| // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause |
| /* Copyright(c) 2018-2019 Realtek Corporation |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/pci.h> |
| #include "main.h" |
| #include "pci.h" |
| #include "reg.h" |
| #include "tx.h" |
| #include "rx.h" |
| #include "fw.h" |
| #include "ps.h" |
| #include "debug.h" |
| |
| static bool rtw_disable_msi; |
| static bool rtw_pci_disable_aspm; |
| module_param_named(disable_msi, rtw_disable_msi, bool, 0644); |
| module_param_named(disable_aspm, rtw_pci_disable_aspm, bool, 0644); |
| MODULE_PARM_DESC(disable_msi, "Set Y to disable MSI interrupt support"); |
| MODULE_PARM_DESC(disable_aspm, "Set Y to disable PCI ASPM support"); |
| |
| static u32 rtw_pci_tx_queue_idx_addr[] = { |
| [RTW_TX_QUEUE_BK] = RTK_PCI_TXBD_IDX_BKQ, |
| [RTW_TX_QUEUE_BE] = RTK_PCI_TXBD_IDX_BEQ, |
| [RTW_TX_QUEUE_VI] = RTK_PCI_TXBD_IDX_VIQ, |
| [RTW_TX_QUEUE_VO] = RTK_PCI_TXBD_IDX_VOQ, |
| [RTW_TX_QUEUE_MGMT] = RTK_PCI_TXBD_IDX_MGMTQ, |
| [RTW_TX_QUEUE_HI0] = RTK_PCI_TXBD_IDX_HI0Q, |
| [RTW_TX_QUEUE_H2C] = RTK_PCI_TXBD_IDX_H2CQ, |
| }; |
| |
| static u8 rtw_pci_get_tx_qsel(struct sk_buff *skb, |
| enum rtw_tx_queue_type queue) |
| { |
| switch (queue) { |
| case RTW_TX_QUEUE_BCN: |
| return TX_DESC_QSEL_BEACON; |
| case RTW_TX_QUEUE_H2C: |
| return TX_DESC_QSEL_H2C; |
| case RTW_TX_QUEUE_MGMT: |
| return TX_DESC_QSEL_MGMT; |
| case RTW_TX_QUEUE_HI0: |
| return TX_DESC_QSEL_HIGH; |
| default: |
| return skb->priority; |
| } |
| }; |
| |
| static u8 rtw_pci_read8(struct rtw_dev *rtwdev, u32 addr) |
| { |
| struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; |
| |
| return readb(rtwpci->mmap + addr); |
| } |
| |
| static u16 rtw_pci_read16(struct rtw_dev *rtwdev, u32 addr) |
| { |
| struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; |
| |
| return readw(rtwpci->mmap + addr); |
| } |
| |
| static u32 rtw_pci_read32(struct rtw_dev *rtwdev, u32 addr) |
| { |
| struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; |
| |
| return readl(rtwpci->mmap + addr); |
| } |
| |
| static void rtw_pci_write8(struct rtw_dev *rtwdev, u32 addr, u8 val) |
| { |
| struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; |
| |
| writeb(val, rtwpci->mmap + addr); |
| } |
| |
| static void rtw_pci_write16(struct rtw_dev *rtwdev, u32 addr, u16 val) |
| { |
| struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; |
| |
| writew(val, rtwpci->mmap + addr); |
| } |
| |
| static void rtw_pci_write32(struct rtw_dev *rtwdev, u32 addr, u32 val) |
| { |
| struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; |
| |
| writel(val, rtwpci->mmap + addr); |
| } |
| |
| static void rtw_pci_free_tx_ring_skbs(struct rtw_dev *rtwdev, |
| struct rtw_pci_tx_ring *tx_ring) |
| { |
| struct pci_dev *pdev = to_pci_dev(rtwdev->dev); |
| struct rtw_pci_tx_data *tx_data; |
| struct sk_buff *skb, *tmp; |
| dma_addr_t dma; |
| |
| /* free every skb remained in tx list */ |
| skb_queue_walk_safe(&tx_ring->queue, skb, tmp) { |
| __skb_unlink(skb, &tx_ring->queue); |
| tx_data = rtw_pci_get_tx_data(skb); |
| dma = tx_data->dma; |
| |
| dma_unmap_single(&pdev->dev, dma, skb->len, DMA_TO_DEVICE); |
| dev_kfree_skb_any(skb); |
| } |
| } |
| |
| static void rtw_pci_free_tx_ring(struct rtw_dev *rtwdev, |
| struct rtw_pci_tx_ring *tx_ring) |
| { |
| struct pci_dev *pdev = to_pci_dev(rtwdev->dev); |
| u8 *head = tx_ring->r.head; |
| u32 len = tx_ring->r.len; |
| int ring_sz = len * tx_ring->r.desc_size; |
| |
| rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring); |
| |
| /* free the ring itself */ |
| dma_free_coherent(&pdev->dev, ring_sz, head, tx_ring->r.dma); |
| tx_ring->r.head = NULL; |
| } |
| |
| static void rtw_pci_free_rx_ring_skbs(struct rtw_dev *rtwdev, |
| struct rtw_pci_rx_ring *rx_ring) |
| { |
| struct pci_dev *pdev = to_pci_dev(rtwdev->dev); |
| struct sk_buff *skb; |
| int buf_sz = RTK_PCI_RX_BUF_SIZE; |
| dma_addr_t dma; |
| int i; |
| |
| for (i = 0; i < rx_ring->r.len; i++) { |
| skb = rx_ring->buf[i]; |
| if (!skb) |
| continue; |
| |
| dma = *((dma_addr_t *)skb->cb); |
| dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE); |
| dev_kfree_skb(skb); |
| rx_ring->buf[i] = NULL; |
| } |
| } |
| |
| static void rtw_pci_free_rx_ring(struct rtw_dev *rtwdev, |
| struct rtw_pci_rx_ring *rx_ring) |
| { |
| struct pci_dev *pdev = to_pci_dev(rtwdev->dev); |
| u8 *head = rx_ring->r.head; |
| int ring_sz = rx_ring->r.desc_size * rx_ring->r.len; |
| |
| rtw_pci_free_rx_ring_skbs(rtwdev, rx_ring); |
| |
| dma_free_coherent(&pdev->dev, ring_sz, head, rx_ring->r.dma); |
| } |
| |
| static void rtw_pci_free_trx_ring(struct rtw_dev *rtwdev) |
| { |
| struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; |
| struct rtw_pci_tx_ring *tx_ring; |
| struct rtw_pci_rx_ring *rx_ring; |
| int i; |
| |
| for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) { |
| tx_ring = &rtwpci->tx_rings[i]; |
| rtw_pci_free_tx_ring(rtwdev, tx_ring); |
| } |
| |
| for (i = 0; i < RTK_MAX_RX_QUEUE_NUM; i++) { |
| rx_ring = &rtwpci->rx_rings[i]; |
| rtw_pci_free_rx_ring(rtwdev, rx_ring); |
| } |
| } |
| |
| static int rtw_pci_init_tx_ring(struct rtw_dev *rtwdev, |
| struct rtw_pci_tx_ring *tx_ring, |
| u8 desc_size, u32 len) |
| { |
| struct pci_dev *pdev = to_pci_dev(rtwdev->dev); |
| int ring_sz = desc_size * len; |
| dma_addr_t dma; |
| u8 *head; |
| |
| if (len > TRX_BD_IDX_MASK) { |
| rtw_err(rtwdev, "len %d exceeds maximum TX entries\n", len); |
| return -EINVAL; |
| } |
| |
| head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL); |
| if (!head) { |
| rtw_err(rtwdev, "failed to allocate tx ring\n"); |
| return -ENOMEM; |
| } |
| |
| skb_queue_head_init(&tx_ring->queue); |
| tx_ring->r.head = head; |
| tx_ring->r.dma = dma; |
| tx_ring->r.len = len; |
| tx_ring->r.desc_size = desc_size; |
| tx_ring->r.wp = 0; |
| tx_ring->r.rp = 0; |
| |
| return 0; |
| } |
| |
| static int rtw_pci_reset_rx_desc(struct rtw_dev *rtwdev, struct sk_buff *skb, |
| struct rtw_pci_rx_ring *rx_ring, |
| u32 idx, u32 desc_sz) |
| { |
| struct pci_dev *pdev = to_pci_dev(rtwdev->dev); |
| struct rtw_pci_rx_buffer_desc *buf_desc; |
| int buf_sz = RTK_PCI_RX_BUF_SIZE; |
| dma_addr_t dma; |
| |
| if (!skb) |
| return -EINVAL; |
| |
| dma = dma_map_single(&pdev->dev, skb->data, buf_sz, DMA_FROM_DEVICE); |
| if (dma_mapping_error(&pdev->dev, dma)) |
| return -EBUSY; |
| |
| *((dma_addr_t *)skb->cb) = dma; |
| buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head + |
| idx * desc_sz); |
| memset(buf_desc, 0, sizeof(*buf_desc)); |
| buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE); |
| buf_desc->dma = cpu_to_le32(dma); |
| |
| return 0; |
| } |
| |
| static void rtw_pci_sync_rx_desc_device(struct rtw_dev *rtwdev, dma_addr_t dma, |
| struct rtw_pci_rx_ring *rx_ring, |
| u32 idx, u32 desc_sz) |
| { |
| struct device *dev = rtwdev->dev; |
| struct rtw_pci_rx_buffer_desc *buf_desc; |
| int buf_sz = RTK_PCI_RX_BUF_SIZE; |
| |
| dma_sync_single_for_device(dev, dma, buf_sz, DMA_FROM_DEVICE); |
| |
| buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head + |
| idx * desc_sz); |
| memset(buf_desc, 0, sizeof(*buf_desc)); |
| buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE); |
| buf_desc->dma = cpu_to_le32(dma); |
| } |
| |
| static int rtw_pci_init_rx_ring(struct rtw_dev *rtwdev, |
| struct rtw_pci_rx_ring *rx_ring, |
| u8 desc_size, u32 len) |
| { |
| struct pci_dev *pdev = to_pci_dev(rtwdev->dev); |
| struct sk_buff *skb = NULL; |
| dma_addr_t dma; |
| u8 *head; |
| int ring_sz = desc_size * len; |
| int buf_sz = RTK_PCI_RX_BUF_SIZE; |
| int i, allocated; |
| int ret = 0; |
| |
| head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL); |
| if (!head) { |
| rtw_err(rtwdev, "failed to allocate rx ring\n"); |
| return -ENOMEM; |
| } |
| rx_ring->r.head = head; |
| |
| for (i = 0; i < len; i++) { |
| skb = dev_alloc_skb(buf_sz); |
| if (!skb) { |
| allocated = i; |
| ret = -ENOMEM; |
| goto err_out; |
| } |
| |
| memset(skb->data, 0, buf_sz); |
| rx_ring->buf[i] = skb; |
| ret = rtw_pci_reset_rx_desc(rtwdev, skb, rx_ring, i, desc_size); |
| if (ret) { |
| allocated = i; |
| dev_kfree_skb_any(skb); |
| goto err_out; |
| } |
| } |
| |
| rx_ring->r.dma = dma; |
| rx_ring->r.len = len; |
| rx_ring->r.desc_size = desc_size; |
| rx_ring->r.wp = 0; |
| rx_ring->r.rp = 0; |
| |
| return 0; |
| |
| err_out: |
| for (i = 0; i < allocated; i++) { |
| skb = rx_ring->buf[i]; |
| if (!skb) |
| continue; |
| dma = *((dma_addr_t *)skb->cb); |
| dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE); |
| dev_kfree_skb_any(skb); |
| rx_ring->buf[i] = NULL; |
| } |
| dma_free_coherent(&pdev->dev, ring_sz, head, dma); |
| |
| rtw_err(rtwdev, "failed to init rx buffer\n"); |
| |
| return ret; |
| } |
| |
| static int rtw_pci_init_trx_ring(struct rtw_dev *rtwdev) |
| { |
| struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; |
| struct rtw_pci_tx_ring *tx_ring; |
| struct rtw_pci_rx_ring *rx_ring; |
| const struct rtw_chip_info *chip = rtwdev->chip; |
| int i = 0, j = 0, tx_alloced = 0, rx_alloced = 0; |
| int tx_desc_size, rx_desc_size; |
| u32 len; |
| int ret; |
| |
| tx_desc_size = chip->tx_buf_desc_sz; |
| |
| for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) { |
| tx_ring = &rtwpci->tx_rings[i]; |
| len = max_num_of_tx_queue(i); |
| ret = rtw_pci_init_tx_ring(rtwdev, tx_ring, tx_desc_size, len); |
| if (ret) |
| goto out; |
| } |
| |
| rx_desc_size = chip->rx_buf_desc_sz; |
| |
| for (j = 0; j < RTK_MAX_RX_QUEUE_NUM; j++) { |
| rx_ring = &rtwpci->rx_rings[j]; |
| ret = rtw_pci_init_rx_ring(rtwdev, rx_ring, rx_desc_size, |
| RTK_MAX_RX_DESC_NUM); |
| if (ret) |
| goto out; |
| } |
| |
| return 0; |
| |
| out: |
| tx_alloced = i; |
| for (i = 0; i < tx_alloced; i++) { |
| tx_ring = &rtwpci->tx_rings[i]; |
| rtw_pci_free_tx_ring(rtwdev, tx_ring); |
| } |
| |
| rx_alloced = j; |
| for (j = 0; j < rx_alloced; j++) { |
| rx_ring = &rtwpci->rx_rings[j]; |
| rtw_pci_free_rx_ring(rtwdev, rx_ring); |
| } |
| |
| return ret; |
| } |
| |
| static void rtw_pci_deinit(struct rtw_dev *rtwdev) |
| { |
| rtw_pci_free_trx_ring(rtwdev); |
| } |
| |
| static int rtw_pci_init(struct rtw_dev *rtwdev) |
| { |
| struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; |
| int ret = 0; |
| |
| rtwpci->irq_mask[0] = IMR_HIGHDOK | |
| IMR_MGNTDOK | |
| IMR_BKDOK | |
| IMR_BEDOK | |
| IMR_VIDOK | |
| IMR_VODOK | |
| IMR_ROK | |
| IMR_BCNDMAINT_E | |
| IMR_C2HCMD | |
| 0; |
| rtwpci->irq_mask[1] = IMR_TXFOVW | |
| 0; |
| rtwpci->irq_mask[3] = IMR_H2CDOK | |
| 0; |
| spin_lock_init(&rtwpci->irq_lock); |
| spin_lock_init(&rtwpci->hwirq_lock); |
| ret = rtw_pci_init_trx_ring(rtwdev); |
| |
| return ret; |
| } |
| |
| static void rtw_pci_reset_buf_desc(struct rtw_dev *rtwdev) |
| { |
| struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; |
| u32 len; |
| u8 tmp; |
| dma_addr_t dma; |
| |
| tmp = rtw_read8(rtwdev, RTK_PCI_CTRL + 3); |
| rtw_write8(rtwdev, RTK_PCI_CTRL + 3, tmp | 0xf7); |
| |
| dma = rtwpci->tx_rings[RTW_TX_QUEUE_BCN].r.dma; |
| rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BCNQ, dma); |
| |
| if (!rtw_chip_wcpu_11n(rtwdev)) { |
| len = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.len; |
| dma = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.dma; |
| rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.rp = 0; |
| rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.wp = 0; |
| rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_H2CQ, len & TRX_BD_IDX_MASK); |
| rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_H2CQ, dma); |
| } |
| |
| len = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.len; |
| dma = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.dma; |
| rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.rp = 0; |
| rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.wp = 0; |
| rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BKQ, len & TRX_BD_IDX_MASK); |
| rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BKQ, dma); |
| |
| len = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.len; |
| dma = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.dma; |
| rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.rp = 0; |
| rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.wp = 0; |
| rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BEQ, len & TRX_BD_IDX_MASK); |
| rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BEQ, dma); |
| |
| len = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.len; |
| dma = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.dma; |
| rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.rp = 0; |
| rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.wp = 0; |
| rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VOQ, len & TRX_BD_IDX_MASK); |
| rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VOQ, dma); |
| |
| len = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.len; |
| dma = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.dma; |
| rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.rp = 0; |
| rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.wp = 0; |
| rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VIQ, len & TRX_BD_IDX_MASK); |
| rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VIQ, dma); |
| |
| len = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.len; |
| dma = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.dma; |
| rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.rp = 0; |
| rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.wp = 0; |
| rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_MGMTQ, len & TRX_BD_IDX_MASK); |
| rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_MGMTQ, dma); |
| |
| len = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.len; |
| dma = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.dma; |
| rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.rp = 0; |
| rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.wp = 0; |
| rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_HI0Q, len & TRX_BD_IDX_MASK); |
| rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_HI0Q, dma); |
| |
| len = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.len; |
| dma = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.dma; |
| rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.rp = 0; |
| rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.wp = 0; |
| rtw_write16(rtwdev, RTK_PCI_RXBD_NUM_MPDUQ, len & TRX_BD_IDX_MASK); |
| rtw_write32(rtwdev, RTK_PCI_RXBD_DESA_MPDUQ, dma); |
| |
| /* reset read/write point */ |
| rtw_write32(rtwdev, RTK_PCI_TXBD_RWPTR_CLR, 0xffffffff); |
| |
| /* reset H2C Queue index in a single write */ |
| if (rtw_chip_wcpu_11ac(rtwdev)) |
| rtw_write32_set(rtwdev, RTK_PCI_TXBD_H2CQ_CSR, |
| BIT_CLR_H2CQ_HOST_IDX | BIT_CLR_H2CQ_HW_IDX); |
| } |
| |
| static void rtw_pci_reset_trx_ring(struct rtw_dev *rtwdev) |
| { |
| rtw_pci_reset_buf_desc(rtwdev); |
| } |
| |
| static void rtw_pci_enable_interrupt(struct rtw_dev *rtwdev, |
| struct rtw_pci *rtwpci, bool exclude_rx) |
| { |
| unsigned long flags; |
| u32 imr0_unmask = exclude_rx ? IMR_ROK : 0; |
| |
| spin_lock_irqsave(&rtwpci->hwirq_lock, flags); |
| |
| rtw_write32(rtwdev, RTK_PCI_HIMR0, rtwpci->irq_mask[0] & ~imr0_unmask); |
| rtw_write32(rtwdev, RTK_PCI_HIMR1, rtwpci->irq_mask[1]); |
| if (rtw_chip_wcpu_11ac(rtwdev)) |
| rtw_write32(rtwdev, RTK_PCI_HIMR3, rtwpci->irq_mask[3]); |
| |
| rtwpci->irq_enabled = true; |
| |
| spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags); |
| } |
| |
| static void rtw_pci_disable_interrupt(struct rtw_dev *rtwdev, |
| struct rtw_pci *rtwpci) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&rtwpci->hwirq_lock, flags); |
| |
| if (!rtwpci->irq_enabled) |
| goto out; |
| |
| rtw_write32(rtwdev, RTK_PCI_HIMR0, 0); |
| rtw_write32(rtwdev, RTK_PCI_HIMR1, 0); |
| if (rtw_chip_wcpu_11ac(rtwdev)) |
| rtw_write32(rtwdev, RTK_PCI_HIMR3, 0); |
| |
| rtwpci->irq_enabled = false; |
| |
| out: |
| spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags); |
| } |
| |
| static void rtw_pci_dma_reset(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci) |
| { |
| /* reset dma and rx tag */ |
| rtw_write32_set(rtwdev, RTK_PCI_CTRL, |
| BIT_RST_TRXDMA_INTF | BIT_RX_TAG_EN); |
| rtwpci->rx_tag = 0; |
| } |
| |
| static int rtw_pci_setup(struct rtw_dev *rtwdev) |
| { |
| struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; |
| |
| rtw_pci_reset_trx_ring(rtwdev); |
| rtw_pci_dma_reset(rtwdev, rtwpci); |
| |
| return 0; |
| } |
| |
| static void rtw_pci_dma_release(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci) |
| { |
| struct rtw_pci_tx_ring *tx_ring; |
| enum rtw_tx_queue_type queue; |
| |
| rtw_pci_reset_trx_ring(rtwdev); |
| for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) { |
| tx_ring = &rtwpci->tx_rings[queue]; |
| rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring); |
| } |
| } |
| |
| static void rtw_pci_napi_start(struct rtw_dev *rtwdev) |
| { |
| struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; |
| |
| if (test_and_set_bit(RTW_PCI_FLAG_NAPI_RUNNING, rtwpci->flags)) |
| return; |
| |
| napi_enable(&rtwpci->napi); |
| } |
| |
| static void rtw_pci_napi_stop(struct rtw_dev *rtwdev) |
| { |
| struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; |
| |
| if (!test_and_clear_bit(RTW_PCI_FLAG_NAPI_RUNNING, rtwpci->flags)) |
| return; |
| |
| napi_synchronize(&rtwpci->napi); |
| napi_disable(&rtwpci->napi); |
| } |
| |
| static int rtw_pci_start(struct rtw_dev *rtwdev) |
| { |
| struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; |
| |
| rtw_pci_napi_start(rtwdev); |
| |
| spin_lock_bh(&rtwpci->irq_lock); |
| rtwpci->running = true; |
| rtw_pci_enable_interrupt(rtwdev, rtwpci, false); |
| spin_unlock_bh(&rtwpci->irq_lock); |
| |
| return 0; |
| } |
| |
| static void rtw_pci_stop(struct rtw_dev *rtwdev) |
| { |
| struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; |
| struct pci_dev *pdev = rtwpci->pdev; |
| |
| spin_lock_bh(&rtwpci->irq_lock); |
| rtwpci->running = false; |
| rtw_pci_disable_interrupt(rtwdev, rtwpci); |
| spin_unlock_bh(&rtwpci->irq_lock); |
| |
| synchronize_irq(pdev->irq); |
| rtw_pci_napi_stop(rtwdev); |
| |
| spin_lock_bh(&rtwpci->irq_lock); |
| rtw_pci_dma_release(rtwdev, rtwpci); |
| spin_unlock_bh(&rtwpci->irq_lock); |
| } |
| |
| static void rtw_pci_deep_ps_enter(struct rtw_dev *rtwdev) |
| { |
| struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; |
| struct rtw_pci_tx_ring *tx_ring; |
| enum rtw_tx_queue_type queue; |
| bool tx_empty = true; |
| |
| if (rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_TX_WAKE)) |
| goto enter_deep_ps; |
| |
| lockdep_assert_held(&rtwpci->irq_lock); |
| |
| /* Deep PS state is not allowed to TX-DMA */ |
| for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) { |
| /* BCN queue is rsvd page, does not have DMA interrupt |
| * H2C queue is managed by firmware |
| */ |
| if (queue == RTW_TX_QUEUE_BCN || |
| queue == RTW_TX_QUEUE_H2C) |
| continue; |
| |
| tx_ring = &rtwpci->tx_rings[queue]; |
| |
| /* check if there is any skb DMAing */ |
| if (skb_queue_len(&tx_ring->queue)) { |
| tx_empty = false; |
| break; |
| } |
| } |
| |
| if (!tx_empty) { |
| rtw_dbg(rtwdev, RTW_DBG_PS, |
| "TX path not empty, cannot enter deep power save state\n"); |
| return; |
| } |
| enter_deep_ps: |
| set_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags); |
| rtw_power_mode_change(rtwdev, true); |
| } |
| |
| static void rtw_pci_deep_ps_leave(struct rtw_dev *rtwdev) |
| { |
| struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; |
| |
| lockdep_assert_held(&rtwpci->irq_lock); |
| |
| if (test_and_clear_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags)) |
| rtw_power_mode_change(rtwdev, false); |
| } |
| |
| static void rtw_pci_deep_ps(struct rtw_dev *rtwdev, bool enter) |
| { |
| struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; |
| |
| spin_lock_bh(&rtwpci->irq_lock); |
| |
| if (enter && !test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags)) |
| rtw_pci_deep_ps_enter(rtwdev); |
| |
| if (!enter && test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags)) |
| rtw_pci_deep_ps_leave(rtwdev); |
| |
| spin_unlock_bh(&rtwpci->irq_lock); |
| } |
| |
| static void rtw_pci_release_rsvd_page(struct rtw_pci *rtwpci, |
| struct rtw_pci_tx_ring *ring) |
| { |
| struct sk_buff *prev = skb_dequeue(&ring->queue); |
| struct rtw_pci_tx_data *tx_data; |
| dma_addr_t dma; |
| |
| if (!prev) |
| return; |
| |
| tx_data = rtw_pci_get_tx_data(prev); |
| dma = tx_data->dma; |
| dma_unmap_single(&rtwpci->pdev->dev, dma, prev->len, DMA_TO_DEVICE); |
| dev_kfree_skb_any(prev); |
| } |
| |
| static void rtw_pci_dma_check(struct rtw_dev *rtwdev, |
| struct rtw_pci_rx_ring *rx_ring, |
| u32 idx) |
| { |
| struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; |
| const struct rtw_chip_info *chip = rtwdev->chip; |
| struct rtw_pci_rx_buffer_desc *buf_desc; |
| u32 desc_sz = chip->rx_buf_desc_sz; |
| u16 total_pkt_size; |
| |
| buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head + |
| idx * desc_sz); |
| total_pkt_size = le16_to_cpu(buf_desc->total_pkt_size); |
| |
| /* rx tag mismatch, throw a warning */ |
| if (total_pkt_size != rtwpci->rx_tag) |
| rtw_warn(rtwdev, "pci bus timeout, check dma status\n"); |
| |
| rtwpci->rx_tag = (rtwpci->rx_tag + 1) % RX_TAG_MAX; |
| } |
| |
| static u32 __pci_get_hw_tx_ring_rp(struct rtw_dev *rtwdev, u8 pci_q) |
| { |
| u32 bd_idx_addr = rtw_pci_tx_queue_idx_addr[pci_q]; |
| u32 bd_idx = rtw_read16(rtwdev, bd_idx_addr + 2); |
| |
| return FIELD_GET(TRX_BD_IDX_MASK, bd_idx); |
| } |
| |
| static void __pci_flush_queue(struct rtw_dev *rtwdev, u8 pci_q, bool drop) |
| { |
| struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; |
| struct rtw_pci_tx_ring *ring = &rtwpci->tx_rings[pci_q]; |
| u32 cur_rp; |
| u8 i; |
| |
| /* Because the time taked by the I/O in __pci_get_hw_tx_ring_rp is a |
| * bit dynamic, it's hard to define a reasonable fixed total timeout to |
| * use read_poll_timeout* helper. Instead, we can ensure a reasonable |
| * polling times, so we just use for loop with udelay here. |
| */ |
| for (i = 0; i < 30; i++) { |
| cur_rp = __pci_get_hw_tx_ring_rp(rtwdev, pci_q); |
| if (cur_rp == ring->r.wp) |
| return; |
| |
| udelay(1); |
| } |
| |
| if (!drop) |
| rtw_warn(rtwdev, "timed out to flush pci tx ring[%d]\n", pci_q); |
| } |
| |
| static void __rtw_pci_flush_queues(struct rtw_dev *rtwdev, u32 pci_queues, |
| bool drop) |
| { |
| u8 q; |
| |
| for (q = 0; q < RTK_MAX_TX_QUEUE_NUM; q++) { |
| /* Unnecessary to flush BCN, H2C and HI tx queues. */ |
| if (q == RTW_TX_QUEUE_BCN || q == RTW_TX_QUEUE_H2C || |
| q == RTW_TX_QUEUE_HI0) |
| continue; |
| |
| if (pci_queues & BIT(q)) |
| __pci_flush_queue(rtwdev, q, drop); |
| } |
| } |
| |
| static void rtw_pci_flush_queues(struct rtw_dev *rtwdev, u32 queues, bool drop) |
| { |
| u32 pci_queues = 0; |
| u8 i; |
| |
| /* If all of the hardware queues are requested to flush, |
| * flush all of the pci queues. |
| */ |
| if (queues == BIT(rtwdev->hw->queues) - 1) { |
| pci_queues = BIT(RTK_MAX_TX_QUEUE_NUM) - 1; |
| } else { |
| for (i = 0; i < rtwdev->hw->queues; i++) |
| if (queues & BIT(i)) |
| pci_queues |= BIT(rtw_tx_ac_to_hwq(i)); |
| } |
| |
| __rtw_pci_flush_queues(rtwdev, pci_queues, drop); |
| } |
| |
| static void rtw_pci_tx_kick_off_queue(struct rtw_dev *rtwdev, |
| enum rtw_tx_queue_type queue) |
| { |
| struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; |
| struct rtw_pci_tx_ring *ring; |
| u32 bd_idx; |
| |
| ring = &rtwpci->tx_rings[queue]; |
| bd_idx = rtw_pci_tx_queue_idx_addr[queue]; |
| |
| spin_lock_bh(&rtwpci->irq_lock); |
| if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_TX_WAKE)) |
| rtw_pci_deep_ps_leave(rtwdev); |
| rtw_write16(rtwdev, bd_idx, ring->r.wp & TRX_BD_IDX_MASK); |
| spin_unlock_bh(&rtwpci->irq_lock); |
| } |
| |
| static void rtw_pci_tx_kick_off(struct rtw_dev *rtwdev) |
| { |
| struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; |
| enum rtw_tx_queue_type queue; |
| |
| for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) |
| if (test_and_clear_bit(queue, rtwpci->tx_queued)) |
| rtw_pci_tx_kick_off_queue(rtwdev, queue); |
| } |
| |
| static int rtw_pci_tx_write_data(struct rtw_dev *rtwdev, |
| struct rtw_tx_pkt_info *pkt_info, |
| struct sk_buff *skb, |
| enum rtw_tx_queue_type queue) |
| { |
| struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; |
| const struct rtw_chip_info *chip = rtwdev->chip; |
| struct rtw_pci_tx_ring *ring; |
| struct rtw_pci_tx_data *tx_data; |
| dma_addr_t dma; |
| u32 tx_pkt_desc_sz = chip->tx_pkt_desc_sz; |
| u32 tx_buf_desc_sz = chip->tx_buf_desc_sz; |
| u32 size; |
| u32 psb_len; |
| u8 *pkt_desc; |
| struct rtw_pci_tx_buffer_desc *buf_desc; |
| |
| ring = &rtwpci->tx_rings[queue]; |
| |
| size = skb->len; |
| |
| if (queue == RTW_TX_QUEUE_BCN) |
| rtw_pci_release_rsvd_page(rtwpci, ring); |
| else if (!avail_desc(ring->r.wp, ring->r.rp, ring->r.len)) |
| return -ENOSPC; |
| |
| pkt_desc = skb_push(skb, chip->tx_pkt_desc_sz); |
| memset(pkt_desc, 0, tx_pkt_desc_sz); |
| pkt_info->qsel = rtw_pci_get_tx_qsel(skb, queue); |
| rtw_tx_fill_tx_desc(pkt_info, skb); |
| dma = dma_map_single(&rtwpci->pdev->dev, skb->data, skb->len, |
| DMA_TO_DEVICE); |
| if (dma_mapping_error(&rtwpci->pdev->dev, dma)) |
| return -EBUSY; |
| |
| /* after this we got dma mapped, there is no way back */ |
| buf_desc = get_tx_buffer_desc(ring, tx_buf_desc_sz); |
| memset(buf_desc, 0, tx_buf_desc_sz); |
| psb_len = (skb->len - 1) / 128 + 1; |
| if (queue == RTW_TX_QUEUE_BCN) |
| psb_len |= 1 << RTK_PCI_TXBD_OWN_OFFSET; |
| |
| buf_desc[0].psb_len = cpu_to_le16(psb_len); |
| buf_desc[0].buf_size = cpu_to_le16(tx_pkt_desc_sz); |
| buf_desc[0].dma = cpu_to_le32(dma); |
| buf_desc[1].buf_size = cpu_to_le16(size); |
| buf_desc[1].dma = cpu_to_le32(dma + tx_pkt_desc_sz); |
| |
| tx_data = rtw_pci_get_tx_data(skb); |
| tx_data->dma = dma; |
| tx_data->sn = pkt_info->sn; |
| |
| spin_lock_bh(&rtwpci->irq_lock); |
| |
| skb_queue_tail(&ring->queue, skb); |
| |
| if (queue == RTW_TX_QUEUE_BCN) |
| goto out_unlock; |
| |
| /* update write-index, and kick it off later */ |
| set_bit(queue, rtwpci->tx_queued); |
| if (++ring->r.wp >= ring->r.len) |
| ring->r.wp = 0; |
| |
| out_unlock: |
| spin_unlock_bh(&rtwpci->irq_lock); |
| |
| return 0; |
| } |
| |
| static int rtw_pci_write_data_rsvd_page(struct rtw_dev *rtwdev, u8 *buf, |
| u32 size) |
| { |
| struct sk_buff *skb; |
| struct rtw_tx_pkt_info pkt_info = {0}; |
| u8 reg_bcn_work; |
| int ret; |
| |
| skb = rtw_tx_write_data_rsvd_page_get(rtwdev, &pkt_info, buf, size); |
| if (!skb) |
| return -ENOMEM; |
| |
| ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_BCN); |
| if (ret) { |
| rtw_err(rtwdev, "failed to write rsvd page data\n"); |
| return ret; |
| } |
| |
| /* reserved pages go through beacon queue */ |
| reg_bcn_work = rtw_read8(rtwdev, RTK_PCI_TXBD_BCN_WORK); |
| reg_bcn_work |= BIT_PCI_BCNQ_FLAG; |
| rtw_write8(rtwdev, RTK_PCI_TXBD_BCN_WORK, reg_bcn_work); |
| |
| return 0; |
| } |
| |
| static int rtw_pci_write_data_h2c(struct rtw_dev *rtwdev, u8 *buf, u32 size) |
| { |
| struct sk_buff *skb; |
| struct rtw_tx_pkt_info pkt_info = {0}; |
| int ret; |
| |
| skb = rtw_tx_write_data_h2c_get(rtwdev, &pkt_info, buf, size); |
| if (!skb) |
| return -ENOMEM; |
| |
| ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_H2C); |
| if (ret) { |
| rtw_err(rtwdev, "failed to write h2c data\n"); |
| return ret; |
| } |
| |
| rtw_pci_tx_kick_off_queue(rtwdev, RTW_TX_QUEUE_H2C); |
| |
| return 0; |
| } |
| |
| static int rtw_pci_tx_write(struct rtw_dev *rtwdev, |
| struct rtw_tx_pkt_info *pkt_info, |
| struct sk_buff *skb) |
| { |
| enum rtw_tx_queue_type queue = rtw_tx_queue_mapping(skb); |
| struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; |
| struct rtw_pci_tx_ring *ring; |
| int ret; |
| |
| ret = rtw_pci_tx_write_data(rtwdev, pkt_info, skb, queue); |
| if (ret) |
| return ret; |
| |
| ring = &rtwpci->tx_rings[queue]; |
| spin_lock_bh(&rtwpci->irq_lock); |
| if (avail_desc(ring->r.wp, ring->r.rp, ring->r.len) < 2) { |
| ieee80211_stop_queue(rtwdev->hw, skb_get_queue_mapping(skb)); |
| ring->queue_stopped = true; |
| } |
| spin_unlock_bh(&rtwpci->irq_lock); |
| |
| return 0; |
| } |
| |
| static void rtw_pci_tx_isr(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci, |
| u8 hw_queue) |
| { |
| struct ieee80211_hw *hw = rtwdev->hw; |
| struct ieee80211_tx_info *info; |
| struct rtw_pci_tx_ring *ring; |
| struct rtw_pci_tx_data *tx_data; |
| struct sk_buff *skb; |
| u32 count; |
| u32 bd_idx_addr; |
| u32 bd_idx, cur_rp, rp_idx; |
| u16 q_map; |
| |
| ring = &rtwpci->tx_rings[hw_queue]; |
| |
| bd_idx_addr = rtw_pci_tx_queue_idx_addr[hw_queue]; |
| bd_idx = rtw_read32(rtwdev, bd_idx_addr); |
| cur_rp = bd_idx >> 16; |
| cur_rp &= TRX_BD_IDX_MASK; |
| rp_idx = ring->r.rp; |
| if (cur_rp >= ring->r.rp) |
| count = cur_rp - ring->r.rp; |
| else |
| count = ring->r.len - (ring->r.rp - cur_rp); |
| |
| while (count--) { |
| skb = skb_dequeue(&ring->queue); |
| if (!skb) { |
| rtw_err(rtwdev, "failed to dequeue %d skb TX queue %d, BD=0x%08x, rp %d -> %d\n", |
| count, hw_queue, bd_idx, ring->r.rp, cur_rp); |
| break; |
| } |
| tx_data = rtw_pci_get_tx_data(skb); |
| dma_unmap_single(&rtwpci->pdev->dev, tx_data->dma, skb->len, |
| DMA_TO_DEVICE); |
| |
| /* just free command packets from host to card */ |
| if (hw_queue == RTW_TX_QUEUE_H2C) { |
| dev_kfree_skb_irq(skb); |
| continue; |
| } |
| |
| if (ring->queue_stopped && |
| avail_desc(ring->r.wp, rp_idx, ring->r.len) > 4) { |
| q_map = skb_get_queue_mapping(skb); |
| ieee80211_wake_queue(hw, q_map); |
| ring->queue_stopped = false; |
| } |
| |
| if (++rp_idx >= ring->r.len) |
| rp_idx = 0; |
| |
| skb_pull(skb, rtwdev->chip->tx_pkt_desc_sz); |
| |
| info = IEEE80211_SKB_CB(skb); |
| |
| /* enqueue to wait for tx report */ |
| if (info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) { |
| rtw_tx_report_enqueue(rtwdev, skb, tx_data->sn); |
| continue; |
| } |
| |
| /* always ACK for others, then they won't be marked as drop */ |
| if (info->flags & IEEE80211_TX_CTL_NO_ACK) |
| info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED; |
| else |
| info->flags |= IEEE80211_TX_STAT_ACK; |
| |
| ieee80211_tx_info_clear_status(info); |
| ieee80211_tx_status_irqsafe(hw, skb); |
| } |
| |
| ring->r.rp = cur_rp; |
| } |
| |
| static void rtw_pci_rx_isr(struct rtw_dev *rtwdev) |
| { |
| struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; |
| struct napi_struct *napi = &rtwpci->napi; |
| |
| napi_schedule(napi); |
| } |
| |
| static int rtw_pci_get_hw_rx_ring_nr(struct rtw_dev *rtwdev, |
| struct rtw_pci *rtwpci) |
| { |
| struct rtw_pci_rx_ring *ring; |
| int count = 0; |
| u32 tmp, cur_wp; |
| |
| ring = &rtwpci->rx_rings[RTW_RX_QUEUE_MPDU]; |
| tmp = rtw_read32(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ); |
| cur_wp = u32_get_bits(tmp, TRX_BD_HW_IDX_MASK); |
| if (cur_wp >= ring->r.wp) |
| count = cur_wp - ring->r.wp; |
| else |
| count = ring->r.len - (ring->r.wp - cur_wp); |
| |
| return count; |
| } |
| |
| static u32 rtw_pci_rx_napi(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci, |
| u8 hw_queue, u32 limit) |
| { |
| const struct rtw_chip_info *chip = rtwdev->chip; |
| struct napi_struct *napi = &rtwpci->napi; |
| struct rtw_pci_rx_ring *ring = &rtwpci->rx_rings[RTW_RX_QUEUE_MPDU]; |
| struct rtw_rx_pkt_stat pkt_stat; |
| struct ieee80211_rx_status rx_status; |
| struct sk_buff *skb, *new; |
| u32 cur_rp = ring->r.rp; |
| u32 count, rx_done = 0; |
| u32 pkt_offset; |
| u32 pkt_desc_sz = chip->rx_pkt_desc_sz; |
| u32 buf_desc_sz = chip->rx_buf_desc_sz; |
| u32 new_len; |
| u8 *rx_desc; |
| dma_addr_t dma; |
| |
| count = rtw_pci_get_hw_rx_ring_nr(rtwdev, rtwpci); |
| count = min(count, limit); |
| |
| while (count--) { |
| rtw_pci_dma_check(rtwdev, ring, cur_rp); |
| skb = ring->buf[cur_rp]; |
| dma = *((dma_addr_t *)skb->cb); |
| dma_sync_single_for_cpu(rtwdev->dev, dma, RTK_PCI_RX_BUF_SIZE, |
| DMA_FROM_DEVICE); |
| rx_desc = skb->data; |
| chip->ops->query_rx_desc(rtwdev, rx_desc, &pkt_stat, &rx_status); |
| |
| /* offset from rx_desc to payload */ |
| pkt_offset = pkt_desc_sz + pkt_stat.drv_info_sz + |
| pkt_stat.shift; |
| |
| /* allocate a new skb for this frame, |
| * discard the frame if none available |
| */ |
| new_len = pkt_stat.pkt_len + pkt_offset; |
| new = dev_alloc_skb(new_len); |
| if (WARN_ONCE(!new, "rx routine starvation\n")) |
| goto next_rp; |
| |
| /* put the DMA data including rx_desc from phy to new skb */ |
| skb_put_data(new, skb->data, new_len); |
| |
| if (pkt_stat.is_c2h) { |
| rtw_fw_c2h_cmd_rx_irqsafe(rtwdev, pkt_offset, new); |
| } else { |
| /* remove rx_desc */ |
| skb_pull(new, pkt_offset); |
| |
| rtw_rx_stats(rtwdev, pkt_stat.vif, new); |
| memcpy(new->cb, &rx_status, sizeof(rx_status)); |
| ieee80211_rx_napi(rtwdev->hw, NULL, new, napi); |
| rx_done++; |
| } |
| |
| next_rp: |
| /* new skb delivered to mac80211, re-enable original skb DMA */ |
| rtw_pci_sync_rx_desc_device(rtwdev, dma, ring, cur_rp, |
| buf_desc_sz); |
| |
| /* host read next element in ring */ |
| if (++cur_rp >= ring->r.len) |
| cur_rp = 0; |
| } |
| |
| ring->r.rp = cur_rp; |
| /* 'rp', the last position we have read, is seen as previous posistion |
| * of 'wp' that is used to calculate 'count' next time. |
| */ |
| ring->r.wp = cur_rp; |
| rtw_write16(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ, ring->r.rp); |
| |
| return rx_done; |
| } |
| |
| static void rtw_pci_irq_recognized(struct rtw_dev *rtwdev, |
| struct rtw_pci *rtwpci, u32 *irq_status) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&rtwpci->hwirq_lock, flags); |
| |
| irq_status[0] = rtw_read32(rtwdev, RTK_PCI_HISR0); |
| irq_status[1] = rtw_read32(rtwdev, RTK_PCI_HISR1); |
| if (rtw_chip_wcpu_11ac(rtwdev)) |
| irq_status[3] = rtw_read32(rtwdev, RTK_PCI_HISR3); |
| else |
| irq_status[3] = 0; |
| irq_status[0] &= rtwpci->irq_mask[0]; |
| irq_status[1] &= rtwpci->irq_mask[1]; |
| irq_status[3] &= rtwpci->irq_mask[3]; |
| rtw_write32(rtwdev, RTK_PCI_HISR0, irq_status[0]); |
| rtw_write32(rtwdev, RTK_PCI_HISR1, irq_status[1]); |
| if (rtw_chip_wcpu_11ac(rtwdev)) |
| rtw_write32(rtwdev, RTK_PCI_HISR3, irq_status[3]); |
| |
| spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags); |
| } |
| |
| static irqreturn_t rtw_pci_interrupt_handler(int irq, void *dev) |
| { |
| struct rtw_dev *rtwdev = dev; |
| struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; |
| |
| /* disable RTW PCI interrupt to avoid more interrupts before the end of |
| * thread function |
| * |
| * disable HIMR here to also avoid new HISR flag being raised before |
| * the HISRs have been Write-1-cleared for MSI. If not all of the HISRs |
| * are cleared, the edge-triggered interrupt will not be generated when |
| * a new HISR flag is set. |
| */ |
| rtw_pci_disable_interrupt(rtwdev, rtwpci); |
| |
| return IRQ_WAKE_THREAD; |
| } |
| |
| static irqreturn_t rtw_pci_interrupt_threadfn(int irq, void *dev) |
| { |
| struct rtw_dev *rtwdev = dev; |
| struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; |
| u32 irq_status[4]; |
| bool rx = false; |
| |
| spin_lock_bh(&rtwpci->irq_lock); |
| rtw_pci_irq_recognized(rtwdev, rtwpci, irq_status); |
| |
| if (irq_status[0] & IMR_MGNTDOK) |
| rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_MGMT); |
| if (irq_status[0] & IMR_HIGHDOK) |
| rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_HI0); |
| if (irq_status[0] & IMR_BEDOK) |
| rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BE); |
| if (irq_status[0] & IMR_BKDOK) |
| rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BK); |
| if (irq_status[0] & IMR_VODOK) |
| rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VO); |
| if (irq_status[0] & IMR_VIDOK) |
| rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VI); |
| if (irq_status[3] & IMR_H2CDOK) |
| rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_H2C); |
| if (irq_status[0] & IMR_ROK) { |
| rtw_pci_rx_isr(rtwdev); |
| rx = true; |
| } |
| if (unlikely(irq_status[0] & IMR_C2HCMD)) |
| rtw_fw_c2h_cmd_isr(rtwdev); |
| |
| /* all of the jobs for this interrupt have been done */ |
| if (rtwpci->running) |
| rtw_pci_enable_interrupt(rtwdev, rtwpci, rx); |
| spin_unlock_bh(&rtwpci->irq_lock); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int rtw_pci_io_mapping(struct rtw_dev *rtwdev, |
| struct pci_dev *pdev) |
| { |
| struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; |
| unsigned long len; |
| u8 bar_id = 2; |
| int ret; |
| |
| ret = pci_request_regions(pdev, KBUILD_MODNAME); |
| if (ret) { |
| rtw_err(rtwdev, "failed to request pci regions\n"); |
| return ret; |
| } |
| |
| len = pci_resource_len(pdev, bar_id); |
| rtwpci->mmap = pci_iomap(pdev, bar_id, len); |
| if (!rtwpci->mmap) { |
| pci_release_regions(pdev); |
| rtw_err(rtwdev, "failed to map pci memory\n"); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static void rtw_pci_io_unmapping(struct rtw_dev *rtwdev, |
| struct pci_dev *pdev) |
| { |
| struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; |
| |
| if (rtwpci->mmap) { |
| pci_iounmap(pdev, rtwpci->mmap); |
| pci_release_regions(pdev); |
| } |
| } |
| |
| static void rtw_dbi_write8(struct rtw_dev *rtwdev, u16 addr, u8 data) |
| { |
| u16 write_addr; |
| u16 remainder = addr & ~(BITS_DBI_WREN | BITS_DBI_ADDR_MASK); |
| u8 flag; |
| u8 cnt; |
| |
| write_addr = addr & BITS_DBI_ADDR_MASK; |
| write_addr |= u16_encode_bits(BIT(remainder), BITS_DBI_WREN); |
| rtw_write8(rtwdev, REG_DBI_WDATA_V1 + remainder, data); |
| rtw_write16(rtwdev, REG_DBI_FLAG_V1, write_addr); |
| rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_WFLAG >> 16); |
| |
| for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) { |
| flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2); |
| if (flag == 0) |
| return; |
| |
| udelay(10); |
| } |
| |
| WARN(flag, "failed to write to DBI register, addr=0x%04x\n", addr); |
| } |
| |
| static int rtw_dbi_read8(struct rtw_dev *rtwdev, u16 addr, u8 *value) |
| { |
| u16 read_addr = addr & BITS_DBI_ADDR_MASK; |
| u8 flag; |
| u8 cnt; |
| |
| rtw_write16(rtwdev, REG_DBI_FLAG_V1, read_addr); |
| rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_RFLAG >> 16); |
| |
| for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) { |
| flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2); |
| if (flag == 0) { |
| read_addr = REG_DBI_RDATA_V1 + (addr & 3); |
| *value = rtw_read8(rtwdev, read_addr); |
| return 0; |
| } |
| |
| udelay(10); |
| } |
| |
| WARN(1, "failed to read DBI register, addr=0x%04x\n", addr); |
| return -EIO; |
| } |
| |
| static void rtw_mdio_write(struct rtw_dev *rtwdev, u8 addr, u16 data, bool g1) |
| { |
| u8 page; |
| u8 wflag; |
| u8 cnt; |
| |
| rtw_write16(rtwdev, REG_MDIO_V1, data); |
| |
| page = addr < RTW_PCI_MDIO_PG_SZ ? 0 : 1; |
| page += g1 ? RTW_PCI_MDIO_PG_OFFS_G1 : RTW_PCI_MDIO_PG_OFFS_G2; |
| rtw_write8(rtwdev, REG_PCIE_MIX_CFG, addr & BITS_MDIO_ADDR_MASK); |
| rtw_write8(rtwdev, REG_PCIE_MIX_CFG + 3, page); |
| rtw_write32_mask(rtwdev, REG_PCIE_MIX_CFG, BIT_MDIO_WFLAG_V1, 1); |
| |
| for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) { |
| wflag = rtw_read32_mask(rtwdev, REG_PCIE_MIX_CFG, |
| BIT_MDIO_WFLAG_V1); |
| if (wflag == 0) |
| return; |
| |
| udelay(10); |
| } |
| |
| WARN(wflag, "failed to write to MDIO register, addr=0x%02x\n", addr); |
| } |
| |
| static void rtw_pci_clkreq_set(struct rtw_dev *rtwdev, bool enable) |
| { |
| u8 value; |
| int ret; |
| |
| if (rtw_pci_disable_aspm) |
| return; |
| |
| ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value); |
| if (ret) { |
| rtw_err(rtwdev, "failed to read CLKREQ_L1, ret=%d", ret); |
| return; |
| } |
| |
| if (enable) |
| value |= BIT_CLKREQ_SW_EN; |
| else |
| value &= ~BIT_CLKREQ_SW_EN; |
| |
| rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value); |
| } |
| |
| static void rtw_pci_clkreq_pad_low(struct rtw_dev *rtwdev, bool enable) |
| { |
| u8 value; |
| int ret; |
| |
| ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value); |
| if (ret) { |
| rtw_err(rtwdev, "failed to read CLKREQ_L1, ret=%d", ret); |
| return; |
| } |
| |
| if (enable) |
| value &= ~BIT_CLKREQ_N_PAD; |
| else |
| value |= BIT_CLKREQ_N_PAD; |
| |
| rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value); |
| } |
| |
| static void rtw_pci_aspm_set(struct rtw_dev *rtwdev, bool enable) |
| { |
| u8 value; |
| int ret; |
| |
| if (rtw_pci_disable_aspm) |
| return; |
| |
| ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value); |
| if (ret) { |
| rtw_err(rtwdev, "failed to read ASPM, ret=%d", ret); |
| return; |
| } |
| |
| if (enable) |
| value |= BIT_L1_SW_EN; |
| else |
| value &= ~BIT_L1_SW_EN; |
| |
| rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value); |
| } |
| |
| static void rtw_pci_link_ps(struct rtw_dev *rtwdev, bool enter) |
| { |
| struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; |
| |
| /* Like CLKREQ, ASPM is also implemented by two HW modules, and can |
| * only be enabled when host supports it. |
| * |
| * And ASPM mechanism should be enabled when driver/firmware enters |
| * power save mode, without having heavy traffic. Because we've |
| * experienced some inter-operability issues that the link tends |
| * to enter L1 state on the fly even when driver is having high |
| * throughput. This is probably because the ASPM behavior slightly |
| * varies from different SOC. |
| */ |
| if (!(rtwpci->link_ctrl & PCI_EXP_LNKCTL_ASPM_L1)) |
| return; |
| |
| if ((enter && atomic_dec_if_positive(&rtwpci->link_usage) == 0) || |
| (!enter && atomic_inc_return(&rtwpci->link_usage) == 1)) |
| rtw_pci_aspm_set(rtwdev, enter); |
| } |
| |
| static void rtw_pci_link_cfg(struct rtw_dev *rtwdev) |
| { |
| const struct rtw_chip_info *chip = rtwdev->chip; |
| struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; |
| struct pci_dev *pdev = rtwpci->pdev; |
| u16 link_ctrl; |
| int ret; |
| |
| /* RTL8822CE has enabled REFCLK auto calibration, it does not need |
| * to add clock delay to cover the REFCLK timing gap. |
| */ |
| if (chip->id == RTW_CHIP_TYPE_8822C) |
| rtw_dbi_write8(rtwdev, RTK_PCIE_CLKDLY_CTRL, 0); |
| |
| /* Though there is standard PCIE configuration space to set the |
| * link control register, but by Realtek's design, driver should |
| * check if host supports CLKREQ/ASPM to enable the HW module. |
| * |
| * These functions are implemented by two HW modules associated, |
| * one is responsible to access PCIE configuration space to |
| * follow the host settings, and another is in charge of doing |
| * CLKREQ/ASPM mechanisms, it is default disabled. Because sometimes |
| * the host does not support it, and due to some reasons or wrong |
| * settings (ex. CLKREQ# not Bi-Direction), it could lead to device |
| * loss if HW misbehaves on the link. |
| * |
| * Hence it's designed that driver should first check the PCIE |
| * configuration space is sync'ed and enabled, then driver can turn |
| * on the other module that is actually working on the mechanism. |
| */ |
| ret = pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &link_ctrl); |
| if (ret) { |
| rtw_err(rtwdev, "failed to read PCI cap, ret=%d\n", ret); |
| return; |
| } |
| |
| if (link_ctrl & PCI_EXP_LNKCTL_CLKREQ_EN) |
| rtw_pci_clkreq_set(rtwdev, true); |
| |
| rtwpci->link_ctrl = link_ctrl; |
| } |
| |
| static void rtw_pci_interface_cfg(struct rtw_dev *rtwdev) |
| { |
| const struct rtw_chip_info *chip = rtwdev->chip; |
| |
| switch (chip->id) { |
| case RTW_CHIP_TYPE_8822C: |
| if (rtwdev->hal.cut_version >= RTW_CHIP_VER_CUT_D) |
| rtw_write32_mask(rtwdev, REG_HCI_MIX_CFG, |
| BIT_PCIE_EMAC_PDN_AUX_TO_FAST_CLK, 1); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static void rtw_pci_phy_cfg(struct rtw_dev *rtwdev) |
| { |
| struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; |
| const struct rtw_chip_info *chip = rtwdev->chip; |
| struct pci_dev *pdev = rtwpci->pdev; |
| const struct rtw_intf_phy_para *para; |
| u16 cut; |
| u16 value; |
| u16 offset; |
| int i; |
| int ret; |
| |
| cut = BIT(0) << rtwdev->hal.cut_version; |
| |
| for (i = 0; i < chip->intf_table->n_gen1_para; i++) { |
| para = &chip->intf_table->gen1_para[i]; |
| if (!(para->cut_mask & cut)) |
| continue; |
| if (para->offset == 0xffff) |
| break; |
| offset = para->offset; |
| value = para->value; |
| if (para->ip_sel == RTW_IP_SEL_PHY) |
| rtw_mdio_write(rtwdev, offset, value, true); |
| else |
| rtw_dbi_write8(rtwdev, offset, value); |
| } |
| |
| for (i = 0; i < chip->intf_table->n_gen2_para; i++) { |
| para = &chip->intf_table->gen2_para[i]; |
| if (!(para->cut_mask & cut)) |
| continue; |
| if (para->offset == 0xffff) |
| break; |
| offset = para->offset; |
| value = para->value; |
| if (para->ip_sel == RTW_IP_SEL_PHY) |
| rtw_mdio_write(rtwdev, offset, value, false); |
| else |
| rtw_dbi_write8(rtwdev, offset, value); |
| } |
| |
| rtw_pci_link_cfg(rtwdev); |
| |
| /* Disable 8821ce completion timeout by default */ |
| if (chip->id == RTW_CHIP_TYPE_8821C) { |
| ret = pcie_capability_set_word(pdev, PCI_EXP_DEVCTL2, |
| PCI_EXP_DEVCTL2_COMP_TMOUT_DIS); |
| if (ret) |
| rtw_err(rtwdev, "failed to set PCI cap, ret = %d\n", |
| ret); |
| } |
| } |
| |
| static int __maybe_unused rtw_pci_suspend(struct device *dev) |
| { |
| struct ieee80211_hw *hw = dev_get_drvdata(dev); |
| struct rtw_dev *rtwdev = hw->priv; |
| const struct rtw_chip_info *chip = rtwdev->chip; |
| struct rtw_efuse *efuse = &rtwdev->efuse; |
| |
| if (chip->id == RTW_CHIP_TYPE_8822C && efuse->rfe_option == 6) |
| rtw_pci_clkreq_pad_low(rtwdev, true); |
| return 0; |
| } |
| |
| static int __maybe_unused rtw_pci_resume(struct device *dev) |
| { |
| struct ieee80211_hw *hw = dev_get_drvdata(dev); |
| struct rtw_dev *rtwdev = hw->priv; |
| const struct rtw_chip_info *chip = rtwdev->chip; |
| struct rtw_efuse *efuse = &rtwdev->efuse; |
| |
| if (chip->id == RTW_CHIP_TYPE_8822C && efuse->rfe_option == 6) |
| rtw_pci_clkreq_pad_low(rtwdev, false); |
| return 0; |
| } |
| |
| SIMPLE_DEV_PM_OPS(rtw_pm_ops, rtw_pci_suspend, rtw_pci_resume); |
| EXPORT_SYMBOL(rtw_pm_ops); |
| |
| static int rtw_pci_claim(struct rtw_dev *rtwdev, struct pci_dev *pdev) |
| { |
| int ret; |
| |
| ret = pci_enable_device(pdev); |
| if (ret) { |
| rtw_err(rtwdev, "failed to enable pci device\n"); |
| return ret; |
| } |
| |
| pci_set_master(pdev); |
| pci_set_drvdata(pdev, rtwdev->hw); |
| SET_IEEE80211_DEV(rtwdev->hw, &pdev->dev); |
| |
| return 0; |
| } |
| |
| static void rtw_pci_declaim(struct rtw_dev *rtwdev, struct pci_dev *pdev) |
| { |
| pci_disable_device(pdev); |
| } |
| |
| static int rtw_pci_setup_resource(struct rtw_dev *rtwdev, struct pci_dev *pdev) |
| { |
| struct rtw_pci *rtwpci; |
| int ret; |
| |
| rtwpci = (struct rtw_pci *)rtwdev->priv; |
| rtwpci->pdev = pdev; |
| |
| /* after this driver can access to hw registers */ |
| ret = rtw_pci_io_mapping(rtwdev, pdev); |
| if (ret) { |
| rtw_err(rtwdev, "failed to request pci io region\n"); |
| goto err_out; |
| } |
| |
| ret = rtw_pci_init(rtwdev); |
| if (ret) { |
| rtw_err(rtwdev, "failed to allocate pci resources\n"); |
| goto err_io_unmap; |
| } |
| |
| return 0; |
| |
| err_io_unmap: |
| rtw_pci_io_unmapping(rtwdev, pdev); |
| |
| err_out: |
| return ret; |
| } |
| |
| static void rtw_pci_destroy(struct rtw_dev *rtwdev, struct pci_dev *pdev) |
| { |
| rtw_pci_deinit(rtwdev); |
| rtw_pci_io_unmapping(rtwdev, pdev); |
| } |
| |
| static struct rtw_hci_ops rtw_pci_ops = { |
| .tx_write = rtw_pci_tx_write, |
| .tx_kick_off = rtw_pci_tx_kick_off, |
| .flush_queues = rtw_pci_flush_queues, |
| .setup = rtw_pci_setup, |
| .start = rtw_pci_start, |
| .stop = rtw_pci_stop, |
| .deep_ps = rtw_pci_deep_ps, |
| .link_ps = rtw_pci_link_ps, |
| .interface_cfg = rtw_pci_interface_cfg, |
| |
| .read8 = rtw_pci_read8, |
| .read16 = rtw_pci_read16, |
| .read32 = rtw_pci_read32, |
| .write8 = rtw_pci_write8, |
| .write16 = rtw_pci_write16, |
| .write32 = rtw_pci_write32, |
| .write_data_rsvd_page = rtw_pci_write_data_rsvd_page, |
| .write_data_h2c = rtw_pci_write_data_h2c, |
| }; |
| |
| static int rtw_pci_request_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev) |
| { |
| unsigned int flags = PCI_IRQ_LEGACY; |
| int ret; |
| |
| if (!rtw_disable_msi) |
| flags |= PCI_IRQ_MSI; |
| |
| ret = pci_alloc_irq_vectors(pdev, 1, 1, flags); |
| if (ret < 0) { |
| rtw_err(rtwdev, "failed to alloc PCI irq vectors\n"); |
| return ret; |
| } |
| |
| ret = devm_request_threaded_irq(rtwdev->dev, pdev->irq, |
| rtw_pci_interrupt_handler, |
| rtw_pci_interrupt_threadfn, |
| IRQF_SHARED, KBUILD_MODNAME, rtwdev); |
| if (ret) { |
| rtw_err(rtwdev, "failed to request irq %d\n", ret); |
| pci_free_irq_vectors(pdev); |
| } |
| |
| return ret; |
| } |
| |
| static void rtw_pci_free_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev) |
| { |
| devm_free_irq(rtwdev->dev, pdev->irq, rtwdev); |
| pci_free_irq_vectors(pdev); |
| } |
| |
| static int rtw_pci_napi_poll(struct napi_struct *napi, int budget) |
| { |
| struct rtw_pci *rtwpci = container_of(napi, struct rtw_pci, napi); |
| struct rtw_dev *rtwdev = container_of((void *)rtwpci, struct rtw_dev, |
| priv); |
| int work_done = 0; |
| |
| if (rtwpci->rx_no_aspm) |
| rtw_pci_link_ps(rtwdev, false); |
| |
| while (work_done < budget) { |
| u32 work_done_once; |
| |
| work_done_once = rtw_pci_rx_napi(rtwdev, rtwpci, RTW_RX_QUEUE_MPDU, |
| budget - work_done); |
| if (work_done_once == 0) |
| break; |
| work_done += work_done_once; |
| } |
| if (work_done < budget) { |
| napi_complete_done(napi, work_done); |
| spin_lock_bh(&rtwpci->irq_lock); |
| if (rtwpci->running) |
| rtw_pci_enable_interrupt(rtwdev, rtwpci, false); |
| spin_unlock_bh(&rtwpci->irq_lock); |
| /* When ISR happens during polling and before napi_complete |
| * while no further data is received. Data on the dma_ring will |
| * not be processed immediately. Check whether dma ring is |
| * empty and perform napi_schedule accordingly. |
| */ |
| if (rtw_pci_get_hw_rx_ring_nr(rtwdev, rtwpci)) |
| napi_schedule(napi); |
| } |
| if (rtwpci->rx_no_aspm) |
| rtw_pci_link_ps(rtwdev, true); |
| |
| return work_done; |
| } |
| |
| static void rtw_pci_napi_init(struct rtw_dev *rtwdev) |
| { |
| struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; |
| |
| init_dummy_netdev(&rtwpci->netdev); |
| netif_napi_add(&rtwpci->netdev, &rtwpci->napi, rtw_pci_napi_poll); |
| } |
| |
| static void rtw_pci_napi_deinit(struct rtw_dev *rtwdev) |
| { |
| struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; |
| |
| rtw_pci_napi_stop(rtwdev); |
| netif_napi_del(&rtwpci->napi); |
| } |
| |
| int rtw_pci_probe(struct pci_dev *pdev, |
| const struct pci_device_id *id) |
| { |
| struct pci_dev *bridge = pci_upstream_bridge(pdev); |
| struct ieee80211_hw *hw; |
| struct rtw_dev *rtwdev; |
| struct rtw_pci *rtwpci; |
| int drv_data_size; |
| int ret; |
| |
| drv_data_size = sizeof(struct rtw_dev) + sizeof(struct rtw_pci); |
| hw = ieee80211_alloc_hw(drv_data_size, &rtw_ops); |
| if (!hw) { |
| dev_err(&pdev->dev, "failed to allocate hw\n"); |
| return -ENOMEM; |
| } |
| |
| rtwdev = hw->priv; |
| rtwdev->hw = hw; |
| rtwdev->dev = &pdev->dev; |
| rtwdev->chip = (struct rtw_chip_info *)id->driver_data; |
| rtwdev->hci.ops = &rtw_pci_ops; |
| rtwdev->hci.type = RTW_HCI_TYPE_PCIE; |
| |
| rtwpci = (struct rtw_pci *)rtwdev->priv; |
| atomic_set(&rtwpci->link_usage, 1); |
| |
| ret = rtw_core_init(rtwdev); |
| if (ret) |
| goto err_release_hw; |
| |
| rtw_dbg(rtwdev, RTW_DBG_PCI, |
| "rtw88 pci probe: vendor=0x%4.04X device=0x%4.04X rev=%d\n", |
| pdev->vendor, pdev->device, pdev->revision); |
| |
| ret = rtw_pci_claim(rtwdev, pdev); |
| if (ret) { |
| rtw_err(rtwdev, "failed to claim pci device\n"); |
| goto err_deinit_core; |
| } |
| |
| ret = rtw_pci_setup_resource(rtwdev, pdev); |
| if (ret) { |
| rtw_err(rtwdev, "failed to setup pci resources\n"); |
| goto err_pci_declaim; |
| } |
| |
| rtw_pci_napi_init(rtwdev); |
| |
| ret = rtw_chip_info_setup(rtwdev); |
| if (ret) { |
| rtw_err(rtwdev, "failed to setup chip information\n"); |
| goto err_destroy_pci; |
| } |
| |
| /* Disable PCIe ASPM L1 while doing NAPI poll for 8821CE */ |
| if (rtwdev->chip->id == RTW_CHIP_TYPE_8821C && bridge->vendor == PCI_VENDOR_ID_INTEL) |
| rtwpci->rx_no_aspm = true; |
| |
| rtw_pci_phy_cfg(rtwdev); |
| |
| ret = rtw_register_hw(rtwdev, hw); |
| if (ret) { |
| rtw_err(rtwdev, "failed to register hw\n"); |
| goto err_destroy_pci; |
| } |
| |
| ret = rtw_pci_request_irq(rtwdev, pdev); |
| if (ret) { |
| ieee80211_unregister_hw(hw); |
| goto err_destroy_pci; |
| } |
| |
| return 0; |
| |
| err_destroy_pci: |
| rtw_pci_napi_deinit(rtwdev); |
| rtw_pci_destroy(rtwdev, pdev); |
| |
| err_pci_declaim: |
| rtw_pci_declaim(rtwdev, pdev); |
| |
| err_deinit_core: |
| rtw_core_deinit(rtwdev); |
| |
| err_release_hw: |
| ieee80211_free_hw(hw); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(rtw_pci_probe); |
| |
| void rtw_pci_remove(struct pci_dev *pdev) |
| { |
| struct ieee80211_hw *hw = pci_get_drvdata(pdev); |
| struct rtw_dev *rtwdev; |
| struct rtw_pci *rtwpci; |
| |
| if (!hw) |
| return; |
| |
| rtwdev = hw->priv; |
| rtwpci = (struct rtw_pci *)rtwdev->priv; |
| |
| rtw_unregister_hw(rtwdev, hw); |
| rtw_pci_disable_interrupt(rtwdev, rtwpci); |
| rtw_pci_napi_deinit(rtwdev); |
| rtw_pci_destroy(rtwdev, pdev); |
| rtw_pci_declaim(rtwdev, pdev); |
| rtw_pci_free_irq(rtwdev, pdev); |
| rtw_core_deinit(rtwdev); |
| ieee80211_free_hw(hw); |
| } |
| EXPORT_SYMBOL(rtw_pci_remove); |
| |
| void rtw_pci_shutdown(struct pci_dev *pdev) |
| { |
| struct ieee80211_hw *hw = pci_get_drvdata(pdev); |
| struct rtw_dev *rtwdev; |
| const struct rtw_chip_info *chip; |
| |
| if (!hw) |
| return; |
| |
| rtwdev = hw->priv; |
| chip = rtwdev->chip; |
| |
| if (chip->ops->shutdown) |
| chip->ops->shutdown(rtwdev); |
| |
| pci_set_power_state(pdev, PCI_D3hot); |
| } |
| EXPORT_SYMBOL(rtw_pci_shutdown); |
| |
| MODULE_AUTHOR("Realtek Corporation"); |
| MODULE_DESCRIPTION("Realtek PCI 802.11ac wireless driver"); |
| MODULE_LICENSE("Dual BSD/GPL"); |