blob: 403e65c309d0ac8e22fa84f163c636b18bc5872c [file] [log] [blame]
/******************************************************************************
*
* Copyright(c) 2003 - 2015 Intel Corporation. All rights reserved.
* Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
* Copyright(c) 2016 - 2017 Intel Deutschland GmbH
*
* Portions of this file are derived from the ipw3945 project, as well
* as portions of the ieee80211 subsystem header files.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* Intel Linux Wireless <linuxwifi@intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
*****************************************************************************/
#ifndef __iwl_trans_int_pcie_h__
#define __iwl_trans_int_pcie_h__
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/skbuff.h>
#include <linux/wait.h>
#include <linux/pci.h>
#include <linux/timer.h>
#include <linux/cpu.h>
#include "iwl-fh.h"
#include "iwl-csr.h"
#include "iwl-trans.h"
#include "iwl-debug.h"
#include "iwl-io.h"
#include "iwl-op-mode.h"
/* We need 2 entries for the TX command and header, and another one might
* be needed for potential data in the SKB's head. The remaining ones can
* be used for frags.
*/
#define IWL_PCIE_MAX_FRAGS(x) (x->max_tbs - 3)
/*
* RX related structures and functions
*/
#define RX_NUM_QUEUES 1
#define RX_POST_REQ_ALLOC 2
#define RX_CLAIM_REQ_ALLOC 8
#define RX_PENDING_WATERMARK 16
struct iwl_host_cmd;
/*This file includes the declaration that are internal to the
* trans_pcie layer */
/**
* struct iwl_rx_mem_buffer
* @page_dma: bus address of rxb page
* @page: driver's pointer to the rxb page
* @invalid: rxb is in driver ownership - not owned by HW
* @vid: index of this rxb in the global table
*/
struct iwl_rx_mem_buffer {
dma_addr_t page_dma;
struct page *page;
u16 vid;
bool invalid;
struct list_head list;
};
/**
* struct isr_statistics - interrupt statistics
*
*/
struct isr_statistics {
u32 hw;
u32 sw;
u32 err_code;
u32 sch;
u32 alive;
u32 rfkill;
u32 ctkill;
u32 wakeup;
u32 rx;
u32 tx;
u32 unhandled;
};
/**
* struct iwl_rxq - Rx queue
* @id: queue index
* @bd: driver's pointer to buffer of receive buffer descriptors (rbd).
* Address size is 32 bit in pre-9000 devices and 64 bit in 9000 devices.
* @bd_dma: bus address of buffer of receive buffer descriptors (rbd)
* @ubd: driver's pointer to buffer of used receive buffer descriptors (rbd)
* @ubd_dma: physical address of buffer of used receive buffer descriptors (rbd)
* @read: Shared index to newest available Rx buffer
* @write: Shared index to oldest written Rx packet
* @free_count: Number of pre-allocated buffers in rx_free
* @used_count: Number of RBDs handled to allocator to use for allocation
* @write_actual:
* @rx_free: list of RBDs with allocated RB ready for use
* @rx_used: list of RBDs with no RB attached
* @need_update: flag to indicate we need to update read/write index
* @rb_stts: driver's pointer to receive buffer status
* @rb_stts_dma: bus address of receive buffer status
* @lock:
* @queue: actual rx queue. Not used for multi-rx queue.
*
* NOTE: rx_free and rx_used are used as a FIFO for iwl_rx_mem_buffers
*/
struct iwl_rxq {
int id;
void *bd;
dma_addr_t bd_dma;
__le32 *used_bd;
dma_addr_t used_bd_dma;
u32 read;
u32 write;
u32 free_count;
u32 used_count;
u32 write_actual;
u32 queue_size;
struct list_head rx_free;
struct list_head rx_used;
bool need_update;
struct iwl_rb_status *rb_stts;
dma_addr_t rb_stts_dma;
spinlock_t lock;
struct napi_struct napi;
struct iwl_rx_mem_buffer *queue[RX_QUEUE_SIZE];
};
/**
* struct iwl_rb_allocator - Rx allocator
* @req_pending: number of requests the allcator had not processed yet
* @req_ready: number of requests honored and ready for claiming
* @rbd_allocated: RBDs with pages allocated and ready to be handled to
* the queue. This is a list of &struct iwl_rx_mem_buffer
* @rbd_empty: RBDs with no page attached for allocator use. This is a list
* of &struct iwl_rx_mem_buffer
* @lock: protects the rbd_allocated and rbd_empty lists
* @alloc_wq: work queue for background calls
* @rx_alloc: work struct for background calls
*/
struct iwl_rb_allocator {
atomic_t req_pending;
atomic_t req_ready;
struct list_head rbd_allocated;
struct list_head rbd_empty;
spinlock_t lock;
struct workqueue_struct *alloc_wq;
struct work_struct rx_alloc;
};
struct iwl_dma_ptr {
dma_addr_t dma;
void *addr;
size_t size;
};
/**
* iwl_queue_inc_wrap - increment queue index, wrap back to beginning
* @index -- current index
*/
static inline int iwl_queue_inc_wrap(int index)
{
return ++index & (TFD_QUEUE_SIZE_MAX - 1);
}
/**
* iwl_queue_dec_wrap - decrement queue index, wrap back to end
* @index -- current index
*/
static inline int iwl_queue_dec_wrap(int index)
{
return --index & (TFD_QUEUE_SIZE_MAX - 1);
}
struct iwl_cmd_meta {
/* only for SYNC commands, iff the reply skb is wanted */
struct iwl_host_cmd *source;
u32 flags;
u32 tbs;
};
#define TFD_TX_CMD_SLOTS 256
#define TFD_CMD_SLOTS 32
/*
* The FH will write back to the first TB only, so we need to copy some data
* into the buffer regardless of whether it should be mapped or not.
* This indicates how big the first TB must be to include the scratch buffer
* and the assigned PN.
* Since PN location is 8 bytes at offset 12, it's 20 now.
* If we make it bigger then allocations will be bigger and copy slower, so
* that's probably not useful.
*/
#define IWL_FIRST_TB_SIZE 20
#define IWL_FIRST_TB_SIZE_ALIGN ALIGN(IWL_FIRST_TB_SIZE, 64)
struct iwl_pcie_txq_entry {
struct iwl_device_cmd *cmd;
struct sk_buff *skb;
/* buffer to free after command completes */
const void *free_buf;
struct iwl_cmd_meta meta;
};
struct iwl_pcie_first_tb_buf {
u8 buf[IWL_FIRST_TB_SIZE_ALIGN];
};
/**
* struct iwl_txq - Tx Queue for DMA
* @q: generic Rx/Tx queue descriptor
* @tfds: transmit frame descriptors (DMA memory)
* @first_tb_bufs: start of command headers, including scratch buffers, for
* the writeback -- this is DMA memory and an array holding one buffer
* for each command on the queue
* @first_tb_dma: DMA address for the first_tb_bufs start
* @entries: transmit entries (driver state)
* @lock: queue lock
* @stuck_timer: timer that fires if queue gets stuck
* @trans_pcie: pointer back to transport (for timer)
* @need_update: indicates need to update read/write index
* @ampdu: true if this queue is an ampdu queue for an specific RA/TID
* @wd_timeout: queue watchdog timeout (jiffies) - per queue
* @frozen: tx stuck queue timer is frozen
* @frozen_expiry_remainder: remember how long until the timer fires
* @bc_tbl: byte count table of the queue (relevant only for gen2 transport)
* @write_ptr: 1-st empty entry (index) host_w
* @read_ptr: last used entry (index) host_r
* @dma_addr: physical addr for BD's
* @n_window: safe queue window
* @id: queue id
* @low_mark: low watermark, resume queue if free space more than this
* @high_mark: high watermark, stop queue if free space less than this
*
* A Tx queue consists of circular buffer of BDs (a.k.a. TFDs, transmit frame
* descriptors) and required locking structures.
*
* Note the difference between TFD_QUEUE_SIZE_MAX and n_window: the hardware
* always assumes 256 descriptors, so TFD_QUEUE_SIZE_MAX is always 256 (unless
* there might be HW changes in the future). For the normal TX
* queues, n_window, which is the size of the software queue data
* is also 256; however, for the command queue, n_window is only
* 32 since we don't need so many commands pending. Since the HW
* still uses 256 BDs for DMA though, TFD_QUEUE_SIZE_MAX stays 256.
* This means that we end up with the following:
* HW entries: | 0 | ... | N * 32 | ... | N * 32 + 31 | ... | 255 |
* SW entries: | 0 | ... | 31 |
* where N is a number between 0 and 7. This means that the SW
* data is a window overlayed over the HW queue.
*/
struct iwl_txq {
void *tfds;
struct iwl_pcie_first_tb_buf *first_tb_bufs;
dma_addr_t first_tb_dma;
struct iwl_pcie_txq_entry *entries;
spinlock_t lock;
unsigned long frozen_expiry_remainder;
struct timer_list stuck_timer;
struct iwl_trans_pcie *trans_pcie;
bool need_update;
bool frozen;
bool ampdu;
int block;
unsigned long wd_timeout;
struct sk_buff_head overflow_q;
struct iwl_dma_ptr bc_tbl;
int write_ptr;
int read_ptr;
dma_addr_t dma_addr;
int n_window;
u32 id;
int low_mark;
int high_mark;
};
static inline dma_addr_t
iwl_pcie_get_first_tb_dma(struct iwl_txq *txq, int idx)
{
return txq->first_tb_dma +
sizeof(struct iwl_pcie_first_tb_buf) * idx;
}
struct iwl_tso_hdr_page {
struct page *page;
u8 *pos;
};
/**
* enum iwl_shared_irq_flags - level of sharing for irq
* @IWL_SHARED_IRQ_NON_RX: interrupt vector serves non rx causes.
* @IWL_SHARED_IRQ_FIRST_RSS: interrupt vector serves first RSS queue.
*/
enum iwl_shared_irq_flags {
IWL_SHARED_IRQ_NON_RX = BIT(0),
IWL_SHARED_IRQ_FIRST_RSS = BIT(1),
};
/**
* struct iwl_dram_data
* @physical: page phy pointer
* @block: pointer to the allocated block/page
* @size: size of the block/page
*/
struct iwl_dram_data {
dma_addr_t physical;
void *block;
int size;
};
/**
* struct iwl_self_init_dram - dram data used by self init process
* @fw: lmac and umac dram data
* @fw_cnt: total number of items in array
* @paging: paging dram data
* @paging_cnt: total number of items in array
*/
struct iwl_self_init_dram {
struct iwl_dram_data *fw;
int fw_cnt;
struct iwl_dram_data *paging;
int paging_cnt;
};
/**
* struct iwl_trans_pcie - PCIe transport specific data
* @rxq: all the RX queue data
* @rx_pool: initial pool of iwl_rx_mem_buffer for all the queues
* @global_table: table mapping received VID from hw to rxb
* @rba: allocator for RX replenishing
* @ctxt_info: context information for FW self init
* @ctxt_info_dma_addr: dma addr of context information
* @init_dram: DRAM data of firmware image (including paging).
* Context information addresses will be taken from here.
* This is driver's local copy for keeping track of size and
* count for allocating and freeing the memory.
* @trans: pointer to the generic transport area
* @scd_base_addr: scheduler sram base address in SRAM
* @scd_bc_tbls: pointer to the byte count table of the scheduler
* @kw: keep warm address
* @pci_dev: basic pci-network driver stuff
* @hw_base: pci hardware address support
* @ucode_write_complete: indicates that the ucode has been copied.
* @ucode_write_waitq: wait queue for uCode load
* @cmd_queue - command queue number
* @rx_buf_size: Rx buffer size
* @bc_table_dword: true if the BC table expects DWORD (as opposed to bytes)
* @scd_set_active: should the transport configure the SCD for HCMD queue
* @sw_csum_tx: if true, then the transport will compute the csum of the TXed
* frame.
* @rx_page_order: page order for receive buffer size
* @reg_lock: protect hw register access
* @mutex: to protect stop_device / start_fw / start_hw
* @cmd_in_flight: true when we have a host command in flight
* @fw_mon_phys: physical address of the buffer for the firmware monitor
* @fw_mon_page: points to the first page of the buffer for the firmware monitor
* @fw_mon_size: size of the buffer for the firmware monitor
* @msix_entries: array of MSI-X entries
* @msix_enabled: true if managed to enable MSI-X
* @shared_vec_mask: the type of causes the shared vector handles
* (see iwl_shared_irq_flags).
* @alloc_vecs: the number of interrupt vectors allocated by the OS
* @def_irq: default irq for non rx causes
* @fh_init_mask: initial unmasked fh causes
* @hw_init_mask: initial unmasked hw causes
* @fh_mask: current unmasked fh causes
* @hw_mask: current unmasked hw causes
* @tx_cmd_queue_size: the size of the tx command queue
*/
struct iwl_trans_pcie {
struct iwl_rxq *rxq;
struct iwl_rx_mem_buffer rx_pool[RX_POOL_SIZE];
struct iwl_rx_mem_buffer *global_table[RX_POOL_SIZE];
struct iwl_rb_allocator rba;
struct iwl_context_info *ctxt_info;
dma_addr_t ctxt_info_dma_addr;
struct iwl_self_init_dram init_dram;
struct iwl_trans *trans;
struct net_device napi_dev;
struct __percpu iwl_tso_hdr_page *tso_hdr_page;
/* INT ICT Table */
__le32 *ict_tbl;
dma_addr_t ict_tbl_dma;
int ict_index;
bool use_ict;
bool is_down, opmode_down;
bool debug_rfkill;
struct isr_statistics isr_stats;
spinlock_t irq_lock;
struct mutex mutex;
u32 inta_mask;
u32 scd_base_addr;
struct iwl_dma_ptr scd_bc_tbls;
struct iwl_dma_ptr kw;
struct iwl_txq *txq_memory;
struct iwl_txq *txq[IWL_MAX_TVQM_QUEUES];
unsigned long queue_used[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
unsigned long queue_stopped[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
/* PCI bus related data */
struct pci_dev *pci_dev;
void __iomem *hw_base;
bool ucode_write_complete;
wait_queue_head_t ucode_write_waitq;
wait_queue_head_t wait_command_queue;
wait_queue_head_t d0i3_waitq;
u8 page_offs, dev_cmd_offs;
u8 cmd_queue;
u8 cmd_fifo;
unsigned int cmd_q_wdg_timeout;
u8 n_no_reclaim_cmds;
u8 no_reclaim_cmds[MAX_NO_RECLAIM_CMDS];
u8 max_tbs;
u16 tfd_size;
enum iwl_amsdu_size rx_buf_size;
bool bc_table_dword;
bool scd_set_active;
bool sw_csum_tx;
bool pcie_dbg_dumped_once;
u32 rx_page_order;
/*protect hw register */
spinlock_t reg_lock;
bool cmd_hold_nic_awake;
bool ref_cmd_in_flight;
dma_addr_t fw_mon_phys;
struct page *fw_mon_page;
u32 fw_mon_size;
struct msix_entry msix_entries[IWL_MAX_RX_HW_QUEUES];
bool msix_enabled;
u8 shared_vec_mask;
u32 alloc_vecs;
u32 def_irq;
u32 fh_init_mask;
u32 hw_init_mask;
u32 fh_mask;
u32 hw_mask;
cpumask_t affinity_mask[IWL_MAX_RX_HW_QUEUES];
u16 tx_cmd_queue_size;
};
static inline struct iwl_trans_pcie *
IWL_TRANS_GET_PCIE_TRANS(struct iwl_trans *trans)
{
return (void *)trans->trans_specific;
}
static inline struct iwl_trans *
iwl_trans_pcie_get_trans(struct iwl_trans_pcie *trans_pcie)
{
return container_of((void *)trans_pcie, struct iwl_trans,
trans_specific);
}
/*
* Convention: trans API functions: iwl_trans_pcie_XXX
* Other functions: iwl_pcie_XXX
*/
struct iwl_trans *iwl_trans_pcie_alloc(struct pci_dev *pdev,
const struct pci_device_id *ent,
const struct iwl_cfg *cfg);
void iwl_trans_pcie_free(struct iwl_trans *trans);
/*****************************************************
* RX
******************************************************/
int iwl_pcie_rx_init(struct iwl_trans *trans);
int iwl_pcie_gen2_rx_init(struct iwl_trans *trans);
irqreturn_t iwl_pcie_msix_isr(int irq, void *data);
irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id);
irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id);
irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id);
int iwl_pcie_rx_stop(struct iwl_trans *trans);
void iwl_pcie_rx_free(struct iwl_trans *trans);
/*****************************************************
* ICT - interrupt handling
******************************************************/
irqreturn_t iwl_pcie_isr(int irq, void *data);
int iwl_pcie_alloc_ict(struct iwl_trans *trans);
void iwl_pcie_free_ict(struct iwl_trans *trans);
void iwl_pcie_reset_ict(struct iwl_trans *trans);
void iwl_pcie_disable_ict(struct iwl_trans *trans);
/*****************************************************
* TX / HCMD
******************************************************/
int iwl_pcie_tx_init(struct iwl_trans *trans);
int iwl_pcie_gen2_tx_init(struct iwl_trans *trans);
void iwl_pcie_tx_start(struct iwl_trans *trans, u32 scd_base_addr);
int iwl_pcie_tx_stop(struct iwl_trans *trans);
void iwl_pcie_tx_free(struct iwl_trans *trans);
bool iwl_trans_pcie_txq_enable(struct iwl_trans *trans, int queue, u16 ssn,
const struct iwl_trans_txq_scd_cfg *cfg,
unsigned int wdg_timeout);
void iwl_trans_pcie_txq_disable(struct iwl_trans *trans, int queue,
bool configure_scd);
void iwl_trans_pcie_txq_set_shared_mode(struct iwl_trans *trans, u32 txq_id,
bool shared_mode);
void iwl_trans_pcie_log_scd_error(struct iwl_trans *trans,
struct iwl_txq *txq);
int iwl_trans_pcie_tx(struct iwl_trans *trans, struct sk_buff *skb,
struct iwl_device_cmd *dev_cmd, int txq_id);
void iwl_pcie_txq_check_wrptrs(struct iwl_trans *trans);
int iwl_trans_pcie_send_hcmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
void iwl_pcie_hcmd_complete(struct iwl_trans *trans,
struct iwl_rx_cmd_buffer *rxb);
void iwl_trans_pcie_reclaim(struct iwl_trans *trans, int txq_id, int ssn,
struct sk_buff_head *skbs);
void iwl_trans_pcie_tx_reset(struct iwl_trans *trans);
void iwl_pcie_set_tx_cmd_queue_size(struct iwl_trans *trans);
static inline u16 iwl_pcie_tfd_tb_get_len(struct iwl_trans *trans, void *_tfd,
u8 idx)
{
if (trans->cfg->use_tfh) {
struct iwl_tfh_tfd *tfd = _tfd;
struct iwl_tfh_tb *tb = &tfd->tbs[idx];
return le16_to_cpu(tb->tb_len);
} else {
struct iwl_tfd *tfd = _tfd;
struct iwl_tfd_tb *tb = &tfd->tbs[idx];
return le16_to_cpu(tb->hi_n_len) >> 4;
}
}
/*****************************************************
* Error handling
******************************************************/
void iwl_pcie_dump_csr(struct iwl_trans *trans);
/*****************************************************
* Helpers
******************************************************/
static inline void _iwl_disable_interrupts(struct iwl_trans *trans)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
clear_bit(STATUS_INT_ENABLED, &trans->status);
if (!trans_pcie->msix_enabled) {
/* disable interrupts from uCode/NIC to host */
iwl_write32(trans, CSR_INT_MASK, 0x00000000);
/* acknowledge/clear/reset any interrupts still pending
* from uCode or flow handler (Rx/Tx DMA) */
iwl_write32(trans, CSR_INT, 0xffffffff);
iwl_write32(trans, CSR_FH_INT_STATUS, 0xffffffff);
} else {
/* disable all the interrupt we might use */
iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD,
trans_pcie->fh_init_mask);
iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD,
trans_pcie->hw_init_mask);
}
IWL_DEBUG_ISR(trans, "Disabled interrupts\n");
}
static inline void iwl_disable_interrupts(struct iwl_trans *trans)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
spin_lock(&trans_pcie->irq_lock);
_iwl_disable_interrupts(trans);
spin_unlock(&trans_pcie->irq_lock);
}
static inline void _iwl_enable_interrupts(struct iwl_trans *trans)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
IWL_DEBUG_ISR(trans, "Enabling interrupts\n");
set_bit(STATUS_INT_ENABLED, &trans->status);
if (!trans_pcie->msix_enabled) {
trans_pcie->inta_mask = CSR_INI_SET_MASK;
iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask);
} else {
/*
* fh/hw_mask keeps all the unmasked causes.
* Unlike msi, in msix cause is enabled when it is unset.
*/
trans_pcie->hw_mask = trans_pcie->hw_init_mask;
trans_pcie->fh_mask = trans_pcie->fh_init_mask;
iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD,
~trans_pcie->fh_mask);
iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD,
~trans_pcie->hw_mask);
}
}
static inline void iwl_enable_interrupts(struct iwl_trans *trans)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
spin_lock(&trans_pcie->irq_lock);
_iwl_enable_interrupts(trans);
spin_unlock(&trans_pcie->irq_lock);
}
static inline void iwl_enable_hw_int_msk_msix(struct iwl_trans *trans, u32 msk)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD, ~msk);
trans_pcie->hw_mask = msk;
}
static inline void iwl_enable_fh_int_msk_msix(struct iwl_trans *trans, u32 msk)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD, ~msk);
trans_pcie->fh_mask = msk;
}
static inline void iwl_enable_fw_load_int(struct iwl_trans *trans)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
IWL_DEBUG_ISR(trans, "Enabling FW load interrupt\n");
if (!trans_pcie->msix_enabled) {
trans_pcie->inta_mask = CSR_INT_BIT_FH_TX;
iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask);
} else {
iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD,
trans_pcie->hw_init_mask);
iwl_enable_fh_int_msk_msix(trans,
MSIX_FH_INT_CAUSES_D2S_CH0_NUM);
}
}
static inline void iwl_pcie_sw_reset(struct iwl_trans *trans)
{
/* Reset entire device - do controller reset (results in SHRD_HW_RST) */
iwl_set_bit(trans, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET);
usleep_range(5000, 6000);
}
static inline u8 iwl_pcie_get_cmd_index(struct iwl_txq *q, u32 index)
{
return index & (q->n_window - 1);
}
static inline void *iwl_pcie_get_tfd(struct iwl_trans *trans,
struct iwl_txq *txq, int idx)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
if (trans->cfg->use_tfh)
idx = iwl_pcie_get_cmd_index(txq, idx);
return txq->tfds + trans_pcie->tfd_size * idx;
}
static inline void iwl_enable_rfkill_int(struct iwl_trans *trans)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
IWL_DEBUG_ISR(trans, "Enabling rfkill interrupt\n");
if (!trans_pcie->msix_enabled) {
trans_pcie->inta_mask = CSR_INT_BIT_RF_KILL;
iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask);
} else {
iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD,
trans_pcie->fh_init_mask);
iwl_enable_hw_int_msk_msix(trans,
MSIX_HW_INT_CAUSES_REG_RF_KILL);
}
if (trans->cfg->device_family == IWL_DEVICE_FAMILY_9000) {
/*
* On 9000-series devices this bit isn't enabled by default, so
* when we power down the device we need set the bit to allow it
* to wake up the PCI-E bus for RF-kill interrupts.
*/
iwl_set_bit(trans, CSR_GP_CNTRL,
CSR_GP_CNTRL_REG_FLAG_RFKILL_WAKE_L1A_EN);
}
}
void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans);
static inline void iwl_wake_queue(struct iwl_trans *trans,
struct iwl_txq *txq)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
if (test_and_clear_bit(txq->id, trans_pcie->queue_stopped)) {
IWL_DEBUG_TX_QUEUES(trans, "Wake hwq %d\n", txq->id);
iwl_op_mode_queue_not_full(trans->op_mode, txq->id);
}
}
static inline void iwl_stop_queue(struct iwl_trans *trans,
struct iwl_txq *txq)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
if (!test_and_set_bit(txq->id, trans_pcie->queue_stopped)) {
iwl_op_mode_queue_full(trans->op_mode, txq->id);
IWL_DEBUG_TX_QUEUES(trans, "Stop hwq %d\n", txq->id);
} else
IWL_DEBUG_TX_QUEUES(trans, "hwq %d already stopped\n",
txq->id);
}
static inline bool iwl_queue_used(const struct iwl_txq *q, int i)
{
return q->write_ptr >= q->read_ptr ?
(i >= q->read_ptr && i < q->write_ptr) :
!(i < q->read_ptr && i >= q->write_ptr);
}
static inline bool iwl_is_rfkill_set(struct iwl_trans *trans)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
lockdep_assert_held(&trans_pcie->mutex);
if (trans_pcie->debug_rfkill)
return true;
return !(iwl_read32(trans, CSR_GP_CNTRL) &
CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW);
}
static inline void __iwl_trans_pcie_set_bits_mask(struct iwl_trans *trans,
u32 reg, u32 mask, u32 value)
{
u32 v;
#ifdef CONFIG_IWLWIFI_DEBUG
WARN_ON_ONCE(value & ~mask);
#endif
v = iwl_read32(trans, reg);
v &= ~mask;
v |= value;
iwl_write32(trans, reg, v);
}
static inline void __iwl_trans_pcie_clear_bit(struct iwl_trans *trans,
u32 reg, u32 mask)
{
__iwl_trans_pcie_set_bits_mask(trans, reg, mask, 0);
}
static inline void __iwl_trans_pcie_set_bit(struct iwl_trans *trans,
u32 reg, u32 mask)
{
__iwl_trans_pcie_set_bits_mask(trans, reg, mask, mask);
}
void iwl_trans_pcie_rf_kill(struct iwl_trans *trans, bool state);
#ifdef CONFIG_IWLWIFI_DEBUGFS
int iwl_trans_pcie_dbgfs_register(struct iwl_trans *trans);
#else
static inline int iwl_trans_pcie_dbgfs_register(struct iwl_trans *trans)
{
return 0;
}
#endif
int iwl_pci_fw_exit_d0i3(struct iwl_trans *trans);
int iwl_pci_fw_enter_d0i3(struct iwl_trans *trans);
void iwl_pcie_enable_rx_wake(struct iwl_trans *trans, bool enable);
void iwl_pcie_rx_allocator_work(struct work_struct *data);
/* common functions that are used by gen2 transport */
void iwl_pcie_apm_config(struct iwl_trans *trans);
int iwl_pcie_prepare_card_hw(struct iwl_trans *trans);
void iwl_pcie_synchronize_irqs(struct iwl_trans *trans);
bool iwl_pcie_check_hw_rf_kill(struct iwl_trans *trans);
void iwl_trans_pcie_handle_stop_rfkill(struct iwl_trans *trans,
bool was_in_rfkill);
void iwl_pcie_txq_free_tfd(struct iwl_trans *trans, struct iwl_txq *txq);
int iwl_queue_space(const struct iwl_txq *q);
void iwl_pcie_apm_stop_master(struct iwl_trans *trans);
void iwl_pcie_conf_msix_hw(struct iwl_trans_pcie *trans_pcie);
int iwl_pcie_txq_init(struct iwl_trans *trans, struct iwl_txq *txq,
int slots_num, bool cmd_queue);
int iwl_pcie_txq_alloc(struct iwl_trans *trans,
struct iwl_txq *txq, int slots_num, bool cmd_queue);
int iwl_pcie_alloc_dma_ptr(struct iwl_trans *trans,
struct iwl_dma_ptr *ptr, size_t size);
void iwl_pcie_free_dma_ptr(struct iwl_trans *trans, struct iwl_dma_ptr *ptr);
void iwl_pcie_apply_destination(struct iwl_trans *trans);
void iwl_pcie_free_tso_page(struct iwl_trans_pcie *trans_pcie,
struct sk_buff *skb);
#ifdef CONFIG_INET
struct iwl_tso_hdr_page *get_page_hdr(struct iwl_trans *trans, size_t len);
#endif
/* transport gen 2 exported functions */
int iwl_trans_pcie_gen2_start_fw(struct iwl_trans *trans,
const struct fw_img *fw, bool run_in_rfkill);
void iwl_trans_pcie_gen2_fw_alive(struct iwl_trans *trans, u32 scd_addr);
int iwl_trans_pcie_dyn_txq_alloc(struct iwl_trans *trans,
struct iwl_tx_queue_cfg_cmd *cmd,
int cmd_id,
unsigned int timeout);
void iwl_trans_pcie_dyn_txq_free(struct iwl_trans *trans, int queue);
int iwl_trans_pcie_gen2_tx(struct iwl_trans *trans, struct sk_buff *skb,
struct iwl_device_cmd *dev_cmd, int txq_id);
int iwl_trans_pcie_gen2_send_hcmd(struct iwl_trans *trans,
struct iwl_host_cmd *cmd);
void iwl_trans_pcie_gen2_stop_device(struct iwl_trans *trans,
bool low_power);
void _iwl_trans_pcie_gen2_stop_device(struct iwl_trans *trans, bool low_power);
void iwl_pcie_gen2_txq_unmap(struct iwl_trans *trans, int txq_id);
void iwl_pcie_gen2_tx_free(struct iwl_trans *trans);
void iwl_pcie_gen2_tx_stop(struct iwl_trans *trans);
#endif /* __iwl_trans_int_pcie_h__ */