| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Cryptographic API. |
| * |
| * s390 implementation of the AES Cipher Algorithm. |
| * |
| * s390 Version: |
| * Copyright IBM Corp. 2005, 2017 |
| * Author(s): Jan Glauber (jang@de.ibm.com) |
| * Sebastian Siewior (sebastian@breakpoint.cc> SW-Fallback |
| * Patrick Steuer <patrick.steuer@de.ibm.com> |
| * Harald Freudenberger <freude@de.ibm.com> |
| * |
| * Derived from "crypto/aes_generic.c" |
| */ |
| |
| #define KMSG_COMPONENT "aes_s390" |
| #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt |
| |
| #include <crypto/aes.h> |
| #include <crypto/algapi.h> |
| #include <crypto/ghash.h> |
| #include <crypto/internal/aead.h> |
| #include <crypto/internal/skcipher.h> |
| #include <crypto/scatterwalk.h> |
| #include <linux/err.h> |
| #include <linux/module.h> |
| #include <linux/cpufeature.h> |
| #include <linux/init.h> |
| #include <linux/mutex.h> |
| #include <linux/fips.h> |
| #include <linux/string.h> |
| #include <crypto/xts.h> |
| #include <asm/cpacf.h> |
| |
| static u8 *ctrblk; |
| static DEFINE_MUTEX(ctrblk_lock); |
| |
| static cpacf_mask_t km_functions, kmc_functions, kmctr_functions, |
| kma_functions; |
| |
| struct s390_aes_ctx { |
| u8 key[AES_MAX_KEY_SIZE]; |
| int key_len; |
| unsigned long fc; |
| union { |
| struct crypto_skcipher *skcipher; |
| struct crypto_cipher *cip; |
| } fallback; |
| }; |
| |
| struct s390_xts_ctx { |
| u8 key[32]; |
| u8 pcc_key[32]; |
| int key_len; |
| unsigned long fc; |
| struct crypto_skcipher *fallback; |
| }; |
| |
| struct gcm_sg_walk { |
| struct scatter_walk walk; |
| unsigned int walk_bytes; |
| u8 *walk_ptr; |
| unsigned int walk_bytes_remain; |
| u8 buf[AES_BLOCK_SIZE]; |
| unsigned int buf_bytes; |
| u8 *ptr; |
| unsigned int nbytes; |
| }; |
| |
| static int setkey_fallback_cip(struct crypto_tfm *tfm, const u8 *in_key, |
| unsigned int key_len) |
| { |
| struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm); |
| int ret; |
| |
| sctx->fallback.cip->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK; |
| sctx->fallback.cip->base.crt_flags |= (tfm->crt_flags & |
| CRYPTO_TFM_REQ_MASK); |
| |
| ret = crypto_cipher_setkey(sctx->fallback.cip, in_key, key_len); |
| if (ret) { |
| tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK; |
| tfm->crt_flags |= (sctx->fallback.cip->base.crt_flags & |
| CRYPTO_TFM_RES_MASK); |
| } |
| return ret; |
| } |
| |
| static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key, |
| unsigned int key_len) |
| { |
| struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm); |
| unsigned long fc; |
| |
| /* Pick the correct function code based on the key length */ |
| fc = (key_len == 16) ? CPACF_KM_AES_128 : |
| (key_len == 24) ? CPACF_KM_AES_192 : |
| (key_len == 32) ? CPACF_KM_AES_256 : 0; |
| |
| /* Check if the function code is available */ |
| sctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0; |
| if (!sctx->fc) |
| return setkey_fallback_cip(tfm, in_key, key_len); |
| |
| sctx->key_len = key_len; |
| memcpy(sctx->key, in_key, key_len); |
| return 0; |
| } |
| |
| static void crypto_aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) |
| { |
| struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm); |
| |
| if (unlikely(!sctx->fc)) { |
| crypto_cipher_encrypt_one(sctx->fallback.cip, out, in); |
| return; |
| } |
| cpacf_km(sctx->fc, &sctx->key, out, in, AES_BLOCK_SIZE); |
| } |
| |
| static void crypto_aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) |
| { |
| struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm); |
| |
| if (unlikely(!sctx->fc)) { |
| crypto_cipher_decrypt_one(sctx->fallback.cip, out, in); |
| return; |
| } |
| cpacf_km(sctx->fc | CPACF_DECRYPT, |
| &sctx->key, out, in, AES_BLOCK_SIZE); |
| } |
| |
| static int fallback_init_cip(struct crypto_tfm *tfm) |
| { |
| const char *name = tfm->__crt_alg->cra_name; |
| struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm); |
| |
| sctx->fallback.cip = crypto_alloc_cipher(name, 0, |
| CRYPTO_ALG_NEED_FALLBACK); |
| |
| if (IS_ERR(sctx->fallback.cip)) { |
| pr_err("Allocating AES fallback algorithm %s failed\n", |
| name); |
| return PTR_ERR(sctx->fallback.cip); |
| } |
| |
| return 0; |
| } |
| |
| static void fallback_exit_cip(struct crypto_tfm *tfm) |
| { |
| struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm); |
| |
| crypto_free_cipher(sctx->fallback.cip); |
| sctx->fallback.cip = NULL; |
| } |
| |
| static struct crypto_alg aes_alg = { |
| .cra_name = "aes", |
| .cra_driver_name = "aes-s390", |
| .cra_priority = 300, |
| .cra_flags = CRYPTO_ALG_TYPE_CIPHER | |
| CRYPTO_ALG_NEED_FALLBACK, |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct s390_aes_ctx), |
| .cra_module = THIS_MODULE, |
| .cra_init = fallback_init_cip, |
| .cra_exit = fallback_exit_cip, |
| .cra_u = { |
| .cipher = { |
| .cia_min_keysize = AES_MIN_KEY_SIZE, |
| .cia_max_keysize = AES_MAX_KEY_SIZE, |
| .cia_setkey = aes_set_key, |
| .cia_encrypt = crypto_aes_encrypt, |
| .cia_decrypt = crypto_aes_decrypt, |
| } |
| } |
| }; |
| |
| static int setkey_fallback_skcipher(struct crypto_skcipher *tfm, const u8 *key, |
| unsigned int len) |
| { |
| struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm); |
| int ret; |
| |
| crypto_skcipher_clear_flags(sctx->fallback.skcipher, |
| CRYPTO_TFM_REQ_MASK); |
| crypto_skcipher_set_flags(sctx->fallback.skcipher, |
| crypto_skcipher_get_flags(tfm) & |
| CRYPTO_TFM_REQ_MASK); |
| ret = crypto_skcipher_setkey(sctx->fallback.skcipher, key, len); |
| crypto_skcipher_set_flags(tfm, |
| crypto_skcipher_get_flags(sctx->fallback.skcipher) & |
| CRYPTO_TFM_RES_MASK); |
| return ret; |
| } |
| |
| static int fallback_skcipher_crypt(struct s390_aes_ctx *sctx, |
| struct skcipher_request *req, |
| unsigned long modifier) |
| { |
| struct skcipher_request *subreq = skcipher_request_ctx(req); |
| |
| *subreq = *req; |
| skcipher_request_set_tfm(subreq, sctx->fallback.skcipher); |
| return (modifier & CPACF_DECRYPT) ? |
| crypto_skcipher_decrypt(subreq) : |
| crypto_skcipher_encrypt(subreq); |
| } |
| |
| static int ecb_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key, |
| unsigned int key_len) |
| { |
| struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm); |
| unsigned long fc; |
| |
| /* Pick the correct function code based on the key length */ |
| fc = (key_len == 16) ? CPACF_KM_AES_128 : |
| (key_len == 24) ? CPACF_KM_AES_192 : |
| (key_len == 32) ? CPACF_KM_AES_256 : 0; |
| |
| /* Check if the function code is available */ |
| sctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0; |
| if (!sctx->fc) |
| return setkey_fallback_skcipher(tfm, in_key, key_len); |
| |
| sctx->key_len = key_len; |
| memcpy(sctx->key, in_key, key_len); |
| return 0; |
| } |
| |
| static int ecb_aes_crypt(struct skcipher_request *req, unsigned long modifier) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm); |
| struct skcipher_walk walk; |
| unsigned int nbytes, n; |
| int ret; |
| |
| if (unlikely(!sctx->fc)) |
| return fallback_skcipher_crypt(sctx, req, modifier); |
| |
| ret = skcipher_walk_virt(&walk, req, false); |
| while ((nbytes = walk.nbytes) != 0) { |
| /* only use complete blocks */ |
| n = nbytes & ~(AES_BLOCK_SIZE - 1); |
| cpacf_km(sctx->fc | modifier, sctx->key, |
| walk.dst.virt.addr, walk.src.virt.addr, n); |
| ret = skcipher_walk_done(&walk, nbytes - n); |
| } |
| return ret; |
| } |
| |
| static int ecb_aes_encrypt(struct skcipher_request *req) |
| { |
| return ecb_aes_crypt(req, 0); |
| } |
| |
| static int ecb_aes_decrypt(struct skcipher_request *req) |
| { |
| return ecb_aes_crypt(req, CPACF_DECRYPT); |
| } |
| |
| static int fallback_init_skcipher(struct crypto_skcipher *tfm) |
| { |
| const char *name = crypto_tfm_alg_name(&tfm->base); |
| struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm); |
| |
| sctx->fallback.skcipher = crypto_alloc_skcipher(name, 0, |
| CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC); |
| |
| if (IS_ERR(sctx->fallback.skcipher)) { |
| pr_err("Allocating AES fallback algorithm %s failed\n", |
| name); |
| return PTR_ERR(sctx->fallback.skcipher); |
| } |
| |
| crypto_skcipher_set_reqsize(tfm, sizeof(struct skcipher_request) + |
| crypto_skcipher_reqsize(sctx->fallback.skcipher)); |
| return 0; |
| } |
| |
| static void fallback_exit_skcipher(struct crypto_skcipher *tfm) |
| { |
| struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm); |
| |
| crypto_free_skcipher(sctx->fallback.skcipher); |
| } |
| |
| static struct skcipher_alg ecb_aes_alg = { |
| .base.cra_name = "ecb(aes)", |
| .base.cra_driver_name = "ecb-aes-s390", |
| .base.cra_priority = 401, /* combo: aes + ecb + 1 */ |
| .base.cra_flags = CRYPTO_ALG_NEED_FALLBACK, |
| .base.cra_blocksize = AES_BLOCK_SIZE, |
| .base.cra_ctxsize = sizeof(struct s390_aes_ctx), |
| .base.cra_module = THIS_MODULE, |
| .init = fallback_init_skcipher, |
| .exit = fallback_exit_skcipher, |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .setkey = ecb_aes_set_key, |
| .encrypt = ecb_aes_encrypt, |
| .decrypt = ecb_aes_decrypt, |
| }; |
| |
| static int cbc_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key, |
| unsigned int key_len) |
| { |
| struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm); |
| unsigned long fc; |
| |
| /* Pick the correct function code based on the key length */ |
| fc = (key_len == 16) ? CPACF_KMC_AES_128 : |
| (key_len == 24) ? CPACF_KMC_AES_192 : |
| (key_len == 32) ? CPACF_KMC_AES_256 : 0; |
| |
| /* Check if the function code is available */ |
| sctx->fc = (fc && cpacf_test_func(&kmc_functions, fc)) ? fc : 0; |
| if (!sctx->fc) |
| return setkey_fallback_skcipher(tfm, in_key, key_len); |
| |
| sctx->key_len = key_len; |
| memcpy(sctx->key, in_key, key_len); |
| return 0; |
| } |
| |
| static int cbc_aes_crypt(struct skcipher_request *req, unsigned long modifier) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm); |
| struct skcipher_walk walk; |
| unsigned int nbytes, n; |
| int ret; |
| struct { |
| u8 iv[AES_BLOCK_SIZE]; |
| u8 key[AES_MAX_KEY_SIZE]; |
| } param; |
| |
| if (unlikely(!sctx->fc)) |
| return fallback_skcipher_crypt(sctx, req, modifier); |
| |
| ret = skcipher_walk_virt(&walk, req, false); |
| if (ret) |
| return ret; |
| memcpy(param.iv, walk.iv, AES_BLOCK_SIZE); |
| memcpy(param.key, sctx->key, sctx->key_len); |
| while ((nbytes = walk.nbytes) != 0) { |
| /* only use complete blocks */ |
| n = nbytes & ~(AES_BLOCK_SIZE - 1); |
| cpacf_kmc(sctx->fc | modifier, ¶m, |
| walk.dst.virt.addr, walk.src.virt.addr, n); |
| memcpy(walk.iv, param.iv, AES_BLOCK_SIZE); |
| ret = skcipher_walk_done(&walk, nbytes - n); |
| } |
| return ret; |
| } |
| |
| static int cbc_aes_encrypt(struct skcipher_request *req) |
| { |
| return cbc_aes_crypt(req, 0); |
| } |
| |
| static int cbc_aes_decrypt(struct skcipher_request *req) |
| { |
| return cbc_aes_crypt(req, CPACF_DECRYPT); |
| } |
| |
| static struct skcipher_alg cbc_aes_alg = { |
| .base.cra_name = "cbc(aes)", |
| .base.cra_driver_name = "cbc-aes-s390", |
| .base.cra_priority = 402, /* ecb-aes-s390 + 1 */ |
| .base.cra_flags = CRYPTO_ALG_NEED_FALLBACK, |
| .base.cra_blocksize = AES_BLOCK_SIZE, |
| .base.cra_ctxsize = sizeof(struct s390_aes_ctx), |
| .base.cra_module = THIS_MODULE, |
| .init = fallback_init_skcipher, |
| .exit = fallback_exit_skcipher, |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .ivsize = AES_BLOCK_SIZE, |
| .setkey = cbc_aes_set_key, |
| .encrypt = cbc_aes_encrypt, |
| .decrypt = cbc_aes_decrypt, |
| }; |
| |
| static int xts_fallback_setkey(struct crypto_skcipher *tfm, const u8 *key, |
| unsigned int len) |
| { |
| struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm); |
| int ret; |
| |
| crypto_skcipher_clear_flags(xts_ctx->fallback, CRYPTO_TFM_REQ_MASK); |
| crypto_skcipher_set_flags(xts_ctx->fallback, |
| crypto_skcipher_get_flags(tfm) & |
| CRYPTO_TFM_REQ_MASK); |
| ret = crypto_skcipher_setkey(xts_ctx->fallback, key, len); |
| crypto_skcipher_set_flags(tfm, |
| crypto_skcipher_get_flags(xts_ctx->fallback) & |
| CRYPTO_TFM_RES_MASK); |
| return ret; |
| } |
| |
| static int xts_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key, |
| unsigned int key_len) |
| { |
| struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm); |
| unsigned long fc; |
| int err; |
| |
| err = xts_fallback_setkey(tfm, in_key, key_len); |
| if (err) |
| return err; |
| |
| /* In fips mode only 128 bit or 256 bit keys are valid */ |
| if (fips_enabled && key_len != 32 && key_len != 64) |
| return -EINVAL; |
| |
| /* Pick the correct function code based on the key length */ |
| fc = (key_len == 32) ? CPACF_KM_XTS_128 : |
| (key_len == 64) ? CPACF_KM_XTS_256 : 0; |
| |
| /* Check if the function code is available */ |
| xts_ctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0; |
| if (!xts_ctx->fc) |
| return 0; |
| |
| /* Split the XTS key into the two subkeys */ |
| key_len = key_len / 2; |
| xts_ctx->key_len = key_len; |
| memcpy(xts_ctx->key, in_key, key_len); |
| memcpy(xts_ctx->pcc_key, in_key + key_len, key_len); |
| return 0; |
| } |
| |
| static int xts_aes_crypt(struct skcipher_request *req, unsigned long modifier) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm); |
| struct skcipher_walk walk; |
| unsigned int offset, nbytes, n; |
| int ret; |
| struct { |
| u8 key[32]; |
| u8 tweak[16]; |
| u8 block[16]; |
| u8 bit[16]; |
| u8 xts[16]; |
| } pcc_param; |
| struct { |
| u8 key[32]; |
| u8 init[16]; |
| } xts_param; |
| |
| if (req->cryptlen < AES_BLOCK_SIZE) |
| return -EINVAL; |
| |
| if (unlikely(!xts_ctx->fc || (req->cryptlen % AES_BLOCK_SIZE) != 0)) { |
| struct skcipher_request *subreq = skcipher_request_ctx(req); |
| |
| *subreq = *req; |
| skcipher_request_set_tfm(subreq, xts_ctx->fallback); |
| return (modifier & CPACF_DECRYPT) ? |
| crypto_skcipher_decrypt(subreq) : |
| crypto_skcipher_encrypt(subreq); |
| } |
| |
| ret = skcipher_walk_virt(&walk, req, false); |
| if (ret) |
| return ret; |
| offset = xts_ctx->key_len & 0x10; |
| memset(pcc_param.block, 0, sizeof(pcc_param.block)); |
| memset(pcc_param.bit, 0, sizeof(pcc_param.bit)); |
| memset(pcc_param.xts, 0, sizeof(pcc_param.xts)); |
| memcpy(pcc_param.tweak, walk.iv, sizeof(pcc_param.tweak)); |
| memcpy(pcc_param.key + offset, xts_ctx->pcc_key, xts_ctx->key_len); |
| cpacf_pcc(xts_ctx->fc, pcc_param.key + offset); |
| |
| memcpy(xts_param.key + offset, xts_ctx->key, xts_ctx->key_len); |
| memcpy(xts_param.init, pcc_param.xts, 16); |
| |
| while ((nbytes = walk.nbytes) != 0) { |
| /* only use complete blocks */ |
| n = nbytes & ~(AES_BLOCK_SIZE - 1); |
| cpacf_km(xts_ctx->fc | modifier, xts_param.key + offset, |
| walk.dst.virt.addr, walk.src.virt.addr, n); |
| ret = skcipher_walk_done(&walk, nbytes - n); |
| } |
| return ret; |
| } |
| |
| static int xts_aes_encrypt(struct skcipher_request *req) |
| { |
| return xts_aes_crypt(req, 0); |
| } |
| |
| static int xts_aes_decrypt(struct skcipher_request *req) |
| { |
| return xts_aes_crypt(req, CPACF_DECRYPT); |
| } |
| |
| static int xts_fallback_init(struct crypto_skcipher *tfm) |
| { |
| const char *name = crypto_tfm_alg_name(&tfm->base); |
| struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm); |
| |
| xts_ctx->fallback = crypto_alloc_skcipher(name, 0, |
| CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC); |
| |
| if (IS_ERR(xts_ctx->fallback)) { |
| pr_err("Allocating XTS fallback algorithm %s failed\n", |
| name); |
| return PTR_ERR(xts_ctx->fallback); |
| } |
| crypto_skcipher_set_reqsize(tfm, sizeof(struct skcipher_request) + |
| crypto_skcipher_reqsize(xts_ctx->fallback)); |
| return 0; |
| } |
| |
| static void xts_fallback_exit(struct crypto_skcipher *tfm) |
| { |
| struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm); |
| |
| crypto_free_skcipher(xts_ctx->fallback); |
| } |
| |
| static struct skcipher_alg xts_aes_alg = { |
| .base.cra_name = "xts(aes)", |
| .base.cra_driver_name = "xts-aes-s390", |
| .base.cra_priority = 402, /* ecb-aes-s390 + 1 */ |
| .base.cra_flags = CRYPTO_ALG_NEED_FALLBACK, |
| .base.cra_blocksize = AES_BLOCK_SIZE, |
| .base.cra_ctxsize = sizeof(struct s390_xts_ctx), |
| .base.cra_module = THIS_MODULE, |
| .init = xts_fallback_init, |
| .exit = xts_fallback_exit, |
| .min_keysize = 2 * AES_MIN_KEY_SIZE, |
| .max_keysize = 2 * AES_MAX_KEY_SIZE, |
| .ivsize = AES_BLOCK_SIZE, |
| .setkey = xts_aes_set_key, |
| .encrypt = xts_aes_encrypt, |
| .decrypt = xts_aes_decrypt, |
| }; |
| |
| static int ctr_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key, |
| unsigned int key_len) |
| { |
| struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm); |
| unsigned long fc; |
| |
| /* Pick the correct function code based on the key length */ |
| fc = (key_len == 16) ? CPACF_KMCTR_AES_128 : |
| (key_len == 24) ? CPACF_KMCTR_AES_192 : |
| (key_len == 32) ? CPACF_KMCTR_AES_256 : 0; |
| |
| /* Check if the function code is available */ |
| sctx->fc = (fc && cpacf_test_func(&kmctr_functions, fc)) ? fc : 0; |
| if (!sctx->fc) |
| return setkey_fallback_skcipher(tfm, in_key, key_len); |
| |
| sctx->key_len = key_len; |
| memcpy(sctx->key, in_key, key_len); |
| return 0; |
| } |
| |
| static unsigned int __ctrblk_init(u8 *ctrptr, u8 *iv, unsigned int nbytes) |
| { |
| unsigned int i, n; |
| |
| /* only use complete blocks, max. PAGE_SIZE */ |
| memcpy(ctrptr, iv, AES_BLOCK_SIZE); |
| n = (nbytes > PAGE_SIZE) ? PAGE_SIZE : nbytes & ~(AES_BLOCK_SIZE - 1); |
| for (i = (n / AES_BLOCK_SIZE) - 1; i > 0; i--) { |
| memcpy(ctrptr + AES_BLOCK_SIZE, ctrptr, AES_BLOCK_SIZE); |
| crypto_inc(ctrptr + AES_BLOCK_SIZE, AES_BLOCK_SIZE); |
| ctrptr += AES_BLOCK_SIZE; |
| } |
| return n; |
| } |
| |
| static int ctr_aes_crypt(struct skcipher_request *req) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm); |
| u8 buf[AES_BLOCK_SIZE], *ctrptr; |
| struct skcipher_walk walk; |
| unsigned int n, nbytes; |
| int ret, locked; |
| |
| if (unlikely(!sctx->fc)) |
| return fallback_skcipher_crypt(sctx, req, 0); |
| |
| locked = mutex_trylock(&ctrblk_lock); |
| |
| ret = skcipher_walk_virt(&walk, req, false); |
| while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) { |
| n = AES_BLOCK_SIZE; |
| |
| if (nbytes >= 2*AES_BLOCK_SIZE && locked) |
| n = __ctrblk_init(ctrblk, walk.iv, nbytes); |
| ctrptr = (n > AES_BLOCK_SIZE) ? ctrblk : walk.iv; |
| cpacf_kmctr(sctx->fc, sctx->key, walk.dst.virt.addr, |
| walk.src.virt.addr, n, ctrptr); |
| if (ctrptr == ctrblk) |
| memcpy(walk.iv, ctrptr + n - AES_BLOCK_SIZE, |
| AES_BLOCK_SIZE); |
| crypto_inc(walk.iv, AES_BLOCK_SIZE); |
| ret = skcipher_walk_done(&walk, nbytes - n); |
| } |
| if (locked) |
| mutex_unlock(&ctrblk_lock); |
| /* |
| * final block may be < AES_BLOCK_SIZE, copy only nbytes |
| */ |
| if (nbytes) { |
| cpacf_kmctr(sctx->fc, sctx->key, buf, walk.src.virt.addr, |
| AES_BLOCK_SIZE, walk.iv); |
| memcpy(walk.dst.virt.addr, buf, nbytes); |
| crypto_inc(walk.iv, AES_BLOCK_SIZE); |
| ret = skcipher_walk_done(&walk, 0); |
| } |
| |
| return ret; |
| } |
| |
| static struct skcipher_alg ctr_aes_alg = { |
| .base.cra_name = "ctr(aes)", |
| .base.cra_driver_name = "ctr-aes-s390", |
| .base.cra_priority = 402, /* ecb-aes-s390 + 1 */ |
| .base.cra_flags = CRYPTO_ALG_NEED_FALLBACK, |
| .base.cra_blocksize = 1, |
| .base.cra_ctxsize = sizeof(struct s390_aes_ctx), |
| .base.cra_module = THIS_MODULE, |
| .init = fallback_init_skcipher, |
| .exit = fallback_exit_skcipher, |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .ivsize = AES_BLOCK_SIZE, |
| .setkey = ctr_aes_set_key, |
| .encrypt = ctr_aes_crypt, |
| .decrypt = ctr_aes_crypt, |
| .chunksize = AES_BLOCK_SIZE, |
| }; |
| |
| static int gcm_aes_setkey(struct crypto_aead *tfm, const u8 *key, |
| unsigned int keylen) |
| { |
| struct s390_aes_ctx *ctx = crypto_aead_ctx(tfm); |
| |
| switch (keylen) { |
| case AES_KEYSIZE_128: |
| ctx->fc = CPACF_KMA_GCM_AES_128; |
| break; |
| case AES_KEYSIZE_192: |
| ctx->fc = CPACF_KMA_GCM_AES_192; |
| break; |
| case AES_KEYSIZE_256: |
| ctx->fc = CPACF_KMA_GCM_AES_256; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| memcpy(ctx->key, key, keylen); |
| ctx->key_len = keylen; |
| return 0; |
| } |
| |
| static int gcm_aes_setauthsize(struct crypto_aead *tfm, unsigned int authsize) |
| { |
| switch (authsize) { |
| case 4: |
| case 8: |
| case 12: |
| case 13: |
| case 14: |
| case 15: |
| case 16: |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static void gcm_walk_start(struct gcm_sg_walk *gw, struct scatterlist *sg, |
| unsigned int len) |
| { |
| memset(gw, 0, sizeof(*gw)); |
| gw->walk_bytes_remain = len; |
| scatterwalk_start(&gw->walk, sg); |
| } |
| |
| static inline unsigned int _gcm_sg_clamp_and_map(struct gcm_sg_walk *gw) |
| { |
| struct scatterlist *nextsg; |
| |
| gw->walk_bytes = scatterwalk_clamp(&gw->walk, gw->walk_bytes_remain); |
| while (!gw->walk_bytes) { |
| nextsg = sg_next(gw->walk.sg); |
| if (!nextsg) |
| return 0; |
| scatterwalk_start(&gw->walk, nextsg); |
| gw->walk_bytes = scatterwalk_clamp(&gw->walk, |
| gw->walk_bytes_remain); |
| } |
| gw->walk_ptr = scatterwalk_map(&gw->walk); |
| return gw->walk_bytes; |
| } |
| |
| static inline void _gcm_sg_unmap_and_advance(struct gcm_sg_walk *gw, |
| unsigned int nbytes) |
| { |
| gw->walk_bytes_remain -= nbytes; |
| scatterwalk_unmap(&gw->walk); |
| scatterwalk_advance(&gw->walk, nbytes); |
| scatterwalk_done(&gw->walk, 0, gw->walk_bytes_remain); |
| gw->walk_ptr = NULL; |
| } |
| |
| static int gcm_in_walk_go(struct gcm_sg_walk *gw, unsigned int minbytesneeded) |
| { |
| int n; |
| |
| if (gw->buf_bytes && gw->buf_bytes >= minbytesneeded) { |
| gw->ptr = gw->buf; |
| gw->nbytes = gw->buf_bytes; |
| goto out; |
| } |
| |
| if (gw->walk_bytes_remain == 0) { |
| gw->ptr = NULL; |
| gw->nbytes = 0; |
| goto out; |
| } |
| |
| if (!_gcm_sg_clamp_and_map(gw)) { |
| gw->ptr = NULL; |
| gw->nbytes = 0; |
| goto out; |
| } |
| |
| if (!gw->buf_bytes && gw->walk_bytes >= minbytesneeded) { |
| gw->ptr = gw->walk_ptr; |
| gw->nbytes = gw->walk_bytes; |
| goto out; |
| } |
| |
| while (1) { |
| n = min(gw->walk_bytes, AES_BLOCK_SIZE - gw->buf_bytes); |
| memcpy(gw->buf + gw->buf_bytes, gw->walk_ptr, n); |
| gw->buf_bytes += n; |
| _gcm_sg_unmap_and_advance(gw, n); |
| if (gw->buf_bytes >= minbytesneeded) { |
| gw->ptr = gw->buf; |
| gw->nbytes = gw->buf_bytes; |
| goto out; |
| } |
| if (!_gcm_sg_clamp_and_map(gw)) { |
| gw->ptr = NULL; |
| gw->nbytes = 0; |
| goto out; |
| } |
| } |
| |
| out: |
| return gw->nbytes; |
| } |
| |
| static int gcm_out_walk_go(struct gcm_sg_walk *gw, unsigned int minbytesneeded) |
| { |
| if (gw->walk_bytes_remain == 0) { |
| gw->ptr = NULL; |
| gw->nbytes = 0; |
| goto out; |
| } |
| |
| if (!_gcm_sg_clamp_and_map(gw)) { |
| gw->ptr = NULL; |
| gw->nbytes = 0; |
| goto out; |
| } |
| |
| if (gw->walk_bytes >= minbytesneeded) { |
| gw->ptr = gw->walk_ptr; |
| gw->nbytes = gw->walk_bytes; |
| goto out; |
| } |
| |
| scatterwalk_unmap(&gw->walk); |
| gw->walk_ptr = NULL; |
| |
| gw->ptr = gw->buf; |
| gw->nbytes = sizeof(gw->buf); |
| |
| out: |
| return gw->nbytes; |
| } |
| |
| static int gcm_in_walk_done(struct gcm_sg_walk *gw, unsigned int bytesdone) |
| { |
| if (gw->ptr == NULL) |
| return 0; |
| |
| if (gw->ptr == gw->buf) { |
| int n = gw->buf_bytes - bytesdone; |
| if (n > 0) { |
| memmove(gw->buf, gw->buf + bytesdone, n); |
| gw->buf_bytes = n; |
| } else |
| gw->buf_bytes = 0; |
| } else |
| _gcm_sg_unmap_and_advance(gw, bytesdone); |
| |
| return bytesdone; |
| } |
| |
| static int gcm_out_walk_done(struct gcm_sg_walk *gw, unsigned int bytesdone) |
| { |
| int i, n; |
| |
| if (gw->ptr == NULL) |
| return 0; |
| |
| if (gw->ptr == gw->buf) { |
| for (i = 0; i < bytesdone; i += n) { |
| if (!_gcm_sg_clamp_and_map(gw)) |
| return i; |
| n = min(gw->walk_bytes, bytesdone - i); |
| memcpy(gw->walk_ptr, gw->buf + i, n); |
| _gcm_sg_unmap_and_advance(gw, n); |
| } |
| } else |
| _gcm_sg_unmap_and_advance(gw, bytesdone); |
| |
| return bytesdone; |
| } |
| |
| static int gcm_aes_crypt(struct aead_request *req, unsigned int flags) |
| { |
| struct crypto_aead *tfm = crypto_aead_reqtfm(req); |
| struct s390_aes_ctx *ctx = crypto_aead_ctx(tfm); |
| unsigned int ivsize = crypto_aead_ivsize(tfm); |
| unsigned int taglen = crypto_aead_authsize(tfm); |
| unsigned int aadlen = req->assoclen; |
| unsigned int pclen = req->cryptlen; |
| int ret = 0; |
| |
| unsigned int n, len, in_bytes, out_bytes, |
| min_bytes, bytes, aad_bytes, pc_bytes; |
| struct gcm_sg_walk gw_in, gw_out; |
| u8 tag[GHASH_DIGEST_SIZE]; |
| |
| struct { |
| u32 _[3]; /* reserved */ |
| u32 cv; /* Counter Value */ |
| u8 t[GHASH_DIGEST_SIZE];/* Tag */ |
| u8 h[AES_BLOCK_SIZE]; /* Hash-subkey */ |
| u64 taadl; /* Total AAD Length */ |
| u64 tpcl; /* Total Plain-/Cipher-text Length */ |
| u8 j0[GHASH_BLOCK_SIZE];/* initial counter value */ |
| u8 k[AES_MAX_KEY_SIZE]; /* Key */ |
| } param; |
| |
| /* |
| * encrypt |
| * req->src: aad||plaintext |
| * req->dst: aad||ciphertext||tag |
| * decrypt |
| * req->src: aad||ciphertext||tag |
| * req->dst: aad||plaintext, return 0 or -EBADMSG |
| * aad, plaintext and ciphertext may be empty. |
| */ |
| if (flags & CPACF_DECRYPT) |
| pclen -= taglen; |
| len = aadlen + pclen; |
| |
| memset(¶m, 0, sizeof(param)); |
| param.cv = 1; |
| param.taadl = aadlen * 8; |
| param.tpcl = pclen * 8; |
| memcpy(param.j0, req->iv, ivsize); |
| *(u32 *)(param.j0 + ivsize) = 1; |
| memcpy(param.k, ctx->key, ctx->key_len); |
| |
| gcm_walk_start(&gw_in, req->src, len); |
| gcm_walk_start(&gw_out, req->dst, len); |
| |
| do { |
| min_bytes = min_t(unsigned int, |
| aadlen > 0 ? aadlen : pclen, AES_BLOCK_SIZE); |
| in_bytes = gcm_in_walk_go(&gw_in, min_bytes); |
| out_bytes = gcm_out_walk_go(&gw_out, min_bytes); |
| bytes = min(in_bytes, out_bytes); |
| |
| if (aadlen + pclen <= bytes) { |
| aad_bytes = aadlen; |
| pc_bytes = pclen; |
| flags |= CPACF_KMA_LAAD | CPACF_KMA_LPC; |
| } else { |
| if (aadlen <= bytes) { |
| aad_bytes = aadlen; |
| pc_bytes = (bytes - aadlen) & |
| ~(AES_BLOCK_SIZE - 1); |
| flags |= CPACF_KMA_LAAD; |
| } else { |
| aad_bytes = bytes & ~(AES_BLOCK_SIZE - 1); |
| pc_bytes = 0; |
| } |
| } |
| |
| if (aad_bytes > 0) |
| memcpy(gw_out.ptr, gw_in.ptr, aad_bytes); |
| |
| cpacf_kma(ctx->fc | flags, ¶m, |
| gw_out.ptr + aad_bytes, |
| gw_in.ptr + aad_bytes, pc_bytes, |
| gw_in.ptr, aad_bytes); |
| |
| n = aad_bytes + pc_bytes; |
| if (gcm_in_walk_done(&gw_in, n) != n) |
| return -ENOMEM; |
| if (gcm_out_walk_done(&gw_out, n) != n) |
| return -ENOMEM; |
| aadlen -= aad_bytes; |
| pclen -= pc_bytes; |
| } while (aadlen + pclen > 0); |
| |
| if (flags & CPACF_DECRYPT) { |
| scatterwalk_map_and_copy(tag, req->src, len, taglen, 0); |
| if (crypto_memneq(tag, param.t, taglen)) |
| ret = -EBADMSG; |
| } else |
| scatterwalk_map_and_copy(param.t, req->dst, len, taglen, 1); |
| |
| memzero_explicit(¶m, sizeof(param)); |
| return ret; |
| } |
| |
| static int gcm_aes_encrypt(struct aead_request *req) |
| { |
| return gcm_aes_crypt(req, CPACF_ENCRYPT); |
| } |
| |
| static int gcm_aes_decrypt(struct aead_request *req) |
| { |
| return gcm_aes_crypt(req, CPACF_DECRYPT); |
| } |
| |
| static struct aead_alg gcm_aes_aead = { |
| .setkey = gcm_aes_setkey, |
| .setauthsize = gcm_aes_setauthsize, |
| .encrypt = gcm_aes_encrypt, |
| .decrypt = gcm_aes_decrypt, |
| |
| .ivsize = GHASH_BLOCK_SIZE - sizeof(u32), |
| .maxauthsize = GHASH_DIGEST_SIZE, |
| .chunksize = AES_BLOCK_SIZE, |
| |
| .base = { |
| .cra_blocksize = 1, |
| .cra_ctxsize = sizeof(struct s390_aes_ctx), |
| .cra_priority = 900, |
| .cra_name = "gcm(aes)", |
| .cra_driver_name = "gcm-aes-s390", |
| .cra_module = THIS_MODULE, |
| }, |
| }; |
| |
| static struct crypto_alg *aes_s390_alg; |
| static struct skcipher_alg *aes_s390_skcipher_algs[4]; |
| static int aes_s390_skciphers_num; |
| static struct aead_alg *aes_s390_aead_alg; |
| |
| static int aes_s390_register_skcipher(struct skcipher_alg *alg) |
| { |
| int ret; |
| |
| ret = crypto_register_skcipher(alg); |
| if (!ret) |
| aes_s390_skcipher_algs[aes_s390_skciphers_num++] = alg; |
| return ret; |
| } |
| |
| static void aes_s390_fini(void) |
| { |
| if (aes_s390_alg) |
| crypto_unregister_alg(aes_s390_alg); |
| while (aes_s390_skciphers_num--) |
| crypto_unregister_skcipher(aes_s390_skcipher_algs[aes_s390_skciphers_num]); |
| if (ctrblk) |
| free_page((unsigned long) ctrblk); |
| |
| if (aes_s390_aead_alg) |
| crypto_unregister_aead(aes_s390_aead_alg); |
| } |
| |
| static int __init aes_s390_init(void) |
| { |
| int ret; |
| |
| /* Query available functions for KM, KMC, KMCTR and KMA */ |
| cpacf_query(CPACF_KM, &km_functions); |
| cpacf_query(CPACF_KMC, &kmc_functions); |
| cpacf_query(CPACF_KMCTR, &kmctr_functions); |
| cpacf_query(CPACF_KMA, &kma_functions); |
| |
| if (cpacf_test_func(&km_functions, CPACF_KM_AES_128) || |
| cpacf_test_func(&km_functions, CPACF_KM_AES_192) || |
| cpacf_test_func(&km_functions, CPACF_KM_AES_256)) { |
| ret = crypto_register_alg(&aes_alg); |
| if (ret) |
| goto out_err; |
| aes_s390_alg = &aes_alg; |
| ret = aes_s390_register_skcipher(&ecb_aes_alg); |
| if (ret) |
| goto out_err; |
| } |
| |
| if (cpacf_test_func(&kmc_functions, CPACF_KMC_AES_128) || |
| cpacf_test_func(&kmc_functions, CPACF_KMC_AES_192) || |
| cpacf_test_func(&kmc_functions, CPACF_KMC_AES_256)) { |
| ret = aes_s390_register_skcipher(&cbc_aes_alg); |
| if (ret) |
| goto out_err; |
| } |
| |
| if (cpacf_test_func(&km_functions, CPACF_KM_XTS_128) || |
| cpacf_test_func(&km_functions, CPACF_KM_XTS_256)) { |
| ret = aes_s390_register_skcipher(&xts_aes_alg); |
| if (ret) |
| goto out_err; |
| } |
| |
| if (cpacf_test_func(&kmctr_functions, CPACF_KMCTR_AES_128) || |
| cpacf_test_func(&kmctr_functions, CPACF_KMCTR_AES_192) || |
| cpacf_test_func(&kmctr_functions, CPACF_KMCTR_AES_256)) { |
| ctrblk = (u8 *) __get_free_page(GFP_KERNEL); |
| if (!ctrblk) { |
| ret = -ENOMEM; |
| goto out_err; |
| } |
| ret = aes_s390_register_skcipher(&ctr_aes_alg); |
| if (ret) |
| goto out_err; |
| } |
| |
| if (cpacf_test_func(&kma_functions, CPACF_KMA_GCM_AES_128) || |
| cpacf_test_func(&kma_functions, CPACF_KMA_GCM_AES_192) || |
| cpacf_test_func(&kma_functions, CPACF_KMA_GCM_AES_256)) { |
| ret = crypto_register_aead(&gcm_aes_aead); |
| if (ret) |
| goto out_err; |
| aes_s390_aead_alg = &gcm_aes_aead; |
| } |
| |
| return 0; |
| out_err: |
| aes_s390_fini(); |
| return ret; |
| } |
| |
| module_cpu_feature_match(MSA, aes_s390_init); |
| module_exit(aes_s390_fini); |
| |
| MODULE_ALIAS_CRYPTO("aes-all"); |
| |
| MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm"); |
| MODULE_LICENSE("GPL"); |