SPINOR_OP_CLSR, NULL, 0); |
| return -EIO; |
| } |
| |
| return !(sr & SR_WIP); |
| } |
| |
| static int spi_nor_fsr_ready(struct spi_nor *nor) |
| { |
| int fsr = read_fsr(nor); |
| if (fsr < 0) |
| return fsr; |
| |
| if (fsr & (FSR_E_ERR | FSR_P_ERR)) { |
| if (fsr & FSR_E_ERR) |
| dev_err(nor->dev, "Erase operation failed.\n"); |
| else |
| dev_err(nor->dev, "Program operation failed.\n"); |
| |
| if (fsr & FSR_PT_ERR) |
| dev_err(nor->dev, |
| "Attempted to modify a protected sector.\n"); |
| |
| nor->write_reg(nor, SPINOR_OP_CLFSR, NULL, 0); |
| return -EIO; |
| } |
| |
| return fsr & FSR_READY; |
| } |
| |
| static int spi_nor_ready(struct spi_nor *nor) |
| { |
| int sr, fsr; |
| |
| if (nor->flags & SNOR_F_READY_XSR_RDY) |
| sr = s3an_sr_ready(nor); |
| else |
| sr = spi_nor_sr_ready(nor); |
| if (sr < 0) |
| return sr; |
| fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1; |
| if (fsr < 0) |
| return fsr; |
| return sr && fsr; |
| } |
| |
| /* |
| * Service routine to read status register until ready, or timeout occurs. |
| * Returns non-zero if error. |
| */ |
| static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor, |
| unsigned long timeout_jiffies) |
| { |
| unsigned long deadline; |
| int timeout = 0, ret; |
| |
| deadline = jiffies + timeout_jiffies; |
| |
| while (!timeout) { |
| if (time_after_eq(jiffies, deadline)) |
| timeout = 1; |
| |
| ret = spi_nor_ready(nor); |
| if (ret < 0) |
| return ret; |
| if (ret) |
| return 0; |
| |
| cond_resched(); |
| } |
| |
| dev_err(nor->dev, "flash operation timed out\n"); |
| |
| return -ETIMEDOUT; |
| } |
| |
| static int spi_nor_wait_till_ready(struct spi_nor *nor) |
| { |
| return spi_nor_wait_till_ready_with_timeout(nor, |
| DEFAULT_READY_WAIT_JIFFIES); |
| } |
| |
| /* |
| * Erase the whole flash memory |
| * |
| * Returns 0 if successful, non-zero otherwise. |
| */ |
| static int erase_chip(struct spi_nor *nor) |
| { |
| dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10)); |
| |
| return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0); |
| } |
| |
| static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops) |
| { |
| int ret = 0; |
| |
| mutex_lock(&nor->lock); |
| |
| if (nor->prepare) { |
| ret = nor->prepare(nor, ops); |
| if (ret) { |
| dev_err(nor->dev, "failed in the preparation.\n"); |
| mutex_unlock(&nor->lock); |
| return ret; |
| } |
| } |
| return ret; |
| } |
| |
| static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops) |
| { |
| if (nor->unprepare) |
| nor->unprepare(nor, ops); |
| mutex_unlock(&nor->lock); |
| } |
| |
| /* |
| * This code converts an address to the Default Address Mode, that has non |
| * power of two page sizes. We must support this mode because it is the default |
| * mode supported by Xilinx tools, it can access the whole flash area and |
| * changing over to the Power-of-two mode is irreversible and corrupts the |
| * original data. |
| * Addr can safely be unsigned int, the biggest S3AN device is smaller than |
| * 4 MiB. |
| */ |
| static loff_t spi_nor_s3an_addr_convert(struct spi_nor *nor, unsigned int addr) |
| { |
| unsigned int offset; |
| unsigned int page; |
| |
| offset = addr % nor->page_size; |
| page = addr / nor->page_size; |
| page <<= (nor->page_size > 512) ? 10 : 9; |
| |
| return page | offset; |
| } |
| |
| /* |
| * Initiate the erasure of a single sector |
| */ |
| static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr) |
| { |
| u8 buf[SPI_NOR_MAX_ADDR_WIDTH]; |
| int i; |
| |
| if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT) |
| addr = spi_nor_s3an_addr_convert(nor, addr); |
| |
| if (nor->erase) |
| return nor->erase(nor, addr); |
| |
| /* |
| * Default implementation, if driver doesn't have a specialized HW |
| * control |
| */ |
| for (i = nor->addr_width - 1; i >= 0; i--) { |
| buf[i] = addr & 0xff; |
| addr >>= 8; |
| } |
| |
| return nor->write_reg(nor, nor->erase_opcode, buf, nor->addr_width); |
| } |
| |
| /** |
| * spi_nor_div_by_erase_size() - calculate remainder and update new dividend |
| * @erase: pointer to a structure that describes a SPI NOR erase type |
| * @dividend: dividend value |
| * @remainder: pointer to u32 remainder (will be updated) |
| * |
| * Return: the result of the division |
| */ |
| static u64 spi_nor_div_by_erase_size(const struct spi_nor_erase_type *erase, |
| u64 dividend, u32 *remainder) |
| { |
| /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */ |
| *remainder = (u32)dividend & erase->size_mask; |
| return dividend >> erase->size_shift; |
| } |
| |
| /** |
| * spi_nor_find_best_erase_type() - find the best erase type for the given |
| * offset in the serial flash memory and the |
| * number of bytes to erase. The region in |
| * which the address fits is expected to be |
| * provided. |
| * @map: the erase map of the SPI NOR |
| * @region: pointer to a structure that describes a SPI NOR erase region |
| * @addr: offset in the serial flash memory |
| * @len: number of bytes to erase |
| * |
| * Return: a pointer to the best fitted erase type, NULL otherwise. |
| */ |
| static const struct spi_nor_erase_type * |
| spi_nor_find_best_erase_type(const struct spi_nor_erase_map *map, |
| const struct spi_nor_erase_region *region, |
| u64 addr, u32 len) |
| { |
| const struct spi_nor_erase_type *erase; |
| u32 rem; |
| int i; |
| u8 erase_mask = region->offset & SNOR_ERASE_TYPE_MASK; |
| |
| /* |
| * Erase types are ordered by size, with the smallest erase type at |
| * index 0. |
| */ |
| for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) { |
| /* Does the erase region support the tested erase type? */ |
| if (!(erase_mask & BIT(i))) |
| continue; |
| |
| erase = &map->erase_type[i]; |
| |
| /* Don't erase more than what the user has asked for. */ |
| if (erase->size > len) |
| continue; |
| |
| /* Alignment is not mandatory for overlaid regions */ |
| if (region->offset & SNOR_OVERLAID_REGION) |
| return erase; |
| |
| spi_nor_div_by_erase_size(erase, addr, &rem); |
| if (rem) |
| continue; |
| else |
| return erase; |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * spi_nor_region_next() - get the next spi nor region |
| * @region: pointer to a structure that describes a SPI NOR erase region |
| * |
| * Return: the next spi nor region or NULL if last region. |
| */ |
| static struct spi_nor_erase_region * |
| spi_nor_region_next(struct spi_nor_erase_region *region) |
| { |
| if (spi_nor_region_is_last(region)) |
| return NULL; |
| region++; |
| return region; |
| } |
| |
| /** |
| * spi_nor_find_erase_region() - find the region of the serial flash memory in |
| * which the offset fits |
| * @map: the erase map of the SPI NOR |
| * @addr: offset in the serial flash memory |
| * |
| * Return: a pointer to the spi_nor_erase_region struct, ERR_PTR(-errno) |
| * otherwise. |
| */ |
| static struct spi_nor_erase_region * |
| spi_nor_find_erase_region(const struct spi_nor_erase_map *map, u64 addr) |
| { |
| struct spi_nor_erase_region *region = map->regions; |
| u64 region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK; |
| u64 region_end = region_start + region->size; |
| |
| while (addr < region_start || addr >= region_end) { |
| region = spi_nor_region_next(region); |
| if (!region) |
| return ERR_PTR(-EINVAL); |
| |
| region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK; |
| region_end = region_start + region->size; |
| } |
| |
| return region; |
| } |
| |
| /** |
| * spi_nor_init_erase_cmd() - initialize an erase command |
| * @region: pointer to a structure that describes a SPI NOR erase region |
| * @erase: pointer to a structure that describes a SPI NOR erase type |
| * |
| * Return: the pointer to the allocated erase command, ERR_PTR(-errno) |
| * otherwise. |
| */ |
| static struct spi_nor_erase_command * |
| spi_nor_init_erase_cmd(const struct spi_nor_erase_region *region, |
| const struct spi_nor_erase_type *erase) |
| { |
| struct spi_nor_erase_command *cmd; |
| |
| cmd = kmalloc(sizeof(*cmd), GFP_KERNEL); |
| if (!cmd) |
| return ERR_PTR(-ENOMEM); |
| |
| INIT_LIST_HEAD(&cmd->list); |
| cmd->opcode = erase->opcode; |
| cmd->count = 1; |
| |
| if (region->offset & SNOR_OVERLAID_REGION) |
| cmd->size = region->size; |
| else |
| cmd->size = erase->size; |
| |
| return cmd; |
| } |
| |
| /** |
| * spi_nor_destroy_erase_cmd_list() - destroy erase command list |
| * @erase_list: list of erase commands |
| */ |
| static void spi_nor_destroy_erase_cmd_list(struct list_head *erase_list) |
| { |
| struct spi_nor_erase_command *cmd, *next; |
| |
| list_for_each_entry_safe(cmd, next, erase_list, list) { |
| list_del(&cmd->list); |
| kfree(cmd); |
| } |
| } |
| |
| /** |
| * spi_nor_init_erase_cmd_list() - initialize erase command list |
| * @nor: pointer to a 'struct spi_nor' |
| * @erase_list: list of erase commands to be executed once we validate that the |
| * erase can be performed |
| * @addr: offset in the serial flash memory |
| * @len: number of bytes to erase |
| * |
| * Builds the list of best fitted erase commands and verifies if the erase can |
| * be performed. |
| * |
| * Return: 0 on success, -errno otherwise. |
| */ |
| static int spi_nor_init_erase_cmd_list(struct spi_nor *nor, |
| struct list_head *erase_list, |
| u64 addr, u32 len) |
| { |
| const struct spi_nor_erase_map *map = &nor->erase_map; |
| const struct spi_nor_erase_type *erase, *prev_erase = NULL; |
| struct spi_nor_erase_region *region; |
| struct spi_nor_erase_command *cmd = NULL; |
| u64 region_end; |
| int ret = -EINVAL; |
| |
| region = spi_nor_find_erase_region(map, addr); |
| if (IS_ERR(region)) |
| return PTR_ERR(region); |
| |
| region_end = spi_nor_region_end(region); |
| |
| while (len) { |
| erase = spi_nor_find_best_erase_type(map, region, addr, len); |
| if (!erase) |
| goto destroy_erase_cmd_list; |
| |
| if (prev_erase != erase || |
| region->offset & SNOR_OVERLAID_REGION) { |
| cmd = spi_nor_init_erase_cmd(region, erase); |
| if (IS_ERR(cmd)) { |
| ret = PTR_ERR(cmd); |
| goto destroy_erase_cmd_list; |
| } |
| |
| list_add_tail(&cmd->list, erase_list); |
| } else { |
| cmd->count++; |
| } |
| |
| addr += cmd->size; |
| len -= cmd->size; |
| |
| if (len && addr >= region_end) { |
| region = spi_nor_region_next(region); |
| if (!region) |
| goto destroy_erase_cmd_list; |
| region_end = spi_nor_region_end(region); |
| } |
| |
| prev_erase = erase; |
| } |
| |
| return 0; |
| |
| destroy_erase_cmd_list: |
| spi_nor_destroy_erase_cmd_list(erase_list); |
| return ret; |
| } |
| |
| /** |
| * spi_nor_erase_multi_sectors() - perform a non-uniform erase |
| * @nor: pointer to a 'struct spi_nor' |
| * @addr: offset in the serial flash memory |
| * @len: number of bytes to erase |
| * |
| * Build a list of best fitted erase commands and execute it once we validate |
| * that the erase can be performed. |
| * |
| * Return: 0 on success, -errno otherwise. |
| */ |
| static int spi_nor_erase_multi_sectors(struct spi_nor *nor, u64 addr, u32 len) |
| { |
| LIST_HEAD(erase_list); |
| struct spi_nor_erase_command *cmd, *next; |
| int ret; |
| |
| ret = spi_nor_init_erase_cmd_list(nor, &erase_list, addr, len); |
| if (ret) |
| return ret; |
| |
| list_for_each_entry_safe(cmd, next, &erase_list, list) { |
| nor->erase_opcode = cmd->opcode; |
| while (cmd->count) { |
| write_enable(nor); |
| |
| ret = spi_nor_erase_sector(nor, addr); |
| if (ret) |
| goto destroy_erase_cmd_list; |
| |
| addr += cmd->size; |
| cmd->count--; |
| |
| ret = spi_nor_wait_till_ready(nor); |
| if (ret) |
| goto destroy_erase_cmd_list; |
| } |
| list_del(&cmd->list); |
| kfree(cmd); |
| } |
| |
| return 0; |
| |
| destroy_erase_cmd_list: |
| spi_nor_destroy_erase_cmd_list(&erase_list); |
| return ret; |
| } |
| |
| /* |
| * Erase an address range on the nor chip. The address range may extend |
| * one or more erase sectors. Return an error is there is a problem erasing. |
| */ |
| static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr) |
| { |
| struct spi_nor *nor = mtd_to_spi_nor(mtd); |
| u32 addr, len; |
| uint32_t rem; |
| int ret; |
| |
| dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr, |
| (long long)instr->len); |
| |
| if (spi_nor_has_uniform_erase(nor)) { |
| div_u64_rem(instr->len, mtd->erasesize, &rem); |
| if (rem) |
| return -EINVAL; |
| } |
| |
| addr = instr->addr; |
| len = instr->len; |
| |
| ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE); |
| if (ret) |
| return ret; |
| |
| /* whole-chip erase? */ |
| if (len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) { |
| unsigned long timeout; |
| |
| write_enable(nor); |
| |
| if (erase_chip(nor)) { |
| ret = -EIO; |
| goto erase_err; |
| } |
| |
| /* |
| * Scale the timeout linearly with the size of the flash, with |
| * a minimum calibrated to an old 2MB flash. We could try to |
| * pull these from CFI/SFDP, but these values should be good |
| * enough for now. |
| */ |
| timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES, |
| CHIP_ERASE_2MB_READY_WAIT_JIFFIES * |
| (unsigned long)(mtd->size / SZ_2M)); |
| ret = spi_nor_wait_till_ready_with_timeout(nor, timeout); |
| if (ret) |
| goto erase_err; |
| |
| /* REVISIT in some cases we could speed up erasing large regions |
| * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up |
| * to use "small sector erase", but that's not always optimal. |
| */ |
| |
| /* "sector"-at-a-time erase */ |
| } else if (spi_nor_has_uniform_erase(nor)) { |
| while (len) { |
| write_enable(nor); |
| |
| ret = spi_nor_erase_sector(nor, addr); |
| if (ret) |
| goto erase_err; |
| |
| addr += mtd->erasesize; |
| len -= mtd->erasesize; |
| |
| ret = spi_nor_wait_till_ready(nor); |
| if (ret) |
| goto erase_err; |
| } |
| |
| /* erase multiple sectors */ |
| } else { |
| ret = spi_nor_erase_multi_sectors(nor, addr, len); |
| if (ret) |
| goto erase_err; |
| } |
| |
| write_disable(nor); |
| |
| erase_err: |
| spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE); |
| |
| return ret; |
| } |
| |
| /* Write status register and ensure bits in mask match written values */ |
| static int write_sr_and_check(struct spi_nor *nor, u8 status_new, u8 mask) |
| { |
| int ret; |
| |
| write_enable(nor); |
| ret = write_sr(nor, status_new); |
| if (ret) |
| return ret; |
| |
| ret = spi_nor_wait_till_ready(nor); |
| if (ret) |
| return ret; |
| |
| ret = read_sr(nor); |
| if (ret < 0) |
| return ret; |
| |
| return ((ret & mask) != (status_new & mask)) ? -EIO : 0; |
| } |
| |
| static void stm_get_locked_range(struct spi_nor *nor, u8 sr, loff_t *ofs, |
| uint64_t *len) |
| { |
| struct mtd_info *mtd = &nor->mtd; |
| u8 mask = SR_BP2 | SR_BP1 | SR_BP0; |
| int shift = ffs(mask) - 1; |
| int pow; |
| |
| if (!(sr & mask)) { |
| /* No protection */ |
| *ofs = 0; |
| *len = 0; |
| } else { |
| pow = ((sr & mask) ^ mask) >> shift; |
| *len = mtd->size >> pow; |
| if (nor->flags & SNOR_F_HAS_SR_TB && sr & SR_TB) |
| *ofs = 0; |
| else |
| *ofs = mtd->size - *len; |
| } |
| } |
| |
| /* |
| * Return 1 if the entire region is locked (if @locked is true) or unlocked (if |
| * @locked is false); 0 otherwise |
| */ |
| static int stm_check_lock_status_sr(struct spi_nor *nor, loff_t ofs, uint64_t len, |
| u8 sr, bool locked) |
| { |
| loff_t lock_offs; |
| uint64_t lock_len; |
| |
| if (!len) |
| return 1; |
| |
| stm_get_locked_range(nor, sr, &lock_offs, &lock_len); |
| |
| if (locked) |
| /* Requested range is a sub-range of locked range */ |
| return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs); |
| else |
| /* Requested range does not overlap with locked range */ |
| return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs); |
| } |
| |
| static int stm_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len, |
| u8 sr) |
| { |
| return stm_check_lock_status_sr(nor, ofs, len, sr, true); |
| } |
| |
| static int stm_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len, |
| u8 sr) |
| { |
| return stm_check_lock_status_sr(nor, ofs, len, sr, false); |
| } |
| |
| /* |
| * Lock a region of the flash. Compatible with ST Micro and similar flash. |
| * Supports the block protection bits BP{0,1,2} in the status register |
| * (SR). Does not support these features found in newer SR bitfields: |
| * - SEC: sector/block protect - only handle SEC=0 (block protect) |
| * - CMP: complement protect - only support CMP=0 (range is not complemented) |
| * |
| * Support for the following is provided conditionally for some flash: |
| * - TB: top/bottom protect |
| * |
| * Sample table portion for 8MB flash (Winbond w25q64fw): |
| * |
| * SEC | TB | BP2 | BP1 | BP0 | Prot Length | Protected Portion |
| * -------------------------------------------------------------------------- |
| * X | X | 0 | 0 | 0 | NONE | NONE |
| * 0 | 0 | 0 | 0 | 1 | 128 KB | Upper 1/64 |
| * 0 | 0 | 0 | 1 | 0 | 256 KB | Upper 1/32 |
| * 0 | 0 | 0 | 1 | 1 | 512 KB | Upper 1/16 |
| * 0 | 0 | 1 | 0 | 0 | 1 MB | Upper 1/8 |
| * 0 | 0 | 1 | 0 | 1 | 2 MB | Upper 1/4 |
| * 0 | 0 | 1 | 1 | 0 | 4 MB | Upper 1/2 |
| * X | X | 1 | 1 | 1 | 8 MB | ALL |
| * ------|-------|-------|-------|-------|---------------|------------------- |
| * 0 | 1 | 0 | 0 | 1 | 128 KB | Lower 1/64 |
| * 0 | 1 | 0 | 1 | 0 | 256 KB | Lower 1/32 |
| * 0 | 1 | 0 | 1 | 1 | 512 KB | Lower 1/16 |
| * 0 | 1 | 1 | 0 | 0 | 1 MB | Lower 1/8 |
| * 0 | 1 | 1 | 0 | 1 | 2 MB | Lower 1/4 |
| * 0 | 1 | 1 | 1 | 0 | 4 MB | Lower 1/2 |
| * |
| * Returns negative on errors, 0 on success. |
| */ |
| static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len) |
| { |
| struct mtd_info *mtd = &nor->mtd; |
| int status_old, status_new; |
| u8 mask = SR_BP2 | SR_BP1 | SR_BP0; |
| u8 shift = ffs(mask) - 1, pow, val; |
| loff_t lock_len; |
| bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB; |
| bool use_top; |
| |
| status_old = read_sr(nor); |
| if (status_old < 0) |
| return status_old; |
| |
| /* If nothing in our range is unlocked, we don't need to do anything */ |
| if (stm_is_locked_sr(nor, ofs, len, status_old)) |
| return 0; |
| |
| /* If anything below us is unlocked, we can't use 'bottom' protection */ |
| if (!stm_is_locked_sr(nor, 0, ofs, status_old)) |
| can_be_bottom = false; |
| |
| /* If anything above us is unlocked, we can't use 'top' protection */ |
| if (!stm_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len), |
| status_old)) |
| can_be_top = false; |
| |
| if (!can_be_bottom && !can_be_top) |
| return -EINVAL; |
| |
| /* Prefer top, if both are valid */ |
| use_top = can_be_top; |
| |
| /* lock_len: length of region that should end up locked */ |
| if (use_top) |
| lock_len = mtd->size - ofs; |
| else |
| lock_len = ofs + len; |
| |
| /* |
| * Need smallest pow such that: |
| * |
| * 1 / (2^pow) <= (len / size) |
| * |
| * so (assuming power-of-2 size) we do: |
| * |
| * pow = ceil(log2(size / len)) = log2(size) - floor(log2(len)) |
| */ |
| pow = ilog2(mtd->size) - ilog2(lock_len); |
| val = mask - (pow << shift); |
| if (val & ~mask) |
| return -EINVAL; |
| /* Don't "lock" with no region! */ |
| if (!(val & mask)) |
| return -EINVAL; |
| |
| status_new = (status_old & ~mask & ~SR_TB) | val; |
| |
| /* Disallow further writes if WP pin is asserted */ |
| status_new |= SR_SRWD; |
| |
| if (!use_top) |
| status_new |= SR_TB; |
| |
| /* Don't bother if they're the same */ |
| if (status_new == status_old) |
| return 0; |
| |
| /* Only modify protection if it will not unlock other areas */ |
| if ((status_new & mask) < (status_old & mask)) |
| return -EINVAL; |
| |
| return write_sr_and_check(nor, status_new, mask); |
| } |
| |
| /* |
| * Unlock a region of the flash. See stm_lock() for more info |
| * |
| * Returns negative on errors, 0 on success. |
| */ |
| static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len) |
| { |
| struct mtd_info *mtd = &nor->mtd; |
| int status_old, status_new; |
| u8 mask = SR_BP2 | SR_BP1 | SR_BP0; |
| u8 shift = ffs(mask) - 1, pow, val; |
| loff_t lock_len; |
| bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB; |
| bool use_top; |
| |
| status_old = read_sr(nor); |
| if (status_old < 0) |
| return status_old; |
| |
| /* If nothing in our range is locked, we don't need to do anything */ |
| if (stm_is_unlocked_sr(nor, ofs, len, status_old)) |
| return 0; |
| |
| /* If anything below us is locked, we can't use 'top' protection */ |
| if (!stm_is_unlocked_sr(nor, 0, ofs, status_old)) |
| can_be_top = false; |
| |
| /* If anything above us is locked, we can't use 'bottom' protection */ |
| if (!stm_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len), |
| status_old)) |
| can_be_bottom = false; |
| |
| if (!can_be_bottom && !can_be_top) |
| return -EINVAL; |
| |
| /* Prefer top, if both are valid */ |
| use_top = can_be_top; |
| |
| /* lock_len: length of region that should remain locked */ |
| if (use_top) |
| lock_len = mtd->size - (ofs + len); |
| else |
| lock_len = ofs; |
| |
| /* |
| * Need largest pow such that: |
| * |
| * 1 / (2^pow) >= (len / size) |
| * |
| * so (assuming power-of-2 size) we do: |
| * |
| * pow = floor(log2(size / len)) = log2(size) - ceil(log2(len)) |
| */ |
| pow = ilog2(mtd->size) - order_base_2(lock_len); |
| if (lock_len == 0) { |
| val = 0; /* fully unlocked */ |
| } else { |
| val = mask - (pow << shift); |
| /* Some power-of-two sizes are not supported */ |
| if (val & ~mask) |
| return -EINVAL; |
| } |
| |
| status_new = (status_old & ~mask & ~SR_TB) | val; |
| |
| /* Don't protect status register if we're fully unlocked */ |
| if (lock_len == 0) |
| status_new &= ~SR_SRWD; |
| |
| if (!use_top) |
| status_new |= SR_TB; |
| |
| /* Don't bother if they're the same */ |
| if (status_new == status_old) |
| return 0; |
| |
| /* Only modify protection if it will not lock other areas */ |
| if ((status_new & mask) > (status_old & mask)) |
| return -EINVAL; |
| |
| return write_sr_and_check(nor, status_new, mask); |
| } |
| |
| /* |
| * Check if a region of the flash is (completely) locked. See stm_lock() for |
| * more info. |
| * |
| * Returns 1 if entire region is locked, 0 if any portion is unlocked, and |
| * negative on errors. |
| */ |
| static int stm_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len) |
| { |
| int status; |
| |
| status = read_sr(nor); |
| if (status < 0) |
| return status; |
| |
| return stm_is_locked_sr(nor, ofs, len, status); |
| } |
| |
| static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) |
| { |
| struct spi_nor *nor = mtd_to_spi_nor(mtd); |
| int ret; |
| |
| ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK); |
| if (ret) |
| return ret; |
| |
| ret = nor->flash_lock(nor, ofs, len); |
| |
| spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK); |
| return ret; |
| } |
| |
| static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) |
| { |
| struct spi_nor *nor = mtd_to_spi_nor(mtd); |
| int ret; |
| |
| ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK); |
| if (ret) |
| return ret; |
| |
| ret = nor->flash_unlock(nor, ofs, len); |
| |
| spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK); |
| return ret; |
| } |
| |
| static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) |
| { |
| struct spi_nor *nor = mtd_to_spi_nor(mtd); |
| int ret; |
| |
| ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK); |
| if (ret) |
| return ret; |
| |
| ret = nor->flash_is_locked(nor, ofs, len); |
| |
| spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK); |
| return ret; |
| } |
| |
| /* |
| * Write status Register and configuration register with 2 bytes |
| * The first byte will be written to the status register, while the |
| * second byte will be written to the configuration register. |
| * Return negative if error occurred. |
| */ |
| static int write_sr_cr(struct spi_nor *nor, u8 *sr_cr) |
| { |
| int ret; |
| |
| write_enable(nor); |
| |
| ret = nor->write_reg(nor, SPINOR_OP_WRSR, sr_cr, 2); |
| if (ret < 0) { |
| dev_err(nor->dev, |
| "error while writing configuration register\n"); |
| return -EINVAL; |
| } |
| |
| ret = spi_nor_wait_till_ready(nor); |
| if (ret) { |
| dev_err(nor->dev, |
| "timeout while writing configuration register\n"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * macronix_quad_enable() - set QE bit in Status Register. |
| * @nor: pointer to a 'struct spi_nor' |
| * |
| * Set the Quad Enable (QE) bit in the Status Register. |
| * |
| * bit 6 of the Status Register is the QE bit for Macronix like QSPI memories. |
| * |
| * Return: 0 on success, -errno otherwise. |
| */ |
| static int macronix_quad_enable(struct spi_nor *nor) |
| { |
| int ret, val; |
| |
| val = read_sr(nor); |
| if (val < 0) |
| return val; |
| if (val & SR_QUAD_EN_MX) |
| return 0; |
| |
| write_enable(nor); |
| |
| write_sr(nor, val | SR_QUAD_EN_MX); |
| |
| ret = spi_nor_wait_till_ready(nor); |
| if (ret) |
| return ret; |
| |
| ret = read_sr(nor); |
| if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) { |
| dev_err(nor->dev, "Macronix Quad bit not set\n"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * spansion_quad_enable() - set QE bit in Configuraiton Register. |
| * @nor: pointer to a 'struct spi_nor' |
| * |
| * Set the Quad Enable (QE) bit in the Configuration Register. |
| * This function is kept for legacy purpose because it has been used for a |
| * long time without anybody complaining but it should be considered as |
| * deprecated and maybe buggy. |
| * First, this function doesn't care about the previous values of the Status |
| * and Configuration Registers when it sets the QE bit (bit 1) in the |
| * Configuration Register: all other bits are cleared, which may have unwanted |
| * side effects like removing some block protections. |
| * Secondly, it uses the Read Configuration Register (35h) instruction though |
| * some very old and few memories don't support this instruction. If a pull-up |
| * resistor is present on the MISO/IO1 line, we might still be able to pass the |
| * "read back" test because the QSPI memory doesn't recognize the command, |
| * so leaves the MISO/IO1 line state unchanged, hence read_cr() returns 0xFF. |
| * |
| * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI |
| * memories. |
| * |
| * Return: 0 on success, -errno otherwise. |
| */ |
| static int spansion_quad_enable(struct spi_nor *nor) |
| { |
| u8 sr_cr[2] = {0, CR_QUAD_EN_SPAN}; |
| int ret; |
| |
| ret = write_sr_cr(nor, sr_cr); |
| if (ret) |
| return ret; |
| |
| /* read back and check it */ |
| ret = read_cr(nor); |
| if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) { |
| dev_err(nor->dev, "Spansion Quad bit not set\n"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * spansion_no_read_cr_quad_enable() - set QE bit in Configuration Register. |
| * @nor: pointer to a 'struct spi_nor' |
| * |
| * Set the Quad Enable (QE) bit in the Configuration Register. |
| * This function should be used with QSPI memories not supporting the Read |
| * Configuration Register (35h) instruction. |
| * |
| * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI |
| * memories. |
| * |
| * Return: 0 on success, -errno otherwise. |
| */ |
| static int spansion_no_read_cr_quad_enable(struct spi_nor *nor) |
| { |
| u8 sr_cr[2]; |
| int ret; |
| |
| /* Keep the current value of the Status Register. */ |
| ret = read_sr(nor); |
| if (ret < 0) { |
| dev_err(nor->dev, "error while reading status register\n"); |
| return -EINVAL; |
| } |
| sr_cr[0] = ret; |
| sr_cr[1] = CR_QUAD_EN_SPAN; |
| |
| return write_sr_cr(nor, sr_cr); |
| } |
| |
| /** |
| * spansion_read_cr_quad_enable() - set QE bit in Configuration Register. |
| * @nor: pointer to a 'struct spi_nor' |
| * |
| * Set the Quad Enable (QE) bit in the Configuration Register. |
| * This function should be used with QSPI memories supporting the Read |
| * Configuration Register (35h) instruction. |
| * |
| * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI |
| * memories. |
| * |
| * Return: 0 on success, -errno otherwise. |
| */ |
| static int spansion_read_cr_quad_enable(struct spi_nor *nor) |
| { |
| struct device *dev = nor->dev; |
| u8 sr_cr[2]; |
| int ret; |
| |
| /* Check current Quad Enable bit value. */ |
| ret = read_cr(nor); |
| if (ret < 0) { |
| dev_err(dev, "error while reading configuration register\n"); |
| return -EINVAL; |
| } |
| |
| if (ret & CR_QUAD_EN_SPAN) |
| return 0; |
| |
| sr_cr[1] = ret | CR_QUAD_EN_SPAN; |
| |
| /* Keep the current value of the Status Register. */ |
| ret = read_sr(nor); |
| if (ret < 0) { |
| dev_err(dev, "error while reading status register\n"); |
| return -EINVAL; |
| } |
| sr_cr[0] = ret; |
| |
| ret = write_sr_cr(nor, sr_cr); |
| if (ret) |
| return ret; |
| |
| /* Read back and check it. */ |
| ret = read_cr(nor); |
| if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) { |
| dev_err(nor->dev, "Spansion Quad bit not set\n"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * sr2_bit7_quad_enable() - set QE bit in Status Register 2. |
| * @nor: pointer to a 'struct spi_nor' |
| * |
| * Set the Quad Enable (QE) bit in the Status Register 2. |
| * |
| * This is one of the procedures to set the QE bit described in the SFDP |
| * (JESD216 rev B) specification but no manufacturer using this procedure has |
| * been identified yet, hence the name of the function. |
| * |
| * Return: 0 on success, -errno otherwise. |
| */ |
| static int sr2_bit7_quad_enable(struct spi_nor *nor) |
| { |
| u8 sr2; |
| int ret; |
| |
| /* Check current Quad Enable bit value. */ |
| ret = nor->read_reg(nor, SPINOR_OP_RDSR2, &sr2, 1); |
| if (ret) |
| return ret; |
| if (sr2 & SR2_QUAD_EN_BIT7) |
| return 0; |
| |
| /* Update the Quad Enable bit. */ |
| sr2 |= SR2_QUAD_EN_BIT7; |
| |
| write_enable(nor); |
| |
| ret = nor->write_reg(nor, SPINOR_OP_WRSR2, &sr2, 1); |
| if (ret < 0) { |
| dev_err(nor->dev, "error while writing status register 2\n"); |
| return -EINVAL; |
| } |
| |
| ret = spi_nor_wait_till_ready(nor); |
| if (ret < 0) { |
| dev_err(nor->dev, "timeout while writing status register 2\n"); |
| return ret; |
| } |
| |
| /* Read back and check it. */ |
| ret = nor->read_reg(nor, SPINOR_OP_RDSR2, &sr2, 1); |
| if (!(ret > 0 && (sr2 & SR2_QUAD_EN_BIT7))) { |
| dev_err(nor->dev, "SR2 Quad bit not set\n"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /* Used when the "_ext_id" is two bytes at most */ |
| #define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \ |
| .id = { \ |
| ((_jedec_id) >> 16) & 0xff, \ |
| ((_jedec_id) >> 8) & 0xff, \ |
| (_jedec_id) & 0xff, \ |
| ((_ext_id) >> 8) & 0xff, \ |
| (_ext_id) & 0xff, \ |
| }, \ |
| .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))), \ |
| .sector_size = (_sector_size), \ |
| .n_sectors = (_n_sectors), \ |
| .page_size = 256, \ |
| .flags = (_flags), |
| |
| #define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \ |
| .id = { \ |
| ((_jedec_id) >> 16) & 0xff, \ |
| ((_jedec_id) >> 8) & 0xff, \ |
| (_jedec_id) & 0xff, \ |
| ((_ext_id) >> 16) & 0xff, \ |
| ((_ext_id) >> 8) & 0xff, \ |
| (_ext_id) & 0xff, \ |
| }, \ |
| .id_len = 6, \ |
| .sector_size = (_sector_size), \ |
| .n_sectors = (_n_sectors), \ |
| .page_size = 256, \ |
| .flags = (_flags), |
| |
| #define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \ |
| .sector_size = (_sector_size), \ |
| .n_sectors = (_n_sectors), \ |
| .page_size = (_page_size), \ |
| .addr_width = (_addr_width), \ |
| .flags = (_flags), |
| |
| #define S3AN_INFO(_jedec_id, _n_sectors, _page_size) \ |
| .id = { \ |
| ((_jedec_id) >> 16) & 0xff, \ |
| ((_jedec_id) >> 8) & 0xff, \ |
| (_jedec_id) & 0xff \ |
| }, \ |
| .id_len = 3, \ |
| .sector_size = (8*_page_size), \ |
| .n_sectors = (_n_sectors), \ |
| .page_size = _page_size, \ |
| .addr_width = 3, \ |
| .flags = SPI_NOR_NO_FR | SPI_S3AN, |
| |
| static int |
| mx25l25635_post_bfpt_fixups(struct spi_nor *nor, |
| const struct sfdp_parameter_header *bfpt_header, |
| const struct sfdp_bfpt *bfpt, |
| struct spi_nor_flash_parameter *params) |
| { |
| /* |
| * MX25L25635F supports 4B opcodes but MX25L25635E does not. |
| * Unfortunately, Macronix has re-used the same JEDEC ID for both |
| * variants which prevents us from defining a new entry in the parts |
| * table. |
| * We need a way to differentiate MX25L25635E and MX25L25635F, and it |
| * seems that the F version advertises support for Fast Read 4-4-4 in |
| * its BFPT table. |
| */ |
| if (bfpt->dwords[BFPT_DWORD(5)] & BFPT_DWORD5_FAST_READ_4_4_4) |
| nor->flags |= SNOR_F_4B_OPCODES; |
| |
| return 0; |
| } |
| |
| static struct spi_nor_fixups mx25l25635_fixups = { |
| .post_bfpt = mx25l25635_post_bfpt_fixups, |
| }; |
| |
| /* NOTE: double check command sets and memory organization when you add |
| * more nor chips. This current list focusses on newer chips, which |
| * have been converging on command sets which including JEDEC ID. |
| * |
| * All newly added entries should describe *hardware* and should use SECT_4K |
| * (or SECT_4K_PMC) if hardware supports erasing 4 KiB sectors. For usage |
| * scenarios excluding small sectors there is config option that can be |
| * disabled: CONFIG_MTD_SPI_NOR_USE_4K_SECTORS. |
| * For historical (and compatibility) reasons (before we got above config) some |
| * old entries may be missing 4K flag. |
| */ |
| static const struct flash_info spi_nor_ids[] = { |
| /* Atmel -- some are (confusingly) marketed as "DataFlash" */ |
| { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) }, |
| { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) }, |
| |
| { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) }, |
| { "at25df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) }, |
| { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) }, |
| { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) }, |
| |
| { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) }, |
| { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) }, |
| { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) }, |
| { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) }, |
| |
| { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) }, |
| |
| /* EON -- en25xxx */ |
| { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) }, |
| { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) }, |
| { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) }, |
| { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) }, |
| { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) }, |
| { "en25q80a", INFO(0x1c3014, 0, 64 * 1024, 16, |
| SECT_4K | SPI_NOR_DUAL_READ) }, |
| { "en25qh32", INFO(0x1c7016, 0, 64 * 1024, 64, 0) }, |
| { "en25qh64", INFO(0x1c7017, 0, 64 * 1024, 128, |
| SECT_4K | SPI_NOR_DUAL_READ) }, |
| { "en25qh128", INFO(0x1c7018, 0, 64 * 1024, 256, 0) }, |
| { "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) }, |
| { "en25s64", INFO(0x1c3817, 0, 64 * 1024, 128, SECT_4K) }, |
| |
| /* ESMT */ |
| { "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_HAS_LOCK) }, |
| { "f25l32qa", INFO(0x8c4116, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_HAS_LOCK) }, |
| { "f25l64qa", INFO(0x8c4117, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_HAS_LOCK) }, |
| |
| /* Everspin */ |
| { "mr25h128", CAT25_INFO( 16 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, |
| { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, |
| { "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, |
| { "mr25h40", CAT25_INFO(512 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, |
| |
| /* Fujitsu */ |
| { "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE) }, |
| |
| /* GigaDevice */ |
| { |
| "gd25q16", INFO(0xc84015, 0, 64 * 1024, 32, |
| SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | |
| SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) |
| }, |
| { |
| "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64, |
| SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | |
| SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) |
| }, |
| { |
| "gd25lq32", INFO(0xc86016, 0, 64 * 1024, 64, |
| SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | |
| SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) |
| }, |
| { |
| "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, |
| SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | |
| SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) |
| }, |
| { |
| "gd25lq64c", INFO(0xc86017, 0, 64 * 1024, 128, |
| SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | |
| SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) |
| }, |
| { |
| "gd25q128", INFO(0xc84018, 0, 64 * 1024, 256, |
| SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | |
| SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) |
| }, |
| { |
| "gd25q256", INFO(0xc84019, 0, 64 * 1024, 512, |
| SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | |
| SPI_NOR_4B_OPCODES | SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) |
| .quad_enable = macronix_quad_enable, |
| }, |
| |
| /* Intel/Numonyx -- xxxs33b */ |
| { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) }, |
| { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) }, |
| { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) }, |
| |
| /* ISSI */ |
| { "is25cd512", INFO(0x7f9d20, 0, 32 * 1024, 2, SECT_4K) }, |
| { "is25lq040b", INFO(0x9d4013, 0, 64 * 1024, 8, |
| SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, |
| { "is25lp016d", INFO(0x9d6015, 0, 64 * 1024, 32, |
| SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, |
| { "is25lp080d", INFO(0x9d6014, 0, 64 * 1024, 16, |
| SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, |
| { "is25lp032", INFO(0x9d6016, 0, 64 * 1024, 64, |
| SECT_4K | SPI_NOR_DUAL_READ) }, |
| { "is25lp064", INFO(0x9d6017, 0, 64 * 1024, 128, |
| SECT_4K | SPI_NOR_DUAL_READ) }, |
| { "is25lp128", INFO(0x9d6018, 0, 64 * 1024, 256, |
| SECT_4K | SPI_NOR_DUAL_READ) }, |
| { "is25lp256", INFO(0x9d6019, 0, 64 * 1024, 512, |
| SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | |
| SPI_NOR_4B_OPCODES) }, |
| { "is25wp032", INFO(0x9d7016, 0, 64 * 1024, 64, |
| SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, |
| { "is25wp064", INFO(0x9d7017, 0, 64 * 1024, 128, |
| SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, |
| { "is25wp128", INFO(0x9d7018, 0, 64 * 1024, 256, |
| SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, |
| |
| /* Macronix */ |
| { "mx25l512e", INFO(0xc22010, 0, 64 * 1024, 1, SECT_4K) }, |
| { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) }, |
| { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) }, |
| { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) }, |
| { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) }, |
| { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, SECT_4K) }, |
| { "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K) }, |
| { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, SECT_4K) }, |
| { "mx25u2033e", INFO(0xc22532, 0, 64 * 1024, 4, SECT_4K) }, |
| { "mx25u3235f", INFO(0xc22536, 0, 64 * 1024, 64, |
| SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, |
| { "mx25u4035", INFO(0xc22533, 0, 64 * 1024, 8, SECT_4K) }, |
| { "mx25u8035", INFO(0xc22534, 0, 64 * 1024, 16, SECT_4K) }, |
| { "mx25u6435f", INFO(0xc22537, 0, 64 * 1024, 128, SECT_4K) }, |
| { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) }, |
| { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) }, |
| { "mx25u12835f", INFO(0xc22538, 0, 64 * 1024, 256, |
| SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, |
| { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, |
| SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) |
| .fixups = &mx25l25635_fixups }, |
| { "mx25u25635f", INFO(0xc22539, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_4B_OPCODES) }, |
| { "mx25v8035f", INFO(0xc22314, 0, 64 * 1024, 16, |
| SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, |
| { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) }, |
| { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) }, |
| { "mx66u51235f", INFO(0xc2253a, 0, 64 * 1024, 1024, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) }, |
| { "mx66l1g45g", INFO(0xc2201b, 0, 64 * 1024, 2048, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, |
| { "mx66l1g55g", INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) }, |
| |
| /* Micron <--> ST Micro */ |
| { "n25q016a", INFO(0x20bb15, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_QUAD_READ) }, |
| { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ) }, |
| { "n25q032a", INFO(0x20bb16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ) }, |
| { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_QUAD_READ) }, |
| { "n25q064a", INFO(0x20bb17, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_QUAD_READ) }, |
| { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_QUAD_READ) }, |
| { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_QUAD_READ) }, |
| { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, |
| { "n25q256ax1", INFO(0x20bb19, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_QUAD_READ) }, |
| { "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) }, |
| { "n25q512ax3", INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) }, |
| { "n25q00", INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) }, |
| { "n25q00a", INFO(0x20bb21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) }, |
| { "mt25qu02g", INFO(0x20bb22, 0, 64 * 1024, 4096, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) }, |
| |
| /* Micron */ |
| { |
| "mt35xu512aba", INFO(0x2c5b1a, 0, 128 * 1024, 512, |
| SECT_4K | USE_FSR | SPI_NOR_OCTAL_READ | |
| SPI_NOR_4B_OPCODES) |
| }, |
| |
| /* PMC */ |
| { "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC) }, |
| { "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC) }, |
| { "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K) }, |
| |
| /* Spansion/Cypress -- single (large) sector size only, at least |
| * for the chips listed here (without boot sectors). |
| */ |
| { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, |
| { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, |
| { "s25fl128s0", INFO6(0x012018, 0x4d0080, 256 * 1024, 64, |
| SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) }, |
| { "s25fl128s1", INFO6(0x012018, 0x4d0180, 64 * 1024, 256, |
| SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) }, |
| { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, USE_CLSR) }, |
| { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) }, |
| { "s25fl512s", INFO6(0x010220, 0x4d0080, 256 * 1024, 256, |
| SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | |
| SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | USE_CLSR) }, |
| { "s25fs512s", INFO6(0x010220, 0x4d0081, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) }, |
| { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) }, |
| { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) }, |
| { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) }, |
| { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) }, |
| { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) }, |
| { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) }, |
| { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) }, |
| { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) }, |
| { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) }, |
| { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) }, |
| { "s25fl004k", INFO(0xef4013, 0, 64 * 1024, 8, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, |
| { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, |
| { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, |
| { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) }, |
| { "s25fl116k", INFO(0x014015, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, |
| { "s25fl132k", INFO(0x014016, 0, 64 * 1024, 64, SECT_4K) }, |
| { "s25fl164k", INFO(0x014017, 0, 64 * 1024, 128, SECT_4K) }, |
| { "s25fl204k", INFO(0x014013, 0, 64 * 1024, 8, SECT_4K | SPI_NOR_DUAL_READ) }, |
| { "s25fl208k", INFO(0x014014, 0, 64 * 1024, 16, SECT_4K | SPI_NOR_DUAL_READ) }, |
| { "s25fl064l", INFO(0x016017, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) }, |
| { "s25fl128l", INFO(0x016018, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) }, |
| { "s25fl256l", INFO(0x016019, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) }, |
| |
| /* SST -- large erase sizes are "overlays", "sectors" are 4K */ |
| { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) }, |
| { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) }, |
| { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) }, |
| { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) }, |
| { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) }, |
| { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K | SST_WRITE) }, |
| { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K | SST_WRITE) }, |
| { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K | SST_WRITE) }, |
| { "sst25wf020a", INFO(0x621612, 0, 64 * 1024, 4, SECT_4K) }, |
| { "sst25wf040b", INFO(0x621613, 0, 64 * 1024, 8, SECT_4K) }, |
| { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) }, |
| { "sst25wf080", INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) }, |
| { "sst26vf064b", INFO(0xbf2643, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, |
| |
| /* ST Microelectronics -- newer production may have feature updates */ |
| { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) }, |
| { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) }, |
| { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) }, |
| { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) }, |
| { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) }, |
| { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) }, |
| { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) }, |
| { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) }, |
| { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) }, |
| |
| { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) }, |
| { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) }, |
| { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) }, |
| { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) }, |
| { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) }, |
| { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) }, |
| { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) }, |
| { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) }, |
| { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) }, |
| |
| { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) }, |
| { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) }, |
| { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) }, |
| |
| { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) }, |
| { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) }, |
| { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) }, |
| |
| { "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K) }, |
| { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) }, |
| { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) }, |
| { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) }, |
| { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) }, |
| { "m25px80", INFO(0x207114, 0, 64 * 1024, 16, 0) }, |
| |
| /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */ |
| { "w25x05", INFO(0xef3010, 0, 64 * 1024, 1, SECT_4K) }, |
| { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) }, |
| { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) }, |
| { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) }, |
| { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) }, |
| { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) }, |
| { |
| "w25q16dw", INFO(0xef6015, 0, 64 * 1024, 32, |
| SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | |
| SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) |
| }, |
| { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) }, |
| { "w25q20cl", INFO(0xef4012, 0, 64 * 1024, 4, SECT_4K) }, |
| { "w25q20bw", INFO(0xef5012, 0, 64 * 1024, 4, SECT_4K) }, |
| { "w25q20ew", INFO(0xef6012, 0, 64 * 1024, 4, SECT_4K) }, |
| { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) }, |
| { |
| "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64, |
| SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | |
| SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) |
| }, |
| { |
| "w25q32jv", INFO(0xef7016, 0, 64 * 1024, 64, |
| SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | |
| SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) |
| }, |
| { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) }, |
| { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) }, |
| { |
| "w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128, |
| SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | |
| SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) |
| }, |
| { |
| "w25q128fw", INFO(0xef6018, 0, 64 * 1024, 256, |
| SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | |
| SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) |
| }, |
| { |
| "w25q128jv", INFO(0xef7018, 0, 64 * 1024, 256, |
| SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | |
| SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) |
| }, |
| { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) }, |
| { "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) }, |
| { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) }, |
| { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, |
| { "w25m512jv", INFO(0xef7119, 0, 64 * 1024, 1024, |
| SECT_4K | SPI_NOR_QUAD_READ | SPI_NOR_DUAL_READ) }, |
| |
| /* Catalyst / On Semiconductor -- non-JEDEC */ |
| { "cat25c11", CAT25_INFO( 16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, |
| { "cat25c03", CAT25_INFO( 32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, |
| { "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, |
| { "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, |
| { "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, |
| |
| /* Xilinx S3AN Internal Flash */ |
| { "3S50AN", S3AN_INFO(0x1f2200, 64, 264) }, |
| { "3S200AN", S3AN_INFO(0x1f2400, 256, 264) }, |
| { "3S400AN", S3AN_INFO(0x1f2400, 256, 264) }, |
| { "3S700AN", S3AN_INFO(0x1f2500, 512, 264) }, |
| { "3S1400AN", S3AN_INFO(0x1f2600, 512, 528) }, |
| |
| /* XMC (Wuhan Xinxin Semiconductor Manufacturing Corp.) */ |
| { "XM25QH64A", INFO(0x207017, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, |
| { "XM25QH128A", INFO(0x207018, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, |
| { }, |
| }; |
| |
| static const struct flash_info *spi_nor_read_id(struct spi_nor *nor) |
| { |
| int tmp; |
| u8 id[SPI_NOR_MAX_ID_LEN]; |
| const struct flash_info *info; |
| |
| tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN); |
| if (tmp < 0) { |
| dev_dbg(nor->dev, "error %d reading JEDEC ID\n", tmp); |
| return ERR_PTR(tmp); |
| } |
| |
| for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) { |
| info = &spi_nor_ids[tmp]; |
| if (info->id_len) { |
| if (!memcmp(info->id, id, info->id_len)) |
| return &spi_nor_ids[tmp]; |
| } |
| } |
| dev_err(nor->dev, "unrecognized JEDEC id bytes: %*ph\n", |
| SPI_NOR_MAX_ID_LEN, id); |
| return ERR_PTR(-ENODEV); |
| } |
| |
| static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len, |
| size_t *retlen, u_char *buf) |
| { |
| struct spi_nor *nor = mtd_to_spi_nor(mtd); |
| int ret; |
| |
| dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len); |
| |
| ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ); |
| if (ret) |
| return ret; |
| |
| while (len) { |
| loff_t addr = from; |
| |
| if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT) |
| addr = spi_nor_s3an_addr_convert(nor, addr); |
| |
| ret = nor->read(nor, addr, len, buf); |
| if (ret == 0) { |
| /* We shouldn't see 0-length reads */ |
| ret = -EIO; |
| goto read_err; |
| } |
| if (ret < 0) |
| goto read_err; |
| |
| WARN_ON(ret > len); |
| *retlen += ret; |
| buf += ret; |
| from += ret; |
| len -= ret; |
| } |
| ret = 0; |
| |
| read_err: |
| spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ); |
| return ret; |
| } |
| |
| static int sst_write(struct mtd_info *mtd, loff_t to, size_t len, |
| size_t *retlen, const u_char *buf) |
| { |
| struct spi_nor *nor = mtd_to_spi_nor(mtd); |
| size_t actual; |
| int ret; |
| |
| dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len); |
| |
| ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE); |
| if (ret) |
| return ret; |
| |
| write_enable(nor); |
| |
| nor->sst_write_second = false; |
| |
| actual = to % 2; |
| /* Start write from odd address. */ |
| if (actual) { |
| nor->program_opcode = SPINOR_OP_BP; |
| |
| /* write one byte. */ |
| ret = nor->write(nor, to, 1, buf); |
| if (ret < 0) |
| goto sst_write_err; |
| WARN(ret != 1, "While writing 1 byte written %i bytes\n", |
| (int)ret); |
| ret = spi_nor_wait_till_ready(nor); |
| if (ret) |
| goto sst_write_err; |
| } |
| to += actual; |
| |
| /* Write out most of the data here. */ |
| for (; actual < len - 1; actual += 2) { |
| nor->program_opcode = SPINOR_OP_AAI_WP; |
| |
| /* write two bytes. */ |
| ret = nor->write(nor, to, 2, buf + actual); |
| if (ret < 0) |
| goto sst_write_err; |
| WARN(ret != 2, "While writing 2 bytes written %i bytes\n", |
| (int)ret); |
| ret = spi_nor_wait_till_ready(nor); |
| if (ret) |
| goto sst_write_err; |
| to += 2; |
| nor->sst_write_second = true; |
| } |
| nor->sst_write_second = false; |
| |
| write_disable(nor); |
| ret = spi_nor_wait_till_ready(nor); |
| if (ret) |
| goto sst_write_err; |
| |
| /* Write out trailing byte if it exists. */ |
| if (actual != len) { |
| write_enable(nor); |
| |
| nor->program_opcode = SPINOR_OP_BP; |
| ret = nor->write(nor, to, 1, buf + actual); |
| if (ret < 0) |
| goto sst_write_err; |
| WARN(ret != 1, "While writing 1 byte written %i bytes\n", |
| (int)ret); |
| ret = spi_nor_wait_till_ready(nor); |
| if (ret) |
| goto sst_write_err; |
| write_disable(nor); |
| actual += 1; |
| } |
| sst_write_err: |
| *retlen += actual; |
| spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE); |
| return ret; |
| } |
| |
| /* |
| * Write an address range to the nor chip. Data must be written in |
| * FLASH_PAGESIZE chunks. The address range may be any size provided |
| * it is within the physical boundaries. |
| */ |
| static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len, |
| size_t *retlen, const u_char *buf) |
| { |
| struct spi_nor *nor = mtd_to_spi_nor(mtd); |
| size_t page_offset, page_remain, i; |
| ssize_t ret; |
| |
| dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len); |
| |
| ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE); |
| if (ret) |
| return ret; |
| |
| for (i = 0; i < len; ) { |
| ssize_t written; |
| loff_t addr = to + i; |
| |
| /* |
| * If page_size is a power of two, the offset can be quickly |
| * calculated with an AND operation. On the other cases we |
| * need to do a modulus operation (more expensive). |
| * Power of two numbers have only one bit set and we can use |
| * the instruction hweight32 to detect if we need to do a |
| * modulus (do_div()) or not. |
| */ |
| if (hweight32(nor->page_size) == 1) { |
| page_offset = addr & (nor->page_size - 1); |
| } else { |
| uint64_t aux = addr; |
| |
| page_offset = do_div(aux, nor->page_size); |
| } |
| /* the size of data remaining on the first page */ |
| page_remain = min_t(size_t, |
| nor->page_size - page_offset, len - i); |
| |
| if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT) |
| addr = spi_nor_s3an_addr_convert(nor, addr); |
| |
| write_enable(nor); |
| ret = nor->write(nor, addr, page_remain, buf + i); |
| if (ret < 0) |
| goto write_err; |
| written = ret; |
| |
| ret = spi_nor_wait_till_ready(nor); |
| if (ret) |
| goto write_err; |
| *retlen += written; |
| i += written; |
| } |
| |
| write_err: |
| spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE); |
| return ret; |
| } |
| |
| static int spi_nor_check(struct spi_nor *nor) |
| { |
| if (!nor->dev || !nor->read || !nor->write || |
| !nor->read_reg || !nor->write_reg) { |
| pr_err("spi-nor: please fill all the necessary fields!\n"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int s3an_nor_scan(struct spi_nor *nor) |
| { |
| int ret; |
| u8 val; |
| |
| ret = nor->read_reg(nor, SPINOR_OP_XRDSR, &val, 1); |
| if (ret < 0) { |
| dev_err(nor->dev, "error %d reading XRDSR\n", (int) ret); |
| return ret; |
| } |
| |
| nor->erase_opcode = SPINOR_OP_XSE; |
| nor->program_opcode = SPINOR_OP_XPP; |
| nor->read_opcode = SPINOR_OP_READ; |
| nor->flags |= SNOR_F_NO_OP_CHIP_ERASE; |
| |
| /* |
| * This flashes have a page size of 264 or 528 bytes (known as |
| * Default addressing mode). It can be changed to a more standard |
| * Power of two mode where the page size is 256/512. This comes |
| * with a price: there is 3% less of space, the data is corrupted |
| * and the page size cannot be changed back to default addressing |
| * mode. |
| * |
| * The current addressing mode can be read from the XRDSR register |
| * and should not be changed, because is a destructive operation. |
| */ |
| if (val & XSR_PAGESIZE) { |
| /* Flash in Power of 2 mode */ |
| nor->page_size = (nor->page_size == 264) ? 256 : 512; |
| nor->mtd.writebufsize = nor->page_size; |
| nor->mtd.size = 8 * nor->page_size * nor->info->n_sectors; |
| nor->mtd.erasesize = 8 * nor->page_size; |
| } else { |
| /* Flash in Default addressing mode */ |
| nor->flags |= SNOR_F_S3AN_ADDR_DEFAULT; |
| } |
| |
| return 0; |
| } |
| |
| static void |
| spi_nor_set_read_settings(struct spi_nor_read_command *read, |
| u8 num_mode_clocks, |
| u8 num_wait_states, |
| u8 opcode, |
| enum spi_nor_protocol proto) |
| { |
| read->num_mode_clocks = num_mode_clocks; |
| read->num_wait_states = num_wait_states; |
| read->opcode = opcode; |
| read->proto = proto; |
| } |
| |
| static void |
| spi_nor_set_pp_settings(struct spi_nor_pp_command *pp, |
| u8 opcode, |
| enum spi_nor_protocol proto) |
| { |
| pp->opcode = opcode; |
| pp->proto = proto; |
| } |
| |
| static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size) |
| { |
| size_t i; |
| |
| for (i = 0; i < size; i++) |
| if (table[i][0] == (int)hwcaps) |
| return table[i][1]; |
| |
| return -EINVAL; |
| } |
| |
| static int spi_nor_hwcaps_read2cmd(u32 hwcaps) |
| { |
| static const int hwcaps_read2cmd[][2] = { |
| { SNOR_HWCAPS_READ, SNOR_CMD_READ }, |
| { SNOR_HWCAPS_READ_FAST, SNOR_CMD_READ_FAST }, |
| { SNOR_HWCAPS_READ_1_1_1_DTR, SNOR_CMD_READ_1_1_1_DTR }, |
| { SNOR_HWCAPS_READ_1_1_2, SNOR_CMD_READ_1_1_2 }, |
| { SNOR_HWCAPS_READ_1_2_2, SNOR_CMD_READ_1_2_2 }, |
| { SNOR_HWCAPS_READ_2_2_2, SNOR_CMD_READ_2_2_2 }, |
| { SNOR_HWCAPS_READ_1_2_2_DTR, SNOR_CMD_READ_1_2_2_DTR }, |
| { SNOR_HWCAPS_READ_1_1_4, SNOR_CMD_READ_1_1_4 }, |
| { SNOR_HWCAPS_READ_1_4_4, SNOR_CMD_READ_1_4_4 }, |
| { SNOR_HWCAPS_READ_4_4_4, SNOR_CMD_READ_4_4_4 }, |
| { SNOR_HWCAPS_READ_1_4_4_DTR, SNOR_CMD_READ_1_4_4_DTR }, |
| { SNOR_HWCAPS_READ_1_1_8, SNOR_CMD_READ_1_1_8 }, |
| { SNOR_HWCAPS_READ_1_8_8, SNOR_CMD_READ_1_8_8 }, |
| { SNOR_HWCAPS_READ_8_8_8, SNOR_CMD_READ_8_8_8 }, |
| { SNOR_HWCAPS_READ_1_8_8_DTR, SNOR_CMD_READ_1_8_8_DTR }, |
| }; |
| |
| return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd, |
| ARRAY_SIZE(hwcaps_read2cmd)); |
| } |
| |
| static int spi_nor_hwcaps_pp2cmd(u32 hwcaps) |
| { |
| static const int hwcaps_pp2cmd[][2] = { |
| { SNOR_HWCAPS_PP, SNOR_CMD_PP }, |
| { SNOR_HWCAPS_PP_1_1_4, SNOR_CMD_PP_1_1_4 }, |
| { SNOR_HWCAPS_PP_1_4_4, SNOR_CMD_PP_1_4_4 }, |
| { SNOR_HWCAPS_PP_4_4_4, SNOR_CMD_PP_4_4_4 }, |
| { SNOR_HWCAPS_PP_1_1_8, SNOR_CMD_PP_1_1_8 }, |
| { SNOR_HWCAPS_PP_1_8_8, SNOR_CMD_PP_1_8_8 }, |
| { SNOR_HWCAPS_PP_8_8_8, SNOR_CMD_PP_8_8_8 }, |
| }; |
| |
| return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd, |
| ARRAY_SIZE(hwcaps_pp2cmd)); |
| } |
| |
| /* |
| * Serial Flash Discoverable Parameters (SFDP) parsing. |
| */ |
| |
| /** |
| * spi_nor_read_raw() - raw read of serial flash memory. read_opcode, |
| * addr_width and read_dummy members of the struct spi_nor |
| * should be previously |
| * set. |
| * @nor: pointer to a 'struct spi_nor' |
| * @addr: offset in the serial flash memory |
| * @len: number of bytes to read |
| * @buf: buffer where the data is copied into (dma-safe memory) |
| * |
| * Return: 0 on success, -errno otherwise. |
| */ |
| static int spi_nor_read_raw(struct spi_nor *nor, u32 addr, size_t len, u8 *buf) |
| { |
| int ret; |
| |
| while (len) { |
| ret = nor->read(nor, addr, len, buf); |
| if (!ret || ret > len) |
| return -EIO; |
| if (ret < 0) |
| return ret; |
| |
| buf += ret; |
| addr += ret; |
| len -= ret; |
| } |
| return 0; |
| } |
| |
| /** |
| * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters. |
| * @nor: pointer to a 'struct spi_nor' |
| * @addr: offset in the SFDP area to start reading data from |
| * @len: number of bytes to read |
| * @buf: buffer where the SFDP data are copied into (dma-safe memory) |
| * |
| * Whatever the actual numbers of bytes for address and dummy cycles are |
| * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always |
| * followed by a 3-byte address and 8 dummy clock cycles. |
| * |
| * Return: 0 on success, -errno otherwise. |
| */ |
| static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr, |
| size_t len, void *buf) |
| { |
| u8 addr_width, read_opcode, read_dummy; |
| int ret; |
| |
| read_opcode = nor->read_opcode; |
| addr_width = nor->addr_width; |
| read_dummy = nor->read_dummy; |
| |
| nor->read_opcode = SPINOR_OP_RDSFDP; |
| nor->addr_width = 3; |
| nor->read_dummy = 8; |
| |
| ret = spi_nor_read_raw(nor, addr, len, buf); |
| |
| nor->read_opcode = read_opcode; |
| nor->addr_width = addr_width; |
| nor->read_dummy = read_dummy; |
| |
| return ret; |
| } |
| |
| /** |
| * spi_nor_read_sfdp_dma_unsafe() - read Serial Flash Discoverable Parameters. |
| * @nor: pointer to a 'struct spi_nor' |
| * @addr: offset in the SFDP area to start reading data from |
| * @len: number of bytes to read |
| * @buf: buffer where the SFDP data are copied into |
| * |
| * Wrap spi_nor_read_sfdp() using a kmalloc'ed bounce buffer as @buf is now not |
| * guaranteed to be dma-safe. |
| * |
| * Return: -ENOMEM if kmalloc() fails, the return code of spi_nor_read_sfdp() |
| * otherwise. |
| */ |
| static int spi_nor_read_sfdp_dma_unsafe(struct spi_nor *nor, u32 addr, |
| size_t len, void *buf) |
| { |
| void *dma_safe_buf; |
| int ret; |
| |
| dma_safe_buf = kmalloc(len, GFP_KERNEL); |
| if (!dma_safe_buf) |
| return -ENOMEM; |
| |
| ret = spi_nor_read_sfdp(nor, addr, len, dma_safe_buf); |
| memcpy(buf, dma_safe_buf, len); |
| kfree(dma_safe_buf); |
| |
| return ret; |
| } |
| |
| /* Fast Read settings. */ |
| |
| static void |
| spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read, |
| u16 half, |
| enum spi_nor_protocol proto) |
| { |
| read->num_mode_clocks = (half >> 5) & 0x07; |
| read->num_wait_states = (half >> 0) & 0x1f; |
| read->opcode = (half >> 8) & 0xff; |
| read->proto = proto; |
| } |
| |
| struct sfdp_bfpt_read { |
| /* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */ |
| u32 hwcaps; |
| |
| /* |
| * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us |
| * whether the Fast Read x-y-z command is supported. |
| */ |
| u32 supported_dword; |
| u32 supported_bit; |
| |
| /* |
| * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD |
| * encodes the op code, the number of mode clocks and the number of wait |
| * states to be used by Fast Read x-y-z command. |
| */ |
| u32 settings_dword; |
| u32 settings_shift; |
| |
| /* The SPI protocol for this Fast Read x-y-z command. */ |
| enum spi_nor_protocol proto; |
| }; |
| |
| static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = { |
| /* Fast Read 1-1-2 */ |
| { |
| SNOR_HWCAPS_READ_1_1_2, |
| BFPT_DWORD(1), BIT(16), /* Supported bit */ |
| BFPT_DWORD(4), 0, /* Settings */ |
| SNOR_PROTO_1_1_2, |
| }, |
| |
| /* Fast Read 1-2-2 */ |
| { |
| SNOR_HWCAPS_READ_1_2_2, |
| BFPT_DWORD(1), BIT(20), /* Supported bit */ |
| BFPT_DWORD(4), 16, /* Settings */ |
| SNOR_PROTO_1_2_2, |
| }, |
| |
| /* Fast Read 2-2-2 */ |
| { |
| SNOR_HWCAPS_READ_2_2_2, |
| BFPT_DWORD(5), BIT(0), /* Supported bit */ |
| BFPT_DWORD(6), 16, /* Settings */ |
| SNOR_PROTO_2_2_2, |
| }, |
| |
| /* Fast Read 1-1-4 */ |
| { |
| SNOR_HWCAPS_READ_1_1_4, |
| BFPT_DWORD(1), BIT(22), /* Supported bit */ |
| BFPT_DWORD(3), 16, /* Settings */ |
| SNOR_PROTO_1_1_4, |
| }, |
| |
| /* Fast Read 1-4-4 */ |
| { |
| SNOR_HWCAPS_READ_1_4_4, |
| BFPT_DWORD(1), BIT(21), /* Supported bit */ |
| BFPT_DWORD(3), 0, /* Settings */ |
| SNOR_PROTO_1_4_4, |
| }, |
| |
| /* Fast Read 4-4-4 */ |
| { |
| SNOR_HWCAPS_READ_4_4_4, |
| BFPT_DWORD(5), BIT(4), /* Supported bit */ |
| BFPT_DWORD(7), 16, /* Settings */ |
| SNOR_PROTO_4_4_4, |
| }, |
| }; |
| |
| struct sfdp_bfpt_erase { |
| /* |
| * The half-word at offset <shift> in DWORD <dwoard> encodes the |
| * op code and erase sector size to be used by Sector Erase commands. |
| */ |
| u32 dword; |
| u32 shift; |
| }; |
| |
| static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = { |
| /* Erase Type 1 in DWORD8 bits[15:0] */ |
| {BFPT_DWORD(8), 0}, |
| |
| /* Erase Type 2 in DWORD8 bits[31:16] */ |
| {BFPT_DWORD(8), 16}, |
| |
| /* Erase Type 3 in DWORD9 bits[15:0] */ |
| {BFPT_DWORD(9), 0}, |
| |
| /* Erase Type 4 in DWORD9 bits[31:16] */ |
| {BFPT_DWORD(9), 16}, |
| }; |
| |
| /** |
| * spi_nor_set_erase_type() - set a SPI NOR erase type |
| * @erase: pointer to a structure that describes a SPI NOR erase type |
| * @size: the size of the sector/block erased by the erase type |
| * @opcode: the SPI command op code to erase the sector/block |
| */ |
| static void spi_nor_set_erase_type(struct spi_nor_erase_type *erase, |
| u32 size, u8 opcode) |
| { |
| erase->size = size; |
| erase->opcode = opcode; |
| /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */ |
| erase->size_shift = ffs(erase->size) - 1; |
| erase->size_mask = (1 << erase->size_shift) - 1; |
| } |
| |
| /** |
| * spi_nor_set_erase_settings_from_bfpt() - set erase type settings from BFPT |
| * @erase: pointer to a structure that describes a SPI NOR erase type |
| * @size: the size of the sector/block erased by the erase type |
| * @opcode: the SPI command op code to erase the sector/block |
| * @i: erase type index as sorted in the Basic Flash Parameter Table |
| * |
| * The supported Erase Types will be sorted at init in ascending order, with |
| * the smallest Erase Type size being the first member in the erase_type array |
| * of the spi_nor_erase_map structure. Save the Erase Type index as sorted in |
| * the Basic Flash Parameter Table since it will be used later on to |
| * synchronize with the supported Erase Types defined in SFDP optional tables. |
| */ |
| static void |
| spi_nor_set_erase_settings_from_bfpt(struct spi_nor_erase_type *erase, |
| u32 size, u8 opcode, u8 i) |
| { |
| erase->idx = i; |
| spi_nor_set_erase_type(erase, size, opcode); |
| } |
| |
| /** |
| * spi_nor_map_cmp_erase_type() - compare the map's erase types by size |
| * @l: member in the left half of the map's erase_type array |
| * @r: member in the right half of the map's erase_type array |
| * |
| * Comparison function used in the sort() call to sort in ascending order the |
| * map's erase types, the smallest erase type size being the first member in the |
| * sorted erase_type array. |
| * |
| * Return: the result of @l->size - @r->size |
| */ |
| static int spi_nor_map_cmp_erase_type(const void *l, const void *r) |
| { |
| const struct spi_nor_erase_type *left = l, *right = r; |
| |
| return left->size - right->size; |
| } |
| |
| /** |
| * spi_nor_sort_erase_mask() - sort erase mask |
| * @map: the erase map of the SPI NOR |
| * @erase_mask: the erase type mask to be sorted |
| * |
| * Replicate the sort done for the map's erase types in BFPT: sort the erase |
| * mask in ascending order with the smallest erase type size starting from |
| * BIT(0) in the sorted erase mask. |
| * |
| * Return: sorted erase mask. |
| */ |
| static u8 spi_nor_sort_erase_mask(struct spi_nor_erase_map *map, u8 erase_mask) |
| { |
| struct spi_nor_erase_type *erase_type = map->erase_type; |
| int i; |
| u8 sorted_erase_mask = 0; |
| |
| if (!erase_mask) |
| return 0; |
| |
| /* Replicate the sort done for the map's erase types. */ |
| for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) |
| if (erase_type[i].size && erase_mask & BIT(erase_type[i].idx)) |
| sorted_erase_mask |= BIT(i); |
| |
| return sorted_erase_mask; |
| } |
| |
| /** |
| * spi_nor_regions_sort_erase_types() - sort erase types in each region |
| * @map: the erase map of the SPI NOR |
| * |
| * Function assumes that the erase types defined in the erase map are already |
| * sorted in ascending order, with the smallest erase type size being the first |
| * member in the erase_type array. It replicates the sort done for the map's |
| * erase types. Each region's erase bitmask will indicate which erase types are |
| * supported from the sorted erase types defined in the erase map. |
| * Sort the all region's erase type at init in order to speed up the process of |
| * finding the best erase command at runtime. |
| */ |
| static void spi_nor_regions_sort_erase_types(struct spi_nor_erase_map *map) |
| { |
| struct spi_nor_erase_region *region = map->regions; |
| u8 region_erase_mask, sorted_erase_mask; |
| |
| while (region) { |
| region_erase_mask = region->offset & SNOR_ERASE_TYPE_MASK; |
| |
| sorted_erase_mask = spi_nor_sort_erase_mask(map, |
| region_erase_mask); |
| |
| /* Overwrite erase mask. */ |
| region->offset = (region->offset & ~SNOR_ERASE_TYPE_MASK) | |
| sorted_erase_mask; |
| |
| region = spi_nor_region_next(region); |
| } |
| } |
| |
| /** |
| * spi_nor_init_uniform_erase_map() - Initialize uniform erase map |
| * @map: the erase map of the SPI NOR |
| * @erase_mask: bitmask encoding erase types that can erase the entire |
| * flash memory |
| * @flash_size: the spi nor flash memory size |
| */ |
| static void spi_nor_init_uniform_erase_map(struct spi_nor_erase_map *map, |
| u8 erase_mask, u64 flash_size) |
| { |
| /* Offset 0 with erase_mask and SNOR_LAST_REGION bit set */ |
| map->uniform_region.offset = (erase_mask & SNOR_ERASE_TYPE_MASK) | |
| SNOR_LAST_REGION; |
| map->uniform_region.size = flash_size; |
| map->regions = &map->uniform_region; |
| map->uniform_erase_type = erase_mask; |
| } |
| |
| static int |
| spi_nor_post_bfpt_fixups(struct spi_nor *nor, |
| const struct sfdp_parameter_header *bfpt_header, |
| const struct sfdp_bfpt *bfpt, |
| struct spi_nor_flash_parameter *params) |
| { |
| if (nor->info->fixups && nor->info->fixups->post_bfpt) |
| return nor->info->fixups->post_bfpt(nor, bfpt_header, bfpt, |
| params); |
| |
| return 0; |
| } |
| |
| /** |
| * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table. |
| * @nor: pointer to a 'struct spi_nor' |
| * @bfpt_header: pointer to the 'struct sfdp_parameter_header' describing |
| * the Basic Flash Parameter Table length and version |
| * @params: pointer to the 'struct spi_nor_flash_parameter' to be |
| * filled |
| * |
| * The Basic Flash Parameter Table is the main and only mandatory table as |
| * defined by the SFDP (JESD216) specification. |
| * It provides us with the total size (memory density) of the data array and |
| * the number of address bytes for Fast Read, Page Program and Sector Erase |
| * commands. |
| * For Fast READ commands, it also gives the number of mode clock cycles and |
| * wait states (regrouped in the number of dummy clock cycles) for each |
| * supported instruction op code. |
| * For Page Program, the page size is now available since JESD216 rev A, however |
| * the supported instruction op codes are still not provided. |
| * For Sector Erase commands, this table stores the supported instruction op |
| * codes and the associated sector sizes. |
| * Finally, the Quad Enable Requirements (QER) are also available since JESD216 |
| * rev A. The QER bits encode the manufacturer dependent procedure to be |
| * executed to set the Quad Enable (QE) bit in some internal register of the |
| * Quad SPI memory. Indeed the QE bit, when it exists, must be set before |
| * sending any Quad SPI command to the memory. Actually, setting the QE bit |
| * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2 |
| * and IO3 hence enabling 4 (Quad) I/O lines. |
| * |
| * Return: 0 on success, -errno otherwise. |
| */ |
| static int spi_nor_parse_bfpt(struct spi_nor *nor, |
| const struct sfdp_parameter_header *bfpt_header, |
| struct spi_nor_flash_parameter *params) |
| { |
| struct spi_nor_erase_map *map = &nor->erase_map; |
| struct spi_nor_erase_type *erase_type = map->erase_type; |
| struct sfdp_bfpt bfpt; |
| size_t len; |
| int i, cmd, err; |
| u32 addr; |
| u16 half; |
| u8 erase_mask; |
| |
| /* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */ |
| if (bfpt_header->length < BFPT_DWORD_MAX_JESD216) |
| return -EINVAL; |
| |
| /* Read the Basic Flash Parameter Table. */ |
| len = min_t(size_t, sizeof(bfpt), |
| bfpt_header->length * sizeof(u32)); |
| addr = SFDP_PARAM_HEADER_PTP(bfpt_header); |
| memset(&bfpt, 0, sizeof(bfpt)); |
| err = spi_nor_read_sfdp_dma_unsafe(nor, addr, len, &bfpt); |
| if (err < 0) |
| return err; |
| |
| /* Fix endianness of the BFPT DWORDs. */ |
| for (i = 0; i < BFPT_DWORD_MAX; i++) |
| bfpt.dwords[i] = le32_to_cpu(bfpt.dwords[i]); |
| |
| /* Number of address bytes. */ |
| switch (bfpt.dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) { |
| case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY: |
| nor->addr_width = 3; |
| break; |
| |
| case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY: |
| nor->addr_width = 4; |
| break; |
| |
| default: |
| break; |
| } |
| |
| /* Flash Memory Density (in bits). */ |
| params->size = bfpt.dwords[BFPT_DWORD(2)]; |
| if (params->size & BIT(31)) { |
| params->size &= ~BIT(31); |
| |
| /* |
| * Prevent overflows on params->size. Anyway, a NOR of 2^64 |
| * bits is unlikely to exist so this error probably means |
| * the BFPT we are reading is corrupted/wrong. |
| */ |
| if (params->size > 63) |
| return -EINVAL; |
| |
| params->size = 1ULL << params->size; |
| } else { |
| params->size++; |
| } |
| params->size >>= 3; /* Convert to bytes. */ |
| |
| /* Fast Read settings. */ |
| for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) { |
| const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i]; |
| struct spi_nor_read_command *read; |
| |
| if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) { |
| params->hwcaps.mask &= ~rd->hwcaps; |
| continue; |
| } |
| |
| params->hwcaps.mask |= rd->hwcaps; |
| cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps); |
| read = ¶ms->reads[cmd]; |
| half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift; |
| spi_nor_set_read_settings_from_bfpt(read, half, rd->proto); |
| } |
| |
| /* |
| * Sector Erase settings. Reinitialize the uniform erase map using the |
| * Erase Types defined in the bfpt table. |
| */ |
| erase_mask = 0; |
| memset(&nor->erase_map, 0, sizeof(nor->erase_map)); |
| for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) { |
| const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i]; |
| u32 erasesize; |
| u8 opcode; |
| |
| half = bfpt.dwords[er->dword] >> er->shift; |
| erasesize = half & 0xff; |
| |
| /* erasesize == 0 means this Erase Type is not supported. */ |
| if (!erasesize) |
| continue; |
| |
| erasesize = 1U << erasesize; |
| opcode = (half >> 8) & 0xff; |
| erase_mask |= BIT(i); |
| spi_nor_set_erase_settings_from_bfpt(&erase_type[i], erasesize, |
| opcode, i); |
| } |
| spi_nor_init_uniform_erase_map(map, erase_mask, params->size); |
| /* |
| * Sort all the map's Erase Types in ascending order with the smallest |
| * erase size being the first member in the erase_type array. |
| */ |
| sort(erase_type, SNOR_ERASE_TYPE_MAX, sizeof(erase_type[0]), |
| spi_nor_map_cmp_erase_type, NULL); |
| /* |
| * Sort the erase types in the uniform region in order to update the |
| * uniform_erase_type bitmask. The bitmask will be used later on when |
| * selecting the uniform erase. |
| */ |
| spi_nor_regions_sort_erase_types(map); |
| map->uniform_erase_type = map->uniform_region.offset & |
| SNOR_ERASE_TYPE_MASK; |
| |
| /* Stop here if not JESD216 rev A or later. */ |
| if (bfpt_header->length < BFPT_DWORD_MAX) |
| return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt, |
| params); |
| |
| /* Page size: this field specifies 'N' so the page size = 2^N bytes. */ |
| params->page_size = bfpt.dwords[BFPT_DWORD(11)]; |
| params->page_size &= BFPT_DWORD11_PAGE_SIZE_MASK; |
| params->page_size >>= BFPT_DWORD11_PAGE_SIZE_SHIFT; |
| params->page_size = 1U << params->page_size; |
| |
| /* Quad Enable Requirements. */ |
| switch (bfpt.dwords[BFPT_DWORD(15)] & BFPT_DWORD15_QER_MASK) { |
| case BFPT_DWORD15_QER_NONE: |
| params->quad_enable = NULL; |
| break; |
| |
| case BFPT_DWORD15_QER_SR2_BIT1_BUGGY: |
| case BFPT_DWORD15_QER_SR2_BIT1_NO_RD: |
| params->quad_enable = spansion_no_read_cr_quad_enable; |
| break; |
| |
| case BFPT_DWORD15_QER_SR1_BIT6: |
| params->quad_enable = macronix_quad_enable; |
| break; |
| |
| case BFPT_DWORD15_QER_SR2_BIT7: |
| params->quad_enable = sr2_bit7_quad_enable; |
| break; |
| |
| case BFPT_DWORD15_QER_SR2_BIT1: |
| params->quad_enable = spansion_read_cr_quad_enable; |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt, params); |
| } |
| |
| #define SMPT_CMD_ADDRESS_LEN_MASK GENMASK(23, 22) |
| #define SMPT_CMD_ADDRESS_LEN_0 (0x0UL << 22) |
| #define SMPT_CMD_ADDRESS_LEN_3 (0x1UL << 22) |
| #define SMPT_CMD_ADDRESS_LEN_4 (0x2UL << 22) |
| #define SMPT_CMD_ADDRESS_LEN_USE_CURRENT (0x3UL << 22) |
| |
| #define SMPT_CMD_READ_DUMMY_MASK GENMASK(19, 16) |
| #define SMPT_CMD_READ_DUMMY_SHIFT 16 |
| #define SMPT_CMD_READ_DUMMY(_cmd) \ |
| (((_cmd) & SMPT_CMD_READ_DUMMY_MASK) >> SMPT_CMD_READ_DUMMY_SHIFT) |
| #define SMPT_CMD_READ_DUMMY_IS_VARIABLE 0xfUL |
| |
| #define SMPT_CMD_READ_DATA_MASK GENMASK(31, 24) |
| #define SMPT_CMD_READ_DATA_SHIFT 24 |
| #define SMPT_CMD_READ_DATA(_cmd) \ |
| (((_cmd) & SMPT_CMD_READ_DATA_MASK) >> SMPT_CMD_READ_DATA_SHIFT) |
| |
| #define SMPT_CMD_OPCODE_MASK GENMASK(15, 8) |
| #define SMPT_CMD_OPCODE_SHIFT 8 |
| #define SMPT_CMD_OPCODE(_cmd) \ |
| (((_cmd) & SMPT_CMD_OPCODE_MASK) >> SMPT_CMD_OPCODE_SHIFT) |
| |
| #define SMPT_MAP_REGION_COUNT_MASK GENMASK(23, 16) |
| #define SMPT_MAP_REGION_COUNT_SHIFT 16 |
| #define SMPT_MAP_REGION_COUNT(_header) \ |
| ((((_header) & SMPT_MAP_REGION_COUNT_MASK) >> \ |
| SMPT_MAP_REGION_COUNT_SHIFT) + 1) |
| |
| #define SMPT_MAP_ID_MASK GENMASK(15, 8) |
| #define SMPT_MAP_ID_SHIFT 8 |
| #define SMPT_MAP_ID(_header) \ |
| (((_header) & SMPT_MAP_ID_MASK) >> SMPT_MAP_ID_SHIFT) |
| |
| #define SMPT_MAP_REGION_SIZE_MASK GENMASK(31, 8) |
| #define SMPT_MAP_REGION_SIZE_SHIFT 8 |
| #define SMPT_MAP_REGION_SIZE(_region) \ |
| (((((_region) & SMPT_MAP_REGION_SIZE_MASK) >> \ |
| SMPT_MAP_REGION_SIZE_SHIFT) + 1) * 256) |
| |
| #define SMPT_MAP_REGION_ERASE_TYPE_MASK GENMASK(3, 0) |
| #define SMPT_MAP_REGION_ERASE_TYPE(_region) \ |
| ((_region) & SMPT_MAP_REGION_ERASE_TYPE_MASK) |
| |
| #define SMPT_DESC_TYPE_MAP BIT(1) |
| #define SMPT_DESC_END BIT(0) |
| |
| /** |
| * spi_nor_smpt_addr_width() - return the address width used in the |
| * configuration detection command. |
| * @nor: pointer to a 'struct spi_nor' |
| * @settings: configuration detection command descriptor, dword1 |
| */ |
| static u8 spi_nor_smpt_addr_width(const struct spi_nor *nor, const u32 settings) |
| { |
| switch (settings & SMPT_CMD_ADDRESS_LEN_MASK) { |
| case SMPT_CMD_ADDRESS_LEN_0: |
| return 0; |
| case SMPT_CMD_ADDRESS_LEN_3: |
| return 3; |
| case SMPT_CMD_ADDRESS_LEN_4: |
| return 4; |
| case SMPT_CMD_ADDRESS_LEN_USE_CURRENT: |
| /* fall through */ |
| default: |
| return nor->addr_width; |
| } |
| } |
| |
| /** |
| * spi_nor_smpt_read_dummy() - return the configuration detection command read |
| * latency, in clock cycles. |
| * @nor: pointer to a 'struct spi_nor' |
| * @settings: configuration detection command descriptor, dword1 |
| * |
| * Return: the number of dummy cycles for an SMPT read |
| */ |
| static u8 spi_nor_smpt_read_dummy(const struct spi_nor *nor, const u32 settings) |
| { |
| u8 read_dummy = SMPT_CMD_READ_DUMMY(settings); |
| |
| if (read_dummy == SMPT_CMD_READ_DUMMY_IS_VARIABLE) |
| return nor->read_dummy; |
| return read_dummy; |
| } |
| |
| /** |
| * spi_nor_get_map_in_use() - get the configuration map in use |
| * @nor: pointer to a 'struct spi_nor' |
| * @smpt: pointer to the sector map parameter table |
| * @smpt_len: sector map parameter table length |
| * |
| * Return: pointer to the map in use, ERR_PTR(-errno) otherwise. |
| */ |
| static const u32 *spi_nor_get_map_in_use(struct spi_nor *nor, const u32 *smpt, |
| u8 smpt_len) |
| { |
| const u32 *ret; |
| u8 *buf; |
| u32 addr; |
| int err; |
| u8 i; |
| u8 addr_width, read_opcode, read_dummy; |
| u8 read_data_mask, map_id; |
| |
| /* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */ |
| buf = kmalloc(sizeof(*buf), GFP_KERNEL); |
| if (!buf) |
| return ERR_PTR(-ENOMEM); |
| |
| addr_width = nor->addr_width; |
| read_dummy = nor->read_dummy; |
| read_opcode = nor->read_opcode; |
| |
| map_id = 0; |
| /* Determine if there are any optional Detection Command Descriptors */ |
| for (i = 0; i < smpt_len; i += 2) { |
| if (smpt[i] & SMPT_DESC_TYPE_MAP) |
| break; |
| |
| read_data_mask = SMPT_CMD_READ_DATA(smpt[i]); |
| nor->addr_width = spi_nor_smpt_addr_width(nor, smpt[i]); |
| nor->read_dummy = spi_nor_smpt_read_dummy(nor, smpt[i]); |
| nor->read_opcode = SMPT_CMD_OPCODE(smpt[i]); |
| addr = smpt[i + 1]; |
| |
| err = spi_nor_read_raw(nor, addr, 1, buf); |
| if (err) { |
| ret = ERR_PTR(err); |
| goto out; |
| } |
| |
| /* |
| * Build an index value that is used to select the Sector Map |
| * Configuration that is currently in use. |
| */ |
| map_id = map_id << 1 | !!(*buf & read_data_mask); |
| } |
| |
| /* |
| * If command descriptors are provided, they always precede map |
| * descriptors in the table. There is no need to start the iteration |
| * over smpt array all over again. |
| * |
| * Find the matching configuration map. |
| */ |
| ret = ERR_PTR(-EINVAL); |
| while (i < smpt_len) { |
| if (SMPT_MAP_ID(smpt[i]) == map_id) { |
| ret = smpt + i; |
| break; |
| } |
| |
| /* |
| * If there are no more configuration map descriptors and no |
| * configuration ID matched the configuration identifier, the |
| * sector address map is unknown. |
| */ |
| if (smpt[i] & SMPT_DESC_END) |
| break; |
| |
| /* increment the table index to the next map */ |
| i += SMPT_MAP_REGION_COUNT(smpt[i]) + 1; |
| } |
| |
| /* fall through */ |
| out: |
| kfree(buf); |
| nor->addr_width = addr_width; |
| nor->read_dummy = read_dummy; |
| nor->read_opcode = read_opcode; |
| return ret; |
| } |
| |
| /** |
| * spi_nor_region_check_overlay() - set overlay bit when the region is overlaid |
| * @region: pointer to a structure that describes a SPI NOR erase region |
| * @erase: pointer to a structure that describes a SPI NOR erase type |
| * @erase_type: erase type bitmask |
| */ |
| static void |
| spi_nor_region_check_overlay(struct spi_nor_erase_region *region, |
| const struct spi_nor_erase_type *erase, |
| const u8 erase_type) |
| { |
| int i; |
| |
| for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { |
| if (!(erase_type & BIT(i))) |
| continue; |
| if (region->size & erase[i].size_mask) { |
| spi_nor_region_mark_overlay(region); |
| return; |
| } |
| } |
| } |
| |
| /** |
| * spi_nor_init_non_uniform_erase_map() - initialize the non-uniform erase map |
| * @nor: pointer to a 'struct spi_nor' |
| * @smpt: pointer to the sector map parameter table |
| * |
| * Return: 0 on success, -errno otherwise. |
| */ |
| static int spi_nor_init_non_uniform_erase_map(struct spi_nor *nor, |
| const u32 *smpt) |
| { |
| struct spi_nor_erase_map *map = &nor->erase_map; |
| struct spi_nor_erase_type *erase = map->erase_type; |
| struct spi_nor_erase_region *region; |
| u64 offset; |
| u32 region_count; |
| int i, j; |
| u8 uniform_erase_type, save_uniform_erase_type; |
| u8 erase_type, regions_erase_type; |
| |
| region_count = SMPT_MAP_REGION_COUNT(*smpt); |
| /* |
| * The regions will be freed when the driver detaches from the |
| * device. |
| */ |
| region = devm_kcalloc(nor->dev, region_count, sizeof(*region), |
| GFP_KERNEL); |
| if (!region) |
| return -ENOMEM; |
| map->regions = region; |
| |
| uniform_erase_type = 0xff; |
| regions_erase_type = 0; |
| offset = 0; |
| /* Populate regions. */ |
| for (i = 0; i < region_count; i++) { |
| j = i + 1; /* index for the region dword */ |
| region[i].size = SMPT_MAP_REGION_SIZE(smpt[j]); |
| erase_type = SMPT_MAP_REGION_ERASE_TYPE(smpt[j]); |
| region[i].offset = offset | erase_type; |
| |
| spi_nor_region_check_overlay(®ion[i], erase, erase_type); |
| |
| /* |
| * Save the erase types that are supported in all regions and |
| * can erase the entire flash memory. |
| */ |
| uniform_erase_type &= erase_type; |
| |
| /* |
| * regions_erase_type mask will indicate all the erase types |
| * supported in this configuration map. |
| */ |
| regions_erase_type |= erase_type; |
| |
| offset = (region[i].offset & ~SNOR_ERASE_FLAGS_MASK) + |
| region[i].size; |
| } |
| |
| save_uniform_erase_type = map->uniform_erase_type; |
| map->uniform_erase_type = spi_nor_sort_erase_mask(map, |
| uniform_erase_type); |
| |
| if (!regions_erase_type) { |
| /* |
| * Roll back to the previous uniform_erase_type mask, SMPT is |
| * broken. |
| */ |
| map->uniform_erase_type = save_uniform_erase_type; |
| return -EINVAL; |
| } |
| |
| /* |
| * BFPT advertises all the erase types supported by all the possible |
| * map configurations. Mask out the erase types that are not supported |
| * by the current map configuration. |
| */ |
| for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) |
| if (!(regions_erase_type & BIT(erase[i].idx))) |
| spi_nor_set_erase_type(&erase[i], 0, 0xFF); |
| |
| spi_nor_region_mark_end(®ion[i - 1]); |
| |
| return 0; |
| } |
| |
| /** |
| * spi_nor_parse_smpt() - parse Sector Map Parameter Table |
| * @nor: pointer to a 'struct spi_nor' |
| * @smpt_header: sector map parameter table header |
| * |
| * This table is optional, but when available, we parse it to identify the |
| * location and size of sectors within the main data array of the flash memory |
| * device and to identify which Erase Types are supported by each sector. |
| * |
| * Return: 0 on success, -errno otherwise. |
| */ |
| static int spi_nor_parse_smpt(struct spi_nor *nor, |
| const struct sfdp_parameter_header *smpt_header) |
| { |
| const u32 *sector_map; |
| u32 *smpt; |
| size_t len; |
| u32 addr; |
| int i, ret; |
| |
| /* Read the Sector Map Parameter Table. */ |
| len = smpt_header->length * sizeof(*smpt); |
| smpt = kmalloc(len, GFP_KERNEL); |
| if (!smpt) |
| return -ENOMEM; |
| |
| addr = SFDP_PARAM_HEADER_PTP(smpt_header); |
| ret = spi_nor_read_sfdp(nor, addr, len, smpt); |
| if (ret) |
| goto out; |
| |
| /* Fix endianness of the SMPT DWORDs. */ |
| for (i = 0; i < smpt_header->length; i++) |
| smpt[i] = le32_to_cpu(smpt[i]); |
| |
| sector_map = spi_nor_get_map_in_use(nor, smpt, smpt_header->length); |
| if (IS_ERR(sector_map)) { |
| ret = PTR_ERR(sector_map); |
| goto out; |
| } |
| |
| ret = spi_nor_init_non_uniform_erase_map(nor, sector_map); |
| if (ret) |
| goto out; |
| |
| spi_nor_regions_sort_erase_types(&nor->erase_map); |
| /* fall through */ |
| out: |
| kfree(smpt); |
| return ret; |
| } |
| |
| #define SFDP_4BAIT_DWORD_MAX 2 |
| |
| struct sfdp_4bait { |
| /* The hardware capability. */ |
| u32 hwcaps; |
| |
| /* |
| * The <supported_bit> bit in DWORD1 of the 4BAIT tells us whether |
| * the associated 4-byte address op code is supported. |
| */ |
| u32 supported_bit; |
| }; |
| |
| /** |
| * spi_nor_parse_4bait() - parse the 4-Byte Address Instruction Table |
| * @nor: pointer to a 'struct spi_nor'. |
| * @param_header: pointer to the 'struct sfdp_parameter_header' describing |
| * the 4-Byte Address Instruction Table length and version. |
| * @params: pointer to the 'struct spi_nor_flash_parameter' to be. |
| * |
| * Return: 0 on success, -errno otherwise. |
| */ |
| static int spi_nor_parse_4bait(struct spi_nor *nor, |
| const struct sfdp_parameter_header *param_header, |
| struct spi_nor_flash_parameter *params) |
| { |
| static const struct sfdp_4bait reads[] = { |
| { SNOR_HWCAPS_READ, BIT(0) }, |
| { SNOR_HWCAPS_READ_FAST, BIT(1) }, |
| { SNOR_HWCAPS_READ_1_1_2, BIT(2) }, |
| { SNOR_HWCAPS_READ_1_2_2, BIT(3) }, |
| { SNOR_HWCAPS_READ_1_1_4, BIT(4) }, |
| { SNOR_HWCAPS_READ_1_4_4, BIT(5) }, |
| { SNOR_HWCAPS_READ_1_1_1_DTR, BIT(13) }, |
| { SNOR_HWCAPS_READ_1_2_2_DTR, BIT(14) }, |
| { SNOR_HWCAPS_READ_1_4_4_DTR, BIT(15) }, |
| }; |
| static const struct sfdp_4bait programs[] = { |
| { SNOR_HWCAPS_PP, BIT(6) }, |
| { SNOR_HWCAPS_PP_1_1_4, BIT(7) }, |
| { SNOR_HWCAPS_PP_1_4_4, BIT(8) }, |
| }; |
| static const struct sfdp_4bait erases[SNOR_ERASE_TYPE_MAX] = { |
| { 0u /* not used */, BIT(9) }, |
| { 0u /* not used */, BIT(10) }, |
| { 0u /* not used */, BIT(11) }, |
| { 0u /* not used */, BIT(12) }, |
| }; |
| struct spi_nor_pp_command *params_pp = params->page_programs; |
| struct spi_nor_erase_map *map = &nor->erase_map; |
| struct spi_nor_erase_type *erase_type = map->erase_type; |
| u32 *dwords; |
| size_t len; |
| u32 addr, discard_hwcaps, read_hwcaps, pp_hwcaps, erase_mask; |
| int i, ret; |
| |
| if (param_header->major != SFDP_JESD216_MAJOR || |
| param_header->length < SFDP_4BAIT_DWORD_MAX) |
| return -EINVAL; |
| |
| /* Read the 4-byte Address Instruction Table. */ |
| len = sizeof(*dwords) * SFDP_4BAIT_DWORD_MAX; |
| |
| /* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */ |
| dwords = kmalloc(len, GFP_KERNEL); |
| if (!dwords) |
| return -ENOMEM; |
| |
| addr = SFDP_PARAM_HEADER_PTP(param_header); |
| ret = spi_nor_read_sfdp(nor, addr, len, dwords); |
| if (ret) |
| return ret; |
| |
| /* Fix endianness of the 4BAIT DWORDs. */ |
| for (i = 0; i < SFDP_4BAIT_DWORD_MAX; i++) |
| dwords[i] = le32_to_cpu(dwords[i]); |
| |
| /* |
| * Compute the subset of (Fast) Read commands for which the 4-byte |
| * version is supported. |
| */ |
| discard_hwcaps = 0; |
| read_hwcaps = 0; |
| for (i = 0; i < ARRAY_SIZE(reads); i++) { |
| const struct sfdp_4bait *read = &reads[i]; |
| |
| discard_hwcaps |= read->hwcaps; |
| if ((params->hwcaps.mask & read->hwcaps) && |
| (dwords[0] & read->supported_bit)) |
| read_hwcaps |= read->hwcaps; |
| } |
| |
| /* |
| * Compute the subset of Page Program commands for which the 4-byte |
| * version is supported. |
| */ |
| pp_hwcaps = 0; |
| for (i = 0; i < ARRAY_SIZE(programs); i++) { |
| const struct sfdp_4bait *program = &programs[i]; |
| |
| /* |
| * The 4 Byte Address Instruction (Optional) Table is the only |
| * SFDP table that indicates support for Page Program Commands. |
| * Bypass the params->hwcaps.mask and consider 4BAIT the biggest |
| * authority for specifying Page Program support. |
| */ |
| discard_hwcaps |= program->hwcaps; |
| if (dwords[0] & program->supported_bit) |
| pp_hwcaps |= program->hwcaps; |
| } |
| |
| /* |
| * Compute the subset of Sector Erase commands for which the 4-byte |
| * version is supported. |
| */ |
| erase_mask = 0; |
| for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { |
| const struct sfdp_4bait *erase = &erases[i]; |
| |
| if (dwords[0] & erase->supported_bit) |
| erase_mask |= BIT(i); |
| } |
| |
| /* Replicate the sort done for the map's erase types in BFPT. */ |
| erase_mask = spi_nor_sort_erase_mask(map, erase_mask); |
| |
| /* |
| * We need at least one 4-byte op code per read, program and erase |
| * operation; the .read(), .write() and .erase() hooks share the |
| * nor->addr_width value. |
| */ |
| if (!read_hwcaps || !pp_hwcaps || !erase_mask) |
| goto out; |
| |
| /* |
| * Discard all operations from the 4-byte instruction set which are |
| * not supported by this memory. |
| */ |
| params->hwcaps.mask &= ~discard_hwcaps; |
| params->hwcaps.mask |= (read_hwcaps | pp_hwcaps); |
| |
| /* Use the 4-byte address instruction set. */ |
| for (i = 0; i < SNOR_CMD_READ_MAX; i++) { |
| struct spi_nor_read_command *read_cmd = ¶ms->reads[i]; |
| |
| read_cmd->opcode = spi_nor_convert_3to4_read(read_cmd->opcode); |
| } |
| |
| /* 4BAIT is the only SFDP table that indicates page program support. */ |
| if (pp_hwcaps & SNOR_HWCAPS_PP) |
| spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP], |
| SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1); |
| if (pp_hwcaps & SNOR_HWCAPS_PP_1_1_4) |
| spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP_1_1_4], |
| SPINOR_OP_PP_1_1_4_4B, |
| SNOR_PROTO_1_1_4); |
| if (pp_hwcaps & SNOR_HWCAPS_PP_1_4_4) |
| spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP_1_4_4], |
| SPINOR_OP_PP_1_4_4_4B, |
| SNOR_PROTO_1_4_4); |
| |
| for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { |
| if (erase_mask & BIT(i)) |
| erase_type[i].opcode = (dwords[1] >> |
| erase_type[i].idx * 8) & 0xFF; |
| else |
| spi_nor_set_erase_type(&erase_type[i], 0u, 0xFF); |
| } |
| |
| /* |
| * We set SNOR_F_HAS_4BAIT in order to skip spi_nor_set_4byte_opcodes() |
| * later because we already did the conversion to 4byte opcodes. Also, |
| * this latest function implements a legacy quirk for the erase size of |
| * Spansion memory. However this quirk is no longer needed with new |
| * SFDP compliant memories. |
| */ |
| nor->addr_width = 4; |
| nor->flags |= SNOR_F_4B_OPCODES | SNOR_F_HAS_4BAIT; |
| |
| /* fall through */ |
| out: |
| kfree(dwords); |
| return ret; |
| } |
| |
| /** |
| * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters. |
| * @nor: pointer to a 'struct spi_nor' |
| * @params: pointer to the 'struct spi_nor_flash_parameter' to be |
| * filled |
| * |
| * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216 |
| * specification. This is a standard which tends to supported by almost all |
| * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at |
| * runtime the main parameters needed to perform basic SPI flash operations such |
| * as Fast Read, Page Program or Sector Erase commands. |
| * |
| * Return: 0 on success, -errno otherwise. |
| */ |
| static int spi_nor_parse_sfdp(struct spi_nor *nor, |
| struct spi_nor_flash_parameter *params) |
| { |
| const struct sfdp_parameter_header *param_header, *bfpt_header; |
| struct sfdp_parameter_header *param_headers = NULL; |
| struct sfdp_header header; |
| struct device *dev = nor->dev; |
| size_t psize; |
| int i, err; |
| |
| /* Get the SFDP header. */ |
| err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(header), &header); |
| if (err < 0) |
| return err; |
| |
| /* Check the SFDP header version. */ |
| if (le32_to_cpu(header.signature) != SFDP_SIGNATURE || |
| header.major != SFDP_JESD216_MAJOR) |
| return -EINVAL; |
| |
| /* |
| * Verify that the first and only mandatory parameter header is a |
| * Basic Flash Parameter Table header as specified in JESD216. |
| */ |
| bfpt_header = &header.bfpt_header; |
| if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID || |
| bfpt_header->major != SFDP_JESD216_MAJOR) |
| return -EINVAL; |
| |
| /* |
| * Allocate memory then read all parameter headers with a single |
| * Read SFDP command. These parameter headers will actually be parsed |
| * twice: a first time to get the latest revision of the basic flash |
| * parameter table, then a second time to handle the supported optional |
| * tables. |
| * Hence we read the parameter headers once for all to reduce the |
| * processing time. Also we use kmalloc() instead of devm_kmalloc() |
| * because we don't need to keep these parameter headers: the allocated |
| * memory is always released with kfree() before exiting this function. |
| */ |
| if (header.nph) { |
| psize = header.nph * sizeof(*param_headers); |
| |
| param_headers = kmalloc(psize, GFP_KERNEL); |
| if (!param_headers) |
| return -ENOMEM; |
| |
| err = spi_nor_read_sfdp(nor, sizeof(header), |
| psize, param_headers); |
| if (err < 0) { |
| dev_err(dev, "failed to read SFDP parameter headers\n"); |
| goto exit; |
| } |
| } |
| |
| /* |
| * Check other parameter headers to get the latest revision of |
| * the basic flash parameter table. |
| */ |
| for (i = 0; i < header.nph; i++) { |
| param_header = ¶m_headers[i]; |
| |
| if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID && |
| param_header->major == SFDP_JESD216_MAJOR && |
| (param_header->minor > bfpt_header->minor || |
| (param_header->minor == bfpt_header->minor && |
| param_header->length > bfpt_header->length))) |
| bfpt_header = param_header; |
| } |
| |
| err = spi_nor_parse_bfpt(nor, bfpt_header, params); |
| if (err) |
| goto exit; |
| |
| /* Parse optional parameter tables. */ |
| for (i = 0; i < header.nph; i++) { |
| param_header = ¶m_headers[i]; |
| |
| switch (SFDP_PARAM_HEADER_ID(param_header)) { |
| case SFDP_SECTOR_MAP_ID: |
| err = spi_nor_parse_smpt(nor, param_header); |
| break; |
| |
| case SFDP_4BAIT_ID: |
| err = spi_nor_parse_4bait(nor, param_header, params); |
| break; |
| |
| default: |
| break; |
| } |
| |
| if (err) { |
| dev_warn(dev, "Failed to parse optional parameter table: %04x\n", |
| SFDP_PARAM_HEADER_ID(param_header)); |
| /* |
| * Let's not drop all information we extracted so far |
| * if optional table parsers fail. In case of failing, |
| * each optional parser is responsible to roll back to |
| * the previously known spi_nor data. |
| */ |
| err = 0; |
| } |
| } |
| |
| exit: |
| kfree(param_headers); |
| return err; |
| } |
| |
| static int spi_nor_init_params(struct spi_nor *nor, |
| struct spi_nor_flash_parameter *params) |
| { |
| struct spi_nor_erase_map *map = &nor->erase_map; |
| const struct flash_info *info = nor->info; |
| u8 i, erase_mask; |
| |
| /* Set legacy flash parameters as default. */ |
| memset(params, 0, sizeof(*params)); |
| |
| /* Set SPI NOR sizes. */ |
| params->size = (u64)info->sector_size * info->n_sectors; |
| params->page_size = info->page_size; |
| |
| /* (Fast) Read settings. */ |
| params->hwcaps.mask |= SNOR_HWCAPS_READ; |
| spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ], |
| 0, 0, SPINOR_OP_READ, |
| SNOR_PROTO_1_1_1); |
| |
| if (!(info->flags & SPI_NOR_NO_FR)) { |
| params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST; |
| spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_FAST], |
| 0, 8, SPINOR_OP_READ_FAST, |
| SNOR_PROTO_1_1_1); |
| } |
| |
| if (info->flags & SPI_NOR_DUAL_READ) { |
| params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2; |
| spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_2], |
| 0, 8, SPINOR_OP_READ_1_1_2, |
| SNOR_PROTO_1_1_2); |
| } |
| |
| if (info->flags & SPI_NOR_QUAD_READ) { |
| params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4; |
| spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_4], |
| 0, 8, SPINOR_OP_READ_1_1_4, |
| SNOR_PROTO_1_1_4); |
| } |
| |
| if (info->flags & SPI_NOR_OCTAL_READ) { |
| params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8; |
| spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_8], |
| 0, 8, SPINOR_OP_READ_1_1_8, |
| SNOR_PROTO_1_1_8); |
| } |
| |
| /* Page Program settings. */ |
| params->hwcaps.mask |= SNOR_HWCAPS_PP; |
| spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP], |
| SPINOR_OP_PP, SNOR_PROTO_1_1_1); |
| |
| /* |
| * Sector Erase settings. Sort Erase Types in ascending order, with the |
| * smallest erase size starting at BIT(0). |
| */ |
| erase_mask = 0; |
| i = 0; |
| if (info->flags & SECT_4K_PMC) { |
| erase_mask |= BIT(i); |
| spi_nor_set_erase_type(&map->erase_type[i], 4096u, |
| SPINOR_OP_BE_4K_PMC); |
| i++; |
| } else if (info->flags & SECT_4K) { |
| erase_mask |= BIT(i); |
| spi_nor_set_erase_type(&map->erase_type[i], 4096u, |
| SPINOR_OP_BE_4K); |
| i++; |
| } |
| erase_mask |= BIT(i); |
| spi_nor_set_erase_type(&map->erase_type[i], info->sector_size, |
| SPINOR_OP_SE); |
| spi_nor_init_uniform_erase_map(map, erase_mask, params->size); |
| |
| /* Select the procedure to set the Quad Enable bit. */ |
| if (params->hwcaps.mask & (SNOR_HWCAPS_READ_QUAD | |
| SNOR_HWCAPS_PP_QUAD)) { |
| switch (JEDEC_MFR(info)) { |
| case SNOR_MFR_MACRONIX: |
| params->quad_enable = macronix_quad_enable; |
| break; |
| |
| case SNOR_MFR_ST: |
| case SNOR_MFR_MICRON: |
| break; |
| |
| default: |
| /* Kept only for backward compatibility purpose. */ |
| params->quad_enable = spansion_quad_enable; |
| break; |
| } |
| |
| /* |
| * Some manufacturer like GigaDevice may use different |
| * bit to set QE on different memories, so the MFR can't |
| * indicate the quad_enable method for this case, we need |
| * set it in flash info list. |
| */ |
| if (info->quad_enable) |
| params->quad_enable = info->quad_enable; |
| } |
| |
| if ((info->flags & (SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)) && |
| !(info->flags & SPI_NOR_SKIP_SFDP)) { |
| struct spi_nor_flash_parameter sfdp_params; |
| struct spi_nor_erase_map prev_map; |
| |
| memcpy(&sfdp_params, params, sizeof(sfdp_params)); |
| memcpy(&prev_map, &nor->erase_map, sizeof(prev_map)); |
| |
| if (spi_nor_parse_sfdp(nor, &sfdp_params)) { |
| nor->addr_width = 0; |
| nor->flags &= ~SNOR_F_4B_OPCODES; |
| /* restore previous erase map */ |
| memcpy(&nor->erase_map, &prev_map, |
| sizeof(nor->erase_map)); |
| } else { |
| memcpy(params, &sfdp_params, sizeof(*params)); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int spi_nor_select_read(struct spi_nor *nor, |
| const struct spi_nor_flash_parameter *params, |
| u32 shared_hwcaps) |
| { |
| int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1; |
| const struct spi_nor_read_command *read; |
| |
| if (best_match < 0) |
| return -EINVAL; |
| |
| cmd = spi_nor_hwcaps_read2cmd(BIT(best_match)); |
| if (cmd < 0) |
| return -EINVAL; |
| |
| read = ¶ms->reads[cmd]; |
| nor->read_opcode = read->opcode; |
| nor->read_proto = read->proto; |
| |
| /* |
| * In the spi-nor framework, we don't need to make the difference |
| * between mode clock cycles and wait state clock cycles. |
| * Indeed, the value of the mode clock cycles is used by a QSPI |
| * flash memory to know whether it should enter or leave its 0-4-4 |
| * (Continuous Read / XIP) mode. |
| * eXecution In Place is out of the scope of the mtd sub-system. |
| * Hence we choose to merge both mode and wait state clock cycles |
| * into the so called dummy clock cycles. |
| */ |
| nor->read_dummy = read->num_mode_clocks + read->num_wait_states; |
| return 0; |
| } |
| |
| static int spi_nor_select_pp(struct spi_nor *nor, |
| const struct spi_nor_flash_parameter *params, |
| u32 shared_hwcaps) |
| { |
| int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1; |
| const struct spi_nor_pp_command *pp; |
| |
| if (best_match < 0) |
| return -EINVAL; |
| |
| cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match)); |
| if (cmd < 0) |
| return -EINVAL; |
| |
| pp = ¶ms->page_programs[cmd]; |
| nor->program_opcode = pp->opcode; |
| nor->write_proto = pp->proto; |
| return 0; |
| } |
| |
| /** |
| * spi_nor_select_uniform_erase() - select optimum uniform erase type |
| * @map: the erase map of the SPI NOR |
| * @wanted_size: the erase type size to search for. Contains the value of |
| * info->sector_size or of the "small sector" size in case |
| * CONFIG_MTD_SPI_NOR_USE_4K_SECTORS is defined. |
| * |
| * Once the optimum uniform sector erase command is found, disable all the |
| * other. |
| * |
| * Return: pointer to erase type on success, NULL otherwise. |
| */ |
| static const struct spi_nor_erase_type * |
| spi_nor_select_uniform_erase(struct spi_nor_erase_map *map, |
| const u32 wanted_size) |
| { |
| const struct spi_nor_erase_type *tested_erase, *erase = NULL; |
| int i; |
| u8 uniform_erase_type = map->uniform_erase_type; |
| |
| for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) { |
| if (!(uniform_erase_type & BIT(i))) |
| continue; |
| |
| tested_erase = &map->erase_type[i]; |
| |
| /* |
| * If the current erase size is the one, stop here: |
| * we have found the right uniform Sector Erase command. |
| */ |
| if (tested_erase->size == wanted_size) { |
| erase = tested_erase; |
| break; |
| } |
| |
| /* |
| * Otherwise, the current erase size is still a valid canditate. |
| * Select the biggest valid candidate. |
| */ |
| if (!erase && tested_erase->size) |
| erase = tested_erase; |
| /* keep iterating to find the wanted_size */ |
| } |
| |
| if (!erase) |
| return NULL; |
| |
| /* Disable all other Sector Erase commands. */ |
| map->uniform_erase_type &= ~SNOR_ERASE_TYPE_MASK; |
| map->uniform_erase_type |= BIT(erase - map->erase_type); |
| return erase; |
| } |
| |
| static int spi_nor_select_erase(struct spi_nor *nor, u32 wanted_size) |
| { |
| struct spi_nor_erase_map *map = &nor->erase_map; |
| const struct spi_nor_erase_type *erase = NULL; |
| struct mtd_info *mtd = &nor->mtd; |
| int i; |
| |
| /* |
| * The previous implementation handling Sector Erase commands assumed |
| * that the SPI flash memory has an uniform layout then used only one |
| * of the supported erase sizes for all Sector Erase commands. |
| * So to be backward compatible, the new implementation also tries to |
| * manage the SPI flash memory as uniform with a single erase sector |
| * size, when possible. |
| */ |
| #ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS |
| /* prefer "small sector" erase if possible */ |
| wanted_size = 4096u; |
| #endif |
| |
| if (spi_nor_has_uniform_erase(nor)) { |
| erase = spi_nor_select_uniform_erase(map, wanted_size); |
| if (!erase) |
| return -EINVAL; |
| nor->erase_opcode = erase->opcode; |
| mtd->erasesize = erase->size; |
| return 0; |
| } |
| |
| /* |
| * For non-uniform SPI flash memory, set mtd->erasesize to the |
| * maximum erase sector size. No need to set nor->erase_opcode. |
| */ |
| for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) { |
| if (map->erase_type[i].size) { |
| erase = &map->erase_type[i]; |
| break; |
| } |
| } |
| |
| if (!erase) |
| return -EINVAL; |
| |
| mtd->erasesize = erase->size; |
| return 0; |
| } |
| |
| static int spi_nor_setup(struct spi_nor *nor, |
| const struct spi_nor_flash_parameter *params, |
| const struct spi_nor_hwcaps *hwcaps) |
| { |
| u32 ignored_mask, shared_mask; |
| bool enable_quad_io; |
| int err; |
| |
| /* |
| * Keep only the hardware capabilities supported by both the SPI |
| * controller and the SPI flash memory. |
| */ |
| shared_mask = hwcaps->mask & params->hwcaps.mask; |
| |
| /* SPI n-n-n protocols are not supported yet. */ |
| ignored_mask = (SNOR_HWCAPS_READ_2_2_2 | |
| SNOR_HWCAPS_READ_4_4_4 | |
| SNOR_HWCAPS_READ_8_8_8 | |
| SNOR_HWCAPS_PP_4_4_4 | |
| SNOR_HWCAPS_PP_8_8_8); |
| if (shared_mask & ignored_mask) { |
| dev_dbg(nor->dev, |
| "SPI n-n-n protocols are not supported yet.\n"); |
| shared_mask &= ~ignored_mask; |
| } |
| |
| /* Select the (Fast) Read command. */ |
| err = spi_nor_select_read(nor, params, shared_mask); |
| if (err) { |
| dev_err(nor->dev, |
| "can't select read settings supported by both the SPI controller and memory.\n"); |
| return err; |
| } |
| |
| /* Select the Page Program command. */ |
| err = spi_nor_select_pp(nor, params, shared_mask); |
| if (err) { |
| dev_err(nor->dev, |
| "can't select write settings supported by both the SPI controller and memory.\n"); |
| return err; |
| } |
| |
| /* Select the Sector Erase command. */ |
| err = spi_nor_select_erase(nor, nor->info->sector_size); |
| if (err) { |
| dev_err(nor->dev, |
| "can't select erase settings supported by both the SPI controller and memory.\n"); |
| return err; |
| } |
| |
| /* Enable Quad I/O if needed. */ |
| enable_quad_io = (spi_nor_get_protocol_width(nor->read_proto) == 4 || |
| spi_nor_get_protocol_width(nor->write_proto) == 4); |
| if (enable_quad_io && params->quad_enable) |
| nor->quad_enable = params->quad_enable; |
| else |
| nor->quad_enable = NULL; |
| |
| return 0; |
| } |
| |
| static int spi_nor_init(struct spi_nor *nor) |
| { |
| int err; |
| |
| /* |
| * Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up |
| * with the software protection bits set |
| */ |
| if (JEDEC_MFR(nor->info) == SNOR_MFR_ATMEL || |
| JEDEC_MFR(nor->info) == SNOR_MFR_INTEL || |
| JEDEC_MFR(nor->info) == SNOR_MFR_SST || |
| nor->info->flags & SPI_NOR_HAS_LOCK) { |
| write_enable(nor); |
| write_sr(nor, 0); |
| spi_nor_wait_till_ready(nor); |
| } |
| |
| if (nor->quad_enable) { |
| err = nor->quad_enable(nor); |
| if (err) { |
| dev_err(nor->dev, "quad mode not supported\n"); |
| return err; |
| } |
| } |
| |
| if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES)) { |
| /* |
| * If the RESET# pin isn't hooked up properly, or the system |
| * otherwise doesn't perform a reset command in the boot |
| * sequence, it's impossible to 100% protect against unexpected |
| * reboots (e.g., crashes). Warn the user (or hopefully, system |
| * designer) that this is bad. |
| */ |
| WARN_ONCE(nor->flags & SNOR_F_BROKEN_RESET, |
| "enabling reset hack; may not recover from unexpected reboots\n"); |
| set_4byte(nor, true); |
| } |
| |
| return 0; |
| } |
| |
| /* mtd resume handler */ |
| static void spi_nor_resume(struct mtd_info *mtd) |
| { |
| struct spi_nor *nor = mtd_to_spi_nor(mtd); |
| struct device *dev = nor->dev; |
| int ret; |
| |
| /* re-initialize the nor chip */ |
| ret = spi_nor_init(nor); |
| if (ret) |
| dev_err(dev, "resume() failed\n"); |
| } |
| |
| void spi_nor_restore(struct spi_nor *nor) |
| { |
| /* restore the addressing mode */ |
| if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES) && |
| nor->flags & SNOR_F_BROKEN_RESET) |
| set_4byte(nor, false); |
| } |
| EXPORT_SYMBOL_GPL(spi_nor_restore); |
| |
| static const struct flash_info *spi_nor_match_id(const char *name) |
| { |
| const struct flash_info *id = spi_nor_ids; |
| |
| while (id->name) { |
| if (!strcmp(name, id->name)) |
| return id; |
| id++; |
| } |
| return NULL; |
| } |
| |
| int spi_nor_scan(struct spi_nor *nor, const char *name, |
| const struct spi_nor_hwcaps *hwcaps) |
| { |
| struct spi_nor_flash_parameter params; |
| const struct flash_info *info = NULL; |
| struct device *dev = nor->dev; |
| struct mtd_info *mtd = &nor->mtd; |
| struct device_node *np = spi_nor_get_flash_node(nor); |
| int ret; |
| int i; |
| |
| ret = spi_nor_check(nor); |
| if (ret) |
| return ret; |
| |
| /* Reset SPI protocol for all commands. */ |
| nor->reg_proto = SNOR_PROTO_1_1_1; |
| nor->read_proto = SNOR_PROTO_1_1_1; |
| nor->write_proto = SNOR_PROTO_1_1_1; |
| |
| if (name) |
| info = spi_nor_match_id(name); |
| /* Try to auto-detect if chip name wasn't specified or not found */ |
| if (!info) |
| info = spi_nor_read_id(nor); |
| if (IS_ERR_OR_NULL(info)) |
| return -ENOENT; |
| |
| /* |
| * If caller has specified name of flash model that can normally be |
| * detected using JEDEC, let's verify it. |
| */ |
| if (name && info->id_len) { |
| const struct flash_info *jinfo; |
| |
| jinfo = spi_nor_read_id(nor); |
| if (IS_ERR(jinfo)) { |
| return PTR_ERR(jinfo); |
| } else if (jinfo != info) { |
| /* |
| * JEDEC knows better, so overwrite platform ID. We |
| * can't trust partitions any longer, but we'll let |
| * mtd apply them anyway, since some partitions may be |
| * marked read-only, and we don't want to lose that |
| * information, even if it's not 100% accurate. |
| */ |
| dev_warn(dev, "found %s, expected %s\n", |
| jinfo->name, info->name); |
| info = jinfo; |
| } |
| } |
| |
| nor->info = info; |
| |
| mutex_init(&nor->lock); |
| |
| /* |
| * Make sure the XSR_RDY flag is set before calling |
| * spi_nor_wait_till_ready(). Xilinx S3AN share MFR |
| * with Atmel spi-nor |
| */ |
| if (info->flags & SPI_S3AN) |
| nor->flags |= SNOR_F_READY_XSR_RDY; |
| |
| /* Parse the Serial Flash Discoverable Parameters table. */ |
| ret = spi_nor_init_params(nor, ¶ms); |
| if (ret) |
| return ret; |
| |
| if (!mtd->name) |
| mtd->name = dev_name(dev); |
| mtd->priv = nor; |
| mtd->type = MTD_NORFLASH; |
| mtd->writesize = 1; |
| mtd->flags = MTD_CAP_NORFLASH; |
| mtd->size = params.size; |
| mtd->_erase = spi_nor_erase; |
| mtd->_read = spi_nor_read; |
| mtd->_resume = spi_nor_resume; |
| |
| /* NOR protection support for STmicro/Micron chips and similar */ |
| if (JEDEC_MFR(info) == SNOR_MFR_ST || |
| JEDEC_MFR(info) == SNOR_MFR_MICRON || |
| info->flags & SPI_NOR_HAS_LOCK) { |
| nor->flash_lock = stm_lock; |
| nor->flash_unlock = stm_unlock; |
| nor->flash_is_locked = stm_is_locked; |
| } |
| |
| if (nor->flash_lock && nor->flash_unlock && nor->flash_is_locked) { |
| mtd->_lock = spi_nor_lock; |
| mtd->_unlock = spi_nor_unlock; |
| mtd->_is_locked = spi_nor_is_locked; |
| } |
| |
| /* sst nor chips use AAI word program */ |
| if (info->flags & SST_WRITE) |
| mtd->_write = sst_write; |
| else |
| mtd->_write = spi_nor_write; |
| |
| if (info->flags & USE_FSR) |
| nor->flags |= SNOR_F_USE_FSR; |
| if (info->flags & SPI_NOR_HAS_TB) |
| nor->flags |= SNOR_F_HAS_SR_TB; |
| if (info->flags & NO_CHIP_ERASE) |
| nor->flags |= SNOR_F_NO_OP_CHIP_ERASE; |
| if (info->flags & USE_CLSR) |
| nor->flags |= SNOR_F_USE_CLSR; |
| |
| if (info->flags & SPI_NOR_NO_ERASE) |
| mtd->flags |= MTD_NO_ERASE; |
| |
| mtd->dev.parent = dev; |
| nor->page_size = params.page_size; |
| mtd->writebufsize = nor->page_size; |
| |
| if (np) { |
| /* If we were instantiated by DT, use it */ |
| if (of_property_read_bool(np, "m25p,fast-read")) |
| params.hwcaps.mask |= SNOR_HWCAPS_READ_FAST; |
| else |
| params.hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST; |
| } else { |
| /* If we weren't instantiated by DT, default to fast-read */ |
| params.hwcaps.mask |= SNOR_HWCAPS_READ_FAST; |
| } |
| |
| if (of_property_read_bool(np, "broken-flash-reset")) |
| nor->flags |= SNOR_F_BROKEN_RESET; |
| |
| /* Some devices cannot do fast-read, no matter what DT tells us */ |
| if (info->flags & SPI_NOR_NO_FR) |
| params.hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST; |
| |
| /* |
| * Configure the SPI memory: |
| * - select op codes for (Fast) Read, Page Program and Sector Erase. |
| * - set the number of dummy cycles (mode cycles + wait states). |
| * - set the SPI protocols for register and memory accesses. |
| * - set the Quad Enable bit if needed (required by SPI x-y-4 protos). |
| */ |
| ret = spi_nor_setup(nor, ¶ms, hwcaps); |
| if (ret) |
| return ret; |
| |
| if (nor->addr_width) { |
| /* already configured from SFDP */ |
| } else if (info->addr_width) { |
| nor->addr_width = info->addr_width; |
| } else if (mtd->size > 0x1000000) { |
| /* enable 4-byte addressing if the device exceeds 16MiB */ |
| nor->addr_width = 4; |
| } else { |
| nor->addr_width = 3; |
| } |
| |
| if (info->flags & SPI_NOR_4B_OPCODES || |
| (JEDEC_MFR(info) == SNOR_MFR_SPANSION && mtd->size > SZ_16M)) |
| nor->flags |= SNOR_F_4B_OPCODES; |
| |
| if (nor->addr_width == 4 && nor->flags & SNOR_F_4B_OPCODES && |
| !(nor->flags & SNOR_F_HAS_4BAIT)) |
| spi_nor_set_4byte_opcodes(nor); |
| |
| if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) { |
| dev_err(dev, "address width is too large: %u\n", |
| nor->addr_width); |
| return -EINVAL; |
| } |
| |
| if (info->flags & SPI_S3AN) { |
| ret = s3an_nor_scan(nor); |
| if (ret) |
| return ret; |
| } |
| |
| /* Send all the required SPI flash commands to initialize device */ |
| ret = spi_nor_init(nor); |
| if (ret) |
| return ret; |
| |
| dev_info(dev, "%s (%lld Kbytes)\n", info->name, |
| (long long)mtd->size >> 10); |
| |
| dev_dbg(dev, |
| "mtd .name = %s, .size = 0x%llx (%lldMiB), " |
| ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n", |
| mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20), |
| mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions); |
| |
| if (mtd->numeraseregions) |
| for (i = 0; i < mtd->numeraseregions; i++) |
| dev_dbg(dev, |
| "mtd.eraseregions[%d] = { .offset = 0x%llx, " |
| ".erasesize = 0x%.8x (%uKiB), " |
| ".numblocks = %d }\n", |
| i, (long long)mtd->eraseregions[i].offset, |
| mtd->eraseregions[i].erasesize, |
| mtd->eraseregions[i].erasesize / 1024, |
| mtd->eraseregions[i].numblocks); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(spi_nor_scan); |
| |
| MODULE_LICENSE("GPL v2"); |
| MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>"); |
| MODULE_AUTHOR("Mike Lavender"); |
| MODULE_DESCRIPTION("framework for SPI NOR"); |