| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Functions related to mapping data to requests |
| */ |
| #include <linux/kernel.h> |
| #include <linux/sched/task_stack.h> |
| #include <linux/module.h> |
| #include <linux/bio.h> |
| #include <linux/blkdev.h> |
| #include <linux/uio.h> |
| |
| #include "blk.h" |
| |
| struct bio_map_data { |
| bool is_our_pages : 1; |
| bool is_null_mapped : 1; |
| struct iov_iter iter; |
| struct iovec iov[]; |
| }; |
| |
| static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data, |
| gfp_t gfp_mask) |
| { |
| struct bio_map_data *bmd; |
| |
| if (data->nr_segs > UIO_MAXIOV) |
| return NULL; |
| |
| bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask); |
| if (!bmd) |
| return NULL; |
| memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs); |
| bmd->iter = *data; |
| bmd->iter.iov = bmd->iov; |
| return bmd; |
| } |
| |
| /** |
| * bio_copy_from_iter - copy all pages from iov_iter to bio |
| * @bio: The &struct bio which describes the I/O as destination |
| * @iter: iov_iter as source |
| * |
| * Copy all pages from iov_iter to bio. |
| * Returns 0 on success, or error on failure. |
| */ |
| static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter) |
| { |
| struct bio_vec *bvec; |
| struct bvec_iter_all iter_all; |
| |
| bio_for_each_segment_all(bvec, bio, iter_all) { |
| ssize_t ret; |
| |
| ret = copy_page_from_iter(bvec->bv_page, |
| bvec->bv_offset, |
| bvec->bv_len, |
| iter); |
| |
| if (!iov_iter_count(iter)) |
| break; |
| |
| if (ret < bvec->bv_len) |
| return -EFAULT; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * bio_copy_to_iter - copy all pages from bio to iov_iter |
| * @bio: The &struct bio which describes the I/O as source |
| * @iter: iov_iter as destination |
| * |
| * Copy all pages from bio to iov_iter. |
| * Returns 0 on success, or error on failure. |
| */ |
| static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter) |
| { |
| struct bio_vec *bvec; |
| struct bvec_iter_all iter_all; |
| |
| bio_for_each_segment_all(bvec, bio, iter_all) { |
| ssize_t ret; |
| |
| ret = copy_page_to_iter(bvec->bv_page, |
| bvec->bv_offset, |
| bvec->bv_len, |
| &iter); |
| |
| if (!iov_iter_count(&iter)) |
| break; |
| |
| if (ret < bvec->bv_len) |
| return -EFAULT; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * bio_uncopy_user - finish previously mapped bio |
| * @bio: bio being terminated |
| * |
| * Free pages allocated from bio_copy_user_iov() and write back data |
| * to user space in case of a read. |
| */ |
| static int bio_uncopy_user(struct bio *bio) |
| { |
| struct bio_map_data *bmd = bio->bi_private; |
| int ret = 0; |
| |
| if (!bmd->is_null_mapped) { |
| /* |
| * if we're in a workqueue, the request is orphaned, so |
| * don't copy into a random user address space, just free |
| * and return -EINTR so user space doesn't expect any data. |
| */ |
| if (!current->mm) |
| ret = -EINTR; |
| else if (bio_data_dir(bio) == READ) |
| ret = bio_copy_to_iter(bio, bmd->iter); |
| if (bmd->is_our_pages) |
| bio_free_pages(bio); |
| } |
| kfree(bmd); |
| return ret; |
| } |
| |
| static int bio_copy_user_iov(struct request *rq, struct rq_map_data *map_data, |
| struct iov_iter *iter, gfp_t gfp_mask) |
| { |
| struct bio_map_data *bmd; |
| struct page *page; |
| struct bio *bio; |
| int i = 0, ret; |
| int nr_pages; |
| unsigned int len = iter->count; |
| unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0; |
| |
| bmd = bio_alloc_map_data(iter, gfp_mask); |
| if (!bmd) |
| return -ENOMEM; |
| |
| /* |
| * We need to do a deep copy of the iov_iter including the iovecs. |
| * The caller provided iov might point to an on-stack or otherwise |
| * shortlived one. |
| */ |
| bmd->is_our_pages = !map_data; |
| bmd->is_null_mapped = (map_data && map_data->null_mapped); |
| |
| nr_pages = bio_max_segs(DIV_ROUND_UP(offset + len, PAGE_SIZE)); |
| |
| ret = -ENOMEM; |
| bio = bio_kmalloc(nr_pages, gfp_mask); |
| if (!bio) |
| goto out_bmd; |
| bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, req_op(rq)); |
| |
| if (map_data) { |
| nr_pages = 1U << map_data->page_order; |
| i = map_data->offset / PAGE_SIZE; |
| } |
| while (len) { |
| unsigned int bytes = PAGE_SIZE; |
| |
| bytes -= offset; |
| |
| if (bytes > len) |
| bytes = len; |
| |
| if (map_data) { |
| if (i == map_data->nr_entries * nr_pages) { |
| ret = -ENOMEM; |
| goto cleanup; |
| } |
| |
| page = map_data->pages[i / nr_pages]; |
| page += (i % nr_pages); |
| |
| i++; |
| } else { |
| page = alloc_page(GFP_NOIO | gfp_mask); |
| if (!page) { |
| ret = -ENOMEM; |
| goto cleanup; |
| } |
| } |
| |
| if (bio_add_pc_page(rq->q, bio, page, bytes, offset) < bytes) { |
| if (!map_data) |
| __free_page(page); |
| break; |
| } |
| |
| len -= bytes; |
| offset = 0; |
| } |
| |
| if (map_data) |
| map_data->offset += bio->bi_iter.bi_size; |
| |
| /* |
| * success |
| */ |
| if ((iov_iter_rw(iter) == WRITE && |
| (!map_data || !map_data->null_mapped)) || |
| (map_data && map_data->from_user)) { |
| ret = bio_copy_from_iter(bio, iter); |
| if (ret) |
| goto cleanup; |
| } else { |
| if (bmd->is_our_pages) |
| zero_fill_bio(bio); |
| iov_iter_advance(iter, bio->bi_iter.bi_size); |
| } |
| |
| bio->bi_private = bmd; |
| |
| ret = blk_rq_append_bio(rq, bio); |
| if (ret) |
| goto cleanup; |
| return 0; |
| cleanup: |
| if (!map_data) |
| bio_free_pages(bio); |
| bio_uninit(bio); |
| kfree(bio); |
| out_bmd: |
| kfree(bmd); |
| return ret; |
| } |
| |
| static void blk_mq_map_bio_put(struct bio *bio) |
| { |
| if (bio->bi_opf & REQ_ALLOC_CACHE) { |
| bio_put(bio); |
| } else { |
| bio_uninit(bio); |
| kfree(bio); |
| } |
| } |
| |
| static struct bio *blk_rq_map_bio_alloc(struct request *rq, |
| unsigned int nr_vecs, gfp_t gfp_mask) |
| { |
| struct bio *bio; |
| |
| if (rq->cmd_flags & REQ_POLLED) { |
| blk_opf_t opf = rq->cmd_flags | REQ_ALLOC_CACHE; |
| |
| bio = bio_alloc_bioset(NULL, nr_vecs, opf, gfp_mask, |
| &fs_bio_set); |
| if (!bio) |
| return NULL; |
| } else { |
| bio = bio_kmalloc(nr_vecs, gfp_mask); |
| if (!bio) |
| return NULL; |
| bio_init(bio, NULL, bio->bi_inline_vecs, nr_vecs, req_op(rq)); |
| } |
| return bio; |
| } |
| |
| static int bio_map_user_iov(struct request *rq, struct iov_iter *iter, |
| gfp_t gfp_mask) |
| { |
| unsigned int max_sectors = queue_max_hw_sectors(rq->q); |
| unsigned int nr_vecs = iov_iter_npages(iter, BIO_MAX_VECS); |
| unsigned int gup_flags = 0; |
| struct bio *bio; |
| int ret; |
| int j; |
| |
| if (!iov_iter_count(iter)) |
| return -EINVAL; |
| |
| bio = blk_rq_map_bio_alloc(rq, nr_vecs, gfp_mask); |
| if (bio == NULL) |
| return -ENOMEM; |
| |
| if (blk_queue_pci_p2pdma(rq->q)) |
| gup_flags |= FOLL_PCI_P2PDMA; |
| |
| while (iov_iter_count(iter)) { |
| struct page **pages, *stack_pages[UIO_FASTIOV]; |
| ssize_t bytes; |
| size_t offs; |
| int npages; |
| |
| if (nr_vecs <= ARRAY_SIZE(stack_pages)) { |
| pages = stack_pages; |
| bytes = iov_iter_get_pages(iter, pages, LONG_MAX, |
| nr_vecs, &offs, gup_flags); |
| } else { |
| bytes = iov_iter_get_pages_alloc(iter, &pages, |
| LONG_MAX, &offs, gup_flags); |
| } |
| if (unlikely(bytes <= 0)) { |
| ret = bytes ? bytes : -EFAULT; |
| goto out_unmap; |
| } |
| |
| npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE); |
| |
| if (unlikely(offs & queue_dma_alignment(rq->q))) |
| j = 0; |
| else { |
| for (j = 0; j < npages; j++) { |
| struct page *page = pages[j]; |
| unsigned int n = PAGE_SIZE - offs; |
| bool same_page = false; |
| |
| if (n > bytes) |
| n = bytes; |
| |
| if (!bio_add_hw_page(rq->q, bio, page, n, offs, |
| max_sectors, &same_page)) { |
| if (same_page) |
| put_page(page); |
| break; |
| } |
| |
| bytes -= n; |
| offs = 0; |
| } |
| } |
| /* |
| * release the pages we didn't map into the bio, if any |
| */ |
| while (j < npages) |
| put_page(pages[j++]); |
| if (pages != stack_pages) |
| kvfree(pages); |
| /* couldn't stuff something into bio? */ |
| if (bytes) { |
| iov_iter_revert(iter, bytes); |
| break; |
| } |
| } |
| |
| ret = blk_rq_append_bio(rq, bio); |
| if (ret) |
| goto out_unmap; |
| return 0; |
| |
| out_unmap: |
| bio_release_pages(bio, false); |
| blk_mq_map_bio_put(bio); |
| return ret; |
| } |
| |
| static void bio_invalidate_vmalloc_pages(struct bio *bio) |
| { |
| #ifdef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE |
| if (bio->bi_private && !op_is_write(bio_op(bio))) { |
| unsigned long i, len = 0; |
| |
| for (i = 0; i < bio->bi_vcnt; i++) |
| len += bio->bi_io_vec[i].bv_len; |
| invalidate_kernel_vmap_range(bio->bi_private, len); |
| } |
| #endif |
| } |
| |
| static void bio_map_kern_endio(struct bio *bio) |
| { |
| bio_invalidate_vmalloc_pages(bio); |
| bio_uninit(bio); |
| kfree(bio); |
| } |
| |
| /** |
| * bio_map_kern - map kernel address into bio |
| * @q: the struct request_queue for the bio |
| * @data: pointer to buffer to map |
| * @len: length in bytes |
| * @gfp_mask: allocation flags for bio allocation |
| * |
| * Map the kernel address into a bio suitable for io to a block |
| * device. Returns an error pointer in case of error. |
| */ |
| static struct bio *bio_map_kern(struct request_queue *q, void *data, |
| unsigned int len, gfp_t gfp_mask) |
| { |
| unsigned long kaddr = (unsigned long)data; |
| unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; |
| unsigned long start = kaddr >> PAGE_SHIFT; |
| const int nr_pages = end - start; |
| bool is_vmalloc = is_vmalloc_addr(data); |
| struct page *page; |
| int offset, i; |
| struct bio *bio; |
| |
| bio = bio_kmalloc(nr_pages, gfp_mask); |
| if (!bio) |
| return ERR_PTR(-ENOMEM); |
| bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0); |
| |
| if (is_vmalloc) { |
| flush_kernel_vmap_range(data, len); |
| bio->bi_private = data; |
| } |
| |
| offset = offset_in_page(kaddr); |
| for (i = 0; i < nr_pages; i++) { |
| unsigned int bytes = PAGE_SIZE - offset; |
| |
| if (len <= 0) |
| break; |
| |
| if (bytes > len) |
| bytes = len; |
| |
| if (!is_vmalloc) |
| page = virt_to_page(data); |
| else |
| page = vmalloc_to_page(data); |
| if (bio_add_pc_page(q, bio, page, bytes, |
| offset) < bytes) { |
| /* we don't support partial mappings */ |
| bio_uninit(bio); |
| kfree(bio); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| data += bytes; |
| len -= bytes; |
| offset = 0; |
| } |
| |
| bio->bi_end_io = bio_map_kern_endio; |
| return bio; |
| } |
| |
| static void bio_copy_kern_endio(struct bio *bio) |
| { |
| bio_free_pages(bio); |
| bio_uninit(bio); |
| kfree(bio); |
| } |
| |
| static void bio_copy_kern_endio_read(struct bio *bio) |
| { |
| char *p = bio->bi_private; |
| struct bio_vec *bvec; |
| struct bvec_iter_all iter_all; |
| |
| bio_for_each_segment_all(bvec, bio, iter_all) { |
| memcpy_from_bvec(p, bvec); |
| p += bvec->bv_len; |
| } |
| |
| bio_copy_kern_endio(bio); |
| } |
| |
| /** |
| * bio_copy_kern - copy kernel address into bio |
| * @q: the struct request_queue for the bio |
| * @data: pointer to buffer to copy |
| * @len: length in bytes |
| * @gfp_mask: allocation flags for bio and page allocation |
| * @reading: data direction is READ |
| * |
| * copy the kernel address into a bio suitable for io to a block |
| * device. Returns an error pointer in case of error. |
| */ |
| static struct bio *bio_copy_kern(struct request_queue *q, void *data, |
| unsigned int len, gfp_t gfp_mask, int reading) |
| { |
| unsigned long kaddr = (unsigned long)data; |
| unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; |
| unsigned long start = kaddr >> PAGE_SHIFT; |
| struct bio *bio; |
| void *p = data; |
| int nr_pages = 0; |
| |
| /* |
| * Overflow, abort |
| */ |
| if (end < start) |
| return ERR_PTR(-EINVAL); |
| |
| nr_pages = end - start; |
| bio = bio_kmalloc(nr_pages, gfp_mask); |
| if (!bio) |
| return ERR_PTR(-ENOMEM); |
| bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0); |
| |
| while (len) { |
| struct page *page; |
| unsigned int bytes = PAGE_SIZE; |
| |
| if (bytes > len) |
| bytes = len; |
| |
| page = alloc_page(GFP_NOIO | __GFP_ZERO | gfp_mask); |
| if (!page) |
| goto cleanup; |
| |
| if (!reading) |
| memcpy(page_address(page), p, bytes); |
| |
| if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) |
| break; |
| |
| len -= bytes; |
| p += bytes; |
| } |
| |
| if (reading) { |
| bio->bi_end_io = bio_copy_kern_endio_read; |
| bio->bi_private = data; |
| } else { |
| bio->bi_end_io = bio_copy_kern_endio; |
| } |
| |
| return bio; |
| |
| cleanup: |
| bio_free_pages(bio); |
| bio_uninit(bio); |
| kfree(bio); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| /* |
| * Append a bio to a passthrough request. Only works if the bio can be merged |
| * into the request based on the driver constraints. |
| */ |
| int blk_rq_append_bio(struct request *rq, struct bio *bio) |
| { |
| struct bvec_iter iter; |
| struct bio_vec bv; |
| unsigned int nr_segs = 0; |
| |
| bio_for_each_bvec(bv, bio, iter) |
| nr_segs++; |
| |
| if (!rq->bio) { |
| blk_rq_bio_prep(rq, bio, nr_segs); |
| } else { |
| if (!ll_back_merge_fn(rq, bio, nr_segs)) |
| return -EINVAL; |
| rq->biotail->bi_next = bio; |
| rq->biotail = bio; |
| rq->__data_len += (bio)->bi_iter.bi_size; |
| bio_crypt_free_ctx(bio); |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(blk_rq_append_bio); |
| |
| /* Prepare bio for passthrough IO given ITER_BVEC iter */ |
| static int blk_rq_map_user_bvec(struct request *rq, const struct iov_iter *iter) |
| { |
| struct request_queue *q = rq->q; |
| size_t nr_iter = iov_iter_count(iter); |
| size_t nr_segs = iter->nr_segs; |
| struct bio_vec *bvecs, *bvprvp = NULL; |
| const struct queue_limits *lim = &q->limits; |
| unsigned int nsegs = 0, bytes = 0; |
| struct bio *bio; |
| size_t i; |
| |
| if (!nr_iter || (nr_iter >> SECTOR_SHIFT) > queue_max_hw_sectors(q)) |
| return -EINVAL; |
| if (nr_segs > queue_max_segments(q)) |
| return -EINVAL; |
| |
| /* no iovecs to alloc, as we already have a BVEC iterator */ |
| bio = blk_rq_map_bio_alloc(rq, 0, GFP_KERNEL); |
| if (bio == NULL) |
| return -ENOMEM; |
| |
| bio_iov_bvec_set(bio, (struct iov_iter *)iter); |
| blk_rq_bio_prep(rq, bio, nr_segs); |
| |
| /* loop to perform a bunch of sanity checks */ |
| bvecs = (struct bio_vec *)iter->bvec; |
| for (i = 0; i < nr_segs; i++) { |
| struct bio_vec *bv = &bvecs[i]; |
| |
| /* |
| * If the queue doesn't support SG gaps and adding this |
| * offset would create a gap, fallback to copy. |
| */ |
| if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv->bv_offset)) { |
| blk_mq_map_bio_put(bio); |
| return -EREMOTEIO; |
| } |
| /* check full condition */ |
| if (nsegs >= nr_segs || bytes > UINT_MAX - bv->bv_len) |
| goto put_bio; |
| if (bytes + bv->bv_len > nr_iter) |
| goto put_bio; |
| if (bv->bv_offset + bv->bv_len > PAGE_SIZE) |
| goto put_bio; |
| |
| nsegs++; |
| bytes += bv->bv_len; |
| bvprvp = bv; |
| } |
| return 0; |
| put_bio: |
| blk_mq_map_bio_put(bio); |
| return -EINVAL; |
| } |
| |
| /** |
| * blk_rq_map_user_iov - map user data to a request, for passthrough requests |
| * @q: request queue where request should be inserted |
| * @rq: request to map data to |
| * @map_data: pointer to the rq_map_data holding pages (if necessary) |
| * @iter: iovec iterator |
| * @gfp_mask: memory allocation flags |
| * |
| * Description: |
| * Data will be mapped directly for zero copy I/O, if possible. Otherwise |
| * a kernel bounce buffer is used. |
| * |
| * A matching blk_rq_unmap_user() must be issued at the end of I/O, while |
| * still in process context. |
| */ |
| int blk_rq_map_user_iov(struct request_queue *q, struct request *rq, |
| struct rq_map_data *map_data, |
| const struct iov_iter *iter, gfp_t gfp_mask) |
| { |
| bool copy = false, map_bvec = false; |
| unsigned long align = q->dma_pad_mask | queue_dma_alignment(q); |
| struct bio *bio = NULL; |
| struct iov_iter i; |
| int ret = -EINVAL; |
| |
| if (map_data) |
| copy = true; |
| else if (blk_queue_may_bounce(q)) |
| copy = true; |
| else if (iov_iter_alignment(iter) & align) |
| copy = true; |
| else if (iov_iter_is_bvec(iter)) |
| map_bvec = true; |
| else if (!iter_is_iovec(iter)) |
| copy = true; |
| else if (queue_virt_boundary(q)) |
| copy = queue_virt_boundary(q) & iov_iter_gap_alignment(iter); |
| |
| if (map_bvec) { |
| ret = blk_rq_map_user_bvec(rq, iter); |
| if (!ret) |
| return 0; |
| if (ret != -EREMOTEIO) |
| goto fail; |
| /* fall back to copying the data on limits mismatches */ |
| copy = true; |
| } |
| |
| i = *iter; |
| do { |
| if (copy) |
| ret = bio_copy_user_iov(rq, map_data, &i, gfp_mask); |
| else |
| ret = bio_map_user_iov(rq, &i, gfp_mask); |
| if (ret) |
| goto unmap_rq; |
| if (!bio) |
| bio = rq->bio; |
| } while (iov_iter_count(&i)); |
| |
| return 0; |
| |
| unmap_rq: |
| blk_rq_unmap_user(bio); |
| fail: |
| rq->bio = NULL; |
| return ret; |
| } |
| EXPORT_SYMBOL(blk_rq_map_user_iov); |
| |
| int blk_rq_map_user(struct request_queue *q, struct request *rq, |
| struct rq_map_data *map_data, void __user *ubuf, |
| unsigned long len, gfp_t gfp_mask) |
| { |
| struct iovec iov; |
| struct iov_iter i; |
| int ret = import_single_range(rq_data_dir(rq), ubuf, len, &iov, &i); |
| |
| if (unlikely(ret < 0)) |
| return ret; |
| |
| return blk_rq_map_user_iov(q, rq, map_data, &i, gfp_mask); |
| } |
| EXPORT_SYMBOL(blk_rq_map_user); |
| |
| int blk_rq_map_user_io(struct request *req, struct rq_map_data *map_data, |
| void __user *ubuf, unsigned long buf_len, gfp_t gfp_mask, |
| bool vec, int iov_count, bool check_iter_count, int rw) |
| { |
| int ret = 0; |
| |
| if (vec) { |
| struct iovec fast_iov[UIO_FASTIOV]; |
| struct iovec *iov = fast_iov; |
| struct iov_iter iter; |
| |
| ret = import_iovec(rw, ubuf, iov_count ? iov_count : buf_len, |
| UIO_FASTIOV, &iov, &iter); |
| if (ret < 0) |
| return ret; |
| |
| if (iov_count) { |
| /* SG_IO howto says that the shorter of the two wins */ |
| iov_iter_truncate(&iter, buf_len); |
| if (check_iter_count && !iov_iter_count(&iter)) { |
| kfree(iov); |
| return -EINVAL; |
| } |
| } |
| |
| ret = blk_rq_map_user_iov(req->q, req, map_data, &iter, |
| gfp_mask); |
| kfree(iov); |
| } else if (buf_len) { |
| ret = blk_rq_map_user(req->q, req, map_data, ubuf, buf_len, |
| gfp_mask); |
| } |
| return ret; |
| } |
| EXPORT_SYMBOL(blk_rq_map_user_io); |
| |
| /** |
| * blk_rq_unmap_user - unmap a request with user data |
| * @bio: start of bio list |
| * |
| * Description: |
| * Unmap a rq previously mapped by blk_rq_map_user(). The caller must |
| * supply the original rq->bio from the blk_rq_map_user() return, since |
| * the I/O completion may have changed rq->bio. |
| */ |
| int blk_rq_unmap_user(struct bio *bio) |
| { |
| struct bio *next_bio; |
| int ret = 0, ret2; |
| |
| while (bio) { |
| if (bio->bi_private) { |
| ret2 = bio_uncopy_user(bio); |
| if (ret2 && !ret) |
| ret = ret2; |
| } else { |
| bio_release_pages(bio, bio_data_dir(bio) == READ); |
| } |
| |
| next_bio = bio; |
| bio = bio->bi_next; |
| blk_mq_map_bio_put(next_bio); |
| } |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(blk_rq_unmap_user); |
| |
| /** |
| * blk_rq_map_kern - map kernel data to a request, for passthrough requests |
| * @q: request queue where request should be inserted |
| * @rq: request to fill |
| * @kbuf: the kernel buffer |
| * @len: length of user data |
| * @gfp_mask: memory allocation flags |
| * |
| * Description: |
| * Data will be mapped directly if possible. Otherwise a bounce |
| * buffer is used. Can be called multiple times to append multiple |
| * buffers. |
| */ |
| int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf, |
| unsigned int len, gfp_t gfp_mask) |
| { |
| int reading = rq_data_dir(rq) == READ; |
| unsigned long addr = (unsigned long) kbuf; |
| struct bio *bio; |
| int ret; |
| |
| if (len > (queue_max_hw_sectors(q) << 9)) |
| return -EINVAL; |
| if (!len || !kbuf) |
| return -EINVAL; |
| |
| if (!blk_rq_aligned(q, addr, len) || object_is_on_stack(kbuf) || |
| blk_queue_may_bounce(q)) |
| bio = bio_copy_kern(q, kbuf, len, gfp_mask, reading); |
| else |
| bio = bio_map_kern(q, kbuf, len, gfp_mask); |
| |
| if (IS_ERR(bio)) |
| return PTR_ERR(bio); |
| |
| bio->bi_opf &= ~REQ_OP_MASK; |
| bio->bi_opf |= req_op(rq); |
| |
| ret = blk_rq_append_bio(rq, bio); |
| if (unlikely(ret)) { |
| bio_uninit(bio); |
| kfree(bio); |
| } |
| return ret; |
| } |
| EXPORT_SYMBOL(blk_rq_map_kern); |