| // SPDX-License-Identifier: GPL-2.0 |
| /* Copyright (c) 2015 - 2022 Beijing WangXun Technology Co., Ltd. */ |
| |
| #include <linux/etherdevice.h> |
| #include <linux/netdevice.h> |
| #include <linux/if_ether.h> |
| #include <linux/if_vlan.h> |
| #include <linux/iopoll.h> |
| #include <linux/pci.h> |
| |
| #include "wx_type.h" |
| #include "wx_lib.h" |
| #include "wx_hw.h" |
| |
| static int wx_phy_read_reg_mdi(struct mii_bus *bus, int phy_addr, int devnum, int regnum) |
| { |
| struct wx *wx = bus->priv; |
| u32 command, val; |
| int ret; |
| |
| /* setup and write the address cycle command */ |
| command = WX_MSCA_RA(regnum) | |
| WX_MSCA_PA(phy_addr) | |
| WX_MSCA_DA(devnum); |
| wr32(wx, WX_MSCA, command); |
| |
| command = WX_MSCC_CMD(WX_MSCA_CMD_READ) | WX_MSCC_BUSY; |
| if (wx->mac.type == wx_mac_em) |
| command |= WX_MDIO_CLK(6); |
| wr32(wx, WX_MSCC, command); |
| |
| /* wait to complete */ |
| ret = read_poll_timeout(rd32, val, !(val & WX_MSCC_BUSY), 1000, |
| 100000, false, wx, WX_MSCC); |
| if (ret) { |
| wx_err(wx, "Mdio read c22 command did not complete.\n"); |
| return ret; |
| } |
| |
| return (u16)rd32(wx, WX_MSCC); |
| } |
| |
| static int wx_phy_write_reg_mdi(struct mii_bus *bus, int phy_addr, |
| int devnum, int regnum, u16 value) |
| { |
| struct wx *wx = bus->priv; |
| u32 command, val; |
| int ret; |
| |
| /* setup and write the address cycle command */ |
| command = WX_MSCA_RA(regnum) | |
| WX_MSCA_PA(phy_addr) | |
| WX_MSCA_DA(devnum); |
| wr32(wx, WX_MSCA, command); |
| |
| command = value | WX_MSCC_CMD(WX_MSCA_CMD_WRITE) | WX_MSCC_BUSY; |
| if (wx->mac.type == wx_mac_em) |
| command |= WX_MDIO_CLK(6); |
| wr32(wx, WX_MSCC, command); |
| |
| /* wait to complete */ |
| ret = read_poll_timeout(rd32, val, !(val & WX_MSCC_BUSY), 1000, |
| 100000, false, wx, WX_MSCC); |
| if (ret) |
| wx_err(wx, "Mdio write c22 command did not complete.\n"); |
| |
| return ret; |
| } |
| |
| int wx_phy_read_reg_mdi_c22(struct mii_bus *bus, int phy_addr, int regnum) |
| { |
| struct wx *wx = bus->priv; |
| |
| wr32(wx, WX_MDIO_CLAUSE_SELECT, 0xF); |
| return wx_phy_read_reg_mdi(bus, phy_addr, 0, regnum); |
| } |
| EXPORT_SYMBOL(wx_phy_read_reg_mdi_c22); |
| |
| int wx_phy_write_reg_mdi_c22(struct mii_bus *bus, int phy_addr, int regnum, u16 value) |
| { |
| struct wx *wx = bus->priv; |
| |
| wr32(wx, WX_MDIO_CLAUSE_SELECT, 0xF); |
| return wx_phy_write_reg_mdi(bus, phy_addr, 0, regnum, value); |
| } |
| EXPORT_SYMBOL(wx_phy_write_reg_mdi_c22); |
| |
| int wx_phy_read_reg_mdi_c45(struct mii_bus *bus, int phy_addr, int devnum, int regnum) |
| { |
| struct wx *wx = bus->priv; |
| |
| wr32(wx, WX_MDIO_CLAUSE_SELECT, 0); |
| return wx_phy_read_reg_mdi(bus, phy_addr, devnum, regnum); |
| } |
| EXPORT_SYMBOL(wx_phy_read_reg_mdi_c45); |
| |
| int wx_phy_write_reg_mdi_c45(struct mii_bus *bus, int phy_addr, |
| int devnum, int regnum, u16 value) |
| { |
| struct wx *wx = bus->priv; |
| |
| wr32(wx, WX_MDIO_CLAUSE_SELECT, 0); |
| return wx_phy_write_reg_mdi(bus, phy_addr, devnum, regnum, value); |
| } |
| EXPORT_SYMBOL(wx_phy_write_reg_mdi_c45); |
| |
| static void wx_intr_disable(struct wx *wx, u64 qmask) |
| { |
| u32 mask; |
| |
| mask = (qmask & U32_MAX); |
| if (mask) |
| wr32(wx, WX_PX_IMS(0), mask); |
| |
| if (wx->mac.type == wx_mac_sp) { |
| mask = (qmask >> 32); |
| if (mask) |
| wr32(wx, WX_PX_IMS(1), mask); |
| } |
| } |
| |
| void wx_intr_enable(struct wx *wx, u64 qmask) |
| { |
| u32 mask; |
| |
| mask = (qmask & U32_MAX); |
| if (mask) |
| wr32(wx, WX_PX_IMC(0), mask); |
| if (wx->mac.type == wx_mac_sp) { |
| mask = (qmask >> 32); |
| if (mask) |
| wr32(wx, WX_PX_IMC(1), mask); |
| } |
| } |
| EXPORT_SYMBOL(wx_intr_enable); |
| |
| /** |
| * wx_irq_disable - Mask off interrupt generation on the NIC |
| * @wx: board private structure |
| **/ |
| void wx_irq_disable(struct wx *wx) |
| { |
| struct pci_dev *pdev = wx->pdev; |
| |
| wr32(wx, WX_PX_MISC_IEN, 0); |
| wx_intr_disable(wx, WX_INTR_ALL); |
| |
| if (pdev->msix_enabled) { |
| int vector; |
| |
| for (vector = 0; vector < wx->num_q_vectors; vector++) |
| synchronize_irq(wx->msix_q_entries[vector].vector); |
| |
| synchronize_irq(wx->msix_entry->vector); |
| } else { |
| synchronize_irq(pdev->irq); |
| } |
| } |
| EXPORT_SYMBOL(wx_irq_disable); |
| |
| /* cmd_addr is used for some special command: |
| * 1. to be sector address, when implemented erase sector command |
| * 2. to be flash address when implemented read, write flash address |
| */ |
| static int wx_fmgr_cmd_op(struct wx *wx, u32 cmd, u32 cmd_addr) |
| { |
| u32 cmd_val = 0, val = 0; |
| |
| cmd_val = WX_SPI_CMD_CMD(cmd) | |
| WX_SPI_CMD_CLK(WX_SPI_CLK_DIV) | |
| cmd_addr; |
| wr32(wx, WX_SPI_CMD, cmd_val); |
| |
| return read_poll_timeout(rd32, val, (val & 0x1), 10, 100000, |
| false, wx, WX_SPI_STATUS); |
| } |
| |
| static int wx_flash_read_dword(struct wx *wx, u32 addr, u32 *data) |
| { |
| int ret = 0; |
| |
| ret = wx_fmgr_cmd_op(wx, WX_SPI_CMD_READ_DWORD, addr); |
| if (ret < 0) |
| return ret; |
| |
| *data = rd32(wx, WX_SPI_DATA); |
| |
| return ret; |
| } |
| |
| int wx_check_flash_load(struct wx *hw, u32 check_bit) |
| { |
| u32 reg = 0; |
| int err = 0; |
| |
| /* if there's flash existing */ |
| if (!(rd32(hw, WX_SPI_STATUS) & |
| WX_SPI_STATUS_FLASH_BYPASS)) { |
| /* wait hw load flash done */ |
| err = read_poll_timeout(rd32, reg, !(reg & check_bit), 20000, 2000000, |
| false, hw, WX_SPI_ILDR_STATUS); |
| if (err < 0) |
| wx_err(hw, "Check flash load timeout.\n"); |
| } |
| |
| return err; |
| } |
| EXPORT_SYMBOL(wx_check_flash_load); |
| |
| void wx_control_hw(struct wx *wx, bool drv) |
| { |
| /* True : Let firmware know the driver has taken over |
| * False : Let firmware take over control of hw |
| */ |
| wr32m(wx, WX_CFG_PORT_CTL, WX_CFG_PORT_CTL_DRV_LOAD, |
| drv ? WX_CFG_PORT_CTL_DRV_LOAD : 0); |
| } |
| EXPORT_SYMBOL(wx_control_hw); |
| |
| /** |
| * wx_mng_present - returns 0 when management capability is present |
| * @wx: pointer to hardware structure |
| */ |
| int wx_mng_present(struct wx *wx) |
| { |
| u32 fwsm; |
| |
| fwsm = rd32(wx, WX_MIS_ST); |
| if (fwsm & WX_MIS_ST_MNG_INIT_DN) |
| return 0; |
| else |
| return -EACCES; |
| } |
| EXPORT_SYMBOL(wx_mng_present); |
| |
| /* Software lock to be held while software semaphore is being accessed. */ |
| static DEFINE_MUTEX(wx_sw_sync_lock); |
| |
| /** |
| * wx_release_sw_sync - Release SW semaphore |
| * @wx: pointer to hardware structure |
| * @mask: Mask to specify which semaphore to release |
| * |
| * Releases the SW semaphore for the specified |
| * function (CSR, PHY0, PHY1, EEPROM, Flash) |
| **/ |
| static void wx_release_sw_sync(struct wx *wx, u32 mask) |
| { |
| mutex_lock(&wx_sw_sync_lock); |
| wr32m(wx, WX_MNG_SWFW_SYNC, mask, 0); |
| mutex_unlock(&wx_sw_sync_lock); |
| } |
| |
| /** |
| * wx_acquire_sw_sync - Acquire SW semaphore |
| * @wx: pointer to hardware structure |
| * @mask: Mask to specify which semaphore to acquire |
| * |
| * Acquires the SW semaphore for the specified |
| * function (CSR, PHY0, PHY1, EEPROM, Flash) |
| **/ |
| static int wx_acquire_sw_sync(struct wx *wx, u32 mask) |
| { |
| u32 sem = 0; |
| int ret = 0; |
| |
| mutex_lock(&wx_sw_sync_lock); |
| ret = read_poll_timeout(rd32, sem, !(sem & mask), |
| 5000, 2000000, false, wx, WX_MNG_SWFW_SYNC); |
| if (!ret) { |
| sem |= mask; |
| wr32(wx, WX_MNG_SWFW_SYNC, sem); |
| } else { |
| wx_err(wx, "SW Semaphore not granted: 0x%x.\n", sem); |
| } |
| mutex_unlock(&wx_sw_sync_lock); |
| |
| return ret; |
| } |
| |
| /** |
| * wx_host_interface_command - Issue command to manageability block |
| * @wx: pointer to the HW structure |
| * @buffer: contains the command to write and where the return status will |
| * be placed |
| * @length: length of buffer, must be multiple of 4 bytes |
| * @timeout: time in ms to wait for command completion |
| * @return_data: read and return data from the buffer (true) or not (false) |
| * Needed because FW structures are big endian and decoding of |
| * these fields can be 8 bit or 16 bit based on command. Decoding |
| * is not easily understood without making a table of commands. |
| * So we will leave this up to the caller to read back the data |
| * in these cases. |
| **/ |
| int wx_host_interface_command(struct wx *wx, u32 *buffer, |
| u32 length, u32 timeout, bool return_data) |
| { |
| u32 hdr_size = sizeof(struct wx_hic_hdr); |
| u32 hicr, i, bi, buf[64] = {}; |
| int status = 0; |
| u32 dword_len; |
| u16 buf_len; |
| |
| if (length == 0 || length > WX_HI_MAX_BLOCK_BYTE_LENGTH) { |
| wx_err(wx, "Buffer length failure buffersize=%d.\n", length); |
| return -EINVAL; |
| } |
| |
| status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_MB); |
| if (status != 0) |
| return status; |
| |
| /* Calculate length in DWORDs. We must be DWORD aligned */ |
| if ((length % (sizeof(u32))) != 0) { |
| wx_err(wx, "Buffer length failure, not aligned to dword"); |
| status = -EINVAL; |
| goto rel_out; |
| } |
| |
| dword_len = length >> 2; |
| |
| /* The device driver writes the relevant command block |
| * into the ram area. |
| */ |
| for (i = 0; i < dword_len; i++) { |
| wr32a(wx, WX_MNG_MBOX, i, (__force u32)cpu_to_le32(buffer[i])); |
| /* write flush */ |
| buf[i] = rd32a(wx, WX_MNG_MBOX, i); |
| } |
| /* Setting this bit tells the ARC that a new command is pending. */ |
| wr32m(wx, WX_MNG_MBOX_CTL, |
| WX_MNG_MBOX_CTL_SWRDY, WX_MNG_MBOX_CTL_SWRDY); |
| |
| status = read_poll_timeout(rd32, hicr, hicr & WX_MNG_MBOX_CTL_FWRDY, 1000, |
| timeout * 1000, false, wx, WX_MNG_MBOX_CTL); |
| |
| /* Check command completion */ |
| if (status) { |
| wx_dbg(wx, "Command has failed with no status valid.\n"); |
| |
| buf[0] = rd32(wx, WX_MNG_MBOX); |
| if ((buffer[0] & 0xff) != (~buf[0] >> 24)) { |
| status = -EINVAL; |
| goto rel_out; |
| } |
| if ((buf[0] & 0xff0000) >> 16 == 0x80) { |
| wx_dbg(wx, "It's unknown cmd.\n"); |
| status = -EINVAL; |
| goto rel_out; |
| } |
| |
| wx_dbg(wx, "write value:\n"); |
| for (i = 0; i < dword_len; i++) |
| wx_dbg(wx, "%x ", buffer[i]); |
| wx_dbg(wx, "read value:\n"); |
| for (i = 0; i < dword_len; i++) |
| wx_dbg(wx, "%x ", buf[i]); |
| } |
| |
| if (!return_data) |
| goto rel_out; |
| |
| /* Calculate length in DWORDs */ |
| dword_len = hdr_size >> 2; |
| |
| /* first pull in the header so we know the buffer length */ |
| for (bi = 0; bi < dword_len; bi++) { |
| buffer[bi] = rd32a(wx, WX_MNG_MBOX, bi); |
| le32_to_cpus(&buffer[bi]); |
| } |
| |
| /* If there is any thing in data position pull it in */ |
| buf_len = ((struct wx_hic_hdr *)buffer)->buf_len; |
| if (buf_len == 0) |
| goto rel_out; |
| |
| if (length < buf_len + hdr_size) { |
| wx_err(wx, "Buffer not large enough for reply message.\n"); |
| status = -EFAULT; |
| goto rel_out; |
| } |
| |
| /* Calculate length in DWORDs, add 3 for odd lengths */ |
| dword_len = (buf_len + 3) >> 2; |
| |
| /* Pull in the rest of the buffer (bi is where we left off) */ |
| for (; bi <= dword_len; bi++) { |
| buffer[bi] = rd32a(wx, WX_MNG_MBOX, bi); |
| le32_to_cpus(&buffer[bi]); |
| } |
| |
| rel_out: |
| wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_MB); |
| return status; |
| } |
| EXPORT_SYMBOL(wx_host_interface_command); |
| |
| /** |
| * wx_read_ee_hostif_data - Read EEPROM word using a host interface cmd |
| * assuming that the semaphore is already obtained. |
| * @wx: pointer to hardware structure |
| * @offset: offset of word in the EEPROM to read |
| * @data: word read from the EEPROM |
| * |
| * Reads a 16 bit word from the EEPROM using the hostif. |
| **/ |
| static int wx_read_ee_hostif_data(struct wx *wx, u16 offset, u16 *data) |
| { |
| struct wx_hic_read_shadow_ram buffer; |
| int status; |
| |
| buffer.hdr.req.cmd = FW_READ_SHADOW_RAM_CMD; |
| buffer.hdr.req.buf_lenh = 0; |
| buffer.hdr.req.buf_lenl = FW_READ_SHADOW_RAM_LEN; |
| buffer.hdr.req.checksum = FW_DEFAULT_CHECKSUM; |
| |
| /* convert offset from words to bytes */ |
| buffer.address = (__force u32)cpu_to_be32(offset * 2); |
| /* one word */ |
| buffer.length = (__force u16)cpu_to_be16(sizeof(u16)); |
| |
| status = wx_host_interface_command(wx, (u32 *)&buffer, sizeof(buffer), |
| WX_HI_COMMAND_TIMEOUT, false); |
| |
| if (status != 0) |
| return status; |
| |
| *data = (u16)rd32a(wx, WX_MNG_MBOX, FW_NVM_DATA_OFFSET); |
| |
| return status; |
| } |
| |
| /** |
| * wx_read_ee_hostif - Read EEPROM word using a host interface cmd |
| * @wx: pointer to hardware structure |
| * @offset: offset of word in the EEPROM to read |
| * @data: word read from the EEPROM |
| * |
| * Reads a 16 bit word from the EEPROM using the hostif. |
| **/ |
| int wx_read_ee_hostif(struct wx *wx, u16 offset, u16 *data) |
| { |
| int status = 0; |
| |
| status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH); |
| if (status == 0) { |
| status = wx_read_ee_hostif_data(wx, offset, data); |
| wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH); |
| } |
| |
| return status; |
| } |
| EXPORT_SYMBOL(wx_read_ee_hostif); |
| |
| /** |
| * wx_read_ee_hostif_buffer- Read EEPROM word(s) using hostif |
| * @wx: pointer to hardware structure |
| * @offset: offset of word in the EEPROM to read |
| * @words: number of words |
| * @data: word(s) read from the EEPROM |
| * |
| * Reads a 16 bit word(s) from the EEPROM using the hostif. |
| **/ |
| int wx_read_ee_hostif_buffer(struct wx *wx, |
| u16 offset, u16 words, u16 *data) |
| { |
| struct wx_hic_read_shadow_ram buffer; |
| u32 current_word = 0; |
| u16 words_to_read; |
| u32 value = 0; |
| int status; |
| u32 i; |
| |
| /* Take semaphore for the entire operation. */ |
| status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH); |
| if (status != 0) |
| return status; |
| |
| while (words) { |
| if (words > FW_MAX_READ_BUFFER_SIZE / 2) |
| words_to_read = FW_MAX_READ_BUFFER_SIZE / 2; |
| else |
| words_to_read = words; |
| |
| buffer.hdr.req.cmd = FW_READ_SHADOW_RAM_CMD; |
| buffer.hdr.req.buf_lenh = 0; |
| buffer.hdr.req.buf_lenl = FW_READ_SHADOW_RAM_LEN; |
| buffer.hdr.req.checksum = FW_DEFAULT_CHECKSUM; |
| |
| /* convert offset from words to bytes */ |
| buffer.address = (__force u32)cpu_to_be32((offset + current_word) * 2); |
| buffer.length = (__force u16)cpu_to_be16(words_to_read * 2); |
| |
| status = wx_host_interface_command(wx, (u32 *)&buffer, |
| sizeof(buffer), |
| WX_HI_COMMAND_TIMEOUT, |
| false); |
| |
| if (status != 0) { |
| wx_err(wx, "Host interface command failed\n"); |
| goto out; |
| } |
| |
| for (i = 0; i < words_to_read; i++) { |
| u32 reg = WX_MNG_MBOX + (FW_NVM_DATA_OFFSET << 2) + 2 * i; |
| |
| value = rd32(wx, reg); |
| data[current_word] = (u16)(value & 0xffff); |
| current_word++; |
| i++; |
| if (i < words_to_read) { |
| value >>= 16; |
| data[current_word] = (u16)(value & 0xffff); |
| current_word++; |
| } |
| } |
| words -= words_to_read; |
| } |
| |
| out: |
| wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH); |
| return status; |
| } |
| EXPORT_SYMBOL(wx_read_ee_hostif_buffer); |
| |
| /** |
| * wx_init_eeprom_params - Initialize EEPROM params |
| * @wx: pointer to hardware structure |
| * |
| * Initializes the EEPROM parameters wx_eeprom_info within the |
| * wx_hw struct in order to set up EEPROM access. |
| **/ |
| void wx_init_eeprom_params(struct wx *wx) |
| { |
| struct wx_eeprom_info *eeprom = &wx->eeprom; |
| u16 eeprom_size; |
| u16 data = 0x80; |
| |
| if (eeprom->type == wx_eeprom_uninitialized) { |
| eeprom->semaphore_delay = 10; |
| eeprom->type = wx_eeprom_none; |
| |
| if (!(rd32(wx, WX_SPI_STATUS) & |
| WX_SPI_STATUS_FLASH_BYPASS)) { |
| eeprom->type = wx_flash; |
| |
| eeprom_size = 4096; |
| eeprom->word_size = eeprom_size >> 1; |
| |
| wx_dbg(wx, "Eeprom params: type = %d, size = %d\n", |
| eeprom->type, eeprom->word_size); |
| } |
| } |
| |
| if (wx->mac.type == wx_mac_sp) { |
| if (wx_read_ee_hostif(wx, WX_SW_REGION_PTR, &data)) { |
| wx_err(wx, "NVM Read Error\n"); |
| return; |
| } |
| data = data >> 1; |
| } |
| |
| eeprom->sw_region_offset = data; |
| } |
| EXPORT_SYMBOL(wx_init_eeprom_params); |
| |
| /** |
| * wx_get_mac_addr - Generic get MAC address |
| * @wx: pointer to hardware structure |
| * @mac_addr: Adapter MAC address |
| * |
| * Reads the adapter's MAC address from first Receive Address Register (RAR0) |
| * A reset of the adapter must be performed prior to calling this function |
| * in order for the MAC address to have been loaded from the EEPROM into RAR0 |
| **/ |
| void wx_get_mac_addr(struct wx *wx, u8 *mac_addr) |
| { |
| u32 rar_high; |
| u32 rar_low; |
| u16 i; |
| |
| wr32(wx, WX_PSR_MAC_SWC_IDX, 0); |
| rar_high = rd32(wx, WX_PSR_MAC_SWC_AD_H); |
| rar_low = rd32(wx, WX_PSR_MAC_SWC_AD_L); |
| |
| for (i = 0; i < 2; i++) |
| mac_addr[i] = (u8)(rar_high >> (1 - i) * 8); |
| |
| for (i = 0; i < 4; i++) |
| mac_addr[i + 2] = (u8)(rar_low >> (3 - i) * 8); |
| } |
| EXPORT_SYMBOL(wx_get_mac_addr); |
| |
| /** |
| * wx_set_rar - Set Rx address register |
| * @wx: pointer to hardware structure |
| * @index: Receive address register to write |
| * @addr: Address to put into receive address register |
| * @pools: VMDq "set" or "pool" index |
| * @enable_addr: set flag that address is active |
| * |
| * Puts an ethernet address into a receive address register. |
| **/ |
| static int wx_set_rar(struct wx *wx, u32 index, u8 *addr, u64 pools, |
| u32 enable_addr) |
| { |
| u32 rar_entries = wx->mac.num_rar_entries; |
| u32 rar_low, rar_high; |
| |
| /* Make sure we are using a valid rar index range */ |
| if (index >= rar_entries) { |
| wx_err(wx, "RAR index %d is out of range.\n", index); |
| return -EINVAL; |
| } |
| |
| /* select the MAC address */ |
| wr32(wx, WX_PSR_MAC_SWC_IDX, index); |
| |
| /* setup VMDq pool mapping */ |
| wr32(wx, WX_PSR_MAC_SWC_VM_L, pools & 0xFFFFFFFF); |
| if (wx->mac.type == wx_mac_sp) |
| wr32(wx, WX_PSR_MAC_SWC_VM_H, pools >> 32); |
| |
| /* HW expects these in little endian so we reverse the byte |
| * order from network order (big endian) to little endian |
| * |
| * Some parts put the VMDq setting in the extra RAH bits, |
| * so save everything except the lower 16 bits that hold part |
| * of the address and the address valid bit. |
| */ |
| rar_low = ((u32)addr[5] | |
| ((u32)addr[4] << 8) | |
| ((u32)addr[3] << 16) | |
| ((u32)addr[2] << 24)); |
| rar_high = ((u32)addr[1] | |
| ((u32)addr[0] << 8)); |
| if (enable_addr != 0) |
| rar_high |= WX_PSR_MAC_SWC_AD_H_AV; |
| |
| wr32(wx, WX_PSR_MAC_SWC_AD_L, rar_low); |
| wr32m(wx, WX_PSR_MAC_SWC_AD_H, |
| (WX_PSR_MAC_SWC_AD_H_AD(U16_MAX) | |
| WX_PSR_MAC_SWC_AD_H_ADTYPE(1) | |
| WX_PSR_MAC_SWC_AD_H_AV), |
| rar_high); |
| |
| return 0; |
| } |
| |
| /** |
| * wx_clear_rar - Remove Rx address register |
| * @wx: pointer to hardware structure |
| * @index: Receive address register to write |
| * |
| * Clears an ethernet address from a receive address register. |
| **/ |
| static int wx_clear_rar(struct wx *wx, u32 index) |
| { |
| u32 rar_entries = wx->mac.num_rar_entries; |
| |
| /* Make sure we are using a valid rar index range */ |
| if (index >= rar_entries) { |
| wx_err(wx, "RAR index %d is out of range.\n", index); |
| return -EINVAL; |
| } |
| |
| /* Some parts put the VMDq setting in the extra RAH bits, |
| * so save everything except the lower 16 bits that hold part |
| * of the address and the address valid bit. |
| */ |
| wr32(wx, WX_PSR_MAC_SWC_IDX, index); |
| |
| wr32(wx, WX_PSR_MAC_SWC_VM_L, 0); |
| wr32(wx, WX_PSR_MAC_SWC_VM_H, 0); |
| |
| wr32(wx, WX_PSR_MAC_SWC_AD_L, 0); |
| wr32m(wx, WX_PSR_MAC_SWC_AD_H, |
| (WX_PSR_MAC_SWC_AD_H_AD(U16_MAX) | |
| WX_PSR_MAC_SWC_AD_H_ADTYPE(1) | |
| WX_PSR_MAC_SWC_AD_H_AV), |
| 0); |
| |
| return 0; |
| } |
| |
| /** |
| * wx_clear_vmdq - Disassociate a VMDq pool index from a rx address |
| * @wx: pointer to hardware struct |
| * @rar: receive address register index to disassociate |
| * @vmdq: VMDq pool index to remove from the rar |
| **/ |
| static int wx_clear_vmdq(struct wx *wx, u32 rar, u32 __maybe_unused vmdq) |
| { |
| u32 rar_entries = wx->mac.num_rar_entries; |
| u32 mpsar_lo, mpsar_hi; |
| |
| /* Make sure we are using a valid rar index range */ |
| if (rar >= rar_entries) { |
| wx_err(wx, "RAR index %d is out of range.\n", rar); |
| return -EINVAL; |
| } |
| |
| wr32(wx, WX_PSR_MAC_SWC_IDX, rar); |
| mpsar_lo = rd32(wx, WX_PSR_MAC_SWC_VM_L); |
| mpsar_hi = rd32(wx, WX_PSR_MAC_SWC_VM_H); |
| |
| if (!mpsar_lo && !mpsar_hi) |
| return 0; |
| |
| /* was that the last pool using this rar? */ |
| if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0) |
| wx_clear_rar(wx, rar); |
| |
| return 0; |
| } |
| |
| /** |
| * wx_init_uta_tables - Initialize the Unicast Table Array |
| * @wx: pointer to hardware structure |
| **/ |
| static void wx_init_uta_tables(struct wx *wx) |
| { |
| int i; |
| |
| wx_dbg(wx, " Clearing UTA\n"); |
| |
| for (i = 0; i < 128; i++) |
| wr32(wx, WX_PSR_UC_TBL(i), 0); |
| } |
| |
| /** |
| * wx_init_rx_addrs - Initializes receive address filters. |
| * @wx: pointer to hardware structure |
| * |
| * Places the MAC address in receive address register 0 and clears the rest |
| * of the receive address registers. Clears the multicast table. Assumes |
| * the receiver is in reset when the routine is called. |
| **/ |
| void wx_init_rx_addrs(struct wx *wx) |
| { |
| u32 rar_entries = wx->mac.num_rar_entries; |
| u32 psrctl; |
| int i; |
| |
| /* If the current mac address is valid, assume it is a software override |
| * to the permanent address. |
| * Otherwise, use the permanent address from the eeprom. |
| */ |
| if (!is_valid_ether_addr(wx->mac.addr)) { |
| /* Get the MAC address from the RAR0 for later reference */ |
| wx_get_mac_addr(wx, wx->mac.addr); |
| wx_dbg(wx, "Keeping Current RAR0 Addr = %pM\n", wx->mac.addr); |
| } else { |
| /* Setup the receive address. */ |
| wx_dbg(wx, "Overriding MAC Address in RAR[0]\n"); |
| wx_dbg(wx, "New MAC Addr = %pM\n", wx->mac.addr); |
| |
| wx_set_rar(wx, 0, wx->mac.addr, 0, WX_PSR_MAC_SWC_AD_H_AV); |
| |
| if (wx->mac.type == wx_mac_sp) { |
| /* clear VMDq pool/queue selection for RAR 0 */ |
| wx_clear_vmdq(wx, 0, WX_CLEAR_VMDQ_ALL); |
| } |
| } |
| |
| /* Zero out the other receive addresses. */ |
| wx_dbg(wx, "Clearing RAR[1-%d]\n", rar_entries - 1); |
| for (i = 1; i < rar_entries; i++) { |
| wr32(wx, WX_PSR_MAC_SWC_IDX, i); |
| wr32(wx, WX_PSR_MAC_SWC_AD_L, 0); |
| wr32(wx, WX_PSR_MAC_SWC_AD_H, 0); |
| } |
| |
| /* Clear the MTA */ |
| wx->addr_ctrl.mta_in_use = 0; |
| psrctl = rd32(wx, WX_PSR_CTL); |
| psrctl &= ~(WX_PSR_CTL_MO | WX_PSR_CTL_MFE); |
| psrctl |= wx->mac.mc_filter_type << WX_PSR_CTL_MO_SHIFT; |
| wr32(wx, WX_PSR_CTL, psrctl); |
| wx_dbg(wx, " Clearing MTA\n"); |
| for (i = 0; i < wx->mac.mcft_size; i++) |
| wr32(wx, WX_PSR_MC_TBL(i), 0); |
| |
| wx_init_uta_tables(wx); |
| } |
| EXPORT_SYMBOL(wx_init_rx_addrs); |
| |
| static void wx_sync_mac_table(struct wx *wx) |
| { |
| int i; |
| |
| for (i = 0; i < wx->mac.num_rar_entries; i++) { |
| if (wx->mac_table[i].state & WX_MAC_STATE_MODIFIED) { |
| if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) { |
| wx_set_rar(wx, i, |
| wx->mac_table[i].addr, |
| wx->mac_table[i].pools, |
| WX_PSR_MAC_SWC_AD_H_AV); |
| } else { |
| wx_clear_rar(wx, i); |
| } |
| wx->mac_table[i].state &= ~(WX_MAC_STATE_MODIFIED); |
| } |
| } |
| } |
| |
| /* this function destroys the first RAR entry */ |
| void wx_mac_set_default_filter(struct wx *wx, u8 *addr) |
| { |
| memcpy(&wx->mac_table[0].addr, addr, ETH_ALEN); |
| wx->mac_table[0].pools = 1ULL; |
| wx->mac_table[0].state = (WX_MAC_STATE_DEFAULT | WX_MAC_STATE_IN_USE); |
| wx_set_rar(wx, 0, wx->mac_table[0].addr, |
| wx->mac_table[0].pools, |
| WX_PSR_MAC_SWC_AD_H_AV); |
| } |
| EXPORT_SYMBOL(wx_mac_set_default_filter); |
| |
| void wx_flush_sw_mac_table(struct wx *wx) |
| { |
| u32 i; |
| |
| for (i = 0; i < wx->mac.num_rar_entries; i++) { |
| if (!(wx->mac_table[i].state & WX_MAC_STATE_IN_USE)) |
| continue; |
| |
| wx->mac_table[i].state |= WX_MAC_STATE_MODIFIED; |
| wx->mac_table[i].state &= ~WX_MAC_STATE_IN_USE; |
| memset(wx->mac_table[i].addr, 0, ETH_ALEN); |
| wx->mac_table[i].pools = 0; |
| } |
| wx_sync_mac_table(wx); |
| } |
| EXPORT_SYMBOL(wx_flush_sw_mac_table); |
| |
| static int wx_add_mac_filter(struct wx *wx, u8 *addr, u16 pool) |
| { |
| u32 i; |
| |
| if (is_zero_ether_addr(addr)) |
| return -EINVAL; |
| |
| for (i = 0; i < wx->mac.num_rar_entries; i++) { |
| if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) { |
| if (ether_addr_equal(addr, wx->mac_table[i].addr)) { |
| if (wx->mac_table[i].pools != (1ULL << pool)) { |
| memcpy(wx->mac_table[i].addr, addr, ETH_ALEN); |
| wx->mac_table[i].pools |= (1ULL << pool); |
| wx_sync_mac_table(wx); |
| return i; |
| } |
| } |
| } |
| |
| if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) |
| continue; |
| wx->mac_table[i].state |= (WX_MAC_STATE_MODIFIED | |
| WX_MAC_STATE_IN_USE); |
| memcpy(wx->mac_table[i].addr, addr, ETH_ALEN); |
| wx->mac_table[i].pools |= (1ULL << pool); |
| wx_sync_mac_table(wx); |
| return i; |
| } |
| return -ENOMEM; |
| } |
| |
| static int wx_del_mac_filter(struct wx *wx, u8 *addr, u16 pool) |
| { |
| u32 i; |
| |
| if (is_zero_ether_addr(addr)) |
| return -EINVAL; |
| |
| /* search table for addr, if found, set to 0 and sync */ |
| for (i = 0; i < wx->mac.num_rar_entries; i++) { |
| if (!ether_addr_equal(addr, wx->mac_table[i].addr)) |
| continue; |
| |
| wx->mac_table[i].state |= WX_MAC_STATE_MODIFIED; |
| wx->mac_table[i].pools &= ~(1ULL << pool); |
| if (!wx->mac_table[i].pools) { |
| wx->mac_table[i].state &= ~WX_MAC_STATE_IN_USE; |
| memset(wx->mac_table[i].addr, 0, ETH_ALEN); |
| } |
| wx_sync_mac_table(wx); |
| return 0; |
| } |
| return -ENOMEM; |
| } |
| |
| static int wx_available_rars(struct wx *wx) |
| { |
| u32 i, count = 0; |
| |
| for (i = 0; i < wx->mac.num_rar_entries; i++) { |
| if (wx->mac_table[i].state == 0) |
| count++; |
| } |
| |
| return count; |
| } |
| |
| /** |
| * wx_write_uc_addr_list - write unicast addresses to RAR table |
| * @netdev: network interface device structure |
| * @pool: index for mac table |
| * |
| * Writes unicast address list to the RAR table. |
| * Returns: -ENOMEM on failure/insufficient address space |
| * 0 on no addresses written |
| * X on writing X addresses to the RAR table |
| **/ |
| static int wx_write_uc_addr_list(struct net_device *netdev, int pool) |
| { |
| struct wx *wx = netdev_priv(netdev); |
| int count = 0; |
| |
| /* return ENOMEM indicating insufficient memory for addresses */ |
| if (netdev_uc_count(netdev) > wx_available_rars(wx)) |
| return -ENOMEM; |
| |
| if (!netdev_uc_empty(netdev)) { |
| struct netdev_hw_addr *ha; |
| |
| netdev_for_each_uc_addr(ha, netdev) { |
| wx_del_mac_filter(wx, ha->addr, pool); |
| wx_add_mac_filter(wx, ha->addr, pool); |
| count++; |
| } |
| } |
| return count; |
| } |
| |
| /** |
| * wx_mta_vector - Determines bit-vector in multicast table to set |
| * @wx: pointer to private structure |
| * @mc_addr: the multicast address |
| * |
| * Extracts the 12 bits, from a multicast address, to determine which |
| * bit-vector to set in the multicast table. The hardware uses 12 bits, from |
| * incoming rx multicast addresses, to determine the bit-vector to check in |
| * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set |
| * by the MO field of the MCSTCTRL. The MO field is set during initialization |
| * to mc_filter_type. |
| **/ |
| static u32 wx_mta_vector(struct wx *wx, u8 *mc_addr) |
| { |
| u32 vector = 0; |
| |
| switch (wx->mac.mc_filter_type) { |
| case 0: /* use bits [47:36] of the address */ |
| vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4)); |
| break; |
| case 1: /* use bits [46:35] of the address */ |
| vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5)); |
| break; |
| case 2: /* use bits [45:34] of the address */ |
| vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6)); |
| break; |
| case 3: /* use bits [43:32] of the address */ |
| vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8)); |
| break; |
| default: /* Invalid mc_filter_type */ |
| wx_err(wx, "MC filter type param set incorrectly\n"); |
| break; |
| } |
| |
| /* vector can only be 12-bits or boundary will be exceeded */ |
| vector &= 0xFFF; |
| return vector; |
| } |
| |
| /** |
| * wx_set_mta - Set bit-vector in multicast table |
| * @wx: pointer to private structure |
| * @mc_addr: Multicast address |
| * |
| * Sets the bit-vector in the multicast table. |
| **/ |
| static void wx_set_mta(struct wx *wx, u8 *mc_addr) |
| { |
| u32 vector, vector_bit, vector_reg; |
| |
| wx->addr_ctrl.mta_in_use++; |
| |
| vector = wx_mta_vector(wx, mc_addr); |
| wx_dbg(wx, " bit-vector = 0x%03X\n", vector); |
| |
| /* The MTA is a register array of 128 32-bit registers. It is treated |
| * like an array of 4096 bits. We want to set bit |
| * BitArray[vector_value]. So we figure out what register the bit is |
| * in, read it, OR in the new bit, then write back the new value. The |
| * register is determined by the upper 7 bits of the vector value and |
| * the bit within that register are determined by the lower 5 bits of |
| * the value. |
| */ |
| vector_reg = (vector >> 5) & 0x7F; |
| vector_bit = vector & 0x1F; |
| wx->mac.mta_shadow[vector_reg] |= (1 << vector_bit); |
| } |
| |
| /** |
| * wx_update_mc_addr_list - Updates MAC list of multicast addresses |
| * @wx: pointer to private structure |
| * @netdev: pointer to net device structure |
| * |
| * The given list replaces any existing list. Clears the MC addrs from receive |
| * address registers and the multicast table. Uses unused receive address |
| * registers for the first multicast addresses, and hashes the rest into the |
| * multicast table. |
| **/ |
| static void wx_update_mc_addr_list(struct wx *wx, struct net_device *netdev) |
| { |
| struct netdev_hw_addr *ha; |
| u32 i, psrctl; |
| |
| /* Set the new number of MC addresses that we are being requested to |
| * use. |
| */ |
| wx->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev); |
| wx->addr_ctrl.mta_in_use = 0; |
| |
| /* Clear mta_shadow */ |
| wx_dbg(wx, " Clearing MTA\n"); |
| memset(&wx->mac.mta_shadow, 0, sizeof(wx->mac.mta_shadow)); |
| |
| /* Update mta_shadow */ |
| netdev_for_each_mc_addr(ha, netdev) { |
| wx_dbg(wx, " Adding the multicast addresses:\n"); |
| wx_set_mta(wx, ha->addr); |
| } |
| |
| /* Enable mta */ |
| for (i = 0; i < wx->mac.mcft_size; i++) |
| wr32a(wx, WX_PSR_MC_TBL(0), i, |
| wx->mac.mta_shadow[i]); |
| |
| if (wx->addr_ctrl.mta_in_use > 0) { |
| psrctl = rd32(wx, WX_PSR_CTL); |
| psrctl &= ~(WX_PSR_CTL_MO | WX_PSR_CTL_MFE); |
| psrctl |= WX_PSR_CTL_MFE | |
| (wx->mac.mc_filter_type << WX_PSR_CTL_MO_SHIFT); |
| wr32(wx, WX_PSR_CTL, psrctl); |
| } |
| |
| wx_dbg(wx, "Update mc addr list Complete\n"); |
| } |
| |
| /** |
| * wx_write_mc_addr_list - write multicast addresses to MTA |
| * @netdev: network interface device structure |
| * |
| * Writes multicast address list to the MTA hash table. |
| * Returns: 0 on no addresses written |
| * X on writing X addresses to MTA |
| **/ |
| static int wx_write_mc_addr_list(struct net_device *netdev) |
| { |
| struct wx *wx = netdev_priv(netdev); |
| |
| if (!netif_running(netdev)) |
| return 0; |
| |
| wx_update_mc_addr_list(wx, netdev); |
| |
| return netdev_mc_count(netdev); |
| } |
| |
| /** |
| * wx_set_mac - Change the Ethernet Address of the NIC |
| * @netdev: network interface device structure |
| * @p: pointer to an address structure |
| * |
| * Returns 0 on success, negative on failure |
| **/ |
| int wx_set_mac(struct net_device *netdev, void *p) |
| { |
| struct wx *wx = netdev_priv(netdev); |
| struct sockaddr *addr = p; |
| int retval; |
| |
| retval = eth_prepare_mac_addr_change(netdev, addr); |
| if (retval) |
| return retval; |
| |
| wx_del_mac_filter(wx, wx->mac.addr, 0); |
| eth_hw_addr_set(netdev, addr->sa_data); |
| memcpy(wx->mac.addr, addr->sa_data, netdev->addr_len); |
| |
| wx_mac_set_default_filter(wx, wx->mac.addr); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(wx_set_mac); |
| |
| void wx_disable_rx(struct wx *wx) |
| { |
| u32 pfdtxgswc; |
| u32 rxctrl; |
| |
| rxctrl = rd32(wx, WX_RDB_PB_CTL); |
| if (rxctrl & WX_RDB_PB_CTL_RXEN) { |
| pfdtxgswc = rd32(wx, WX_PSR_CTL); |
| if (pfdtxgswc & WX_PSR_CTL_SW_EN) { |
| pfdtxgswc &= ~WX_PSR_CTL_SW_EN; |
| wr32(wx, WX_PSR_CTL, pfdtxgswc); |
| wx->mac.set_lben = true; |
| } else { |
| wx->mac.set_lben = false; |
| } |
| rxctrl &= ~WX_RDB_PB_CTL_RXEN; |
| wr32(wx, WX_RDB_PB_CTL, rxctrl); |
| |
| if (!(((wx->subsystem_device_id & WX_NCSI_MASK) == WX_NCSI_SUP) || |
| ((wx->subsystem_device_id & WX_WOL_MASK) == WX_WOL_SUP))) { |
| /* disable mac receiver */ |
| wr32m(wx, WX_MAC_RX_CFG, |
| WX_MAC_RX_CFG_RE, 0); |
| } |
| } |
| } |
| EXPORT_SYMBOL(wx_disable_rx); |
| |
| static void wx_enable_rx(struct wx *wx) |
| { |
| u32 psrctl; |
| |
| /* enable mac receiver */ |
| wr32m(wx, WX_MAC_RX_CFG, |
| WX_MAC_RX_CFG_RE, WX_MAC_RX_CFG_RE); |
| |
| wr32m(wx, WX_RDB_PB_CTL, |
| WX_RDB_PB_CTL_RXEN, WX_RDB_PB_CTL_RXEN); |
| |
| if (wx->mac.set_lben) { |
| psrctl = rd32(wx, WX_PSR_CTL); |
| psrctl |= WX_PSR_CTL_SW_EN; |
| wr32(wx, WX_PSR_CTL, psrctl); |
| wx->mac.set_lben = false; |
| } |
| } |
| |
| /** |
| * wx_set_rxpba - Initialize Rx packet buffer |
| * @wx: pointer to private structure |
| **/ |
| static void wx_set_rxpba(struct wx *wx) |
| { |
| u32 rxpktsize, txpktsize, txpbthresh; |
| |
| rxpktsize = wx->mac.rx_pb_size << WX_RDB_PB_SZ_SHIFT; |
| wr32(wx, WX_RDB_PB_SZ(0), rxpktsize); |
| |
| /* Only support an equally distributed Tx packet buffer strategy. */ |
| txpktsize = wx->mac.tx_pb_size; |
| txpbthresh = (txpktsize / 1024) - WX_TXPKT_SIZE_MAX; |
| wr32(wx, WX_TDB_PB_SZ(0), txpktsize); |
| wr32(wx, WX_TDM_PB_THRE(0), txpbthresh); |
| } |
| |
| #define WX_ETH_FRAMING 20 |
| |
| /** |
| * wx_hpbthresh - calculate high water mark for flow control |
| * |
| * @wx: board private structure to calculate for |
| **/ |
| static int wx_hpbthresh(struct wx *wx) |
| { |
| struct net_device *dev = wx->netdev; |
| int link, tc, kb, marker; |
| u32 dv_id, rx_pba; |
| |
| /* Calculate max LAN frame size */ |
| link = dev->mtu + ETH_HLEN + ETH_FCS_LEN + WX_ETH_FRAMING; |
| tc = link; |
| |
| /* Calculate delay value for device */ |
| dv_id = WX_DV(link, tc); |
| |
| /* Delay value is calculated in bit times convert to KB */ |
| kb = WX_BT2KB(dv_id); |
| rx_pba = rd32(wx, WX_RDB_PB_SZ(0)) >> WX_RDB_PB_SZ_SHIFT; |
| |
| marker = rx_pba - kb; |
| |
| /* It is possible that the packet buffer is not large enough |
| * to provide required headroom. In this case throw an error |
| * to user and a do the best we can. |
| */ |
| if (marker < 0) { |
| dev_warn(&wx->pdev->dev, |
| "Packet Buffer can not provide enough headroom to support flow control. Decrease MTU or number of traffic classes\n"); |
| marker = tc + 1; |
| } |
| |
| return marker; |
| } |
| |
| /** |
| * wx_lpbthresh - calculate low water mark for flow control |
| * |
| * @wx: board private structure to calculate for |
| **/ |
| static int wx_lpbthresh(struct wx *wx) |
| { |
| struct net_device *dev = wx->netdev; |
| u32 dv_id; |
| int tc; |
| |
| /* Calculate max LAN frame size */ |
| tc = dev->mtu + ETH_HLEN + ETH_FCS_LEN; |
| |
| /* Calculate delay value for device */ |
| dv_id = WX_LOW_DV(tc); |
| |
| /* Delay value is calculated in bit times convert to KB */ |
| return WX_BT2KB(dv_id); |
| } |
| |
| /** |
| * wx_pbthresh_setup - calculate and setup high low water marks |
| * |
| * @wx: board private structure to calculate for |
| **/ |
| static void wx_pbthresh_setup(struct wx *wx) |
| { |
| wx->fc.high_water = wx_hpbthresh(wx); |
| wx->fc.low_water = wx_lpbthresh(wx); |
| |
| /* Low water marks must not be larger than high water marks */ |
| if (wx->fc.low_water > wx->fc.high_water) |
| wx->fc.low_water = 0; |
| } |
| |
| static void wx_configure_port(struct wx *wx) |
| { |
| u32 value, i; |
| |
| value = WX_CFG_PORT_CTL_D_VLAN | WX_CFG_PORT_CTL_QINQ; |
| wr32m(wx, WX_CFG_PORT_CTL, |
| WX_CFG_PORT_CTL_D_VLAN | |
| WX_CFG_PORT_CTL_QINQ, |
| value); |
| |
| wr32(wx, WX_CFG_TAG_TPID(0), |
| ETH_P_8021Q | ETH_P_8021AD << 16); |
| wx->tpid[0] = ETH_P_8021Q; |
| wx->tpid[1] = ETH_P_8021AD; |
| for (i = 1; i < 4; i++) |
| wr32(wx, WX_CFG_TAG_TPID(i), |
| ETH_P_8021Q | ETH_P_8021Q << 16); |
| for (i = 2; i < 8; i++) |
| wx->tpid[i] = ETH_P_8021Q; |
| } |
| |
| /** |
| * wx_disable_sec_rx_path - Stops the receive data path |
| * @wx: pointer to private structure |
| * |
| * Stops the receive data path and waits for the HW to internally empty |
| * the Rx security block |
| **/ |
| static int wx_disable_sec_rx_path(struct wx *wx) |
| { |
| u32 secrx; |
| |
| wr32m(wx, WX_RSC_CTL, |
| WX_RSC_CTL_RX_DIS, WX_RSC_CTL_RX_DIS); |
| |
| return read_poll_timeout(rd32, secrx, secrx & WX_RSC_ST_RSEC_RDY, |
| 1000, 40000, false, wx, WX_RSC_ST); |
| } |
| |
| /** |
| * wx_enable_sec_rx_path - Enables the receive data path |
| * @wx: pointer to private structure |
| * |
| * Enables the receive data path. |
| **/ |
| static void wx_enable_sec_rx_path(struct wx *wx) |
| { |
| wr32m(wx, WX_RSC_CTL, WX_RSC_CTL_RX_DIS, 0); |
| WX_WRITE_FLUSH(wx); |
| } |
| |
| static void wx_vlan_strip_control(struct wx *wx, bool enable) |
| { |
| int i, j; |
| |
| for (i = 0; i < wx->num_rx_queues; i++) { |
| struct wx_ring *ring = wx->rx_ring[i]; |
| |
| j = ring->reg_idx; |
| wr32m(wx, WX_PX_RR_CFG(j), WX_PX_RR_CFG_VLAN, |
| enable ? WX_PX_RR_CFG_VLAN : 0); |
| } |
| } |
| |
| void wx_set_rx_mode(struct net_device *netdev) |
| { |
| struct wx *wx = netdev_priv(netdev); |
| netdev_features_t features; |
| u32 fctrl, vmolr, vlnctrl; |
| int count; |
| |
| features = netdev->features; |
| |
| /* Check for Promiscuous and All Multicast modes */ |
| fctrl = rd32(wx, WX_PSR_CTL); |
| fctrl &= ~(WX_PSR_CTL_UPE | WX_PSR_CTL_MPE); |
| vmolr = rd32(wx, WX_PSR_VM_L2CTL(0)); |
| vmolr &= ~(WX_PSR_VM_L2CTL_UPE | |
| WX_PSR_VM_L2CTL_MPE | |
| WX_PSR_VM_L2CTL_ROPE | |
| WX_PSR_VM_L2CTL_ROMPE); |
| vlnctrl = rd32(wx, WX_PSR_VLAN_CTL); |
| vlnctrl &= ~(WX_PSR_VLAN_CTL_VFE | WX_PSR_VLAN_CTL_CFIEN); |
| |
| /* set all bits that we expect to always be set */ |
| fctrl |= WX_PSR_CTL_BAM | WX_PSR_CTL_MFE; |
| vmolr |= WX_PSR_VM_L2CTL_BAM | |
| WX_PSR_VM_L2CTL_AUPE | |
| WX_PSR_VM_L2CTL_VACC; |
| vlnctrl |= WX_PSR_VLAN_CTL_VFE; |
| |
| wx->addr_ctrl.user_set_promisc = false; |
| if (netdev->flags & IFF_PROMISC) { |
| wx->addr_ctrl.user_set_promisc = true; |
| fctrl |= WX_PSR_CTL_UPE | WX_PSR_CTL_MPE; |
| /* pf don't want packets routing to vf, so clear UPE */ |
| vmolr |= WX_PSR_VM_L2CTL_MPE; |
| vlnctrl &= ~WX_PSR_VLAN_CTL_VFE; |
| } |
| |
| if (netdev->flags & IFF_ALLMULTI) { |
| fctrl |= WX_PSR_CTL_MPE; |
| vmolr |= WX_PSR_VM_L2CTL_MPE; |
| } |
| |
| if (netdev->features & NETIF_F_RXALL) { |
| vmolr |= (WX_PSR_VM_L2CTL_UPE | WX_PSR_VM_L2CTL_MPE); |
| vlnctrl &= ~WX_PSR_VLAN_CTL_VFE; |
| /* receive bad packets */ |
| wr32m(wx, WX_RSC_CTL, |
| WX_RSC_CTL_SAVE_MAC_ERR, |
| WX_RSC_CTL_SAVE_MAC_ERR); |
| } else { |
| vmolr |= WX_PSR_VM_L2CTL_ROPE | WX_PSR_VM_L2CTL_ROMPE; |
| } |
| |
| /* Write addresses to available RAR registers, if there is not |
| * sufficient space to store all the addresses then enable |
| * unicast promiscuous mode |
| */ |
| count = wx_write_uc_addr_list(netdev, 0); |
| if (count < 0) { |
| vmolr &= ~WX_PSR_VM_L2CTL_ROPE; |
| vmolr |= WX_PSR_VM_L2CTL_UPE; |
| } |
| |
| /* Write addresses to the MTA, if the attempt fails |
| * then we should just turn on promiscuous mode so |
| * that we can at least receive multicast traffic |
| */ |
| count = wx_write_mc_addr_list(netdev); |
| if (count < 0) { |
| vmolr &= ~WX_PSR_VM_L2CTL_ROMPE; |
| vmolr |= WX_PSR_VM_L2CTL_MPE; |
| } |
| |
| wr32(wx, WX_PSR_VLAN_CTL, vlnctrl); |
| wr32(wx, WX_PSR_CTL, fctrl); |
| wr32(wx, WX_PSR_VM_L2CTL(0), vmolr); |
| |
| if ((features & NETIF_F_HW_VLAN_CTAG_RX) && |
| (features & NETIF_F_HW_VLAN_STAG_RX)) |
| wx_vlan_strip_control(wx, true); |
| else |
| wx_vlan_strip_control(wx, false); |
| |
| } |
| EXPORT_SYMBOL(wx_set_rx_mode); |
| |
| static void wx_set_rx_buffer_len(struct wx *wx) |
| { |
| struct net_device *netdev = wx->netdev; |
| u32 mhadd, max_frame; |
| |
| max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; |
| /* adjust max frame to be at least the size of a standard frame */ |
| if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN)) |
| max_frame = (ETH_FRAME_LEN + ETH_FCS_LEN); |
| |
| mhadd = rd32(wx, WX_PSR_MAX_SZ); |
| if (max_frame != mhadd) |
| wr32(wx, WX_PSR_MAX_SZ, max_frame); |
| } |
| |
| /** |
| * wx_change_mtu - Change the Maximum Transfer Unit |
| * @netdev: network interface device structure |
| * @new_mtu: new value for maximum frame size |
| * |
| * Returns 0 on success, negative on failure |
| **/ |
| int wx_change_mtu(struct net_device *netdev, int new_mtu) |
| { |
| struct wx *wx = netdev_priv(netdev); |
| |
| netdev->mtu = new_mtu; |
| wx_set_rx_buffer_len(wx); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(wx_change_mtu); |
| |
| /* Disable the specified rx queue */ |
| void wx_disable_rx_queue(struct wx *wx, struct wx_ring *ring) |
| { |
| u8 reg_idx = ring->reg_idx; |
| u32 rxdctl; |
| int ret; |
| |
| /* write value back with RRCFG.EN bit cleared */ |
| wr32m(wx, WX_PX_RR_CFG(reg_idx), |
| WX_PX_RR_CFG_RR_EN, 0); |
| |
| /* the hardware may take up to 100us to really disable the rx queue */ |
| ret = read_poll_timeout(rd32, rxdctl, !(rxdctl & WX_PX_RR_CFG_RR_EN), |
| 10, 100, true, wx, WX_PX_RR_CFG(reg_idx)); |
| |
| if (ret == -ETIMEDOUT) { |
| /* Just for information */ |
| wx_err(wx, |
| "RRCFG.EN on Rx queue %d not cleared within the polling period\n", |
| reg_idx); |
| } |
| } |
| EXPORT_SYMBOL(wx_disable_rx_queue); |
| |
| static void wx_enable_rx_queue(struct wx *wx, struct wx_ring *ring) |
| { |
| u8 reg_idx = ring->reg_idx; |
| u32 rxdctl; |
| int ret; |
| |
| ret = read_poll_timeout(rd32, rxdctl, rxdctl & WX_PX_RR_CFG_RR_EN, |
| 1000, 10000, true, wx, WX_PX_RR_CFG(reg_idx)); |
| |
| if (ret == -ETIMEDOUT) { |
| /* Just for information */ |
| wx_err(wx, |
| "RRCFG.EN on Rx queue %d not set within the polling period\n", |
| reg_idx); |
| } |
| } |
| |
| static void wx_configure_srrctl(struct wx *wx, |
| struct wx_ring *rx_ring) |
| { |
| u16 reg_idx = rx_ring->reg_idx; |
| u32 srrctl; |
| |
| srrctl = rd32(wx, WX_PX_RR_CFG(reg_idx)); |
| srrctl &= ~(WX_PX_RR_CFG_RR_HDR_SZ | |
| WX_PX_RR_CFG_RR_BUF_SZ | |
| WX_PX_RR_CFG_SPLIT_MODE); |
| /* configure header buffer length, needed for RSC */ |
| srrctl |= WX_RXBUFFER_256 << WX_PX_RR_CFG_BHDRSIZE_SHIFT; |
| |
| /* configure the packet buffer length */ |
| srrctl |= WX_RX_BUFSZ >> WX_PX_RR_CFG_BSIZEPKT_SHIFT; |
| |
| wr32(wx, WX_PX_RR_CFG(reg_idx), srrctl); |
| } |
| |
| static void wx_configure_tx_ring(struct wx *wx, |
| struct wx_ring *ring) |
| { |
| u32 txdctl = WX_PX_TR_CFG_ENABLE; |
| u8 reg_idx = ring->reg_idx; |
| u64 tdba = ring->dma; |
| int ret; |
| |
| /* disable queue to avoid issues while updating state */ |
| wr32(wx, WX_PX_TR_CFG(reg_idx), WX_PX_TR_CFG_SWFLSH); |
| WX_WRITE_FLUSH(wx); |
| |
| wr32(wx, WX_PX_TR_BAL(reg_idx), tdba & DMA_BIT_MASK(32)); |
| wr32(wx, WX_PX_TR_BAH(reg_idx), upper_32_bits(tdba)); |
| |
| /* reset head and tail pointers */ |
| wr32(wx, WX_PX_TR_RP(reg_idx), 0); |
| wr32(wx, WX_PX_TR_WP(reg_idx), 0); |
| ring->tail = wx->hw_addr + WX_PX_TR_WP(reg_idx); |
| |
| if (ring->count < WX_MAX_TXD) |
| txdctl |= ring->count / 128 << WX_PX_TR_CFG_TR_SIZE_SHIFT; |
| txdctl |= 0x20 << WX_PX_TR_CFG_WTHRESH_SHIFT; |
| |
| /* reinitialize tx_buffer_info */ |
| memset(ring->tx_buffer_info, 0, |
| sizeof(struct wx_tx_buffer) * ring->count); |
| |
| /* enable queue */ |
| wr32(wx, WX_PX_TR_CFG(reg_idx), txdctl); |
| |
| /* poll to verify queue is enabled */ |
| ret = read_poll_timeout(rd32, txdctl, txdctl & WX_PX_TR_CFG_ENABLE, |
| 1000, 10000, true, wx, WX_PX_TR_CFG(reg_idx)); |
| if (ret == -ETIMEDOUT) |
| wx_err(wx, "Could not enable Tx Queue %d\n", reg_idx); |
| } |
| |
| static void wx_configure_rx_ring(struct wx *wx, |
| struct wx_ring *ring) |
| { |
| u16 reg_idx = ring->reg_idx; |
| union wx_rx_desc *rx_desc; |
| u64 rdba = ring->dma; |
| u32 rxdctl; |
| |
| /* disable queue to avoid issues while updating state */ |
| rxdctl = rd32(wx, WX_PX_RR_CFG(reg_idx)); |
| wx_disable_rx_queue(wx, ring); |
| |
| wr32(wx, WX_PX_RR_BAL(reg_idx), rdba & DMA_BIT_MASK(32)); |
| wr32(wx, WX_PX_RR_BAH(reg_idx), upper_32_bits(rdba)); |
| |
| if (ring->count == WX_MAX_RXD) |
| rxdctl |= 0 << WX_PX_RR_CFG_RR_SIZE_SHIFT; |
| else |
| rxdctl |= (ring->count / 128) << WX_PX_RR_CFG_RR_SIZE_SHIFT; |
| |
| rxdctl |= 0x1 << WX_PX_RR_CFG_RR_THER_SHIFT; |
| wr32(wx, WX_PX_RR_CFG(reg_idx), rxdctl); |
| |
| /* reset head and tail pointers */ |
| wr32(wx, WX_PX_RR_RP(reg_idx), 0); |
| wr32(wx, WX_PX_RR_WP(reg_idx), 0); |
| ring->tail = wx->hw_addr + WX_PX_RR_WP(reg_idx); |
| |
| wx_configure_srrctl(wx, ring); |
| |
| /* initialize rx_buffer_info */ |
| memset(ring->rx_buffer_info, 0, |
| sizeof(struct wx_rx_buffer) * ring->count); |
| |
| /* initialize Rx descriptor 0 */ |
| rx_desc = WX_RX_DESC(ring, 0); |
| rx_desc->wb.upper.length = 0; |
| |
| /* enable receive descriptor ring */ |
| wr32m(wx, WX_PX_RR_CFG(reg_idx), |
| WX_PX_RR_CFG_RR_EN, WX_PX_RR_CFG_RR_EN); |
| |
| wx_enable_rx_queue(wx, ring); |
| wx_alloc_rx_buffers(ring, wx_desc_unused(ring)); |
| } |
| |
| /** |
| * wx_configure_tx - Configure Transmit Unit after Reset |
| * @wx: pointer to private structure |
| * |
| * Configure the Tx unit of the MAC after a reset. |
| **/ |
| static void wx_configure_tx(struct wx *wx) |
| { |
| u32 i; |
| |
| /* TDM_CTL.TE must be before Tx queues are enabled */ |
| wr32m(wx, WX_TDM_CTL, |
| WX_TDM_CTL_TE, WX_TDM_CTL_TE); |
| |
| /* Setup the HW Tx Head and Tail descriptor pointers */ |
| for (i = 0; i < wx->num_tx_queues; i++) |
| wx_configure_tx_ring(wx, wx->tx_ring[i]); |
| |
| wr32m(wx, WX_TSC_BUF_AE, WX_TSC_BUF_AE_THR, 0x10); |
| |
| if (wx->mac.type == wx_mac_em) |
| wr32m(wx, WX_TSC_CTL, WX_TSC_CTL_TX_DIS | WX_TSC_CTL_TSEC_DIS, 0x1); |
| |
| /* enable mac transmitter */ |
| wr32m(wx, WX_MAC_TX_CFG, |
| WX_MAC_TX_CFG_TE, WX_MAC_TX_CFG_TE); |
| } |
| |
| static void wx_restore_vlan(struct wx *wx) |
| { |
| u16 vid = 1; |
| |
| wx_vlan_rx_add_vid(wx->netdev, htons(ETH_P_8021Q), 0); |
| |
| for_each_set_bit_from(vid, wx->active_vlans, VLAN_N_VID) |
| wx_vlan_rx_add_vid(wx->netdev, htons(ETH_P_8021Q), vid); |
| } |
| |
| static void wx_store_reta(struct wx *wx) |
| { |
| u8 *indir_tbl = wx->rss_indir_tbl; |
| u32 reta = 0; |
| u32 i; |
| |
| /* Fill out the redirection table as follows: |
| * - 8 bit wide entries containing 4 bit RSS index |
| */ |
| for (i = 0; i < WX_MAX_RETA_ENTRIES; i++) { |
| reta |= indir_tbl[i] << (i & 0x3) * 8; |
| if ((i & 3) == 3) { |
| wr32(wx, WX_RDB_RSSTBL(i >> 2), reta); |
| reta = 0; |
| } |
| } |
| } |
| |
| static void wx_setup_reta(struct wx *wx) |
| { |
| u16 rss_i = wx->ring_feature[RING_F_RSS].indices; |
| u32 random_key_size = WX_RSS_KEY_SIZE / 4; |
| u32 i, j; |
| |
| /* Fill out hash function seeds */ |
| for (i = 0; i < random_key_size; i++) |
| wr32(wx, WX_RDB_RSSRK(i), wx->rss_key[i]); |
| |
| /* Fill out redirection table */ |
| memset(wx->rss_indir_tbl, 0, sizeof(wx->rss_indir_tbl)); |
| |
| for (i = 0, j = 0; i < WX_MAX_RETA_ENTRIES; i++, j++) { |
| if (j == rss_i) |
| j = 0; |
| |
| wx->rss_indir_tbl[i] = j; |
| } |
| |
| wx_store_reta(wx); |
| } |
| |
| static void wx_setup_mrqc(struct wx *wx) |
| { |
| u32 rss_field = 0; |
| |
| /* Disable indicating checksum in descriptor, enables RSS hash */ |
| wr32m(wx, WX_PSR_CTL, WX_PSR_CTL_PCSD, WX_PSR_CTL_PCSD); |
| |
| /* Perform hash on these packet types */ |
| rss_field = WX_RDB_RA_CTL_RSS_IPV4 | |
| WX_RDB_RA_CTL_RSS_IPV4_TCP | |
| WX_RDB_RA_CTL_RSS_IPV4_UDP | |
| WX_RDB_RA_CTL_RSS_IPV6 | |
| WX_RDB_RA_CTL_RSS_IPV6_TCP | |
| WX_RDB_RA_CTL_RSS_IPV6_UDP; |
| |
| netdev_rss_key_fill(wx->rss_key, sizeof(wx->rss_key)); |
| |
| wx_setup_reta(wx); |
| |
| if (wx->rss_enabled) |
| rss_field |= WX_RDB_RA_CTL_RSS_EN; |
| |
| wr32(wx, WX_RDB_RA_CTL, rss_field); |
| } |
| |
| /** |
| * wx_configure_rx - Configure Receive Unit after Reset |
| * @wx: pointer to private structure |
| * |
| * Configure the Rx unit of the MAC after a reset. |
| **/ |
| void wx_configure_rx(struct wx *wx) |
| { |
| u32 psrtype, i; |
| int ret; |
| |
| wx_disable_rx(wx); |
| |
| psrtype = WX_RDB_PL_CFG_L4HDR | |
| WX_RDB_PL_CFG_L3HDR | |
| WX_RDB_PL_CFG_L2HDR | |
| WX_RDB_PL_CFG_TUN_TUNHDR; |
| wr32(wx, WX_RDB_PL_CFG(0), psrtype); |
| |
| /* enable hw crc stripping */ |
| wr32m(wx, WX_RSC_CTL, WX_RSC_CTL_CRC_STRIP, WX_RSC_CTL_CRC_STRIP); |
| |
| if (wx->mac.type == wx_mac_sp) { |
| u32 psrctl; |
| |
| /* RSC Setup */ |
| psrctl = rd32(wx, WX_PSR_CTL); |
| psrctl |= WX_PSR_CTL_RSC_ACK; /* Disable RSC for ACK packets */ |
| psrctl |= WX_PSR_CTL_RSC_DIS; |
| wr32(wx, WX_PSR_CTL, psrctl); |
| } |
| |
| wx_setup_mrqc(wx); |
| |
| /* set_rx_buffer_len must be called before ring initialization */ |
| wx_set_rx_buffer_len(wx); |
| |
| /* Setup the HW Rx Head and Tail Descriptor Pointers and |
| * the Base and Length of the Rx Descriptor Ring |
| */ |
| for (i = 0; i < wx->num_rx_queues; i++) |
| wx_configure_rx_ring(wx, wx->rx_ring[i]); |
| |
| /* Enable all receives, disable security engine prior to block traffic */ |
| ret = wx_disable_sec_rx_path(wx); |
| if (ret < 0) |
| wx_err(wx, "The register status is abnormal, please check device."); |
| |
| wx_enable_rx(wx); |
| wx_enable_sec_rx_path(wx); |
| } |
| EXPORT_SYMBOL(wx_configure_rx); |
| |
| static void wx_configure_isb(struct wx *wx) |
| { |
| /* set ISB Address */ |
| wr32(wx, WX_PX_ISB_ADDR_L, wx->isb_dma & DMA_BIT_MASK(32)); |
| if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT)) |
| wr32(wx, WX_PX_ISB_ADDR_H, upper_32_bits(wx->isb_dma)); |
| } |
| |
| void wx_configure(struct wx *wx) |
| { |
| wx_set_rxpba(wx); |
| wx_pbthresh_setup(wx); |
| wx_configure_port(wx); |
| |
| wx_set_rx_mode(wx->netdev); |
| wx_restore_vlan(wx); |
| wx_enable_sec_rx_path(wx); |
| |
| wx_configure_tx(wx); |
| wx_configure_rx(wx); |
| wx_configure_isb(wx); |
| } |
| EXPORT_SYMBOL(wx_configure); |
| |
| /** |
| * wx_disable_pcie_master - Disable PCI-express master access |
| * @wx: pointer to hardware structure |
| * |
| * Disables PCI-Express master access and verifies there are no pending |
| * requests. |
| **/ |
| int wx_disable_pcie_master(struct wx *wx) |
| { |
| int status = 0; |
| u32 val; |
| |
| /* Always set this bit to ensure any future transactions are blocked */ |
| pci_clear_master(wx->pdev); |
| |
| /* Exit if master requests are blocked */ |
| if (!(rd32(wx, WX_PX_TRANSACTION_PENDING))) |
| return 0; |
| |
| /* Poll for master request bit to clear */ |
| status = read_poll_timeout(rd32, val, !val, 100, WX_PCI_MASTER_DISABLE_TIMEOUT, |
| false, wx, WX_PX_TRANSACTION_PENDING); |
| if (status < 0) |
| wx_err(wx, "PCIe transaction pending bit did not clear.\n"); |
| |
| return status; |
| } |
| EXPORT_SYMBOL(wx_disable_pcie_master); |
| |
| /** |
| * wx_stop_adapter - Generic stop Tx/Rx units |
| * @wx: pointer to hardware structure |
| * |
| * Sets the adapter_stopped flag within wx_hw struct. Clears interrupts, |
| * disables transmit and receive units. The adapter_stopped flag is used by |
| * the shared code and drivers to determine if the adapter is in a stopped |
| * state and should not touch the hardware. |
| **/ |
| int wx_stop_adapter(struct wx *wx) |
| { |
| u16 i; |
| |
| /* Set the adapter_stopped flag so other driver functions stop touching |
| * the hardware |
| */ |
| wx->adapter_stopped = true; |
| |
| /* Disable the receive unit */ |
| wx_disable_rx(wx); |
| |
| /* Set interrupt mask to stop interrupts from being generated */ |
| wx_intr_disable(wx, WX_INTR_ALL); |
| |
| /* Clear any pending interrupts, flush previous writes */ |
| wr32(wx, WX_PX_MISC_IC, 0xffffffff); |
| wr32(wx, WX_BME_CTL, 0x3); |
| |
| /* Disable the transmit unit. Each queue must be disabled. */ |
| for (i = 0; i < wx->mac.max_tx_queues; i++) { |
| wr32m(wx, WX_PX_TR_CFG(i), |
| WX_PX_TR_CFG_SWFLSH | WX_PX_TR_CFG_ENABLE, |
| WX_PX_TR_CFG_SWFLSH); |
| } |
| |
| /* Disable the receive unit by stopping each queue */ |
| for (i = 0; i < wx->mac.max_rx_queues; i++) { |
| wr32m(wx, WX_PX_RR_CFG(i), |
| WX_PX_RR_CFG_RR_EN, 0); |
| } |
| |
| /* flush all queues disables */ |
| WX_WRITE_FLUSH(wx); |
| |
| /* Prevent the PCI-E bus from hanging by disabling PCI-E master |
| * access and verify no pending requests |
| */ |
| return wx_disable_pcie_master(wx); |
| } |
| EXPORT_SYMBOL(wx_stop_adapter); |
| |
| void wx_reset_misc(struct wx *wx) |
| { |
| int i; |
| |
| /* receive packets that size > 2048 */ |
| wr32m(wx, WX_MAC_RX_CFG, WX_MAC_RX_CFG_JE, WX_MAC_RX_CFG_JE); |
| |
| /* clear counters on read */ |
| wr32m(wx, WX_MMC_CONTROL, |
| WX_MMC_CONTROL_RSTONRD, WX_MMC_CONTROL_RSTONRD); |
| |
| wr32m(wx, WX_MAC_RX_FLOW_CTRL, |
| WX_MAC_RX_FLOW_CTRL_RFE, WX_MAC_RX_FLOW_CTRL_RFE); |
| |
| wr32(wx, WX_MAC_PKT_FLT, WX_MAC_PKT_FLT_PR); |
| |
| wr32m(wx, WX_MIS_RST_ST, |
| WX_MIS_RST_ST_RST_INIT, 0x1E00); |
| |
| /* errata 4: initialize mng flex tbl and wakeup flex tbl*/ |
| wr32(wx, WX_PSR_MNG_FLEX_SEL, 0); |
| for (i = 0; i < 16; i++) { |
| wr32(wx, WX_PSR_MNG_FLEX_DW_L(i), 0); |
| wr32(wx, WX_PSR_MNG_FLEX_DW_H(i), 0); |
| wr32(wx, WX_PSR_MNG_FLEX_MSK(i), 0); |
| } |
| wr32(wx, WX_PSR_LAN_FLEX_SEL, 0); |
| for (i = 0; i < 16; i++) { |
| wr32(wx, WX_PSR_LAN_FLEX_DW_L(i), 0); |
| wr32(wx, WX_PSR_LAN_FLEX_DW_H(i), 0); |
| wr32(wx, WX_PSR_LAN_FLEX_MSK(i), 0); |
| } |
| |
| /* set pause frame dst mac addr */ |
| wr32(wx, WX_RDB_PFCMACDAL, 0xC2000001); |
| wr32(wx, WX_RDB_PFCMACDAH, 0x0180); |
| } |
| EXPORT_SYMBOL(wx_reset_misc); |
| |
| /** |
| * wx_get_pcie_msix_counts - Gets MSI-X vector count |
| * @wx: pointer to hardware structure |
| * @msix_count: number of MSI interrupts that can be obtained |
| * @max_msix_count: number of MSI interrupts that mac need |
| * |
| * Read PCIe configuration space, and get the MSI-X vector count from |
| * the capabilities table. |
| **/ |
| int wx_get_pcie_msix_counts(struct wx *wx, u16 *msix_count, u16 max_msix_count) |
| { |
| struct pci_dev *pdev = wx->pdev; |
| struct device *dev = &pdev->dev; |
| int pos; |
| |
| *msix_count = 1; |
| pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX); |
| if (!pos) { |
| dev_err(dev, "Unable to find MSI-X Capabilities\n"); |
| return -EINVAL; |
| } |
| pci_read_config_word(pdev, |
| pos + PCI_MSIX_FLAGS, |
| msix_count); |
| *msix_count &= WX_PCIE_MSIX_TBL_SZ_MASK; |
| /* MSI-X count is zero-based in HW */ |
| *msix_count += 1; |
| |
| if (*msix_count > max_msix_count) |
| *msix_count = max_msix_count; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(wx_get_pcie_msix_counts); |
| |
| /** |
| * wx_init_rss_key - Initialize wx RSS key |
| * @wx: device handle |
| * |
| * Allocates and initializes the RSS key if it is not allocated. |
| **/ |
| static int wx_init_rss_key(struct wx *wx) |
| { |
| u32 *rss_key; |
| |
| if (!wx->rss_key) { |
| rss_key = kzalloc(WX_RSS_KEY_SIZE, GFP_KERNEL); |
| if (unlikely(!rss_key)) |
| return -ENOMEM; |
| |
| netdev_rss_key_fill(rss_key, WX_RSS_KEY_SIZE); |
| wx->rss_key = rss_key; |
| } |
| |
| return 0; |
| } |
| |
| int wx_sw_init(struct wx *wx) |
| { |
| struct pci_dev *pdev = wx->pdev; |
| u32 ssid = 0; |
| int err = 0; |
| |
| wx->vendor_id = pdev->vendor; |
| wx->device_id = pdev->device; |
| wx->revision_id = pdev->revision; |
| wx->oem_svid = pdev->subsystem_vendor; |
| wx->oem_ssid = pdev->subsystem_device; |
| wx->bus.device = PCI_SLOT(pdev->devfn); |
| wx->bus.func = PCI_FUNC(pdev->devfn); |
| |
| if (wx->oem_svid == PCI_VENDOR_ID_WANGXUN) { |
| wx->subsystem_vendor_id = pdev->subsystem_vendor; |
| wx->subsystem_device_id = pdev->subsystem_device; |
| } else { |
| err = wx_flash_read_dword(wx, 0xfffdc, &ssid); |
| if (err < 0) { |
| wx_err(wx, "read of internal subsystem device id failed\n"); |
| return err; |
| } |
| |
| wx->subsystem_device_id = swab16((u16)ssid); |
| } |
| |
| err = wx_init_rss_key(wx); |
| if (err < 0) { |
| wx_err(wx, "rss key allocation failed\n"); |
| return err; |
| } |
| |
| wx->mac_table = kcalloc(wx->mac.num_rar_entries, |
| sizeof(struct wx_mac_addr), |
| GFP_KERNEL); |
| if (!wx->mac_table) { |
| wx_err(wx, "mac_table allocation failed\n"); |
| kfree(wx->rss_key); |
| return -ENOMEM; |
| } |
| |
| wx->msix_in_use = false; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(wx_sw_init); |
| |
| /** |
| * wx_find_vlvf_slot - find the vlanid or the first empty slot |
| * @wx: pointer to hardware structure |
| * @vlan: VLAN id to write to VLAN filter |
| * |
| * return the VLVF index where this VLAN id should be placed |
| * |
| **/ |
| static int wx_find_vlvf_slot(struct wx *wx, u32 vlan) |
| { |
| u32 bits = 0, first_empty_slot = 0; |
| int regindex; |
| |
| /* short cut the special case */ |
| if (vlan == 0) |
| return 0; |
| |
| /* Search for the vlan id in the VLVF entries. Save off the first empty |
| * slot found along the way |
| */ |
| for (regindex = 1; regindex < WX_PSR_VLAN_SWC_ENTRIES; regindex++) { |
| wr32(wx, WX_PSR_VLAN_SWC_IDX, regindex); |
| bits = rd32(wx, WX_PSR_VLAN_SWC); |
| if (!bits && !(first_empty_slot)) |
| first_empty_slot = regindex; |
| else if ((bits & 0x0FFF) == vlan) |
| break; |
| } |
| |
| if (regindex >= WX_PSR_VLAN_SWC_ENTRIES) { |
| if (first_empty_slot) |
| regindex = first_empty_slot; |
| else |
| regindex = -ENOMEM; |
| } |
| |
| return regindex; |
| } |
| |
| /** |
| * wx_set_vlvf - Set VLAN Pool Filter |
| * @wx: pointer to hardware structure |
| * @vlan: VLAN id to write to VLAN filter |
| * @vind: VMDq output index that maps queue to VLAN id in VFVFB |
| * @vlan_on: boolean flag to turn on/off VLAN in VFVF |
| * @vfta_changed: pointer to boolean flag which indicates whether VFTA |
| * should be changed |
| * |
| * Turn on/off specified bit in VLVF table. |
| **/ |
| static int wx_set_vlvf(struct wx *wx, u32 vlan, u32 vind, bool vlan_on, |
| bool *vfta_changed) |
| { |
| int vlvf_index; |
| u32 vt, bits; |
| |
| /* If VT Mode is set |
| * Either vlan_on |
| * make sure the vlan is in VLVF |
| * set the vind bit in the matching VLVFB |
| * Or !vlan_on |
| * clear the pool bit and possibly the vind |
| */ |
| vt = rd32(wx, WX_CFG_PORT_CTL); |
| if (!(vt & WX_CFG_PORT_CTL_NUM_VT_MASK)) |
| return 0; |
| |
| vlvf_index = wx_find_vlvf_slot(wx, vlan); |
| if (vlvf_index < 0) |
| return vlvf_index; |
| |
| wr32(wx, WX_PSR_VLAN_SWC_IDX, vlvf_index); |
| if (vlan_on) { |
| /* set the pool bit */ |
| if (vind < 32) { |
| bits = rd32(wx, WX_PSR_VLAN_SWC_VM_L); |
| bits |= (1 << vind); |
| wr32(wx, WX_PSR_VLAN_SWC_VM_L, bits); |
| } else { |
| bits = rd32(wx, WX_PSR_VLAN_SWC_VM_H); |
| bits |= (1 << (vind - 32)); |
| wr32(wx, WX_PSR_VLAN_SWC_VM_H, bits); |
| } |
| } else { |
| /* clear the pool bit */ |
| if (vind < 32) { |
| bits = rd32(wx, WX_PSR_VLAN_SWC_VM_L); |
| bits &= ~(1 << vind); |
| wr32(wx, WX_PSR_VLAN_SWC_VM_L, bits); |
| bits |= rd32(wx, WX_PSR_VLAN_SWC_VM_H); |
| } else { |
| bits = rd32(wx, WX_PSR_VLAN_SWC_VM_H); |
| bits &= ~(1 << (vind - 32)); |
| wr32(wx, WX_PSR_VLAN_SWC_VM_H, bits); |
| bits |= rd32(wx, WX_PSR_VLAN_SWC_VM_L); |
| } |
| } |
| |
| if (bits) { |
| wr32(wx, WX_PSR_VLAN_SWC, (WX_PSR_VLAN_SWC_VIEN | vlan)); |
| if (!vlan_on && vfta_changed) |
| *vfta_changed = false; |
| } else { |
| wr32(wx, WX_PSR_VLAN_SWC, 0); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * wx_set_vfta - Set VLAN filter table |
| * @wx: pointer to hardware structure |
| * @vlan: VLAN id to write to VLAN filter |
| * @vind: VMDq output index that maps queue to VLAN id in VFVFB |
| * @vlan_on: boolean flag to turn on/off VLAN in VFVF |
| * |
| * Turn on/off specified VLAN in the VLAN filter table. |
| **/ |
| static int wx_set_vfta(struct wx *wx, u32 vlan, u32 vind, bool vlan_on) |
| { |
| u32 bitindex, vfta, targetbit; |
| bool vfta_changed = false; |
| int regindex, ret; |
| |
| /* this is a 2 part operation - first the VFTA, then the |
| * VLVF and VLVFB if VT Mode is set |
| * We don't write the VFTA until we know the VLVF part succeeded. |
| */ |
| |
| /* Part 1 |
| * The VFTA is a bitstring made up of 128 32-bit registers |
| * that enable the particular VLAN id, much like the MTA: |
| * bits[11-5]: which register |
| * bits[4-0]: which bit in the register |
| */ |
| regindex = (vlan >> 5) & 0x7F; |
| bitindex = vlan & 0x1F; |
| targetbit = (1 << bitindex); |
| /* errata 5 */ |
| vfta = wx->mac.vft_shadow[regindex]; |
| if (vlan_on) { |
| if (!(vfta & targetbit)) { |
| vfta |= targetbit; |
| vfta_changed = true; |
| } |
| } else { |
| if ((vfta & targetbit)) { |
| vfta &= ~targetbit; |
| vfta_changed = true; |
| } |
| } |
| /* Part 2 |
| * Call wx_set_vlvf to set VLVFB and VLVF |
| */ |
| ret = wx_set_vlvf(wx, vlan, vind, vlan_on, &vfta_changed); |
| if (ret != 0) |
| return ret; |
| |
| if (vfta_changed) |
| wr32(wx, WX_PSR_VLAN_TBL(regindex), vfta); |
| wx->mac.vft_shadow[regindex] = vfta; |
| |
| return 0; |
| } |
| |
| /** |
| * wx_clear_vfta - Clear VLAN filter table |
| * @wx: pointer to hardware structure |
| * |
| * Clears the VLAN filer table, and the VMDq index associated with the filter |
| **/ |
| static void wx_clear_vfta(struct wx *wx) |
| { |
| u32 offset; |
| |
| for (offset = 0; offset < wx->mac.vft_size; offset++) { |
| wr32(wx, WX_PSR_VLAN_TBL(offset), 0); |
| wx->mac.vft_shadow[offset] = 0; |
| } |
| |
| for (offset = 0; offset < WX_PSR_VLAN_SWC_ENTRIES; offset++) { |
| wr32(wx, WX_PSR_VLAN_SWC_IDX, offset); |
| wr32(wx, WX_PSR_VLAN_SWC, 0); |
| wr32(wx, WX_PSR_VLAN_SWC_VM_L, 0); |
| wr32(wx, WX_PSR_VLAN_SWC_VM_H, 0); |
| } |
| } |
| |
| int wx_vlan_rx_add_vid(struct net_device *netdev, |
| __be16 proto, u16 vid) |
| { |
| struct wx *wx = netdev_priv(netdev); |
| |
| /* add VID to filter table */ |
| wx_set_vfta(wx, vid, VMDQ_P(0), true); |
| set_bit(vid, wx->active_vlans); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(wx_vlan_rx_add_vid); |
| |
| int wx_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) |
| { |
| struct wx *wx = netdev_priv(netdev); |
| |
| /* remove VID from filter table */ |
| if (vid) |
| wx_set_vfta(wx, vid, VMDQ_P(0), false); |
| clear_bit(vid, wx->active_vlans); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(wx_vlan_rx_kill_vid); |
| |
| static void wx_enable_rx_drop(struct wx *wx, struct wx_ring *ring) |
| { |
| u16 reg_idx = ring->reg_idx; |
| u32 srrctl; |
| |
| srrctl = rd32(wx, WX_PX_RR_CFG(reg_idx)); |
| srrctl |= WX_PX_RR_CFG_DROP_EN; |
| |
| wr32(wx, WX_PX_RR_CFG(reg_idx), srrctl); |
| } |
| |
| static void wx_disable_rx_drop(struct wx *wx, struct wx_ring *ring) |
| { |
| u16 reg_idx = ring->reg_idx; |
| u32 srrctl; |
| |
| srrctl = rd32(wx, WX_PX_RR_CFG(reg_idx)); |
| srrctl &= ~WX_PX_RR_CFG_DROP_EN; |
| |
| wr32(wx, WX_PX_RR_CFG(reg_idx), srrctl); |
| } |
| |
| int wx_fc_enable(struct wx *wx, bool tx_pause, bool rx_pause) |
| { |
| u16 pause_time = WX_DEFAULT_FCPAUSE; |
| u32 mflcn_reg, fccfg_reg, reg; |
| u32 fcrtl, fcrth; |
| int i; |
| |
| /* Low water mark of zero causes XOFF floods */ |
| if (tx_pause && wx->fc.high_water) { |
| if (!wx->fc.low_water || wx->fc.low_water >= wx->fc.high_water) { |
| wx_err(wx, "Invalid water mark configuration\n"); |
| return -EINVAL; |
| } |
| } |
| |
| /* Disable any previous flow control settings */ |
| mflcn_reg = rd32(wx, WX_MAC_RX_FLOW_CTRL); |
| mflcn_reg &= ~WX_MAC_RX_FLOW_CTRL_RFE; |
| |
| fccfg_reg = rd32(wx, WX_RDB_RFCC); |
| fccfg_reg &= ~WX_RDB_RFCC_RFCE_802_3X; |
| |
| if (rx_pause) |
| mflcn_reg |= WX_MAC_RX_FLOW_CTRL_RFE; |
| if (tx_pause) |
| fccfg_reg |= WX_RDB_RFCC_RFCE_802_3X; |
| |
| /* Set 802.3x based flow control settings. */ |
| wr32(wx, WX_MAC_RX_FLOW_CTRL, mflcn_reg); |
| wr32(wx, WX_RDB_RFCC, fccfg_reg); |
| |
| /* Set up and enable Rx high/low water mark thresholds, enable XON. */ |
| if (tx_pause && wx->fc.high_water) { |
| fcrtl = (wx->fc.low_water << 10) | WX_RDB_RFCL_XONE; |
| wr32(wx, WX_RDB_RFCL, fcrtl); |
| fcrth = (wx->fc.high_water << 10) | WX_RDB_RFCH_XOFFE; |
| } else { |
| wr32(wx, WX_RDB_RFCL, 0); |
| /* In order to prevent Tx hangs when the internal Tx |
| * switch is enabled we must set the high water mark |
| * to the Rx packet buffer size - 24KB. This allows |
| * the Tx switch to function even under heavy Rx |
| * workloads. |
| */ |
| fcrth = rd32(wx, WX_RDB_PB_SZ(0)) - 24576; |
| } |
| |
| wr32(wx, WX_RDB_RFCH, fcrth); |
| |
| /* Configure pause time */ |
| reg = pause_time * 0x00010001; |
| wr32(wx, WX_RDB_RFCV, reg); |
| |
| /* Configure flow control refresh threshold value */ |
| wr32(wx, WX_RDB_RFCRT, pause_time / 2); |
| |
| /* We should set the drop enable bit if: |
| * Number of Rx queues > 1 and flow control is disabled |
| * |
| * This allows us to avoid head of line blocking for security |
| * and performance reasons. |
| */ |
| if (wx->num_rx_queues > 1 && !tx_pause) { |
| for (i = 0; i < wx->num_rx_queues; i++) |
| wx_enable_rx_drop(wx, wx->rx_ring[i]); |
| } else { |
| for (i = 0; i < wx->num_rx_queues; i++) |
| wx_disable_rx_drop(wx, wx->rx_ring[i]); |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(wx_fc_enable); |
| |
| /** |
| * wx_update_stats - Update the board statistics counters. |
| * @wx: board private structure |
| **/ |
| void wx_update_stats(struct wx *wx) |
| { |
| struct wx_hw_stats *hwstats = &wx->stats; |
| |
| u64 non_eop_descs = 0, alloc_rx_buff_failed = 0; |
| u64 hw_csum_rx_good = 0, hw_csum_rx_error = 0; |
| u64 restart_queue = 0, tx_busy = 0; |
| u32 i; |
| |
| /* gather some stats to the wx struct that are per queue */ |
| for (i = 0; i < wx->num_rx_queues; i++) { |
| struct wx_ring *rx_ring = wx->rx_ring[i]; |
| |
| non_eop_descs += rx_ring->rx_stats.non_eop_descs; |
| alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed; |
| hw_csum_rx_good += rx_ring->rx_stats.csum_good_cnt; |
| hw_csum_rx_error += rx_ring->rx_stats.csum_err; |
| } |
| wx->non_eop_descs = non_eop_descs; |
| wx->alloc_rx_buff_failed = alloc_rx_buff_failed; |
| wx->hw_csum_rx_error = hw_csum_rx_error; |
| wx->hw_csum_rx_good = hw_csum_rx_good; |
| |
| for (i = 0; i < wx->num_tx_queues; i++) { |
| struct wx_ring *tx_ring = wx->tx_ring[i]; |
| |
| restart_queue += tx_ring->tx_stats.restart_queue; |
| tx_busy += tx_ring->tx_stats.tx_busy; |
| } |
| wx->restart_queue = restart_queue; |
| wx->tx_busy = tx_busy; |
| |
| hwstats->gprc += rd32(wx, WX_RDM_PKT_CNT); |
| hwstats->gptc += rd32(wx, WX_TDM_PKT_CNT); |
| hwstats->gorc += rd64(wx, WX_RDM_BYTE_CNT_LSB); |
| hwstats->gotc += rd64(wx, WX_TDM_BYTE_CNT_LSB); |
| hwstats->tpr += rd64(wx, WX_RX_FRAME_CNT_GOOD_BAD_L); |
| hwstats->tpt += rd64(wx, WX_TX_FRAME_CNT_GOOD_BAD_L); |
| hwstats->crcerrs += rd64(wx, WX_RX_CRC_ERROR_FRAMES_L); |
| hwstats->rlec += rd64(wx, WX_RX_LEN_ERROR_FRAMES_L); |
| hwstats->bprc += rd64(wx, WX_RX_BC_FRAMES_GOOD_L); |
| hwstats->bptc += rd64(wx, WX_TX_BC_FRAMES_GOOD_L); |
| hwstats->mprc += rd64(wx, WX_RX_MC_FRAMES_GOOD_L); |
| hwstats->mptc += rd64(wx, WX_TX_MC_FRAMES_GOOD_L); |
| hwstats->roc += rd32(wx, WX_RX_OVERSIZE_FRAMES_GOOD); |
| hwstats->ruc += rd32(wx, WX_RX_UNDERSIZE_FRAMES_GOOD); |
| hwstats->lxonoffrxc += rd32(wx, WX_MAC_LXONOFFRXC); |
| hwstats->lxontxc += rd32(wx, WX_RDB_LXONTXC); |
| hwstats->lxofftxc += rd32(wx, WX_RDB_LXOFFTXC); |
| hwstats->o2bgptc += rd32(wx, WX_TDM_OS2BMC_CNT); |
| hwstats->b2ospc += rd32(wx, WX_MNG_BMC2OS_CNT); |
| hwstats->o2bspc += rd32(wx, WX_MNG_OS2BMC_CNT); |
| hwstats->b2ogprc += rd32(wx, WX_RDM_BMC2OS_CNT); |
| hwstats->rdmdrop += rd32(wx, WX_RDM_DRP_PKT); |
| |
| for (i = 0; i < wx->mac.max_rx_queues; i++) |
| hwstats->qmprc += rd32(wx, WX_PX_MPRC(i)); |
| } |
| EXPORT_SYMBOL(wx_update_stats); |
| |
| /** |
| * wx_clear_hw_cntrs - Generic clear hardware counters |
| * @wx: board private structure |
| * |
| * Clears all hardware statistics counters by reading them from the hardware |
| * Statistics counters are clear on read. |
| **/ |
| void wx_clear_hw_cntrs(struct wx *wx) |
| { |
| u16 i = 0; |
| |
| for (i = 0; i < wx->mac.max_rx_queues; i++) |
| wr32(wx, WX_PX_MPRC(i), 0); |
| |
| rd32(wx, WX_RDM_PKT_CNT); |
| rd32(wx, WX_TDM_PKT_CNT); |
| rd64(wx, WX_RDM_BYTE_CNT_LSB); |
| rd32(wx, WX_TDM_BYTE_CNT_LSB); |
| rd32(wx, WX_RDM_DRP_PKT); |
| rd32(wx, WX_RX_UNDERSIZE_FRAMES_GOOD); |
| rd32(wx, WX_RX_OVERSIZE_FRAMES_GOOD); |
| rd64(wx, WX_RX_FRAME_CNT_GOOD_BAD_L); |
| rd64(wx, WX_TX_FRAME_CNT_GOOD_BAD_L); |
| rd64(wx, WX_RX_MC_FRAMES_GOOD_L); |
| rd64(wx, WX_TX_MC_FRAMES_GOOD_L); |
| rd64(wx, WX_RX_BC_FRAMES_GOOD_L); |
| rd64(wx, WX_TX_BC_FRAMES_GOOD_L); |
| rd64(wx, WX_RX_CRC_ERROR_FRAMES_L); |
| rd64(wx, WX_RX_LEN_ERROR_FRAMES_L); |
| rd32(wx, WX_RDB_LXONTXC); |
| rd32(wx, WX_RDB_LXOFFTXC); |
| rd32(wx, WX_MAC_LXONOFFRXC); |
| } |
| EXPORT_SYMBOL(wx_clear_hw_cntrs); |
| |
| /** |
| * wx_start_hw - Prepare hardware for Tx/Rx |
| * @wx: pointer to hardware structure |
| * |
| * Starts the hardware using the generic start_hw function |
| * and the generation start_hw function. |
| * Then performs revision-specific operations, if any. |
| **/ |
| void wx_start_hw(struct wx *wx) |
| { |
| int i; |
| |
| /* Clear the VLAN filter table */ |
| wx_clear_vfta(wx); |
| WX_WRITE_FLUSH(wx); |
| /* Clear the rate limiters */ |
| for (i = 0; i < wx->mac.max_tx_queues; i++) { |
| wr32(wx, WX_TDM_RP_IDX, i); |
| wr32(wx, WX_TDM_RP_RATE, 0); |
| } |
| } |
| EXPORT_SYMBOL(wx_start_hw); |
| |
| MODULE_LICENSE("GPL"); |