| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef __KVM_X86_MMU_H |
| #define __KVM_X86_MMU_H |
| |
| #include <linux/kvm_host.h> |
| #include "kvm_cache_regs.h" |
| #include "cpuid.h" |
| |
| extern bool __read_mostly enable_mmio_caching; |
| |
| #define PT_WRITABLE_SHIFT 1 |
| #define PT_USER_SHIFT 2 |
| |
| #define PT_PRESENT_MASK (1ULL << 0) |
| #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT) |
| #define PT_USER_MASK (1ULL << PT_USER_SHIFT) |
| #define PT_PWT_MASK (1ULL << 3) |
| #define PT_PCD_MASK (1ULL << 4) |
| #define PT_ACCESSED_SHIFT 5 |
| #define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT) |
| #define PT_DIRTY_SHIFT 6 |
| #define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT) |
| #define PT_PAGE_SIZE_SHIFT 7 |
| #define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT) |
| #define PT_PAT_MASK (1ULL << 7) |
| #define PT_GLOBAL_MASK (1ULL << 8) |
| #define PT64_NX_SHIFT 63 |
| #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT) |
| |
| #define PT_PAT_SHIFT 7 |
| #define PT_DIR_PAT_SHIFT 12 |
| #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT) |
| |
| #define PT64_ROOT_5LEVEL 5 |
| #define PT64_ROOT_4LEVEL 4 |
| #define PT32_ROOT_LEVEL 2 |
| #define PT32E_ROOT_LEVEL 3 |
| |
| #define KVM_MMU_CR4_ROLE_BITS (X86_CR4_PSE | X86_CR4_PAE | X86_CR4_LA57 | \ |
| X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE) |
| |
| #define KVM_MMU_CR0_ROLE_BITS (X86_CR0_PG | X86_CR0_WP) |
| #define KVM_MMU_EFER_ROLE_BITS (EFER_LME | EFER_NX) |
| |
| static __always_inline u64 rsvd_bits(int s, int e) |
| { |
| BUILD_BUG_ON(__builtin_constant_p(e) && __builtin_constant_p(s) && e < s); |
| |
| if (__builtin_constant_p(e)) |
| BUILD_BUG_ON(e > 63); |
| else |
| e &= 63; |
| |
| if (e < s) |
| return 0; |
| |
| return ((2ULL << (e - s)) - 1) << s; |
| } |
| |
| /* |
| * The number of non-reserved physical address bits irrespective of features |
| * that repurpose legal bits, e.g. MKTME. |
| */ |
| extern u8 __read_mostly shadow_phys_bits; |
| |
| static inline gfn_t kvm_mmu_max_gfn(void) |
| { |
| /* |
| * Note that this uses the host MAXPHYADDR, not the guest's. |
| * EPT/NPT cannot support GPAs that would exceed host.MAXPHYADDR; |
| * assuming KVM is running on bare metal, guest accesses beyond |
| * host.MAXPHYADDR will hit a #PF(RSVD) and never cause a vmexit |
| * (either EPT Violation/Misconfig or #NPF), and so KVM will never |
| * install a SPTE for such addresses. If KVM is running as a VM |
| * itself, on the other hand, it might see a MAXPHYADDR that is less |
| * than hardware's real MAXPHYADDR. Using the host MAXPHYADDR |
| * disallows such SPTEs entirely and simplifies the TDP MMU. |
| */ |
| int max_gpa_bits = likely(tdp_enabled) ? shadow_phys_bits : 52; |
| |
| return (1ULL << (max_gpa_bits - PAGE_SHIFT)) - 1; |
| } |
| |
| static inline u8 kvm_get_shadow_phys_bits(void) |
| { |
| /* |
| * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected |
| * in CPU detection code, but the processor treats those reduced bits as |
| * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at |
| * the physical address bits reported by CPUID. |
| */ |
| if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008)) |
| return cpuid_eax(0x80000008) & 0xff; |
| |
| /* |
| * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with |
| * custom CPUID. Proceed with whatever the kernel found since these features |
| * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008). |
| */ |
| return boot_cpu_data.x86_phys_bits; |
| } |
| |
| void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask); |
| void kvm_mmu_set_me_spte_mask(u64 me_value, u64 me_mask); |
| void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only); |
| |
| void kvm_init_mmu(struct kvm_vcpu *vcpu); |
| void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0, |
| unsigned long cr4, u64 efer, gpa_t nested_cr3); |
| void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, |
| int huge_page_level, bool accessed_dirty, |
| gpa_t new_eptp); |
| bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu); |
| int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, |
| u64 fault_address, char *insn, int insn_len); |
| |
| int kvm_mmu_load(struct kvm_vcpu *vcpu); |
| void kvm_mmu_unload(struct kvm_vcpu *vcpu); |
| void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu); |
| void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu); |
| void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu); |
| |
| static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu) |
| { |
| if (likely(vcpu->arch.mmu->root.hpa != INVALID_PAGE)) |
| return 0; |
| |
| return kvm_mmu_load(vcpu); |
| } |
| |
| static inline unsigned long kvm_get_pcid(struct kvm_vcpu *vcpu, gpa_t cr3) |
| { |
| BUILD_BUG_ON((X86_CR3_PCID_MASK & PAGE_MASK) != 0); |
| |
| return kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE) |
| ? cr3 & X86_CR3_PCID_MASK |
| : 0; |
| } |
| |
| static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu) |
| { |
| return kvm_get_pcid(vcpu, kvm_read_cr3(vcpu)); |
| } |
| |
| static inline void kvm_mmu_load_pgd(struct kvm_vcpu *vcpu) |
| { |
| u64 root_hpa = vcpu->arch.mmu->root.hpa; |
| |
| if (!VALID_PAGE(root_hpa)) |
| return; |
| |
| static_call(kvm_x86_load_mmu_pgd)(vcpu, root_hpa, |
| vcpu->arch.mmu->root_role.level); |
| } |
| |
| /* |
| * Check if a given access (described through the I/D, W/R and U/S bits of a |
| * page fault error code pfec) causes a permission fault with the given PTE |
| * access rights (in ACC_* format). |
| * |
| * Return zero if the access does not fault; return the page fault error code |
| * if the access faults. |
| */ |
| static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, |
| unsigned pte_access, unsigned pte_pkey, |
| u64 access) |
| { |
| /* strip nested paging fault error codes */ |
| unsigned int pfec = access; |
| unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); |
| |
| /* |
| * For explicit supervisor accesses, SMAP is disabled if EFLAGS.AC = 1. |
| * For implicit supervisor accesses, SMAP cannot be overridden. |
| * |
| * SMAP works on supervisor accesses only, and not_smap can |
| * be set or not set when user access with neither has any bearing |
| * on the result. |
| * |
| * We put the SMAP checking bit in place of the PFERR_RSVD_MASK bit; |
| * this bit will always be zero in pfec, but it will be one in index |
| * if SMAP checks are being disabled. |
| */ |
| u64 implicit_access = access & PFERR_IMPLICIT_ACCESS; |
| bool not_smap = ((rflags & X86_EFLAGS_AC) | implicit_access) == X86_EFLAGS_AC; |
| int index = (pfec + (not_smap << PFERR_RSVD_BIT)) >> 1; |
| bool fault = (mmu->permissions[index] >> pte_access) & 1; |
| u32 errcode = PFERR_PRESENT_MASK; |
| |
| WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK)); |
| if (unlikely(mmu->pkru_mask)) { |
| u32 pkru_bits, offset; |
| |
| /* |
| * PKRU defines 32 bits, there are 16 domains and 2 |
| * attribute bits per domain in pkru. pte_pkey is the |
| * index of the protection domain, so pte_pkey * 2 is |
| * is the index of the first bit for the domain. |
| */ |
| pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3; |
| |
| /* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */ |
| offset = (pfec & ~1) + |
| ((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT)); |
| |
| pkru_bits &= mmu->pkru_mask >> offset; |
| errcode |= -pkru_bits & PFERR_PK_MASK; |
| fault |= (pkru_bits != 0); |
| } |
| |
| return -(u32)fault & errcode; |
| } |
| |
| void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end); |
| |
| int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu); |
| |
| int kvm_mmu_post_init_vm(struct kvm *kvm); |
| void kvm_mmu_pre_destroy_vm(struct kvm *kvm); |
| |
| static inline bool kvm_shadow_root_allocated(struct kvm *kvm) |
| { |
| /* |
| * Read shadow_root_allocated before related pointers. Hence, threads |
| * reading shadow_root_allocated in any lock context are guaranteed to |
| * see the pointers. Pairs with smp_store_release in |
| * mmu_first_shadow_root_alloc. |
| */ |
| return smp_load_acquire(&kvm->arch.shadow_root_allocated); |
| } |
| |
| #ifdef CONFIG_X86_64 |
| static inline bool is_tdp_mmu_enabled(struct kvm *kvm) { return kvm->arch.tdp_mmu_enabled; } |
| #else |
| static inline bool is_tdp_mmu_enabled(struct kvm *kvm) { return false; } |
| #endif |
| |
| static inline bool kvm_memslots_have_rmaps(struct kvm *kvm) |
| { |
| return !is_tdp_mmu_enabled(kvm) || kvm_shadow_root_allocated(kvm); |
| } |
| |
| static inline gfn_t gfn_to_index(gfn_t gfn, gfn_t base_gfn, int level) |
| { |
| /* KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K) must be 0. */ |
| return (gfn >> KVM_HPAGE_GFN_SHIFT(level)) - |
| (base_gfn >> KVM_HPAGE_GFN_SHIFT(level)); |
| } |
| |
| static inline unsigned long |
| __kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, unsigned long npages, |
| int level) |
| { |
| return gfn_to_index(slot->base_gfn + npages - 1, |
| slot->base_gfn, level) + 1; |
| } |
| |
| static inline unsigned long |
| kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, int level) |
| { |
| return __kvm_mmu_slot_lpages(slot, slot->npages, level); |
| } |
| |
| static inline void kvm_update_page_stats(struct kvm *kvm, int level, int count) |
| { |
| atomic64_add(count, &kvm->stat.pages[level - 1]); |
| } |
| |
| gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, |
| struct x86_exception *exception); |
| |
| static inline gpa_t kvm_translate_gpa(struct kvm_vcpu *vcpu, |
| struct kvm_mmu *mmu, |
| gpa_t gpa, u64 access, |
| struct x86_exception *exception) |
| { |
| if (mmu != &vcpu->arch.nested_mmu) |
| return gpa; |
| return translate_nested_gpa(vcpu, gpa, access, exception); |
| } |
| #endif |