| /* |
| * linux/arch/alpha/kernel/core_titan.c |
| * |
| * Code common to all TITAN core logic chips. |
| */ |
| |
| #define __EXTERN_INLINE inline |
| #include <asm/io.h> |
| #include <asm/core_titan.h> |
| #undef __EXTERN_INLINE |
| |
| #include <linux/module.h> |
| #include <linux/types.h> |
| #include <linux/pci.h> |
| #include <linux/sched.h> |
| #include <linux/init.h> |
| #include <linux/vmalloc.h> |
| #include <linux/bootmem.h> |
| |
| #include <asm/ptrace.h> |
| #include <asm/smp.h> |
| #include <asm/pgalloc.h> |
| #include <asm/tlbflush.h> |
| #include <asm/vga.h> |
| |
| #include "proto.h" |
| #include "pci_impl.h" |
| |
| /* Save Titan configuration data as the console had it set up. */ |
| |
| struct |
| { |
| unsigned long wsba[4]; |
| unsigned long wsm[4]; |
| unsigned long tba[4]; |
| } saved_config[4] __attribute__((common)); |
| |
| /* |
| * Is PChip 1 present? No need to query it more than once. |
| */ |
| static int titan_pchip1_present; |
| |
| /* |
| * BIOS32-style PCI interface: |
| */ |
| |
| #define DEBUG_CONFIG 0 |
| |
| #if DEBUG_CONFIG |
| # define DBG_CFG(args) printk args |
| #else |
| # define DBG_CFG(args) |
| #endif |
| |
| |
| /* |
| * Routines to access TIG registers. |
| */ |
| static inline volatile unsigned long * |
| mk_tig_addr(int offset) |
| { |
| return (volatile unsigned long *)(TITAN_TIG_SPACE + (offset << 6)); |
| } |
| |
| static inline u8 |
| titan_read_tig(int offset, u8 value) |
| { |
| volatile unsigned long *tig_addr = mk_tig_addr(offset); |
| return (u8)(*tig_addr & 0xff); |
| } |
| |
| static inline void |
| titan_write_tig(int offset, u8 value) |
| { |
| volatile unsigned long *tig_addr = mk_tig_addr(offset); |
| *tig_addr = (unsigned long)value; |
| } |
| |
| |
| /* |
| * Given a bus, device, and function number, compute resulting |
| * configuration space address |
| * accordingly. It is therefore not safe to have concurrent |
| * invocations to configuration space access routines, but there |
| * really shouldn't be any need for this. |
| * |
| * Note that all config space accesses use Type 1 address format. |
| * |
| * Note also that type 1 is determined by non-zero bus number. |
| * |
| * Type 1: |
| * |
| * 3 3|3 3 2 2|2 2 2 2|2 2 2 2|1 1 1 1|1 1 1 1|1 1 |
| * 3 2|1 0 9 8|7 6 5 4|3 2 1 0|9 8 7 6|5 4 3 2|1 0 9 8|7 6 5 4|3 2 1 0 |
| * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| * | | | | | | | | | | |B|B|B|B|B|B|B|B|D|D|D|D|D|F|F|F|R|R|R|R|R|R|0|1| |
| * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| * |
| * 31:24 reserved |
| * 23:16 bus number (8 bits = 128 possible buses) |
| * 15:11 Device number (5 bits) |
| * 10:8 function number |
| * 7:2 register number |
| * |
| * Notes: |
| * The function number selects which function of a multi-function device |
| * (e.g., SCSI and Ethernet). |
| * |
| * The register selects a DWORD (32 bit) register offset. Hence it |
| * doesn't get shifted by 2 bits as we want to "drop" the bottom two |
| * bits. |
| */ |
| |
| static int |
| mk_conf_addr(struct pci_bus *pbus, unsigned int device_fn, int where, |
| unsigned long *pci_addr, unsigned char *type1) |
| { |
| struct pci_controller *hose = pbus->sysdata; |
| unsigned long addr; |
| u8 bus = pbus->number; |
| |
| DBG_CFG(("mk_conf_addr(bus=%d ,device_fn=0x%x, where=0x%x, " |
| "pci_addr=0x%p, type1=0x%p)\n", |
| bus, device_fn, where, pci_addr, type1)); |
| |
| if (!pbus->parent) /* No parent means peer PCI bus. */ |
| bus = 0; |
| *type1 = (bus != 0); |
| |
| addr = (bus << 16) | (device_fn << 8) | where; |
| addr |= hose->config_space_base; |
| |
| *pci_addr = addr; |
| DBG_CFG(("mk_conf_addr: returning pci_addr 0x%lx\n", addr)); |
| return 0; |
| } |
| |
| static int |
| titan_read_config(struct pci_bus *bus, unsigned int devfn, int where, |
| int size, u32 *value) |
| { |
| unsigned long addr; |
| unsigned char type1; |
| |
| if (mk_conf_addr(bus, devfn, where, &addr, &type1)) |
| return PCIBIOS_DEVICE_NOT_FOUND; |
| |
| switch (size) { |
| case 1: |
| *value = __kernel_ldbu(*(vucp)addr); |
| break; |
| case 2: |
| *value = __kernel_ldwu(*(vusp)addr); |
| break; |
| case 4: |
| *value = *(vuip)addr; |
| break; |
| } |
| |
| return PCIBIOS_SUCCESSFUL; |
| } |
| |
| static int |
| titan_write_config(struct pci_bus *bus, unsigned int devfn, int where, |
| int size, u32 value) |
| { |
| unsigned long addr; |
| unsigned char type1; |
| |
| if (mk_conf_addr(bus, devfn, where, &addr, &type1)) |
| return PCIBIOS_DEVICE_NOT_FOUND; |
| |
| switch (size) { |
| case 1: |
| __kernel_stb(value, *(vucp)addr); |
| mb(); |
| __kernel_ldbu(*(vucp)addr); |
| break; |
| case 2: |
| __kernel_stw(value, *(vusp)addr); |
| mb(); |
| __kernel_ldwu(*(vusp)addr); |
| break; |
| case 4: |
| *(vuip)addr = value; |
| mb(); |
| *(vuip)addr; |
| break; |
| } |
| |
| return PCIBIOS_SUCCESSFUL; |
| } |
| |
| struct pci_ops titan_pci_ops = |
| { |
| .read = titan_read_config, |
| .write = titan_write_config, |
| }; |
| |
| |
| void |
| titan_pci_tbi(struct pci_controller *hose, dma_addr_t start, dma_addr_t end) |
| { |
| titan_pachip *pachip = |
| (hose->index & 1) ? TITAN_pachip1 : TITAN_pachip0; |
| titan_pachip_port *port; |
| volatile unsigned long *csr; |
| unsigned long value; |
| |
| /* Get the right hose. */ |
| port = &pachip->g_port; |
| if (hose->index & 2) |
| port = &pachip->a_port; |
| |
| /* We can invalidate up to 8 tlb entries in a go. The flush |
| matches against <31:16> in the pci address. |
| Note that gtlbi* and atlbi* are in the same place in the g_port |
| and a_port, respectively, so the g_port offset can be used |
| even if hose is an a_port */ |
| csr = &port->port_specific.g.gtlbia.csr; |
| if (((start ^ end) & 0xffff0000) == 0) |
| csr = &port->port_specific.g.gtlbiv.csr; |
| |
| /* For TBIA, it doesn't matter what value we write. For TBI, |
| it's the shifted tag bits. */ |
| value = (start & 0xffff0000) >> 12; |
| |
| wmb(); |
| *csr = value; |
| mb(); |
| *csr; |
| } |
| |
| static int |
| titan_query_agp(titan_pachip_port *port) |
| { |
| union TPAchipPCTL pctl; |
| |
| /* set up APCTL */ |
| pctl.pctl_q_whole = port->pctl.csr; |
| |
| return pctl.pctl_r_bits.apctl_v_agp_present; |
| |
| } |
| |
| static void __init |
| titan_init_one_pachip_port(titan_pachip_port *port, int index) |
| { |
| struct pci_controller *hose; |
| |
| hose = alloc_pci_controller(); |
| if (index == 0) |
| pci_isa_hose = hose; |
| hose->io_space = alloc_resource(); |
| hose->mem_space = alloc_resource(); |
| |
| /* |
| * This is for userland consumption. The 40-bit PIO bias that we |
| * use in the kernel through KSEG doesn't work in the page table |
| * based user mappings. (43-bit KSEG sign extends the physical |
| * address from bit 40 to hit the I/O bit - mapped addresses don't). |
| * So make sure we get the 43-bit PIO bias. |
| */ |
| hose->sparse_mem_base = 0; |
| hose->sparse_io_base = 0; |
| hose->dense_mem_base |
| = (TITAN_MEM(index) & 0xffffffffffUL) | 0x80000000000UL; |
| hose->dense_io_base |
| = (TITAN_IO(index) & 0xffffffffffUL) | 0x80000000000UL; |
| |
| hose->config_space_base = TITAN_CONF(index); |
| hose->index = index; |
| |
| hose->io_space->start = TITAN_IO(index) - TITAN_IO_BIAS; |
| hose->io_space->end = hose->io_space->start + TITAN_IO_SPACE - 1; |
| hose->io_space->name = pci_io_names[index]; |
| hose->io_space->flags = IORESOURCE_IO; |
| |
| hose->mem_space->start = TITAN_MEM(index) - TITAN_MEM_BIAS; |
| hose->mem_space->end = hose->mem_space->start + 0xffffffff; |
| hose->mem_space->name = pci_mem_names[index]; |
| hose->mem_space->flags = IORESOURCE_MEM; |
| |
| if (request_resource(&ioport_resource, hose->io_space) < 0) |
| printk(KERN_ERR "Failed to request IO on hose %d\n", index); |
| if (request_resource(&iomem_resource, hose->mem_space) < 0) |
| printk(KERN_ERR "Failed to request MEM on hose %d\n", index); |
| |
| /* |
| * Save the existing PCI window translations. SRM will |
| * need them when we go to reboot. |
| */ |
| saved_config[index].wsba[0] = port->wsba[0].csr; |
| saved_config[index].wsm[0] = port->wsm[0].csr; |
| saved_config[index].tba[0] = port->tba[0].csr; |
| |
| saved_config[index].wsba[1] = port->wsba[1].csr; |
| saved_config[index].wsm[1] = port->wsm[1].csr; |
| saved_config[index].tba[1] = port->tba[1].csr; |
| |
| saved_config[index].wsba[2] = port->wsba[2].csr; |
| saved_config[index].wsm[2] = port->wsm[2].csr; |
| saved_config[index].tba[2] = port->tba[2].csr; |
| |
| saved_config[index].wsba[3] = port->wsba[3].csr; |
| saved_config[index].wsm[3] = port->wsm[3].csr; |
| saved_config[index].tba[3] = port->tba[3].csr; |
| |
| /* |
| * Set up the PCI to main memory translation windows. |
| * |
| * Note: Window 3 on Titan is Scatter-Gather ONLY. |
| * |
| * Window 0 is scatter-gather 8MB at 8MB (for isa) |
| * Window 1 is direct access 1GB at 2GB |
| * Window 2 is scatter-gather 1GB at 3GB |
| */ |
| hose->sg_isa = iommu_arena_new(hose, 0x00800000, 0x00800000, 0); |
| hose->sg_isa->align_entry = 8; /* 64KB for ISA */ |
| |
| hose->sg_pci = iommu_arena_new(hose, 0xc0000000, 0x40000000, 0); |
| hose->sg_pci->align_entry = 4; /* Titan caches 4 PTEs at a time */ |
| |
| port->wsba[0].csr = hose->sg_isa->dma_base | 3; |
| port->wsm[0].csr = (hose->sg_isa->size - 1) & 0xfff00000; |
| port->tba[0].csr = virt_to_phys(hose->sg_isa->ptes); |
| |
| port->wsba[1].csr = __direct_map_base | 1; |
| port->wsm[1].csr = (__direct_map_size - 1) & 0xfff00000; |
| port->tba[1].csr = 0; |
| |
| port->wsba[2].csr = hose->sg_pci->dma_base | 3; |
| port->wsm[2].csr = (hose->sg_pci->size - 1) & 0xfff00000; |
| port->tba[2].csr = virt_to_phys(hose->sg_pci->ptes); |
| |
| port->wsba[3].csr = 0; |
| |
| /* Enable the Monster Window to make DAC pci64 possible. */ |
| port->pctl.csr |= pctl_m_mwin; |
| |
| /* |
| * If it's an AGP port, initialize agplastwr. |
| */ |
| if (titan_query_agp(port)) |
| port->port_specific.a.agplastwr.csr = __direct_map_base; |
| |
| titan_pci_tbi(hose, 0, -1); |
| } |
| |
| static void __init |
| titan_init_pachips(titan_pachip *pachip0, titan_pachip *pachip1) |
| { |
| titan_pchip1_present = TITAN_cchip->csc.csr & 1L<<14; |
| |
| /* Init the ports in hose order... */ |
| titan_init_one_pachip_port(&pachip0->g_port, 0); /* hose 0 */ |
| if (titan_pchip1_present) |
| titan_init_one_pachip_port(&pachip1->g_port, 1);/* hose 1 */ |
| titan_init_one_pachip_port(&pachip0->a_port, 2); /* hose 2 */ |
| if (titan_pchip1_present) |
| titan_init_one_pachip_port(&pachip1->a_port, 3);/* hose 3 */ |
| } |
| |
| void __init |
| titan_init_arch(void) |
| { |
| #if 0 |
| printk("%s: titan_init_arch()\n", __func__); |
| printk("%s: CChip registers:\n", __func__); |
| printk("%s: CSR_CSC 0x%lx\n", __func__, TITAN_cchip->csc.csr); |
| printk("%s: CSR_MTR 0x%lx\n", __func__, TITAN_cchip->mtr.csr); |
| printk("%s: CSR_MISC 0x%lx\n", __func__, TITAN_cchip->misc.csr); |
| printk("%s: CSR_DIM0 0x%lx\n", __func__, TITAN_cchip->dim0.csr); |
| printk("%s: CSR_DIM1 0x%lx\n", __func__, TITAN_cchip->dim1.csr); |
| printk("%s: CSR_DIR0 0x%lx\n", __func__, TITAN_cchip->dir0.csr); |
| printk("%s: CSR_DIR1 0x%lx\n", __func__, TITAN_cchip->dir1.csr); |
| printk("%s: CSR_DRIR 0x%lx\n", __func__, TITAN_cchip->drir.csr); |
| |
| printk("%s: DChip registers:\n", __func__); |
| printk("%s: CSR_DSC 0x%lx\n", __func__, TITAN_dchip->dsc.csr); |
| printk("%s: CSR_STR 0x%lx\n", __func__, TITAN_dchip->str.csr); |
| printk("%s: CSR_DREV 0x%lx\n", __func__, TITAN_dchip->drev.csr); |
| #endif |
| |
| boot_cpuid = __hard_smp_processor_id(); |
| |
| /* With multiple PCI busses, we play with I/O as physical addrs. */ |
| ioport_resource.end = ~0UL; |
| iomem_resource.end = ~0UL; |
| |
| /* PCI DMA Direct Mapping is 1GB at 2GB. */ |
| __direct_map_base = 0x80000000; |
| __direct_map_size = 0x40000000; |
| |
| /* Init the PA chip(s). */ |
| titan_init_pachips(TITAN_pachip0, TITAN_pachip1); |
| |
| /* Check for graphic console location (if any). */ |
| find_console_vga_hose(); |
| } |
| |
| static void |
| titan_kill_one_pachip_port(titan_pachip_port *port, int index) |
| { |
| port->wsba[0].csr = saved_config[index].wsba[0]; |
| port->wsm[0].csr = saved_config[index].wsm[0]; |
| port->tba[0].csr = saved_config[index].tba[0]; |
| |
| port->wsba[1].csr = saved_config[index].wsba[1]; |
| port->wsm[1].csr = saved_config[index].wsm[1]; |
| port->tba[1].csr = saved_config[index].tba[1]; |
| |
| port->wsba[2].csr = saved_config[index].wsba[2]; |
| port->wsm[2].csr = saved_config[index].wsm[2]; |
| port->tba[2].csr = saved_config[index].tba[2]; |
| |
| port->wsba[3].csr = saved_config[index].wsba[3]; |
| port->wsm[3].csr = saved_config[index].wsm[3]; |
| port->tba[3].csr = saved_config[index].tba[3]; |
| } |
| |
| static void |
| titan_kill_pachips(titan_pachip *pachip0, titan_pachip *pachip1) |
| { |
| if (titan_pchip1_present) { |
| titan_kill_one_pachip_port(&pachip1->g_port, 1); |
| titan_kill_one_pachip_port(&pachip1->a_port, 3); |
| } |
| titan_kill_one_pachip_port(&pachip0->g_port, 0); |
| titan_kill_one_pachip_port(&pachip0->a_port, 2); |
| } |
| |
| void |
| titan_kill_arch(int mode) |
| { |
| titan_kill_pachips(TITAN_pachip0, TITAN_pachip1); |
| } |
| |
| |
| /* |
| * IO map support. |
| */ |
| |
| void __iomem * |
| titan_ioportmap(unsigned long addr) |
| { |
| FIXUP_IOADDR_VGA(addr); |
| return (void __iomem *)(addr + TITAN_IO_BIAS); |
| } |
| |
| |
| void __iomem * |
| titan_ioremap(unsigned long addr, unsigned long size) |
| { |
| int h = (addr & TITAN_HOSE_MASK) >> TITAN_HOSE_SHIFT; |
| unsigned long baddr = addr & ~TITAN_HOSE_MASK; |
| unsigned long last = baddr + size - 1; |
| struct pci_controller *hose; |
| struct vm_struct *area; |
| unsigned long vaddr; |
| unsigned long *ptes; |
| unsigned long pfn; |
| |
| #ifdef CONFIG_VGA_HOSE |
| /* |
| * Adjust the address and hose, if necessary. |
| */ |
| if (pci_vga_hose && __is_mem_vga(addr)) { |
| h = pci_vga_hose->index; |
| addr += pci_vga_hose->mem_space->start; |
| } |
| #endif |
| |
| /* |
| * Find the hose. |
| */ |
| for (hose = hose_head; hose; hose = hose->next) |
| if (hose->index == h) |
| break; |
| if (!hose) |
| return NULL; |
| |
| /* |
| * Is it direct-mapped? |
| */ |
| if ((baddr >= __direct_map_base) && |
| ((baddr + size - 1) < __direct_map_base + __direct_map_size)) { |
| vaddr = addr - __direct_map_base + TITAN_MEM_BIAS; |
| return (void __iomem *) vaddr; |
| } |
| |
| /* |
| * Check the scatter-gather arena. |
| */ |
| if (hose->sg_pci && |
| baddr >= (unsigned long)hose->sg_pci->dma_base && |
| last < (unsigned long)hose->sg_pci->dma_base + hose->sg_pci->size){ |
| |
| /* |
| * Adjust the limits (mappings must be page aligned) |
| */ |
| baddr -= hose->sg_pci->dma_base; |
| last -= hose->sg_pci->dma_base; |
| baddr &= PAGE_MASK; |
| size = PAGE_ALIGN(last) - baddr; |
| |
| /* |
| * Map it |
| */ |
| area = get_vm_area(size, VM_IOREMAP); |
| if (!area) { |
| printk("ioremap failed... no vm_area...\n"); |
| return NULL; |
| } |
| |
| ptes = hose->sg_pci->ptes; |
| for (vaddr = (unsigned long)area->addr; |
| baddr <= last; |
| baddr += PAGE_SIZE, vaddr += PAGE_SIZE) { |
| pfn = ptes[baddr >> PAGE_SHIFT]; |
| if (!(pfn & 1)) { |
| printk("ioremap failed... pte not valid...\n"); |
| vfree(area->addr); |
| return NULL; |
| } |
| pfn >>= 1; /* make it a true pfn */ |
| |
| if (__alpha_remap_area_pages(vaddr, |
| pfn << PAGE_SHIFT, |
| PAGE_SIZE, 0)) { |
| printk("FAILED to remap_area_pages...\n"); |
| vfree(area->addr); |
| return NULL; |
| } |
| } |
| |
| flush_tlb_all(); |
| |
| vaddr = (unsigned long)area->addr + (addr & ~PAGE_MASK); |
| return (void __iomem *) vaddr; |
| } |
| |
| /* Assume a legacy (read: VGA) address, and return appropriately. */ |
| return (void __iomem *)(addr + TITAN_MEM_BIAS); |
| } |
| |
| void |
| titan_iounmap(volatile void __iomem *xaddr) |
| { |
| unsigned long addr = (unsigned long) xaddr; |
| if (addr >= VMALLOC_START) |
| vfree((void *)(PAGE_MASK & addr)); |
| } |
| |
| int |
| titan_is_mmio(const volatile void __iomem *xaddr) |
| { |
| unsigned long addr = (unsigned long) xaddr; |
| |
| if (addr >= VMALLOC_START) |
| return 1; |
| else |
| return (addr & 0x100000000UL) == 0; |
| } |
| |
| #ifndef CONFIG_ALPHA_GENERIC |
| EXPORT_SYMBOL(titan_ioportmap); |
| EXPORT_SYMBOL(titan_ioremap); |
| EXPORT_SYMBOL(titan_iounmap); |
| EXPORT_SYMBOL(titan_is_mmio); |
| #endif |
| |
| /* |
| * AGP GART Support. |
| */ |
| #include <linux/agp_backend.h> |
| #include <asm/agp_backend.h> |
| #include <linux/slab.h> |
| #include <linux/delay.h> |
| |
| struct titan_agp_aperture { |
| struct pci_iommu_arena *arena; |
| long pg_start; |
| long pg_count; |
| }; |
| |
| static int |
| titan_agp_setup(alpha_agp_info *agp) |
| { |
| struct titan_agp_aperture *aper; |
| |
| if (!alpha_agpgart_size) |
| return -ENOMEM; |
| |
| aper = kmalloc(sizeof(struct titan_agp_aperture), GFP_KERNEL); |
| if (aper == NULL) |
| return -ENOMEM; |
| |
| aper->arena = agp->hose->sg_pci; |
| aper->pg_count = alpha_agpgart_size / PAGE_SIZE; |
| aper->pg_start = iommu_reserve(aper->arena, aper->pg_count, |
| aper->pg_count - 1); |
| if (aper->pg_start < 0) { |
| printk(KERN_ERR "Failed to reserve AGP memory\n"); |
| kfree(aper); |
| return -ENOMEM; |
| } |
| |
| agp->aperture.bus_base = |
| aper->arena->dma_base + aper->pg_start * PAGE_SIZE; |
| agp->aperture.size = aper->pg_count * PAGE_SIZE; |
| agp->aperture.sysdata = aper; |
| |
| return 0; |
| } |
| |
| static void |
| titan_agp_cleanup(alpha_agp_info *agp) |
| { |
| struct titan_agp_aperture *aper = agp->aperture.sysdata; |
| int status; |
| |
| status = iommu_release(aper->arena, aper->pg_start, aper->pg_count); |
| if (status == -EBUSY) { |
| printk(KERN_WARNING |
| "Attempted to release bound AGP memory - unbinding\n"); |
| iommu_unbind(aper->arena, aper->pg_start, aper->pg_count); |
| status = iommu_release(aper->arena, aper->pg_start, |
| aper->pg_count); |
| } |
| if (status < 0) |
| printk(KERN_ERR "Failed to release AGP memory\n"); |
| |
| kfree(aper); |
| kfree(agp); |
| } |
| |
| static int |
| titan_agp_configure(alpha_agp_info *agp) |
| { |
| union TPAchipPCTL pctl; |
| titan_pachip_port *port = agp->private; |
| pctl.pctl_q_whole = port->pctl.csr; |
| |
| /* Side-Band Addressing? */ |
| pctl.pctl_r_bits.apctl_v_agp_sba_en = agp->mode.bits.sba; |
| |
| /* AGP Rate? */ |
| pctl.pctl_r_bits.apctl_v_agp_rate = 0; /* 1x */ |
| if (agp->mode.bits.rate & 2) |
| pctl.pctl_r_bits.apctl_v_agp_rate = 1; /* 2x */ |
| #if 0 |
| if (agp->mode.bits.rate & 4) |
| pctl.pctl_r_bits.apctl_v_agp_rate = 2; /* 4x */ |
| #endif |
| |
| /* RQ Depth? */ |
| pctl.pctl_r_bits.apctl_v_agp_hp_rd = 2; |
| pctl.pctl_r_bits.apctl_v_agp_lp_rd = 7; |
| |
| /* |
| * AGP Enable. |
| */ |
| pctl.pctl_r_bits.apctl_v_agp_en = agp->mode.bits.enable; |
| |
| /* Tell the user. */ |
| printk("Enabling AGP: %dX%s\n", |
| 1 << pctl.pctl_r_bits.apctl_v_agp_rate, |
| pctl.pctl_r_bits.apctl_v_agp_sba_en ? " - SBA" : ""); |
| |
| /* Write it. */ |
| port->pctl.csr = pctl.pctl_q_whole; |
| |
| /* And wait at least 5000 66MHz cycles (per Titan spec). */ |
| udelay(100); |
| |
| return 0; |
| } |
| |
| static int |
| titan_agp_bind_memory(alpha_agp_info *agp, off_t pg_start, struct agp_memory *mem) |
| { |
| struct titan_agp_aperture *aper = agp->aperture.sysdata; |
| return iommu_bind(aper->arena, aper->pg_start + pg_start, |
| mem->page_count, mem->pages); |
| } |
| |
| static int |
| titan_agp_unbind_memory(alpha_agp_info *agp, off_t pg_start, struct agp_memory *mem) |
| { |
| struct titan_agp_aperture *aper = agp->aperture.sysdata; |
| return iommu_unbind(aper->arena, aper->pg_start + pg_start, |
| mem->page_count); |
| } |
| |
| static unsigned long |
| titan_agp_translate(alpha_agp_info *agp, dma_addr_t addr) |
| { |
| struct titan_agp_aperture *aper = agp->aperture.sysdata; |
| unsigned long baddr = addr - aper->arena->dma_base; |
| unsigned long pte; |
| |
| if (addr < agp->aperture.bus_base || |
| addr >= agp->aperture.bus_base + agp->aperture.size) { |
| printk("%s: addr out of range\n", __func__); |
| return -EINVAL; |
| } |
| |
| pte = aper->arena->ptes[baddr >> PAGE_SHIFT]; |
| if (!(pte & 1)) { |
| printk("%s: pte not valid\n", __func__); |
| return -EINVAL; |
| } |
| |
| return (pte >> 1) << PAGE_SHIFT; |
| } |
| |
| struct alpha_agp_ops titan_agp_ops = |
| { |
| .setup = titan_agp_setup, |
| .cleanup = titan_agp_cleanup, |
| .configure = titan_agp_configure, |
| .bind = titan_agp_bind_memory, |
| .unbind = titan_agp_unbind_memory, |
| .translate = titan_agp_translate |
| }; |
| |
| alpha_agp_info * |
| titan_agp_info(void) |
| { |
| alpha_agp_info *agp; |
| struct pci_controller *hose; |
| titan_pachip_port *port; |
| int hosenum = -1; |
| union TPAchipPCTL pctl; |
| |
| /* |
| * Find the AGP port. |
| */ |
| port = &TITAN_pachip0->a_port; |
| if (titan_query_agp(port)) |
| hosenum = 2; |
| if (hosenum < 0 && |
| titan_pchip1_present && |
| titan_query_agp(port = &TITAN_pachip1->a_port)) |
| hosenum = 3; |
| |
| /* |
| * Find the hose the port is on. |
| */ |
| for (hose = hose_head; hose; hose = hose->next) |
| if (hose->index == hosenum) |
| break; |
| |
| if (!hose || !hose->sg_pci) |
| return NULL; |
| |
| /* |
| * Allocate the info structure. |
| */ |
| agp = kmalloc(sizeof(*agp), GFP_KERNEL); |
| if (!agp) |
| return NULL; |
| |
| /* |
| * Fill it in. |
| */ |
| agp->hose = hose; |
| agp->private = port; |
| agp->ops = &titan_agp_ops; |
| |
| /* |
| * Aperture - not configured until ops.setup(). |
| * |
| * FIXME - should we go ahead and allocate it here? |
| */ |
| agp->aperture.bus_base = 0; |
| agp->aperture.size = 0; |
| agp->aperture.sysdata = NULL; |
| |
| /* |
| * Capabilities. |
| */ |
| agp->capability.lw = 0; |
| agp->capability.bits.rate = 3; /* 2x, 1x */ |
| agp->capability.bits.sba = 1; |
| agp->capability.bits.rq = 7; /* 8 - 1 */ |
| |
| /* |
| * Mode. |
| */ |
| pctl.pctl_q_whole = port->pctl.csr; |
| agp->mode.lw = 0; |
| agp->mode.bits.rate = 1 << pctl.pctl_r_bits.apctl_v_agp_rate; |
| agp->mode.bits.sba = pctl.pctl_r_bits.apctl_v_agp_sba_en; |
| agp->mode.bits.rq = 7; /* RQ Depth? */ |
| agp->mode.bits.enable = pctl.pctl_r_bits.apctl_v_agp_en; |
| |
| return agp; |
| } |