| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright(c) 2013-2015 Intel Corporation. All rights reserved. |
| */ |
| #include <linux/list_sort.h> |
| #include <linux/libnvdimm.h> |
| #include <linux/module.h> |
| #include <linux/nospec.h> |
| #include <linux/mutex.h> |
| #include <linux/ndctl.h> |
| #include <linux/sysfs.h> |
| #include <linux/delay.h> |
| #include <linux/list.h> |
| #include <linux/acpi.h> |
| #include <linux/sort.h> |
| #include <linux/io.h> |
| #include <linux/nd.h> |
| #include <asm/cacheflush.h> |
| #include <acpi/nfit.h> |
| #include "intel.h" |
| #include "nfit.h" |
| |
| /* |
| * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is |
| * irrelevant. |
| */ |
| #include <linux/io-64-nonatomic-hi-lo.h> |
| |
| static bool force_enable_dimms; |
| module_param(force_enable_dimms, bool, S_IRUGO|S_IWUSR); |
| MODULE_PARM_DESC(force_enable_dimms, "Ignore _STA (ACPI DIMM device) status"); |
| |
| static bool disable_vendor_specific; |
| module_param(disable_vendor_specific, bool, S_IRUGO); |
| MODULE_PARM_DESC(disable_vendor_specific, |
| "Limit commands to the publicly specified set"); |
| |
| static unsigned long override_dsm_mask; |
| module_param(override_dsm_mask, ulong, S_IRUGO); |
| MODULE_PARM_DESC(override_dsm_mask, "Bitmask of allowed NVDIMM DSM functions"); |
| |
| static int default_dsm_family = -1; |
| module_param(default_dsm_family, int, S_IRUGO); |
| MODULE_PARM_DESC(default_dsm_family, |
| "Try this DSM type first when identifying NVDIMM family"); |
| |
| static bool no_init_ars; |
| module_param(no_init_ars, bool, 0644); |
| MODULE_PARM_DESC(no_init_ars, "Skip ARS run at nfit init time"); |
| |
| static bool force_labels; |
| module_param(force_labels, bool, 0444); |
| MODULE_PARM_DESC(force_labels, "Opt-in to labels despite missing methods"); |
| |
| LIST_HEAD(acpi_descs); |
| DEFINE_MUTEX(acpi_desc_lock); |
| |
| static struct workqueue_struct *nfit_wq; |
| |
| struct nfit_table_prev { |
| struct list_head spas; |
| struct list_head memdevs; |
| struct list_head dcrs; |
| struct list_head bdws; |
| struct list_head idts; |
| struct list_head flushes; |
| }; |
| |
| static guid_t nfit_uuid[NFIT_UUID_MAX]; |
| |
| const guid_t *to_nfit_uuid(enum nfit_uuids id) |
| { |
| return &nfit_uuid[id]; |
| } |
| EXPORT_SYMBOL(to_nfit_uuid); |
| |
| static const guid_t *to_nfit_bus_uuid(int family) |
| { |
| if (WARN_ONCE(family == NVDIMM_BUS_FAMILY_NFIT, |
| "only secondary bus families can be translated\n")) |
| return NULL; |
| /* |
| * The index of bus UUIDs starts immediately following the last |
| * NVDIMM/leaf family. |
| */ |
| return to_nfit_uuid(family + NVDIMM_FAMILY_MAX); |
| } |
| |
| static struct acpi_device *to_acpi_dev(struct acpi_nfit_desc *acpi_desc) |
| { |
| struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; |
| |
| /* |
| * If provider == 'ACPI.NFIT' we can assume 'dev' is a struct |
| * acpi_device. |
| */ |
| if (!nd_desc->provider_name |
| || strcmp(nd_desc->provider_name, "ACPI.NFIT") != 0) |
| return NULL; |
| |
| return to_acpi_device(acpi_desc->dev); |
| } |
| |
| static int xlat_bus_status(void *buf, unsigned int cmd, u32 status) |
| { |
| struct nd_cmd_clear_error *clear_err; |
| struct nd_cmd_ars_status *ars_status; |
| u16 flags; |
| |
| switch (cmd) { |
| case ND_CMD_ARS_CAP: |
| if ((status & 0xffff) == NFIT_ARS_CAP_NONE) |
| return -ENOTTY; |
| |
| /* Command failed */ |
| if (status & 0xffff) |
| return -EIO; |
| |
| /* No supported scan types for this range */ |
| flags = ND_ARS_PERSISTENT | ND_ARS_VOLATILE; |
| if ((status >> 16 & flags) == 0) |
| return -ENOTTY; |
| return 0; |
| case ND_CMD_ARS_START: |
| /* ARS is in progress */ |
| if ((status & 0xffff) == NFIT_ARS_START_BUSY) |
| return -EBUSY; |
| |
| /* Command failed */ |
| if (status & 0xffff) |
| return -EIO; |
| return 0; |
| case ND_CMD_ARS_STATUS: |
| ars_status = buf; |
| /* Command failed */ |
| if (status & 0xffff) |
| return -EIO; |
| /* Check extended status (Upper two bytes) */ |
| if (status == NFIT_ARS_STATUS_DONE) |
| return 0; |
| |
| /* ARS is in progress */ |
| if (status == NFIT_ARS_STATUS_BUSY) |
| return -EBUSY; |
| |
| /* No ARS performed for the current boot */ |
| if (status == NFIT_ARS_STATUS_NONE) |
| return -EAGAIN; |
| |
| /* |
| * ARS interrupted, either we overflowed or some other |
| * agent wants the scan to stop. If we didn't overflow |
| * then just continue with the returned results. |
| */ |
| if (status == NFIT_ARS_STATUS_INTR) { |
| if (ars_status->out_length >= 40 && (ars_status->flags |
| & NFIT_ARS_F_OVERFLOW)) |
| return -ENOSPC; |
| return 0; |
| } |
| |
| /* Unknown status */ |
| if (status >> 16) |
| return -EIO; |
| return 0; |
| case ND_CMD_CLEAR_ERROR: |
| clear_err = buf; |
| if (status & 0xffff) |
| return -EIO; |
| if (!clear_err->cleared) |
| return -EIO; |
| if (clear_err->length > clear_err->cleared) |
| return clear_err->cleared; |
| return 0; |
| default: |
| break; |
| } |
| |
| /* all other non-zero status results in an error */ |
| if (status) |
| return -EIO; |
| return 0; |
| } |
| |
| #define ACPI_LABELS_LOCKED 3 |
| |
| static int xlat_nvdimm_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd, |
| u32 status) |
| { |
| struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); |
| |
| switch (cmd) { |
| case ND_CMD_GET_CONFIG_SIZE: |
| /* |
| * In the _LSI, _LSR, _LSW case the locked status is |
| * communicated via the read/write commands |
| */ |
| if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) |
| break; |
| |
| if (status >> 16 & ND_CONFIG_LOCKED) |
| return -EACCES; |
| break; |
| case ND_CMD_GET_CONFIG_DATA: |
| if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags) |
| && status == ACPI_LABELS_LOCKED) |
| return -EACCES; |
| break; |
| case ND_CMD_SET_CONFIG_DATA: |
| if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags) |
| && status == ACPI_LABELS_LOCKED) |
| return -EACCES; |
| break; |
| default: |
| break; |
| } |
| |
| /* all other non-zero status results in an error */ |
| if (status) |
| return -EIO; |
| return 0; |
| } |
| |
| static int xlat_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd, |
| u32 status) |
| { |
| if (!nvdimm) |
| return xlat_bus_status(buf, cmd, status); |
| return xlat_nvdimm_status(nvdimm, buf, cmd, status); |
| } |
| |
| /* convert _LS{I,R} packages to the buffer object acpi_nfit_ctl expects */ |
| static union acpi_object *pkg_to_buf(union acpi_object *pkg) |
| { |
| int i; |
| void *dst; |
| size_t size = 0; |
| union acpi_object *buf = NULL; |
| |
| if (pkg->type != ACPI_TYPE_PACKAGE) { |
| WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n", |
| pkg->type); |
| goto err; |
| } |
| |
| for (i = 0; i < pkg->package.count; i++) { |
| union acpi_object *obj = &pkg->package.elements[i]; |
| |
| if (obj->type == ACPI_TYPE_INTEGER) |
| size += 4; |
| else if (obj->type == ACPI_TYPE_BUFFER) |
| size += obj->buffer.length; |
| else { |
| WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n", |
| obj->type); |
| goto err; |
| } |
| } |
| |
| buf = ACPI_ALLOCATE(sizeof(*buf) + size); |
| if (!buf) |
| goto err; |
| |
| dst = buf + 1; |
| buf->type = ACPI_TYPE_BUFFER; |
| buf->buffer.length = size; |
| buf->buffer.pointer = dst; |
| for (i = 0; i < pkg->package.count; i++) { |
| union acpi_object *obj = &pkg->package.elements[i]; |
| |
| if (obj->type == ACPI_TYPE_INTEGER) { |
| memcpy(dst, &obj->integer.value, 4); |
| dst += 4; |
| } else if (obj->type == ACPI_TYPE_BUFFER) { |
| memcpy(dst, obj->buffer.pointer, obj->buffer.length); |
| dst += obj->buffer.length; |
| } |
| } |
| err: |
| ACPI_FREE(pkg); |
| return buf; |
| } |
| |
| static union acpi_object *int_to_buf(union acpi_object *integer) |
| { |
| union acpi_object *buf = NULL; |
| void *dst = NULL; |
| |
| if (integer->type != ACPI_TYPE_INTEGER) { |
| WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n", |
| integer->type); |
| goto err; |
| } |
| |
| buf = ACPI_ALLOCATE(sizeof(*buf) + 4); |
| if (!buf) |
| goto err; |
| |
| dst = buf + 1; |
| buf->type = ACPI_TYPE_BUFFER; |
| buf->buffer.length = 4; |
| buf->buffer.pointer = dst; |
| memcpy(dst, &integer->integer.value, 4); |
| err: |
| ACPI_FREE(integer); |
| return buf; |
| } |
| |
| static union acpi_object *acpi_label_write(acpi_handle handle, u32 offset, |
| u32 len, void *data) |
| { |
| acpi_status rc; |
| struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; |
| struct acpi_object_list input = { |
| .count = 3, |
| .pointer = (union acpi_object []) { |
| [0] = { |
| .integer.type = ACPI_TYPE_INTEGER, |
| .integer.value = offset, |
| }, |
| [1] = { |
| .integer.type = ACPI_TYPE_INTEGER, |
| .integer.value = len, |
| }, |
| [2] = { |
| .buffer.type = ACPI_TYPE_BUFFER, |
| .buffer.pointer = data, |
| .buffer.length = len, |
| }, |
| }, |
| }; |
| |
| rc = acpi_evaluate_object(handle, "_LSW", &input, &buf); |
| if (ACPI_FAILURE(rc)) |
| return NULL; |
| return int_to_buf(buf.pointer); |
| } |
| |
| static union acpi_object *acpi_label_read(acpi_handle handle, u32 offset, |
| u32 len) |
| { |
| acpi_status rc; |
| struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; |
| struct acpi_object_list input = { |
| .count = 2, |
| .pointer = (union acpi_object []) { |
| [0] = { |
| .integer.type = ACPI_TYPE_INTEGER, |
| .integer.value = offset, |
| }, |
| [1] = { |
| .integer.type = ACPI_TYPE_INTEGER, |
| .integer.value = len, |
| }, |
| }, |
| }; |
| |
| rc = acpi_evaluate_object(handle, "_LSR", &input, &buf); |
| if (ACPI_FAILURE(rc)) |
| return NULL; |
| return pkg_to_buf(buf.pointer); |
| } |
| |
| static union acpi_object *acpi_label_info(acpi_handle handle) |
| { |
| acpi_status rc; |
| struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; |
| |
| rc = acpi_evaluate_object(handle, "_LSI", NULL, &buf); |
| if (ACPI_FAILURE(rc)) |
| return NULL; |
| return pkg_to_buf(buf.pointer); |
| } |
| |
| static u8 nfit_dsm_revid(unsigned family, unsigned func) |
| { |
| static const u8 revid_table[NVDIMM_FAMILY_MAX+1][NVDIMM_CMD_MAX+1] = { |
| [NVDIMM_FAMILY_INTEL] = { |
| [NVDIMM_INTEL_GET_MODES ... |
| NVDIMM_INTEL_FW_ACTIVATE_ARM] = 2, |
| }, |
| }; |
| u8 id; |
| |
| if (family > NVDIMM_FAMILY_MAX) |
| return 0; |
| if (func > NVDIMM_CMD_MAX) |
| return 0; |
| id = revid_table[family][func]; |
| if (id == 0) |
| return 1; /* default */ |
| return id; |
| } |
| |
| static bool payload_dumpable(struct nvdimm *nvdimm, unsigned int func) |
| { |
| struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); |
| |
| if (nfit_mem && nfit_mem->family == NVDIMM_FAMILY_INTEL |
| && func >= NVDIMM_INTEL_GET_SECURITY_STATE |
| && func <= NVDIMM_INTEL_MASTER_SECURE_ERASE) |
| return IS_ENABLED(CONFIG_NFIT_SECURITY_DEBUG); |
| return true; |
| } |
| |
| static int cmd_to_func(struct nfit_mem *nfit_mem, unsigned int cmd, |
| struct nd_cmd_pkg *call_pkg, int *family) |
| { |
| if (call_pkg) { |
| int i; |
| |
| if (nfit_mem && nfit_mem->family != call_pkg->nd_family) |
| return -ENOTTY; |
| |
| for (i = 0; i < ARRAY_SIZE(call_pkg->nd_reserved2); i++) |
| if (call_pkg->nd_reserved2[i]) |
| return -EINVAL; |
| *family = call_pkg->nd_family; |
| return call_pkg->nd_command; |
| } |
| |
| /* In the !call_pkg case, bus commands == bus functions */ |
| if (!nfit_mem) |
| return cmd; |
| |
| /* Linux ND commands == NVDIMM_FAMILY_INTEL function numbers */ |
| if (nfit_mem->family == NVDIMM_FAMILY_INTEL) |
| return cmd; |
| |
| /* |
| * Force function number validation to fail since 0 is never |
| * published as a valid function in dsm_mask. |
| */ |
| return 0; |
| } |
| |
| int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm, |
| unsigned int cmd, void *buf, unsigned int buf_len, int *cmd_rc) |
| { |
| struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); |
| struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); |
| union acpi_object in_obj, in_buf, *out_obj; |
| const struct nd_cmd_desc *desc = NULL; |
| struct device *dev = acpi_desc->dev; |
| struct nd_cmd_pkg *call_pkg = NULL; |
| const char *cmd_name, *dimm_name; |
| unsigned long cmd_mask, dsm_mask; |
| u32 offset, fw_status = 0; |
| acpi_handle handle; |
| const guid_t *guid; |
| int func, rc, i; |
| int family = 0; |
| |
| if (cmd_rc) |
| *cmd_rc = -EINVAL; |
| |
| if (cmd == ND_CMD_CALL) |
| call_pkg = buf; |
| func = cmd_to_func(nfit_mem, cmd, call_pkg, &family); |
| if (func < 0) |
| return func; |
| |
| if (nvdimm) { |
| struct acpi_device *adev = nfit_mem->adev; |
| |
| if (!adev) |
| return -ENOTTY; |
| |
| dimm_name = nvdimm_name(nvdimm); |
| cmd_name = nvdimm_cmd_name(cmd); |
| cmd_mask = nvdimm_cmd_mask(nvdimm); |
| dsm_mask = nfit_mem->dsm_mask; |
| desc = nd_cmd_dimm_desc(cmd); |
| guid = to_nfit_uuid(nfit_mem->family); |
| handle = adev->handle; |
| } else { |
| struct acpi_device *adev = to_acpi_dev(acpi_desc); |
| |
| cmd_name = nvdimm_bus_cmd_name(cmd); |
| cmd_mask = nd_desc->cmd_mask; |
| if (cmd == ND_CMD_CALL && call_pkg->nd_family) { |
| family = call_pkg->nd_family; |
| if (family > NVDIMM_BUS_FAMILY_MAX || |
| !test_bit(family, &nd_desc->bus_family_mask)) |
| return -EINVAL; |
| family = array_index_nospec(family, |
| NVDIMM_BUS_FAMILY_MAX + 1); |
| dsm_mask = acpi_desc->family_dsm_mask[family]; |
| guid = to_nfit_bus_uuid(family); |
| } else { |
| dsm_mask = acpi_desc->bus_dsm_mask; |
| guid = to_nfit_uuid(NFIT_DEV_BUS); |
| } |
| desc = nd_cmd_bus_desc(cmd); |
| handle = adev->handle; |
| dimm_name = "bus"; |
| } |
| |
| if (!desc || (cmd && (desc->out_num + desc->in_num == 0))) |
| return -ENOTTY; |
| |
| /* |
| * Check for a valid command. For ND_CMD_CALL, we also have to |
| * make sure that the DSM function is supported. |
| */ |
| if (cmd == ND_CMD_CALL && |
| (func > NVDIMM_CMD_MAX || !test_bit(func, &dsm_mask))) |
| return -ENOTTY; |
| else if (!test_bit(cmd, &cmd_mask)) |
| return -ENOTTY; |
| |
| in_obj.type = ACPI_TYPE_PACKAGE; |
| in_obj.package.count = 1; |
| in_obj.package.elements = &in_buf; |
| in_buf.type = ACPI_TYPE_BUFFER; |
| in_buf.buffer.pointer = buf; |
| in_buf.buffer.length = 0; |
| |
| /* libnvdimm has already validated the input envelope */ |
| for (i = 0; i < desc->in_num; i++) |
| in_buf.buffer.length += nd_cmd_in_size(nvdimm, cmd, desc, |
| i, buf); |
| |
| if (call_pkg) { |
| /* skip over package wrapper */ |
| in_buf.buffer.pointer = (void *) &call_pkg->nd_payload; |
| in_buf.buffer.length = call_pkg->nd_size_in; |
| } |
| |
| dev_dbg(dev, "%s cmd: %d: family: %d func: %d input length: %d\n", |
| dimm_name, cmd, family, func, in_buf.buffer.length); |
| if (payload_dumpable(nvdimm, func)) |
| print_hex_dump_debug("nvdimm in ", DUMP_PREFIX_OFFSET, 4, 4, |
| in_buf.buffer.pointer, |
| min_t(u32, 256, in_buf.buffer.length), true); |
| |
| /* call the BIOS, prefer the named methods over _DSM if available */ |
| if (nvdimm && cmd == ND_CMD_GET_CONFIG_SIZE |
| && test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) |
| out_obj = acpi_label_info(handle); |
| else if (nvdimm && cmd == ND_CMD_GET_CONFIG_DATA |
| && test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) { |
| struct nd_cmd_get_config_data_hdr *p = buf; |
| |
| out_obj = acpi_label_read(handle, p->in_offset, p->in_length); |
| } else if (nvdimm && cmd == ND_CMD_SET_CONFIG_DATA |
| && test_bit(NFIT_MEM_LSW, &nfit_mem->flags)) { |
| struct nd_cmd_set_config_hdr *p = buf; |
| |
| out_obj = acpi_label_write(handle, p->in_offset, p->in_length, |
| p->in_buf); |
| } else { |
| u8 revid; |
| |
| if (nvdimm) |
| revid = nfit_dsm_revid(nfit_mem->family, func); |
| else |
| revid = 1; |
| out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj); |
| } |
| |
| if (!out_obj) { |
| dev_dbg(dev, "%s _DSM failed cmd: %s\n", dimm_name, cmd_name); |
| return -EINVAL; |
| } |
| |
| if (out_obj->type != ACPI_TYPE_BUFFER) { |
| dev_dbg(dev, "%s unexpected output object type cmd: %s type: %d\n", |
| dimm_name, cmd_name, out_obj->type); |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| dev_dbg(dev, "%s cmd: %s output length: %d\n", dimm_name, |
| cmd_name, out_obj->buffer.length); |
| print_hex_dump_debug(cmd_name, DUMP_PREFIX_OFFSET, 4, 4, |
| out_obj->buffer.pointer, |
| min_t(u32, 128, out_obj->buffer.length), true); |
| |
| if (call_pkg) { |
| call_pkg->nd_fw_size = out_obj->buffer.length; |
| memcpy(call_pkg->nd_payload + call_pkg->nd_size_in, |
| out_obj->buffer.pointer, |
| min(call_pkg->nd_fw_size, call_pkg->nd_size_out)); |
| |
| ACPI_FREE(out_obj); |
| /* |
| * Need to support FW function w/o known size in advance. |
| * Caller can determine required size based upon nd_fw_size. |
| * If we return an error (like elsewhere) then caller wouldn't |
| * be able to rely upon data returned to make calculation. |
| */ |
| if (cmd_rc) |
| *cmd_rc = 0; |
| return 0; |
| } |
| |
| for (i = 0, offset = 0; i < desc->out_num; i++) { |
| u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i, buf, |
| (u32 *) out_obj->buffer.pointer, |
| out_obj->buffer.length - offset); |
| |
| if (offset + out_size > out_obj->buffer.length) { |
| dev_dbg(dev, "%s output object underflow cmd: %s field: %d\n", |
| dimm_name, cmd_name, i); |
| break; |
| } |
| |
| if (in_buf.buffer.length + offset + out_size > buf_len) { |
| dev_dbg(dev, "%s output overrun cmd: %s field: %d\n", |
| dimm_name, cmd_name, i); |
| rc = -ENXIO; |
| goto out; |
| } |
| memcpy(buf + in_buf.buffer.length + offset, |
| out_obj->buffer.pointer + offset, out_size); |
| offset += out_size; |
| } |
| |
| /* |
| * Set fw_status for all the commands with a known format to be |
| * later interpreted by xlat_status(). |
| */ |
| if (i >= 1 && ((!nvdimm && cmd >= ND_CMD_ARS_CAP |
| && cmd <= ND_CMD_CLEAR_ERROR) |
| || (nvdimm && cmd >= ND_CMD_SMART |
| && cmd <= ND_CMD_VENDOR))) |
| fw_status = *(u32 *) out_obj->buffer.pointer; |
| |
| if (offset + in_buf.buffer.length < buf_len) { |
| if (i >= 1) { |
| /* |
| * status valid, return the number of bytes left |
| * unfilled in the output buffer |
| */ |
| rc = buf_len - offset - in_buf.buffer.length; |
| if (cmd_rc) |
| *cmd_rc = xlat_status(nvdimm, buf, cmd, |
| fw_status); |
| } else { |
| dev_err(dev, "%s:%s underrun cmd: %s buf_len: %d out_len: %d\n", |
| __func__, dimm_name, cmd_name, buf_len, |
| offset); |
| rc = -ENXIO; |
| } |
| } else { |
| rc = 0; |
| if (cmd_rc) |
| *cmd_rc = xlat_status(nvdimm, buf, cmd, fw_status); |
| } |
| |
| out: |
| ACPI_FREE(out_obj); |
| |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(acpi_nfit_ctl); |
| |
| static const char *spa_type_name(u16 type) |
| { |
| static const char *to_name[] = { |
| [NFIT_SPA_VOLATILE] = "volatile", |
| [NFIT_SPA_PM] = "pmem", |
| [NFIT_SPA_DCR] = "dimm-control-region", |
| [NFIT_SPA_BDW] = "block-data-window", |
| [NFIT_SPA_VDISK] = "volatile-disk", |
| [NFIT_SPA_VCD] = "volatile-cd", |
| [NFIT_SPA_PDISK] = "persistent-disk", |
| [NFIT_SPA_PCD] = "persistent-cd", |
| |
| }; |
| |
| if (type > NFIT_SPA_PCD) |
| return "unknown"; |
| |
| return to_name[type]; |
| } |
| |
| int nfit_spa_type(struct acpi_nfit_system_address *spa) |
| { |
| guid_t guid; |
| int i; |
| |
| import_guid(&guid, spa->range_guid); |
| for (i = 0; i < NFIT_UUID_MAX; i++) |
| if (guid_equal(to_nfit_uuid(i), &guid)) |
| return i; |
| return -1; |
| } |
| |
| static size_t sizeof_spa(struct acpi_nfit_system_address *spa) |
| { |
| if (spa->flags & ACPI_NFIT_LOCATION_COOKIE_VALID) |
| return sizeof(*spa); |
| return sizeof(*spa) - 8; |
| } |
| |
| static bool add_spa(struct acpi_nfit_desc *acpi_desc, |
| struct nfit_table_prev *prev, |
| struct acpi_nfit_system_address *spa) |
| { |
| struct device *dev = acpi_desc->dev; |
| struct nfit_spa *nfit_spa; |
| |
| if (spa->header.length != sizeof_spa(spa)) |
| return false; |
| |
| list_for_each_entry(nfit_spa, &prev->spas, list) { |
| if (memcmp(nfit_spa->spa, spa, sizeof_spa(spa)) == 0) { |
| list_move_tail(&nfit_spa->list, &acpi_desc->spas); |
| return true; |
| } |
| } |
| |
| nfit_spa = devm_kzalloc(dev, sizeof(*nfit_spa) + sizeof_spa(spa), |
| GFP_KERNEL); |
| if (!nfit_spa) |
| return false; |
| INIT_LIST_HEAD(&nfit_spa->list); |
| memcpy(nfit_spa->spa, spa, sizeof_spa(spa)); |
| list_add_tail(&nfit_spa->list, &acpi_desc->spas); |
| dev_dbg(dev, "spa index: %d type: %s\n", |
| spa->range_index, |
| spa_type_name(nfit_spa_type(spa))); |
| return true; |
| } |
| |
| static bool add_memdev(struct acpi_nfit_desc *acpi_desc, |
| struct nfit_table_prev *prev, |
| struct acpi_nfit_memory_map *memdev) |
| { |
| struct device *dev = acpi_desc->dev; |
| struct nfit_memdev *nfit_memdev; |
| |
| if (memdev->header.length != sizeof(*memdev)) |
| return false; |
| |
| list_for_each_entry(nfit_memdev, &prev->memdevs, list) |
| if (memcmp(nfit_memdev->memdev, memdev, sizeof(*memdev)) == 0) { |
| list_move_tail(&nfit_memdev->list, &acpi_desc->memdevs); |
| return true; |
| } |
| |
| nfit_memdev = devm_kzalloc(dev, sizeof(*nfit_memdev) + sizeof(*memdev), |
| GFP_KERNEL); |
| if (!nfit_memdev) |
| return false; |
| INIT_LIST_HEAD(&nfit_memdev->list); |
| memcpy(nfit_memdev->memdev, memdev, sizeof(*memdev)); |
| list_add_tail(&nfit_memdev->list, &acpi_desc->memdevs); |
| dev_dbg(dev, "memdev handle: %#x spa: %d dcr: %d flags: %#x\n", |
| memdev->device_handle, memdev->range_index, |
| memdev->region_index, memdev->flags); |
| return true; |
| } |
| |
| int nfit_get_smbios_id(u32 device_handle, u16 *flags) |
| { |
| struct acpi_nfit_memory_map *memdev; |
| struct acpi_nfit_desc *acpi_desc; |
| struct nfit_mem *nfit_mem; |
| u16 physical_id; |
| |
| mutex_lock(&acpi_desc_lock); |
| list_for_each_entry(acpi_desc, &acpi_descs, list) { |
| mutex_lock(&acpi_desc->init_mutex); |
| list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) { |
| memdev = __to_nfit_memdev(nfit_mem); |
| if (memdev->device_handle == device_handle) { |
| *flags = memdev->flags; |
| physical_id = memdev->physical_id; |
| mutex_unlock(&acpi_desc->init_mutex); |
| mutex_unlock(&acpi_desc_lock); |
| return physical_id; |
| } |
| } |
| mutex_unlock(&acpi_desc->init_mutex); |
| } |
| mutex_unlock(&acpi_desc_lock); |
| |
| return -ENODEV; |
| } |
| EXPORT_SYMBOL_GPL(nfit_get_smbios_id); |
| |
| /* |
| * An implementation may provide a truncated control region if no block windows |
| * are defined. |
| */ |
| static size_t sizeof_dcr(struct acpi_nfit_control_region *dcr) |
| { |
| if (dcr->header.length < offsetof(struct acpi_nfit_control_region, |
| window_size)) |
| return 0; |
| if (dcr->windows) |
| return sizeof(*dcr); |
| return offsetof(struct acpi_nfit_control_region, window_size); |
| } |
| |
| static bool add_dcr(struct acpi_nfit_desc *acpi_desc, |
| struct nfit_table_prev *prev, |
| struct acpi_nfit_control_region *dcr) |
| { |
| struct device *dev = acpi_desc->dev; |
| struct nfit_dcr *nfit_dcr; |
| |
| if (!sizeof_dcr(dcr)) |
| return false; |
| |
| list_for_each_entry(nfit_dcr, &prev->dcrs, list) |
| if (memcmp(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)) == 0) { |
| list_move_tail(&nfit_dcr->list, &acpi_desc->dcrs); |
| return true; |
| } |
| |
| nfit_dcr = devm_kzalloc(dev, sizeof(*nfit_dcr) + sizeof(*dcr), |
| GFP_KERNEL); |
| if (!nfit_dcr) |
| return false; |
| INIT_LIST_HEAD(&nfit_dcr->list); |
| memcpy(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)); |
| list_add_tail(&nfit_dcr->list, &acpi_desc->dcrs); |
| dev_dbg(dev, "dcr index: %d windows: %d\n", |
| dcr->region_index, dcr->windows); |
| return true; |
| } |
| |
| static bool add_bdw(struct acpi_nfit_desc *acpi_desc, |
| struct nfit_table_prev *prev, |
| struct acpi_nfit_data_region *bdw) |
| { |
| struct device *dev = acpi_desc->dev; |
| struct nfit_bdw *nfit_bdw; |
| |
| if (bdw->header.length != sizeof(*bdw)) |
| return false; |
| list_for_each_entry(nfit_bdw, &prev->bdws, list) |
| if (memcmp(nfit_bdw->bdw, bdw, sizeof(*bdw)) == 0) { |
| list_move_tail(&nfit_bdw->list, &acpi_desc->bdws); |
| return true; |
| } |
| |
| nfit_bdw = devm_kzalloc(dev, sizeof(*nfit_bdw) + sizeof(*bdw), |
| GFP_KERNEL); |
| if (!nfit_bdw) |
| return false; |
| INIT_LIST_HEAD(&nfit_bdw->list); |
| memcpy(nfit_bdw->bdw, bdw, sizeof(*bdw)); |
| list_add_tail(&nfit_bdw->list, &acpi_desc->bdws); |
| dev_dbg(dev, "bdw dcr: %d windows: %d\n", |
| bdw->region_index, bdw->windows); |
| return true; |
| } |
| |
| static size_t sizeof_idt(struct acpi_nfit_interleave *idt) |
| { |
| if (idt->header.length < sizeof(*idt)) |
| return 0; |
| return sizeof(*idt) + sizeof(u32) * (idt->line_count - 1); |
| } |
| |
| static bool add_idt(struct acpi_nfit_desc *acpi_desc, |
| struct nfit_table_prev *prev, |
| struct acpi_nfit_interleave *idt) |
| { |
| struct device *dev = acpi_desc->dev; |
| struct nfit_idt *nfit_idt; |
| |
| if (!sizeof_idt(idt)) |
| return false; |
| |
| list_for_each_entry(nfit_idt, &prev->idts, list) { |
| if (sizeof_idt(nfit_idt->idt) != sizeof_idt(idt)) |
| continue; |
| |
| if (memcmp(nfit_idt->idt, idt, sizeof_idt(idt)) == 0) { |
| list_move_tail(&nfit_idt->list, &acpi_desc->idts); |
| return true; |
| } |
| } |
| |
| nfit_idt = devm_kzalloc(dev, sizeof(*nfit_idt) + sizeof_idt(idt), |
| GFP_KERNEL); |
| if (!nfit_idt) |
| return false; |
| INIT_LIST_HEAD(&nfit_idt->list); |
| memcpy(nfit_idt->idt, idt, sizeof_idt(idt)); |
| list_add_tail(&nfit_idt->list, &acpi_desc->idts); |
| dev_dbg(dev, "idt index: %d num_lines: %d\n", |
| idt->interleave_index, idt->line_count); |
| return true; |
| } |
| |
| static size_t sizeof_flush(struct acpi_nfit_flush_address *flush) |
| { |
| if (flush->header.length < sizeof(*flush)) |
| return 0; |
| return sizeof(*flush) + sizeof(u64) * (flush->hint_count - 1); |
| } |
| |
| static bool add_flush(struct acpi_nfit_desc *acpi_desc, |
| struct nfit_table_prev *prev, |
| struct acpi_nfit_flush_address *flush) |
| { |
| struct device *dev = acpi_desc->dev; |
| struct nfit_flush *nfit_flush; |
| |
| if (!sizeof_flush(flush)) |
| return false; |
| |
| list_for_each_entry(nfit_flush, &prev->flushes, list) { |
| if (sizeof_flush(nfit_flush->flush) != sizeof_flush(flush)) |
| continue; |
| |
| if (memcmp(nfit_flush->flush, flush, |
| sizeof_flush(flush)) == 0) { |
| list_move_tail(&nfit_flush->list, &acpi_desc->flushes); |
| return true; |
| } |
| } |
| |
| nfit_flush = devm_kzalloc(dev, sizeof(*nfit_flush) |
| + sizeof_flush(flush), GFP_KERNEL); |
| if (!nfit_flush) |
| return false; |
| INIT_LIST_HEAD(&nfit_flush->list); |
| memcpy(nfit_flush->flush, flush, sizeof_flush(flush)); |
| list_add_tail(&nfit_flush->list, &acpi_desc->flushes); |
| dev_dbg(dev, "nfit_flush handle: %d hint_count: %d\n", |
| flush->device_handle, flush->hint_count); |
| return true; |
| } |
| |
| static bool add_platform_cap(struct acpi_nfit_desc *acpi_desc, |
| struct acpi_nfit_capabilities *pcap) |
| { |
| struct device *dev = acpi_desc->dev; |
| u32 mask; |
| |
| mask = (1 << (pcap->highest_capability + 1)) - 1; |
| acpi_desc->platform_cap = pcap->capabilities & mask; |
| dev_dbg(dev, "cap: %#x\n", acpi_desc->platform_cap); |
| return true; |
| } |
| |
| static void *add_table(struct acpi_nfit_desc *acpi_desc, |
| struct nfit_table_prev *prev, void *table, const void *end) |
| { |
| struct device *dev = acpi_desc->dev; |
| struct acpi_nfit_header *hdr; |
| void *err = ERR_PTR(-ENOMEM); |
| |
| if (table >= end) |
| return NULL; |
| |
| hdr = table; |
| if (!hdr->length) { |
| dev_warn(dev, "found a zero length table '%d' parsing nfit\n", |
| hdr->type); |
| return NULL; |
| } |
| |
| switch (hdr->type) { |
| case ACPI_NFIT_TYPE_SYSTEM_ADDRESS: |
| if (!add_spa(acpi_desc, prev, table)) |
| return err; |
| break; |
| case ACPI_NFIT_TYPE_MEMORY_MAP: |
| if (!add_memdev(acpi_desc, prev, table)) |
| return err; |
| break; |
| case ACPI_NFIT_TYPE_CONTROL_REGION: |
| if (!add_dcr(acpi_desc, prev, table)) |
| return err; |
| break; |
| case ACPI_NFIT_TYPE_DATA_REGION: |
| if (!add_bdw(acpi_desc, prev, table)) |
| return err; |
| break; |
| case ACPI_NFIT_TYPE_INTERLEAVE: |
| if (!add_idt(acpi_desc, prev, table)) |
| return err; |
| break; |
| case ACPI_NFIT_TYPE_FLUSH_ADDRESS: |
| if (!add_flush(acpi_desc, prev, table)) |
| return err; |
| break; |
| case ACPI_NFIT_TYPE_SMBIOS: |
| dev_dbg(dev, "smbios\n"); |
| break; |
| case ACPI_NFIT_TYPE_CAPABILITIES: |
| if (!add_platform_cap(acpi_desc, table)) |
| return err; |
| break; |
| default: |
| dev_err(dev, "unknown table '%d' parsing nfit\n", hdr->type); |
| break; |
| } |
| |
| return table + hdr->length; |
| } |
| |
| static int __nfit_mem_init(struct acpi_nfit_desc *acpi_desc, |
| struct acpi_nfit_system_address *spa) |
| { |
| struct nfit_mem *nfit_mem, *found; |
| struct nfit_memdev *nfit_memdev; |
| int type = spa ? nfit_spa_type(spa) : 0; |
| |
| switch (type) { |
| case NFIT_SPA_DCR: |
| case NFIT_SPA_PM: |
| break; |
| default: |
| if (spa) |
| return 0; |
| } |
| |
| /* |
| * This loop runs in two modes, when a dimm is mapped the loop |
| * adds memdev associations to an existing dimm, or creates a |
| * dimm. In the unmapped dimm case this loop sweeps for memdev |
| * instances with an invalid / zero range_index and adds those |
| * dimms without spa associations. |
| */ |
| list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { |
| struct nfit_flush *nfit_flush; |
| struct nfit_dcr *nfit_dcr; |
| u32 device_handle; |
| u16 dcr; |
| |
| if (spa && nfit_memdev->memdev->range_index != spa->range_index) |
| continue; |
| if (!spa && nfit_memdev->memdev->range_index) |
| continue; |
| found = NULL; |
| dcr = nfit_memdev->memdev->region_index; |
| device_handle = nfit_memdev->memdev->device_handle; |
| list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) |
| if (__to_nfit_memdev(nfit_mem)->device_handle |
| == device_handle) { |
| found = nfit_mem; |
| break; |
| } |
| |
| if (found) |
| nfit_mem = found; |
| else { |
| nfit_mem = devm_kzalloc(acpi_desc->dev, |
| sizeof(*nfit_mem), GFP_KERNEL); |
| if (!nfit_mem) |
| return -ENOMEM; |
| INIT_LIST_HEAD(&nfit_mem->list); |
| nfit_mem->acpi_desc = acpi_desc; |
| list_add(&nfit_mem->list, &acpi_desc->dimms); |
| } |
| |
| list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) { |
| if (nfit_dcr->dcr->region_index != dcr) |
| continue; |
| /* |
| * Record the control region for the dimm. For |
| * the ACPI 6.1 case, where there are separate |
| * control regions for the pmem vs blk |
| * interfaces, be sure to record the extended |
| * blk details. |
| */ |
| if (!nfit_mem->dcr) |
| nfit_mem->dcr = nfit_dcr->dcr; |
| else if (nfit_mem->dcr->windows == 0 |
| && nfit_dcr->dcr->windows) |
| nfit_mem->dcr = nfit_dcr->dcr; |
| break; |
| } |
| |
| list_for_each_entry(nfit_flush, &acpi_desc->flushes, list) { |
| struct acpi_nfit_flush_address *flush; |
| u16 i; |
| |
| if (nfit_flush->flush->device_handle != device_handle) |
| continue; |
| nfit_mem->nfit_flush = nfit_flush; |
| flush = nfit_flush->flush; |
| nfit_mem->flush_wpq = devm_kcalloc(acpi_desc->dev, |
| flush->hint_count, |
| sizeof(struct resource), |
| GFP_KERNEL); |
| if (!nfit_mem->flush_wpq) |
| return -ENOMEM; |
| for (i = 0; i < flush->hint_count; i++) { |
| struct resource *res = &nfit_mem->flush_wpq[i]; |
| |
| res->start = flush->hint_address[i]; |
| res->end = res->start + 8 - 1; |
| } |
| break; |
| } |
| |
| if (dcr && !nfit_mem->dcr) { |
| dev_err(acpi_desc->dev, "SPA %d missing DCR %d\n", |
| spa->range_index, dcr); |
| return -ENODEV; |
| } |
| |
| if (type == NFIT_SPA_DCR) { |
| struct nfit_idt *nfit_idt; |
| u16 idt_idx; |
| |
| /* multiple dimms may share a SPA when interleaved */ |
| nfit_mem->spa_dcr = spa; |
| nfit_mem->memdev_dcr = nfit_memdev->memdev; |
| idt_idx = nfit_memdev->memdev->interleave_index; |
| list_for_each_entry(nfit_idt, &acpi_desc->idts, list) { |
| if (nfit_idt->idt->interleave_index != idt_idx) |
| continue; |
| nfit_mem->idt_dcr = nfit_idt->idt; |
| break; |
| } |
| } else if (type == NFIT_SPA_PM) { |
| /* |
| * A single dimm may belong to multiple SPA-PM |
| * ranges, record at least one in addition to |
| * any SPA-DCR range. |
| */ |
| nfit_mem->memdev_pmem = nfit_memdev->memdev; |
| } else |
| nfit_mem->memdev_dcr = nfit_memdev->memdev; |
| } |
| |
| return 0; |
| } |
| |
| static int nfit_mem_cmp(void *priv, const struct list_head *_a, |
| const struct list_head *_b) |
| { |
| struct nfit_mem *a = container_of(_a, typeof(*a), list); |
| struct nfit_mem *b = container_of(_b, typeof(*b), list); |
| u32 handleA, handleB; |
| |
| handleA = __to_nfit_memdev(a)->device_handle; |
| handleB = __to_nfit_memdev(b)->device_handle; |
| if (handleA < handleB) |
| return -1; |
| else if (handleA > handleB) |
| return 1; |
| return 0; |
| } |
| |
| static int nfit_mem_init(struct acpi_nfit_desc *acpi_desc) |
| { |
| struct nfit_spa *nfit_spa; |
| int rc; |
| |
| |
| /* |
| * For each SPA-DCR or SPA-PMEM address range find its |
| * corresponding MEMDEV(s). From each MEMDEV find the |
| * corresponding DCR. Then, if we're operating on a SPA-DCR, |
| * try to find a SPA-BDW and a corresponding BDW that references |
| * the DCR. Throw it all into an nfit_mem object. Note, that |
| * BDWs are optional. |
| */ |
| list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { |
| rc = __nfit_mem_init(acpi_desc, nfit_spa->spa); |
| if (rc) |
| return rc; |
| } |
| |
| /* |
| * If a DIMM has failed to be mapped into SPA there will be no |
| * SPA entries above. Find and register all the unmapped DIMMs |
| * for reporting and recovery purposes. |
| */ |
| rc = __nfit_mem_init(acpi_desc, NULL); |
| if (rc) |
| return rc; |
| |
| list_sort(NULL, &acpi_desc->dimms, nfit_mem_cmp); |
| |
| return 0; |
| } |
| |
| static ssize_t bus_dsm_mask_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); |
| struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); |
| struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); |
| |
| return sprintf(buf, "%#lx\n", acpi_desc->bus_dsm_mask); |
| } |
| static struct device_attribute dev_attr_bus_dsm_mask = |
| __ATTR(dsm_mask, 0444, bus_dsm_mask_show, NULL); |
| |
| static ssize_t revision_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); |
| struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); |
| struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); |
| |
| return sprintf(buf, "%d\n", acpi_desc->acpi_header.revision); |
| } |
| static DEVICE_ATTR_RO(revision); |
| |
| static ssize_t hw_error_scrub_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); |
| struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); |
| struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); |
| |
| return sprintf(buf, "%d\n", acpi_desc->scrub_mode); |
| } |
| |
| /* |
| * The 'hw_error_scrub' attribute can have the following values written to it: |
| * '0': Switch to the default mode where an exception will only insert |
| * the address of the memory error into the poison and badblocks lists. |
| * '1': Enable a full scrub to happen if an exception for a memory error is |
| * received. |
| */ |
| static ssize_t hw_error_scrub_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t size) |
| { |
| struct nvdimm_bus_descriptor *nd_desc; |
| ssize_t rc; |
| long val; |
| |
| rc = kstrtol(buf, 0, &val); |
| if (rc) |
| return rc; |
| |
| device_lock(dev); |
| nd_desc = dev_get_drvdata(dev); |
| if (nd_desc) { |
| struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); |
| |
| switch (val) { |
| case HW_ERROR_SCRUB_ON: |
| acpi_desc->scrub_mode = HW_ERROR_SCRUB_ON; |
| break; |
| case HW_ERROR_SCRUB_OFF: |
| acpi_desc->scrub_mode = HW_ERROR_SCRUB_OFF; |
| break; |
| default: |
| rc = -EINVAL; |
| break; |
| } |
| } |
| device_unlock(dev); |
| if (rc) |
| return rc; |
| return size; |
| } |
| static DEVICE_ATTR_RW(hw_error_scrub); |
| |
| /* |
| * This shows the number of full Address Range Scrubs that have been |
| * completed since driver load time. Userspace can wait on this using |
| * select/poll etc. A '+' at the end indicates an ARS is in progress |
| */ |
| static ssize_t scrub_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct nvdimm_bus_descriptor *nd_desc; |
| struct acpi_nfit_desc *acpi_desc; |
| ssize_t rc = -ENXIO; |
| bool busy; |
| |
| device_lock(dev); |
| nd_desc = dev_get_drvdata(dev); |
| if (!nd_desc) { |
| device_unlock(dev); |
| return rc; |
| } |
| acpi_desc = to_acpi_desc(nd_desc); |
| |
| mutex_lock(&acpi_desc->init_mutex); |
| busy = test_bit(ARS_BUSY, &acpi_desc->scrub_flags) |
| && !test_bit(ARS_CANCEL, &acpi_desc->scrub_flags); |
| rc = sprintf(buf, "%d%s", acpi_desc->scrub_count, busy ? "+\n" : "\n"); |
| /* Allow an admin to poll the busy state at a higher rate */ |
| if (busy && capable(CAP_SYS_RAWIO) && !test_and_set_bit(ARS_POLL, |
| &acpi_desc->scrub_flags)) { |
| acpi_desc->scrub_tmo = 1; |
| mod_delayed_work(nfit_wq, &acpi_desc->dwork, HZ); |
| } |
| |
| mutex_unlock(&acpi_desc->init_mutex); |
| device_unlock(dev); |
| return rc; |
| } |
| |
| static ssize_t scrub_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t size) |
| { |
| struct nvdimm_bus_descriptor *nd_desc; |
| ssize_t rc; |
| long val; |
| |
| rc = kstrtol(buf, 0, &val); |
| if (rc) |
| return rc; |
| if (val != 1) |
| return -EINVAL; |
| |
| device_lock(dev); |
| nd_desc = dev_get_drvdata(dev); |
| if (nd_desc) { |
| struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); |
| |
| rc = acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG); |
| } |
| device_unlock(dev); |
| if (rc) |
| return rc; |
| return size; |
| } |
| static DEVICE_ATTR_RW(scrub); |
| |
| static bool ars_supported(struct nvdimm_bus *nvdimm_bus) |
| { |
| struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); |
| const unsigned long mask = 1 << ND_CMD_ARS_CAP | 1 << ND_CMD_ARS_START |
| | 1 << ND_CMD_ARS_STATUS; |
| |
| return (nd_desc->cmd_mask & mask) == mask; |
| } |
| |
| static umode_t nfit_visible(struct kobject *kobj, struct attribute *a, int n) |
| { |
| struct device *dev = kobj_to_dev(kobj); |
| struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); |
| |
| if (a == &dev_attr_scrub.attr) |
| return ars_supported(nvdimm_bus) ? a->mode : 0; |
| |
| if (a == &dev_attr_firmware_activate_noidle.attr) |
| return intel_fwa_supported(nvdimm_bus) ? a->mode : 0; |
| |
| return a->mode; |
| } |
| |
| static struct attribute *acpi_nfit_attributes[] = { |
| &dev_attr_revision.attr, |
| &dev_attr_scrub.attr, |
| &dev_attr_hw_error_scrub.attr, |
| &dev_attr_bus_dsm_mask.attr, |
| &dev_attr_firmware_activate_noidle.attr, |
| NULL, |
| }; |
| |
| static const struct attribute_group acpi_nfit_attribute_group = { |
| .name = "nfit", |
| .attrs = acpi_nfit_attributes, |
| .is_visible = nfit_visible, |
| }; |
| |
| static const struct attribute_group *acpi_nfit_attribute_groups[] = { |
| &acpi_nfit_attribute_group, |
| NULL, |
| }; |
| |
| static struct acpi_nfit_memory_map *to_nfit_memdev(struct device *dev) |
| { |
| struct nvdimm *nvdimm = to_nvdimm(dev); |
| struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); |
| |
| return __to_nfit_memdev(nfit_mem); |
| } |
| |
| static struct acpi_nfit_control_region *to_nfit_dcr(struct device *dev) |
| { |
| struct nvdimm *nvdimm = to_nvdimm(dev); |
| struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); |
| |
| return nfit_mem->dcr; |
| } |
| |
| static ssize_t handle_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev); |
| |
| return sprintf(buf, "%#x\n", memdev->device_handle); |
| } |
| static DEVICE_ATTR_RO(handle); |
| |
| static ssize_t phys_id_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev); |
| |
| return sprintf(buf, "%#x\n", memdev->physical_id); |
| } |
| static DEVICE_ATTR_RO(phys_id); |
| |
| static ssize_t vendor_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); |
| |
| return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->vendor_id)); |
| } |
| static DEVICE_ATTR_RO(vendor); |
| |
| static ssize_t rev_id_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); |
| |
| return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->revision_id)); |
| } |
| static DEVICE_ATTR_RO(rev_id); |
| |
| static ssize_t device_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); |
| |
| return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->device_id)); |
| } |
| static DEVICE_ATTR_RO(device); |
| |
| static ssize_t subsystem_vendor_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); |
| |
| return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_vendor_id)); |
| } |
| static DEVICE_ATTR_RO(subsystem_vendor); |
| |
| static ssize_t subsystem_rev_id_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); |
| |
| return sprintf(buf, "0x%04x\n", |
| be16_to_cpu(dcr->subsystem_revision_id)); |
| } |
| static DEVICE_ATTR_RO(subsystem_rev_id); |
| |
| static ssize_t subsystem_device_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); |
| |
| return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_device_id)); |
| } |
| static DEVICE_ATTR_RO(subsystem_device); |
| |
| static int num_nvdimm_formats(struct nvdimm *nvdimm) |
| { |
| struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); |
| int formats = 0; |
| |
| if (nfit_mem->memdev_pmem) |
| formats++; |
| return formats; |
| } |
| |
| static ssize_t format_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); |
| |
| return sprintf(buf, "0x%04x\n", le16_to_cpu(dcr->code)); |
| } |
| static DEVICE_ATTR_RO(format); |
| |
| static ssize_t format1_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| u32 handle; |
| ssize_t rc = -ENXIO; |
| struct nfit_mem *nfit_mem; |
| struct nfit_memdev *nfit_memdev; |
| struct acpi_nfit_desc *acpi_desc; |
| struct nvdimm *nvdimm = to_nvdimm(dev); |
| struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); |
| |
| nfit_mem = nvdimm_provider_data(nvdimm); |
| acpi_desc = nfit_mem->acpi_desc; |
| handle = to_nfit_memdev(dev)->device_handle; |
| |
| /* assumes DIMMs have at most 2 published interface codes */ |
| mutex_lock(&acpi_desc->init_mutex); |
| list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { |
| struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev; |
| struct nfit_dcr *nfit_dcr; |
| |
| if (memdev->device_handle != handle) |
| continue; |
| |
| list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) { |
| if (nfit_dcr->dcr->region_index != memdev->region_index) |
| continue; |
| if (nfit_dcr->dcr->code == dcr->code) |
| continue; |
| rc = sprintf(buf, "0x%04x\n", |
| le16_to_cpu(nfit_dcr->dcr->code)); |
| break; |
| } |
| if (rc != -ENXIO) |
| break; |
| } |
| mutex_unlock(&acpi_desc->init_mutex); |
| return rc; |
| } |
| static DEVICE_ATTR_RO(format1); |
| |
| static ssize_t formats_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct nvdimm *nvdimm = to_nvdimm(dev); |
| |
| return sprintf(buf, "%d\n", num_nvdimm_formats(nvdimm)); |
| } |
| static DEVICE_ATTR_RO(formats); |
| |
| static ssize_t serial_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); |
| |
| return sprintf(buf, "0x%08x\n", be32_to_cpu(dcr->serial_number)); |
| } |
| static DEVICE_ATTR_RO(serial); |
| |
| static ssize_t family_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct nvdimm *nvdimm = to_nvdimm(dev); |
| struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); |
| |
| if (nfit_mem->family < 0) |
| return -ENXIO; |
| return sprintf(buf, "%d\n", nfit_mem->family); |
| } |
| static DEVICE_ATTR_RO(family); |
| |
| static ssize_t dsm_mask_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct nvdimm *nvdimm = to_nvdimm(dev); |
| struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); |
| |
| if (nfit_mem->family < 0) |
| return -ENXIO; |
| return sprintf(buf, "%#lx\n", nfit_mem->dsm_mask); |
| } |
| static DEVICE_ATTR_RO(dsm_mask); |
| |
| static ssize_t flags_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct nvdimm *nvdimm = to_nvdimm(dev); |
| struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); |
| u16 flags = __to_nfit_memdev(nfit_mem)->flags; |
| |
| if (test_bit(NFIT_MEM_DIRTY, &nfit_mem->flags)) |
| flags |= ACPI_NFIT_MEM_FLUSH_FAILED; |
| |
| return sprintf(buf, "%s%s%s%s%s%s%s\n", |
| flags & ACPI_NFIT_MEM_SAVE_FAILED ? "save_fail " : "", |
| flags & ACPI_NFIT_MEM_RESTORE_FAILED ? "restore_fail " : "", |
| flags & ACPI_NFIT_MEM_FLUSH_FAILED ? "flush_fail " : "", |
| flags & ACPI_NFIT_MEM_NOT_ARMED ? "not_armed " : "", |
| flags & ACPI_NFIT_MEM_HEALTH_OBSERVED ? "smart_event " : "", |
| flags & ACPI_NFIT_MEM_MAP_FAILED ? "map_fail " : "", |
| flags & ACPI_NFIT_MEM_HEALTH_ENABLED ? "smart_notify " : ""); |
| } |
| static DEVICE_ATTR_RO(flags); |
| |
| static ssize_t id_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct nvdimm *nvdimm = to_nvdimm(dev); |
| struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); |
| |
| return sprintf(buf, "%s\n", nfit_mem->id); |
| } |
| static DEVICE_ATTR_RO(id); |
| |
| static ssize_t dirty_shutdown_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct nvdimm *nvdimm = to_nvdimm(dev); |
| struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); |
| |
| return sprintf(buf, "%d\n", nfit_mem->dirty_shutdown); |
| } |
| static DEVICE_ATTR_RO(dirty_shutdown); |
| |
| static struct attribute *acpi_nfit_dimm_attributes[] = { |
| &dev_attr_handle.attr, |
| &dev_attr_phys_id.attr, |
| &dev_attr_vendor.attr, |
| &dev_attr_device.attr, |
| &dev_attr_rev_id.attr, |
| &dev_attr_subsystem_vendor.attr, |
| &dev_attr_subsystem_device.attr, |
| &dev_attr_subsystem_rev_id.attr, |
| &dev_attr_format.attr, |
| &dev_attr_formats.attr, |
| &dev_attr_format1.attr, |
| &dev_attr_serial.attr, |
| &dev_attr_flags.attr, |
| &dev_attr_id.attr, |
| &dev_attr_family.attr, |
| &dev_attr_dsm_mask.attr, |
| &dev_attr_dirty_shutdown.attr, |
| NULL, |
| }; |
| |
| static umode_t acpi_nfit_dimm_attr_visible(struct kobject *kobj, |
| struct attribute *a, int n) |
| { |
| struct device *dev = kobj_to_dev(kobj); |
| struct nvdimm *nvdimm = to_nvdimm(dev); |
| struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); |
| |
| if (!to_nfit_dcr(dev)) { |
| /* Without a dcr only the memdev attributes can be surfaced */ |
| if (a == &dev_attr_handle.attr || a == &dev_attr_phys_id.attr |
| || a == &dev_attr_flags.attr |
| || a == &dev_attr_family.attr |
| || a == &dev_attr_dsm_mask.attr) |
| return a->mode; |
| return 0; |
| } |
| |
| if (a == &dev_attr_format1.attr && num_nvdimm_formats(nvdimm) <= 1) |
| return 0; |
| |
| if (!test_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags) |
| && a == &dev_attr_dirty_shutdown.attr) |
| return 0; |
| |
| return a->mode; |
| } |
| |
| static const struct attribute_group acpi_nfit_dimm_attribute_group = { |
| .name = "nfit", |
| .attrs = acpi_nfit_dimm_attributes, |
| .is_visible = acpi_nfit_dimm_attr_visible, |
| }; |
| |
| static const struct attribute_group *acpi_nfit_dimm_attribute_groups[] = { |
| &acpi_nfit_dimm_attribute_group, |
| NULL, |
| }; |
| |
| static struct nvdimm *acpi_nfit_dimm_by_handle(struct acpi_nfit_desc *acpi_desc, |
| u32 device_handle) |
| { |
| struct nfit_mem *nfit_mem; |
| |
| list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) |
| if (__to_nfit_memdev(nfit_mem)->device_handle == device_handle) |
| return nfit_mem->nvdimm; |
| |
| return NULL; |
| } |
| |
| void __acpi_nvdimm_notify(struct device *dev, u32 event) |
| { |
| struct nfit_mem *nfit_mem; |
| struct acpi_nfit_desc *acpi_desc; |
| |
| dev_dbg(dev->parent, "%s: event: %d\n", dev_name(dev), |
| event); |
| |
| if (event != NFIT_NOTIFY_DIMM_HEALTH) { |
| dev_dbg(dev->parent, "%s: unknown event: %d\n", dev_name(dev), |
| event); |
| return; |
| } |
| |
| acpi_desc = dev_get_drvdata(dev->parent); |
| if (!acpi_desc) |
| return; |
| |
| /* |
| * If we successfully retrieved acpi_desc, then we know nfit_mem data |
| * is still valid. |
| */ |
| nfit_mem = dev_get_drvdata(dev); |
| if (nfit_mem && nfit_mem->flags_attr) |
| sysfs_notify_dirent(nfit_mem->flags_attr); |
| } |
| EXPORT_SYMBOL_GPL(__acpi_nvdimm_notify); |
| |
| static void acpi_nvdimm_notify(acpi_handle handle, u32 event, void *data) |
| { |
| struct acpi_device *adev = data; |
| struct device *dev = &adev->dev; |
| |
| device_lock(dev->parent); |
| __acpi_nvdimm_notify(dev, event); |
| device_unlock(dev->parent); |
| } |
| |
| static bool acpi_nvdimm_has_method(struct acpi_device *adev, char *method) |
| { |
| acpi_handle handle; |
| acpi_status status; |
| |
| status = acpi_get_handle(adev->handle, method, &handle); |
| |
| if (ACPI_SUCCESS(status)) |
| return true; |
| return false; |
| } |
| |
| __weak void nfit_intel_shutdown_status(struct nfit_mem *nfit_mem) |
| { |
| struct device *dev = &nfit_mem->adev->dev; |
| struct nd_intel_smart smart = { 0 }; |
| union acpi_object in_buf = { |
| .buffer.type = ACPI_TYPE_BUFFER, |
| .buffer.length = 0, |
| }; |
| union acpi_object in_obj = { |
| .package.type = ACPI_TYPE_PACKAGE, |
| .package.count = 1, |
| .package.elements = &in_buf, |
| }; |
| const u8 func = ND_INTEL_SMART; |
| const guid_t *guid = to_nfit_uuid(nfit_mem->family); |
| u8 revid = nfit_dsm_revid(nfit_mem->family, func); |
| struct acpi_device *adev = nfit_mem->adev; |
| acpi_handle handle = adev->handle; |
| union acpi_object *out_obj; |
| |
| if ((nfit_mem->dsm_mask & (1 << func)) == 0) |
| return; |
| |
| out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj); |
| if (!out_obj || out_obj->type != ACPI_TYPE_BUFFER |
| || out_obj->buffer.length < sizeof(smart)) { |
| dev_dbg(dev->parent, "%s: failed to retrieve initial health\n", |
| dev_name(dev)); |
| ACPI_FREE(out_obj); |
| return; |
| } |
| memcpy(&smart, out_obj->buffer.pointer, sizeof(smart)); |
| ACPI_FREE(out_obj); |
| |
| if (smart.flags & ND_INTEL_SMART_SHUTDOWN_VALID) { |
| if (smart.shutdown_state) |
| set_bit(NFIT_MEM_DIRTY, &nfit_mem->flags); |
| } |
| |
| if (smart.flags & ND_INTEL_SMART_SHUTDOWN_COUNT_VALID) { |
| set_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags); |
| nfit_mem->dirty_shutdown = smart.shutdown_count; |
| } |
| } |
| |
| static void populate_shutdown_status(struct nfit_mem *nfit_mem) |
| { |
| /* |
| * For DIMMs that provide a dynamic facility to retrieve a |
| * dirty-shutdown status and/or a dirty-shutdown count, cache |
| * these values in nfit_mem. |
| */ |
| if (nfit_mem->family == NVDIMM_FAMILY_INTEL) |
| nfit_intel_shutdown_status(nfit_mem); |
| } |
| |
| static int acpi_nfit_add_dimm(struct acpi_nfit_desc *acpi_desc, |
| struct nfit_mem *nfit_mem, u32 device_handle) |
| { |
| struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; |
| struct acpi_device *adev, *adev_dimm; |
| struct device *dev = acpi_desc->dev; |
| unsigned long dsm_mask, label_mask; |
| const guid_t *guid; |
| int i; |
| int family = -1; |
| struct acpi_nfit_control_region *dcr = nfit_mem->dcr; |
| |
| /* nfit test assumes 1:1 relationship between commands and dsms */ |
| nfit_mem->dsm_mask = acpi_desc->dimm_cmd_force_en; |
| nfit_mem->family = NVDIMM_FAMILY_INTEL; |
| set_bit(NVDIMM_FAMILY_INTEL, &nd_desc->dimm_family_mask); |
| |
| if (dcr->valid_fields & ACPI_NFIT_CONTROL_MFG_INFO_VALID) |
| sprintf(nfit_mem->id, "%04x-%02x-%04x-%08x", |
| be16_to_cpu(dcr->vendor_id), |
| dcr->manufacturing_location, |
| be16_to_cpu(dcr->manufacturing_date), |
| be32_to_cpu(dcr->serial_number)); |
| else |
| sprintf(nfit_mem->id, "%04x-%08x", |
| be16_to_cpu(dcr->vendor_id), |
| be32_to_cpu(dcr->serial_number)); |
| |
| adev = to_acpi_dev(acpi_desc); |
| if (!adev) { |
| /* unit test case */ |
| populate_shutdown_status(nfit_mem); |
| return 0; |
| } |
| |
| adev_dimm = acpi_find_child_device(adev, device_handle, false); |
| nfit_mem->adev = adev_dimm; |
| if (!adev_dimm) { |
| dev_err(dev, "no ACPI.NFIT device with _ADR %#x, disabling...\n", |
| device_handle); |
| return force_enable_dimms ? 0 : -ENODEV; |
| } |
| |
| if (ACPI_FAILURE(acpi_install_notify_handler(adev_dimm->handle, |
| ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify, adev_dimm))) { |
| dev_err(dev, "%s: notification registration failed\n", |
| dev_name(&adev_dimm->dev)); |
| return -ENXIO; |
| } |
| /* |
| * Record nfit_mem for the notification path to track back to |
| * the nfit sysfs attributes for this dimm device object. |
| */ |
| dev_set_drvdata(&adev_dimm->dev, nfit_mem); |
| |
| /* |
| * There are 4 "legacy" NVDIMM command sets |
| * (NVDIMM_FAMILY_{INTEL,MSFT,HPE1,HPE2}) that were created before |
| * an EFI working group was established to constrain this |
| * proliferation. The nfit driver probes for the supported command |
| * set by GUID. Note, if you're a platform developer looking to add |
| * a new command set to this probe, consider using an existing set, |
| * or otherwise seek approval to publish the command set at |
| * http://www.uefi.org/RFIC_LIST. |
| * |
| * Note, that checking for function0 (bit0) tells us if any commands |
| * are reachable through this GUID. |
| */ |
| clear_bit(NVDIMM_FAMILY_INTEL, &nd_desc->dimm_family_mask); |
| for (i = 0; i <= NVDIMM_FAMILY_MAX; i++) |
| if (acpi_check_dsm(adev_dimm->handle, to_nfit_uuid(i), 1, 1)) { |
| set_bit(i, &nd_desc->dimm_family_mask); |
| if (family < 0 || i == default_dsm_family) |
| family = i; |
| } |
| |
| /* limit the supported commands to those that are publicly documented */ |
| nfit_mem->family = family; |
| if (override_dsm_mask && !disable_vendor_specific) |
| dsm_mask = override_dsm_mask; |
| else if (nfit_mem->family == NVDIMM_FAMILY_INTEL) { |
| dsm_mask = NVDIMM_INTEL_CMDMASK; |
| if (disable_vendor_specific) |
| dsm_mask &= ~(1 << ND_CMD_VENDOR); |
| } else if (nfit_mem->family == NVDIMM_FAMILY_HPE1) { |
| dsm_mask = 0x1c3c76; |
| } else if (nfit_mem->family == NVDIMM_FAMILY_HPE2) { |
| dsm_mask = 0x1fe; |
| if (disable_vendor_specific) |
| dsm_mask &= ~(1 << 8); |
| } else if (nfit_mem->family == NVDIMM_FAMILY_MSFT) { |
| dsm_mask = 0xffffffff; |
| } else if (nfit_mem->family == NVDIMM_FAMILY_HYPERV) { |
| dsm_mask = 0x1f; |
| } else { |
| dev_dbg(dev, "unknown dimm command family\n"); |
| nfit_mem->family = -1; |
| /* DSMs are optional, continue loading the driver... */ |
| return 0; |
| } |
| |
| /* |
| * Function 0 is the command interrogation function, don't |
| * export it to potential userspace use, and enable it to be |
| * used as an error value in acpi_nfit_ctl(). |
| */ |
| dsm_mask &= ~1UL; |
| |
| guid = to_nfit_uuid(nfit_mem->family); |
| for_each_set_bit(i, &dsm_mask, BITS_PER_LONG) |
| if (acpi_check_dsm(adev_dimm->handle, guid, |
| nfit_dsm_revid(nfit_mem->family, i), |
| 1ULL << i)) |
| set_bit(i, &nfit_mem->dsm_mask); |
| |
| /* |
| * Prefer the NVDIMM_FAMILY_INTEL label read commands if present |
| * due to their better semantics handling locked capacity. |
| */ |
| label_mask = 1 << ND_CMD_GET_CONFIG_SIZE | 1 << ND_CMD_GET_CONFIG_DATA |
| | 1 << ND_CMD_SET_CONFIG_DATA; |
| if (family == NVDIMM_FAMILY_INTEL |
| && (dsm_mask & label_mask) == label_mask) |
| /* skip _LS{I,R,W} enabling */; |
| else { |
| if (acpi_nvdimm_has_method(adev_dimm, "_LSI") |
| && acpi_nvdimm_has_method(adev_dimm, "_LSR")) { |
| dev_dbg(dev, "%s: has _LSR\n", dev_name(&adev_dimm->dev)); |
| set_bit(NFIT_MEM_LSR, &nfit_mem->flags); |
| } |
| |
| if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags) |
| && acpi_nvdimm_has_method(adev_dimm, "_LSW")) { |
| dev_dbg(dev, "%s: has _LSW\n", dev_name(&adev_dimm->dev)); |
| set_bit(NFIT_MEM_LSW, &nfit_mem->flags); |
| } |
| |
| /* |
| * Quirk read-only label configurations to preserve |
| * access to label-less namespaces by default. |
| */ |
| if (!test_bit(NFIT_MEM_LSW, &nfit_mem->flags) |
| && !force_labels) { |
| dev_dbg(dev, "%s: No _LSW, disable labels\n", |
| dev_name(&adev_dimm->dev)); |
| clear_bit(NFIT_MEM_LSR, &nfit_mem->flags); |
| } else |
| dev_dbg(dev, "%s: Force enable labels\n", |
| dev_name(&adev_dimm->dev)); |
| } |
| |
| populate_shutdown_status(nfit_mem); |
| |
| return 0; |
| } |
| |
| static void shutdown_dimm_notify(void *data) |
| { |
| struct acpi_nfit_desc *acpi_desc = data; |
| struct nfit_mem *nfit_mem; |
| |
| mutex_lock(&acpi_desc->init_mutex); |
| /* |
| * Clear out the nfit_mem->flags_attr and shut down dimm event |
| * notifications. |
| */ |
| list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) { |
| struct acpi_device *adev_dimm = nfit_mem->adev; |
| |
| if (nfit_mem->flags_attr) { |
| sysfs_put(nfit_mem->flags_attr); |
| nfit_mem->flags_attr = NULL; |
| } |
| if (adev_dimm) { |
| acpi_remove_notify_handler(adev_dimm->handle, |
| ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify); |
| dev_set_drvdata(&adev_dimm->dev, NULL); |
| } |
| } |
| mutex_unlock(&acpi_desc->init_mutex); |
| } |
| |
| static const struct nvdimm_security_ops *acpi_nfit_get_security_ops(int family) |
| { |
| switch (family) { |
| case NVDIMM_FAMILY_INTEL: |
| return intel_security_ops; |
| default: |
| return NULL; |
| } |
| } |
| |
| static const struct nvdimm_fw_ops *acpi_nfit_get_fw_ops( |
| struct nfit_mem *nfit_mem) |
| { |
| unsigned long mask; |
| struct acpi_nfit_desc *acpi_desc = nfit_mem->acpi_desc; |
| struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; |
| |
| if (!nd_desc->fw_ops) |
| return NULL; |
| |
| if (nfit_mem->family != NVDIMM_FAMILY_INTEL) |
| return NULL; |
| |
| mask = nfit_mem->dsm_mask & NVDIMM_INTEL_FW_ACTIVATE_CMDMASK; |
| if (mask != NVDIMM_INTEL_FW_ACTIVATE_CMDMASK) |
| return NULL; |
| |
| return intel_fw_ops; |
| } |
| |
| static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc) |
| { |
| struct nfit_mem *nfit_mem; |
| int dimm_count = 0, rc; |
| struct nvdimm *nvdimm; |
| |
| list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) { |
| struct acpi_nfit_flush_address *flush; |
| unsigned long flags = 0, cmd_mask; |
| struct nfit_memdev *nfit_memdev; |
| u32 device_handle; |
| u16 mem_flags; |
| |
| device_handle = __to_nfit_memdev(nfit_mem)->device_handle; |
| nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, device_handle); |
| if (nvdimm) { |
| dimm_count++; |
| continue; |
| } |
| |
| /* collate flags across all memdevs for this dimm */ |
| list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { |
| struct acpi_nfit_memory_map *dimm_memdev; |
| |
| dimm_memdev = __to_nfit_memdev(nfit_mem); |
| if (dimm_memdev->device_handle |
| != nfit_memdev->memdev->device_handle) |
| continue; |
| dimm_memdev->flags |= nfit_memdev->memdev->flags; |
| } |
| |
| mem_flags = __to_nfit_memdev(nfit_mem)->flags; |
| if (mem_flags & ACPI_NFIT_MEM_NOT_ARMED) |
| set_bit(NDD_UNARMED, &flags); |
| |
| rc = acpi_nfit_add_dimm(acpi_desc, nfit_mem, device_handle); |
| if (rc) |
| continue; |
| |
| /* |
| * TODO: provide translation for non-NVDIMM_FAMILY_INTEL |
| * devices (i.e. from nd_cmd to acpi_dsm) to standardize the |
| * userspace interface. |
| */ |
| cmd_mask = 1UL << ND_CMD_CALL; |
| if (nfit_mem->family == NVDIMM_FAMILY_INTEL) { |
| /* |
| * These commands have a 1:1 correspondence |
| * between DSM payload and libnvdimm ioctl |
| * payload format. |
| */ |
| cmd_mask |= nfit_mem->dsm_mask & NVDIMM_STANDARD_CMDMASK; |
| } |
| |
| if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) { |
| set_bit(ND_CMD_GET_CONFIG_SIZE, &cmd_mask); |
| set_bit(ND_CMD_GET_CONFIG_DATA, &cmd_mask); |
| } |
| if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags)) |
| set_bit(ND_CMD_SET_CONFIG_DATA, &cmd_mask); |
| |
| flush = nfit_mem->nfit_flush ? nfit_mem->nfit_flush->flush |
| : NULL; |
| nvdimm = __nvdimm_create(acpi_desc->nvdimm_bus, nfit_mem, |
| acpi_nfit_dimm_attribute_groups, |
| flags, cmd_mask, flush ? flush->hint_count : 0, |
| nfit_mem->flush_wpq, &nfit_mem->id[0], |
| acpi_nfit_get_security_ops(nfit_mem->family), |
| acpi_nfit_get_fw_ops(nfit_mem)); |
| if (!nvdimm) |
| return -ENOMEM; |
| |
| nfit_mem->nvdimm = nvdimm; |
| dimm_count++; |
| |
| if ((mem_flags & ACPI_NFIT_MEM_FAILED_MASK) == 0) |
| continue; |
| |
| dev_err(acpi_desc->dev, "Error found in NVDIMM %s flags:%s%s%s%s%s\n", |
| nvdimm_name(nvdimm), |
| mem_flags & ACPI_NFIT_MEM_SAVE_FAILED ? " save_fail" : "", |
| mem_flags & ACPI_NFIT_MEM_RESTORE_FAILED ? " restore_fail":"", |
| mem_flags & ACPI_NFIT_MEM_FLUSH_FAILED ? " flush_fail" : "", |
| mem_flags & ACPI_NFIT_MEM_NOT_ARMED ? " not_armed" : "", |
| mem_flags & ACPI_NFIT_MEM_MAP_FAILED ? " map_fail" : ""); |
| |
| } |
| |
| rc = nvdimm_bus_check_dimm_count(acpi_desc->nvdimm_bus, dimm_count); |
| if (rc) |
| return rc; |
| |
| /* |
| * Now that dimms are successfully registered, and async registration |
| * is flushed, attempt to enable event notification. |
| */ |
| list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) { |
| struct kernfs_node *nfit_kernfs; |
| |
| nvdimm = nfit_mem->nvdimm; |
| if (!nvdimm) |
| continue; |
| |
| nfit_kernfs = sysfs_get_dirent(nvdimm_kobj(nvdimm)->sd, "nfit"); |
| if (nfit_kernfs) |
| nfit_mem->flags_attr = sysfs_get_dirent(nfit_kernfs, |
| "flags"); |
| sysfs_put(nfit_kernfs); |
| if (!nfit_mem->flags_attr) |
| dev_warn(acpi_desc->dev, "%s: notifications disabled\n", |
| nvdimm_name(nvdimm)); |
| } |
| |
| return devm_add_action_or_reset(acpi_desc->dev, shutdown_dimm_notify, |
| acpi_desc); |
| } |
| |
| /* |
| * These constants are private because there are no kernel consumers of |
| * these commands. |
| */ |
| enum nfit_aux_cmds { |
| NFIT_CMD_TRANSLATE_SPA = 5, |
| NFIT_CMD_ARS_INJECT_SET = 7, |
| NFIT_CMD_ARS_INJECT_CLEAR = 8, |
| NFIT_CMD_ARS_INJECT_GET = 9, |
| }; |
| |
| static void acpi_nfit_init_dsms(struct acpi_nfit_desc *acpi_desc) |
| { |
| struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; |
| const guid_t *guid = to_nfit_uuid(NFIT_DEV_BUS); |
| unsigned long dsm_mask, *mask; |
| struct acpi_device *adev; |
| int i; |
| |
| set_bit(ND_CMD_CALL, &nd_desc->cmd_mask); |
| set_bit(NVDIMM_BUS_FAMILY_NFIT, &nd_desc->bus_family_mask); |
| |
| /* enable nfit_test to inject bus command emulation */ |
| if (acpi_desc->bus_cmd_force_en) { |
| nd_desc->cmd_mask = acpi_desc->bus_cmd_force_en; |
| mask = &nd_desc->bus_family_mask; |
| if (acpi_desc->family_dsm_mask[NVDIMM_BUS_FAMILY_INTEL]) { |
| set_bit(NVDIMM_BUS_FAMILY_INTEL, mask); |
| nd_desc->fw_ops = intel_bus_fw_ops; |
| } |
| } |
| |
| adev = to_acpi_dev(acpi_desc); |
| if (!adev) |
| return; |
| |
| for (i = ND_CMD_ARS_CAP; i <= ND_CMD_CLEAR_ERROR; i++) |
| if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i)) |
| set_bit(i, &nd_desc->cmd_mask); |
| |
| dsm_mask = |
| (1 << ND_CMD_ARS_CAP) | |
| (1 << ND_CMD_ARS_START) | |
| (1 << ND_CMD_ARS_STATUS) | |
| (1 << ND_CMD_CLEAR_ERROR) | |
| (1 << NFIT_CMD_TRANSLATE_SPA) | |
| (1 << NFIT_CMD_ARS_INJECT_SET) | |
| (1 << NFIT_CMD_ARS_INJECT_CLEAR) | |
| (1 << NFIT_CMD_ARS_INJECT_GET); |
| for_each_set_bit(i, &dsm_mask, BITS_PER_LONG) |
| if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i)) |
| set_bit(i, &acpi_desc->bus_dsm_mask); |
| |
| /* Enumerate allowed NVDIMM_BUS_FAMILY_INTEL commands */ |
| dsm_mask = NVDIMM_BUS_INTEL_FW_ACTIVATE_CMDMASK; |
| guid = to_nfit_bus_uuid(NVDIMM_BUS_FAMILY_INTEL); |
| mask = &acpi_desc->family_dsm_mask[NVDIMM_BUS_FAMILY_INTEL]; |
| for_each_set_bit(i, &dsm_mask, BITS_PER_LONG) |
| if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i)) |
| set_bit(i, mask); |
| |
| if (*mask == dsm_mask) { |
| set_bit(NVDIMM_BUS_FAMILY_INTEL, &nd_desc->bus_family_mask); |
| nd_desc->fw_ops = intel_bus_fw_ops; |
| } |
| } |
| |
| static ssize_t range_index_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct nd_region *nd_region = to_nd_region(dev); |
| struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region); |
| |
| return sprintf(buf, "%d\n", nfit_spa->spa->range_index); |
| } |
| static DEVICE_ATTR_RO(range_index); |
| |
| static struct attribute *acpi_nfit_region_attributes[] = { |
| &dev_attr_range_index.attr, |
| NULL, |
| }; |
| |
| static const struct attribute_group acpi_nfit_region_attribute_group = { |
| .name = "nfit", |
| .attrs = acpi_nfit_region_attributes, |
| }; |
| |
| static const struct attribute_group *acpi_nfit_region_attribute_groups[] = { |
| &acpi_nfit_region_attribute_group, |
| NULL, |
| }; |
| |
| /* enough info to uniquely specify an interleave set */ |
| struct nfit_set_info { |
| u64 region_offset; |
| u32 serial_number; |
| u32 pad; |
| }; |
| |
| struct nfit_set_info2 { |
| u64 region_offset; |
| u32 serial_number; |
| u16 vendor_id; |
| u16 manufacturing_date; |
| u8 manufacturing_location; |
| u8 reserved[31]; |
| }; |
| |
| static int cmp_map_compat(const void *m0, const void *m1) |
| { |
| const struct nfit_set_info *map0 = m0; |
| const struct nfit_set_info *map1 = m1; |
| |
| return memcmp(&map0->region_offset, &map1->region_offset, |
| sizeof(u64)); |
| } |
| |
| static int cmp_map(const void *m0, const void *m1) |
| { |
| const struct nfit_set_info *map0 = m0; |
| const struct nfit_set_info *map1 = m1; |
| |
| if (map0->region_offset < map1->region_offset) |
| return -1; |
| else if (map0->region_offset > map1->region_offset) |
| return 1; |
| return 0; |
| } |
| |
| static int cmp_map2(const void *m0, const void *m1) |
| { |
| const struct nfit_set_info2 *map0 = m0; |
| const struct nfit_set_info2 *map1 = m1; |
| |
| if (map0->region_offset < map1->region_offset) |
| return -1; |
| else if (map0->region_offset > map1->region_offset) |
| return 1; |
| return 0; |
| } |
| |
| /* Retrieve the nth entry referencing this spa */ |
| static struct acpi_nfit_memory_map *memdev_from_spa( |
| struct acpi_nfit_desc *acpi_desc, u16 range_index, int n) |
| { |
| struct nfit_memdev *nfit_memdev; |
| |
| list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) |
| if (nfit_memdev->memdev->range_index == range_index) |
| if (n-- == 0) |
| return nfit_memdev->memdev; |
| return NULL; |
| } |
| |
| static int acpi_nfit_init_interleave_set(struct acpi_nfit_desc *acpi_desc, |
| struct nd_region_desc *ndr_desc, |
| struct acpi_nfit_system_address *spa) |
| { |
| struct device *dev = acpi_desc->dev; |
| struct nd_interleave_set *nd_set; |
| u16 nr = ndr_desc->num_mappings; |
| struct nfit_set_info2 *info2; |
| struct nfit_set_info *info; |
| int i; |
| |
| nd_set = devm_kzalloc(dev, sizeof(*nd_set), GFP_KERNEL); |
| if (!nd_set) |
| return -ENOMEM; |
| import_guid(&nd_set->type_guid, spa->range_guid); |
| |
| info = devm_kcalloc(dev, nr, sizeof(*info), GFP_KERNEL); |
| if (!info) |
| return -ENOMEM; |
| |
| info2 = devm_kcalloc(dev, nr, sizeof(*info2), GFP_KERNEL); |
| if (!info2) |
| return -ENOMEM; |
| |
| for (i = 0; i < nr; i++) { |
| struct nd_mapping_desc *mapping = &ndr_desc->mapping[i]; |
| struct nvdimm *nvdimm = mapping->nvdimm; |
| struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); |
| struct nfit_set_info *map = &info[i]; |
| struct nfit_set_info2 *map2 = &info2[i]; |
| struct acpi_nfit_memory_map *memdev = |
| memdev_from_spa(acpi_desc, spa->range_index, i); |
| struct acpi_nfit_control_region *dcr = nfit_mem->dcr; |
| |
| if (!memdev || !nfit_mem->dcr) { |
| dev_err(dev, "%s: failed to find DCR\n", __func__); |
| return -ENODEV; |
| } |
| |
| map->region_offset = memdev->region_offset; |
| map->serial_number = dcr->serial_number; |
| |
| map2->region_offset = memdev->region_offset; |
| map2->serial_number = dcr->serial_number; |
| map2->vendor_id = dcr->vendor_id; |
| map2->manufacturing_date = dcr->manufacturing_date; |
| map2->manufacturing_location = dcr->manufacturing_location; |
| } |
| |
| /* v1.1 namespaces */ |
| sort(info, nr, sizeof(*info), cmp_map, NULL); |
| nd_set->cookie1 = nd_fletcher64(info, sizeof(*info) * nr, 0); |
| |
| /* v1.2 namespaces */ |
| sort(info2, nr, sizeof(*info2), cmp_map2, NULL); |
| nd_set->cookie2 = nd_fletcher64(info2, sizeof(*info2) * nr, 0); |
| |
| /* support v1.1 namespaces created with the wrong sort order */ |
| sort(info, nr, sizeof(*info), cmp_map_compat, NULL); |
| nd_set->altcookie = nd_fletcher64(info, sizeof(*info) * nr, 0); |
| |
| /* record the result of the sort for the mapping position */ |
| for (i = 0; i < nr; i++) { |
| struct nfit_set_info2 *map2 = &info2[i]; |
| int j; |
| |
| for (j = 0; j < nr; j++) { |
| struct nd_mapping_desc *mapping = &ndr_desc->mapping[j]; |
| struct nvdimm *nvdimm = mapping->nvdimm; |
| struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); |
| struct acpi_nfit_control_region *dcr = nfit_mem->dcr; |
| |
| if (map2->serial_number == dcr->serial_number && |
| map2->vendor_id == dcr->vendor_id && |
| map2->manufacturing_date == dcr->manufacturing_date && |
| map2->manufacturing_location |
| == dcr->manufacturing_location) { |
| mapping->position = i; |
| break; |
| } |
| } |
| } |
| |
| ndr_desc->nd_set = nd_set; |
| devm_kfree(dev, info); |
| devm_kfree(dev, info2); |
| |
| return 0; |
| } |
| |
| static int ars_get_cap(struct acpi_nfit_desc *acpi_desc, |
| struct nd_cmd_ars_cap *cmd, struct nfit_spa *nfit_spa) |
| { |
| struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; |
| struct acpi_nfit_system_address *spa = nfit_spa->spa; |
| int cmd_rc, rc; |
| |
| cmd->address = spa->address; |
| cmd->length = spa->length; |
| rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, cmd, |
| sizeof(*cmd), &cmd_rc); |
| if (rc < 0) |
| return rc; |
| return cmd_rc; |
| } |
| |
| static int ars_start(struct acpi_nfit_desc *acpi_desc, |
| struct nfit_spa *nfit_spa, enum nfit_ars_state req_type) |
| { |
| int rc; |
| int cmd_rc; |
| struct nd_cmd_ars_start ars_start; |
| struct acpi_nfit_system_address *spa = nfit_spa->spa; |
| struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; |
| |
| memset(&ars_start, 0, sizeof(ars_start)); |
| ars_start.address = spa->address; |
| ars_start.length = spa->length; |
| if (req_type == ARS_REQ_SHORT) |
| ars_start.flags = ND_ARS_RETURN_PREV_DATA; |
| if (nfit_spa_type(spa) == NFIT_SPA_PM) |
| ars_start.type = ND_ARS_PERSISTENT; |
| else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE) |
| ars_start.type = ND_ARS_VOLATILE; |
| else |
| return -ENOTTY; |
| |
| rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start, |
| sizeof(ars_start), &cmd_rc); |
| |
| if (rc < 0) |
| return rc; |
| if (cmd_rc < 0) |
| return cmd_rc; |
| set_bit(ARS_VALID, &acpi_desc->scrub_flags); |
| return 0; |
| } |
| |
| static int ars_continue(struct acpi_nfit_desc *acpi_desc) |
| { |
| int rc, cmd_rc; |
| struct nd_cmd_ars_start ars_start; |
| struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; |
| struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status; |
| |
| ars_start = (struct nd_cmd_ars_start) { |
| .address = ars_status->restart_address, |
| .length = ars_status->restart_length, |
| .type = ars_status->type, |
| }; |
| rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start, |
| sizeof(ars_start), &cmd_rc); |
| if (rc < 0) |
| return rc; |
| return cmd_rc; |
| } |
| |
| static int ars_get_status(struct acpi_nfit_desc *acpi_desc) |
| { |
| struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; |
| struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status; |
| int rc, cmd_rc; |
| |
| rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_STATUS, ars_status, |
| acpi_desc->max_ars, &cmd_rc); |
| if (rc < 0) |
| return rc; |
| return cmd_rc; |
| } |
| |
| static void ars_complete(struct acpi_nfit_desc *acpi_desc, |
| struct nfit_spa *nfit_spa) |
| { |
| struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status; |
| struct acpi_nfit_system_address *spa = nfit_spa->spa; |
| struct nd_region *nd_region = nfit_spa->nd_region; |
| struct device *dev; |
| |
| lockdep_assert_held(&acpi_desc->init_mutex); |
| /* |
| * Only advance the ARS state for ARS runs initiated by the |
| * kernel, ignore ARS results from BIOS initiated runs for scrub |
| * completion tracking. |
| */ |
| if (acpi_desc->scrub_spa != nfit_spa) |
| return; |
| |
| if ((ars_status->address >= spa->address && ars_status->address |
| < spa->address + spa->length) |
| || (ars_status->address < spa->address)) { |
| /* |
| * Assume that if a scrub starts at an offset from the |
| * start of nfit_spa that we are in the continuation |
| * case. |
| * |
| * Otherwise, if the scrub covers the spa range, mark |
| * any pending request complete. |
| */ |
| if (ars_status->address + ars_status->length |
| >= spa->address + spa->length) |
| /* complete */; |
| else |
| return; |
| } else |
| return; |
| |
| acpi_desc->scrub_spa = NULL; |
| if (nd_region) { |
| dev = nd_region_dev(nd_region); |
| nvdimm_region_notify(nd_region, NVDIMM_REVALIDATE_POISON); |
| } else |
| dev = acpi_desc->dev; |
| dev_dbg(dev, "ARS: range %d complete\n", spa->range_index); |
| } |
| |
| static int ars_status_process_records(struct acpi_nfit_desc *acpi_desc) |
| { |
| struct nvdimm_bus *nvdimm_bus = acpi_desc->nvdimm_bus; |
| struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status; |
| int rc; |
| u32 i; |
| |
| /* |
| * First record starts at 44 byte offset from the start of the |
| * payload. |
| */ |
| if (ars_status->out_length < 44) |
| return 0; |
| |
| /* |
| * Ignore potentially stale results that are only refreshed |
| * after a start-ARS event. |
| */ |
| if (!test_and_clear_bit(ARS_VALID, &acpi_desc->scrub_flags)) { |
| dev_dbg(acpi_desc->dev, "skip %d stale records\n", |
| ars_status->num_records); |
| return 0; |
| } |
| |
| for (i = 0; i < ars_status->num_records; i++) { |
| /* only process full records */ |
| if (ars_status->out_length |
| < 44 + sizeof(struct nd_ars_record) * (i + 1)) |
| break; |
| rc = nvdimm_bus_add_badrange(nvdimm_bus, |
| ars_status->records[i].err_address, |
| ars_status->records[i].length); |
| if (rc) |
| return rc; |
| } |
| if (i < ars_status->num_records) |
| dev_warn(acpi_desc->dev, "detected truncated ars results\n"); |
| |
| return 0; |
| } |
| |
| static void acpi_nfit_remove_resource(void *data) |
| { |
| struct resource *res = data; |
| |
| remove_resource(res); |
| } |
| |
| static int acpi_nfit_insert_resource(struct acpi_nfit_desc *acpi_desc, |
| struct nd_region_desc *ndr_desc) |
| { |
| struct resource *res, *nd_res = ndr_desc->res; |
| int is_pmem, ret; |
| |
| /* No operation if the region is already registered as PMEM */ |
| is_pmem = region_intersects(nd_res->start, resource_size(nd_res), |
| IORESOURCE_MEM, IORES_DESC_PERSISTENT_MEMORY); |
| if (is_pmem == REGION_INTERSECTS) |
| return 0; |
| |
| res = devm_kzalloc(acpi_desc->dev, sizeof(*res), GFP_KERNEL); |
| if (!res) |
| return -ENOMEM; |
| |
| res->name = "Persistent Memory"; |
| res->start = nd_res->start; |
| res->end = nd_res->end; |
| res->flags = IORESOURCE_MEM; |
| res->desc = IORES_DESC_PERSISTENT_MEMORY; |
| |
| ret = insert_resource(&iomem_resource, res); |
| if (ret) |
| return ret; |
| |
| ret = devm_add_action_or_reset(acpi_desc->dev, |
| acpi_nfit_remove_resource, |
| res); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| static int acpi_nfit_init_mapping(struct acpi_nfit_desc *acpi_desc, |
| struct nd_mapping_desc *mapping, struct nd_region_desc *ndr_desc, |
| struct acpi_nfit_memory_map *memdev, |
| struct nfit_spa *nfit_spa) |
| { |
| struct nvdimm *nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, |
| memdev->device_handle); |
| struct acpi_nfit_system_address *spa = nfit_spa->spa; |
| |
| if (!nvdimm) { |
| dev_err(acpi_desc->dev, "spa%d dimm: %#x not found\n", |
| spa->range_index, memdev->device_handle); |
| return -ENODEV; |
| } |
| |
| mapping->nvdimm = nvdimm; |
| switch (nfit_spa_type(spa)) { |
| case NFIT_SPA_PM: |
| case NFIT_SPA_VOLATILE: |
| mapping->start = memdev->address; |
| mapping->size = memdev->region_size; |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static bool nfit_spa_is_virtual(struct acpi_nfit_system_address *spa) |
| { |
| return (nfit_spa_type(spa) == NFIT_SPA_VDISK || |
| nfit_spa_type(spa) == NFIT_SPA_VCD || |
| nfit_spa_type(spa) == NFIT_SPA_PDISK || |
| nfit_spa_type(spa) == NFIT_SPA_PCD); |
| } |
| |
| static bool nfit_spa_is_volatile(struct acpi_nfit_system_address *spa) |
| { |
| return (nfit_spa_type(spa) == NFIT_SPA_VDISK || |
| nfit_spa_type(spa) == NFIT_SPA_VCD || |
| nfit_spa_type(spa) == NFIT_SPA_VOLATILE); |
| } |
| |
| static int acpi_nfit_register_region(struct acpi_nfit_desc *acpi_desc, |
| struct nfit_spa *nfit_spa) |
| { |
| static struct nd_mapping_desc mappings[ND_MAX_MAPPINGS]; |
| struct acpi_nfit_system_address *spa = nfit_spa->spa; |
| struct nd_region_desc *ndr_desc, _ndr_desc; |
| struct nfit_memdev *nfit_memdev; |
| struct nvdimm_bus *nvdimm_bus; |
| struct resource res; |
| int count = 0, rc; |
| |
| if (nfit_spa->nd_region) |
| return 0; |
| |
| if (spa->range_index == 0 && !nfit_spa_is_virtual(spa)) { |
| dev_dbg(acpi_desc->dev, "detected invalid spa index\n"); |
| return 0; |
| } |
| |
| memset(&res, 0, sizeof(res)); |
| memset(&mappings, 0, sizeof(mappings)); |
| memset(&_ndr_desc, 0, sizeof(_ndr_desc)); |
| res.start = spa->address; |
| res.end = res.start + spa->length - 1; |
| ndr_desc = &_ndr_desc; |
| ndr_desc->res = &res; |
| ndr_desc->provider_data = nfit_spa; |
| ndr_desc->attr_groups = acpi_nfit_region_attribute_groups; |
| if (spa->flags & ACPI_NFIT_PROXIMITY_VALID) { |
| ndr_desc->numa_node = pxm_to_online_node(spa->proximity_domain); |
| ndr_desc->target_node = pxm_to_node(spa->proximity_domain); |
| } else { |
| ndr_desc->numa_node = NUMA_NO_NODE; |
| ndr_desc->target_node = NUMA_NO_NODE; |
| } |
| |
| /* Fallback to address based numa information if node lookup failed */ |
| if (ndr_desc->numa_node == NUMA_NO_NODE) { |
| ndr_desc->numa_node = memory_add_physaddr_to_nid(spa->address); |
| dev_info(acpi_desc->dev, "changing numa node from %d to %d for nfit region [%pa-%pa]", |
| NUMA_NO_NODE, ndr_desc->numa_node, &res.start, &res.end); |
| } |
| if (ndr_desc->target_node == NUMA_NO_NODE) { |
| ndr_desc->target_node = phys_to_target_node(spa->address); |
| dev_info(acpi_desc->dev, "changing target node from %d to %d for nfit region [%pa-%pa]", |
| NUMA_NO_NODE, ndr_desc->numa_node, &res.start, &res.end); |
| } |
| |
| /* |
| * Persistence domain bits are hierarchical, if |
| * ACPI_NFIT_CAPABILITY_CACHE_FLUSH is set then |
| * ACPI_NFIT_CAPABILITY_MEM_FLUSH is implied. |
| */ |
| if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_CACHE_FLUSH) |
| set_bit(ND_REGION_PERSIST_CACHE, &ndr_desc->flags); |
| else if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_MEM_FLUSH) |
| set_bit(ND_REGION_PERSIST_MEMCTRL, &ndr_desc->flags); |
| |
| list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { |
| struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev; |
| struct nd_mapping_desc *mapping; |
| |
| /* range index 0 == unmapped in SPA or invalid-SPA */ |
| if (memdev->range_index == 0 || spa->range_index == 0) |
| continue; |
| if (memdev->range_index != spa->range_index) |
| continue; |
| if (count >= ND_MAX_MAPPINGS) { |
| dev_err(acpi_desc->dev, "spa%d exceeds max mappings %d\n", |
| spa->range_index, ND_MAX_MAPPINGS); |
| return -ENXIO; |
| } |
| mapping = &mappings[count++]; |
| rc = acpi_nfit_init_mapping(acpi_desc, mapping, ndr_desc, |
| memdev, nfit_spa); |
| if (rc) |
| goto out; |
| } |
| |
| ndr_desc->mapping = mappings; |
| ndr_desc->num_mappings = count; |
| rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa); |
| if (rc) |
| goto out; |
| |
| nvdimm_bus = acpi_desc->nvdimm_bus; |
| if (nfit_spa_type(spa) == NFIT_SPA_PM) { |
| rc = acpi_nfit_insert_resource(acpi_desc, ndr_desc); |
| if (rc) { |
| dev_warn(acpi_desc->dev, |
| "failed to insert pmem resource to iomem: %d\n", |
| rc); |
| goto out; |
| } |
| |
| nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus, |
| ndr_desc); |
| if (!nfit_spa->nd_region) |
| rc = -ENOMEM; |
| } else if (nfit_spa_is_volatile(spa)) { |
| nfit_spa->nd_region = nvdimm_volatile_region_create(nvdimm_bus, |
| ndr_desc); |
| if (!nfit_spa->nd_region) |
| rc = -ENOMEM; |
| } else if (nfit_spa_is_virtual(spa)) { |
| nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus, |
| ndr_desc); |
| if (!nfit_spa->nd_region) |
| rc = -ENOMEM; |
| } |
| |
| out: |
| if (rc) |
| dev_err(acpi_desc->dev, "failed to register spa range %d\n", |
| nfit_spa->spa->range_index); |
| return rc; |
| } |
| |
| static int ars_status_alloc(struct acpi_nfit_desc *acpi_desc) |
| { |
| struct device *dev = acpi_desc->dev; |
| struct nd_cmd_ars_status *ars_status; |
| |
| if (acpi_desc->ars_status) { |
| memset(acpi_desc->ars_status, 0, acpi_desc->max_ars); |
| return 0; |
| } |
| |
| ars_status = devm_kzalloc(dev, acpi_desc->max_ars, GFP_KERNEL); |
| if (!ars_status) |
| return -ENOMEM; |
| acpi_desc->ars_status = ars_status; |
| return 0; |
| } |
| |
| static int acpi_nfit_query_poison(struct acpi_nfit_desc *acpi_desc) |
| { |
| int rc; |
| |
| if (ars_status_alloc(acpi_desc)) |
| return -ENOMEM; |
| |
| rc = ars_get_status(acpi_desc); |
| |
| if (rc < 0 && rc != -ENOSPC) |
| return rc; |
| |
| if (ars_status_process_records(acpi_desc)) |
| dev_err(acpi_desc->dev, "Failed to process ARS records\n"); |
| |
| return rc; |
| } |
| |
| static int ars_register(struct acpi_nfit_desc *acpi_desc, |
| struct nfit_spa *nfit_spa) |
| { |
| int rc; |
| |
| if (test_bit(ARS_FAILED, &nfit_spa->ars_state)) |
| return acpi_nfit_register_region(acpi_desc, nfit_spa); |
| |
| set_bit(ARS_REQ_SHORT, &nfit_spa->ars_state); |
| if (!no_init_ars) |
| set_bit(ARS_REQ_LONG, &nfit_spa->ars_state); |
| |
| switch (acpi_nfit_query_poison(acpi_desc)) { |
| case 0: |
| case -ENOSPC: |
| case -EAGAIN: |
| rc = ars_start(acpi_desc, nfit_spa, ARS_REQ_SHORT); |
| /* shouldn't happen, try again later */ |
| if (rc == -EBUSY) |
| break; |
| if (rc) { |
| set_bit(ARS_FAILED, &nfit_spa->ars_state); |
| break; |
| } |
| clear_bit(ARS_REQ_SHORT, &nfit_spa->ars_state); |
| rc = acpi_nfit_query_poison(acpi_desc); |
| if (rc) |
| break; |
| acpi_desc->scrub_spa = nfit_spa; |
| ars_complete(acpi_desc, nfit_spa); |
| /* |
| * If ars_complete() says we didn't complete the |
| * short scrub, we'll try again with a long |
| * request. |
| */ |
| acpi_desc->scrub_spa = NULL; |
| break; |
| case -EBUSY: |
| case -ENOMEM: |
| /* |
| * BIOS was using ARS, wait for it to complete (or |
| * resources to become available) and then perform our |
| * own scrubs. |
| */ |
| break; |
| default: |
| set_bit(ARS_FAILED, &nfit_spa->ars_state); |
| break; |
| } |
| |
| return acpi_nfit_register_region(acpi_desc, nfit_spa); |
| } |
| |
| static void ars_complete_all(struct acpi_nfit_desc *acpi_desc) |
| { |
| struct nfit_spa *nfit_spa; |
| |
| list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { |
| if (test_bit(ARS_FAILED, &nfit_spa->ars_state)) |
| continue; |
| ars_complete(acpi_desc, nfit_spa); |
| } |
| } |
| |
| static unsigned int __acpi_nfit_scrub(struct acpi_nfit_desc *acpi_desc, |
| int query_rc) |
| { |
| unsigned int tmo = acpi_desc->scrub_tmo; |
| struct device *dev = acpi_desc->dev; |
| struct nfit_spa *nfit_spa; |
| |
| lockdep_assert_held(&acpi_desc->init_mutex); |
| |
| if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags)) |
| return 0; |
| |
| if (query_rc == -EBUSY) { |
| dev_dbg(dev, "ARS: ARS busy\n"); |
| return min(30U * 60U, tmo * 2); |
| } |
| if (query_rc == -ENOSPC) { |
| dev_dbg(dev, "ARS: ARS continue\n"); |
| ars_continue(acpi_desc); |
| return 1; |
| } |
| if (query_rc && query_rc != -EAGAIN) { |
| unsigned long long addr, end; |
| |
| addr = acpi_desc->ars_status->address; |
| end = addr + acpi_desc->ars_status->length; |
| dev_dbg(dev, "ARS: %llx-%llx failed (%d)\n", addr, end, |
| query_rc); |
| } |
| |
| ars_complete_all(acpi_desc); |
| list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { |
| enum nfit_ars_state req_type; |
| int rc; |
| |
| if (test_bit(ARS_FAILED, &nfit_spa->ars_state)) |
| continue; |
| |
| /* prefer short ARS requests first */ |
| if (test_bit(ARS_REQ_SHORT, &nfit_spa->ars_state)) |
| req_type = ARS_REQ_SHORT; |
| else if (test_bit(ARS_REQ_LONG, &nfit_spa->ars_state)) |
| req_type = ARS_REQ_LONG; |
| else |
| continue; |
| rc = ars_start(acpi_desc, nfit_spa, req_type); |
| |
| dev = nd_region_dev(nfit_spa->nd_region); |
| dev_dbg(dev, "ARS: range %d ARS start %s (%d)\n", |
| nfit_spa->spa->range_index, |
| req_type == ARS_REQ_SHORT ? "short" : "long", |
| rc); |
| /* |
| * Hmm, we raced someone else starting ARS? Try again in |
| * a bit. |
| */ |
| if (rc == -EBUSY) |
| return 1; |
| if (rc == 0) { |
| dev_WARN_ONCE(dev, acpi_desc->scrub_spa, |
| "scrub start while range %d active\n", |
| acpi_desc->scrub_spa->spa->range_index); |
| clear_bit(req_type, &nfit_spa->ars_state); |
| acpi_desc->scrub_spa = nfit_spa; |
| /* |
| * Consider this spa last for future scrub |
| * requests |
| */ |
| list_move_tail(&nfit_spa->list, &acpi_desc->spas); |
| return 1; |
| } |
| |
| dev_err(dev, "ARS: range %d ARS failed (%d)\n", |
| nfit_spa->spa->range_index, rc); |
| set_bit(ARS_FAILED, &nfit_spa->ars_state); |
| } |
| return 0; |
| } |
| |
| static void __sched_ars(struct acpi_nfit_desc *acpi_desc, unsigned int tmo) |
| { |
| lockdep_assert_held(&acpi_desc->init_mutex); |
| |
| set_bit(ARS_BUSY, &acpi_desc->scrub_flags); |
| /* note this should only be set from within the workqueue */ |
| if (tmo) |
| acpi_desc->scrub_tmo = tmo; |
| queue_delayed_work(nfit_wq, &acpi_desc->dwork, tmo * HZ); |
| } |
| |
| static void sched_ars(struct acpi_nfit_desc *acpi_desc) |
| { |
| __sched_ars(acpi_desc, 0); |
| } |
| |
| static void notify_ars_done(struct acpi_nfit_desc *acpi_desc) |
| { |
| lockdep_assert_held(&acpi_desc->init_mutex); |
| |
| clear_bit(ARS_BUSY, &acpi_desc->scrub_flags); |
| acpi_desc->scrub_count++; |
| if (acpi_desc->scrub_count_state) |
| sysfs_notify_dirent(acpi_desc->scrub_count_state); |
| } |
| |
| static void acpi_nfit_scrub(struct work_struct *work) |
| { |
| struct acpi_nfit_desc *acpi_desc; |
| unsigned int tmo; |
| int query_rc; |
| |
| acpi_desc = container_of(work, typeof(*acpi_desc), dwork.work); |
| mutex_lock(&acpi_desc->init_mutex); |
| query_rc = acpi_nfit_query_poison(acpi_desc); |
| tmo = __acpi_nfit_scrub(acpi_desc, query_rc); |
| if (tmo) |
| __sched_ars(acpi_desc, tmo); |
| else |
| notify_ars_done(acpi_desc); |
| memset(acpi_desc->ars_status, 0, acpi_desc->max_ars); |
| clear_bit(ARS_POLL, &acpi_desc->scrub_flags); |
| mutex_unlock(&acpi_desc->init_mutex); |
| } |
| |
| static void acpi_nfit_init_ars(struct acpi_nfit_desc *acpi_desc, |
| struct nfit_spa *nfit_spa) |
| { |
| int type = nfit_spa_type(nfit_spa->spa); |
| struct nd_cmd_ars_cap ars_cap; |
| int rc; |
| |
| set_bit(ARS_FAILED, &nfit_spa->ars_state); |
| memset(&ars_cap, 0, sizeof(ars_cap)); |
| rc = ars_get_cap(acpi_desc, &ars_cap, nfit_spa); |
| if (rc < 0) |
| return; |
| /* check that the supported scrub types match the spa type */ |
| if (type == NFIT_SPA_VOLATILE && ((ars_cap.status >> 16) |
| & ND_ARS_VOLATILE) == 0) |
| return; |
| if (type == NFIT_SPA_PM && ((ars_cap.status >> 16) |
| & ND_ARS_PERSISTENT) == 0) |
| return; |
| |
| nfit_spa->max_ars = ars_cap.max_ars_out; |
| nfit_spa->clear_err_unit = ars_cap.clear_err_unit; |
| acpi_desc->max_ars = max(nfit_spa->max_ars, acpi_desc->max_ars); |
| clear_bit(ARS_FAILED, &nfit_spa->ars_state); |
| } |
| |
| static int acpi_nfit_register_regions(struct acpi_nfit_desc *acpi_desc) |
| { |
| struct nfit_spa *nfit_spa; |
| int rc, do_sched_ars = 0; |
| |
| set_bit(ARS_VALID, &acpi_desc->scrub_flags); |
| list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { |
| switch (nfit_spa_type(nfit_spa->spa)) { |
| case NFIT_SPA_VOLATILE: |
| case NFIT_SPA_PM: |
| acpi_nfit_init_ars(acpi_desc, nfit_spa); |
| break; |
| } |
| } |
| |
| list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { |
| switch (nfit_spa_type(nfit_spa->spa)) { |
| case NFIT_SPA_VOLATILE: |
| case NFIT_SPA_PM: |
| /* register regions and kick off initial ARS run */ |
| rc = ars_register(acpi_desc, nfit_spa); |
| if (rc) |
| return rc; |
| |
| /* |
| * Kick off background ARS if at least one |
| * region successfully registered ARS |
| */ |
| if (!test_bit(ARS_FAILED, &nfit_spa->ars_state)) |
| do_sched_ars++; |
| break; |
| case NFIT_SPA_BDW: |
| /* nothing to register */ |
| break; |
| case NFIT_SPA_DCR: |
| case NFIT_SPA_VDISK: |
| case NFIT_SPA_VCD: |
| case NFIT_SPA_PDISK: |
| case NFIT_SPA_PCD: |
| /* register known regions that don't support ARS */ |
| rc = acpi_nfit_register_region(acpi_desc, nfit_spa); |
| if (rc) |
| return rc; |
| break; |
| default: |
| /* don't register unknown regions */ |
| break; |
| } |
| } |
| |
| if (do_sched_ars) |
| sched_ars(acpi_desc); |
| return 0; |
| } |
| |
| static int acpi_nfit_check_deletions(struct acpi_nfit_desc *acpi_desc, |
| struct nfit_table_prev *prev) |
| { |
| struct device *dev = acpi_desc->dev; |
| |
| if (!list_empty(&prev->spas) || |
| !list_empty(&prev->memdevs) || |
| !list_empty(&prev->dcrs) || |
| !list_empty(&prev->bdws) || |
| !list_empty(&prev->idts) || |
| !list_empty(&prev->flushes)) { |
| dev_err(dev, "new nfit deletes entries (unsupported)\n"); |
| return -ENXIO; |
| } |
| return 0; |
| } |
| |
| static int acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc *acpi_desc) |
| { |
| struct device *dev = acpi_desc->dev; |
| struct kernfs_node *nfit; |
| struct device *bus_dev; |
| |
| if (!ars_supported(acpi_desc->nvdimm_bus)) |
| return 0; |
| |
| bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus); |
| nfit = sysfs_get_dirent(bus_dev->kobj.sd, "nfit"); |
| if (!nfit) { |
| dev_err(dev, "sysfs_get_dirent 'nfit' failed\n"); |
| return -ENODEV; |
| } |
| acpi_desc->scrub_count_state = sysfs_get_dirent(nfit, "scrub"); |
| sysfs_put(nfit); |
| if (!acpi_desc->scrub_count_state) { |
| dev_err(dev, "sysfs_get_dirent 'scrub' failed\n"); |
| return -ENODEV; |
| } |
| |
| return 0; |
| } |
| |
| static void acpi_nfit_unregister(void *data) |
| { |
| struct acpi_nfit_desc *acpi_desc = data; |
| |
| nvdimm_bus_unregister(acpi_desc->nvdimm_bus); |
| } |
| |
| int acpi_nfit_init(struct acpi_nfit_desc *acpi_desc, void *data, acpi_size sz) |
| { |
| struct device *dev = acpi_desc->dev; |
| struct nfit_table_prev prev; |
| const void *end; |
| int rc; |
| |
| if (!acpi_desc->nvdimm_bus) { |
| acpi_nfit_init_dsms(acpi_desc); |
| |
| acpi_desc->nvdimm_bus = nvdimm_bus_register(dev, |
| &acpi_desc->nd_desc); |
| if (!acpi_desc->nvdimm_bus) |
| return -ENOMEM; |
| |
| rc = devm_add_action_or_reset(dev, acpi_nfit_unregister, |
| acpi_desc); |
| if (rc) |
| return rc; |
| |
| rc = acpi_nfit_desc_init_scrub_attr(acpi_desc); |
| if (rc) |
| return rc; |
| |
| /* register this acpi_desc for mce notifications */ |
| mutex_lock(&acpi_desc_lock); |
| list_add_tail(&acpi_desc->list, &acpi_descs); |
| mutex_unlock(&acpi_desc_lock); |
| } |
| |
| mutex_lock(&acpi_desc->init_mutex); |
| |
| INIT_LIST_HEAD(&prev.spas); |
| INIT_LIST_HEAD(&prev.memdevs); |
| INIT_LIST_HEAD(&prev.dcrs); |
| INIT_LIST_HEAD(&prev.bdws); |
| INIT_LIST_HEAD(&prev.idts); |
| INIT_LIST_HEAD(&prev.flushes); |
| |
| list_cut_position(&prev.spas, &acpi_desc->spas, |
| acpi_desc->spas.prev); |
| list_cut_position(&prev.memdevs, &acpi_desc->memdevs, |
| acpi_desc->memdevs.prev); |
| list_cut_position(&prev.dcrs, &acpi_desc->dcrs, |
| acpi_desc->dcrs.prev); |
| list_cut_position(&prev.bdws, &acpi_desc->bdws, |
| acpi_desc->bdws.prev); |
| list_cut_position(&prev.idts, &acpi_desc->idts, |
| acpi_desc->idts.prev); |
| list_cut_position(&prev.flushes, &acpi_desc->flushes, |
| acpi_desc->flushes.prev); |
| |
| end = data + sz; |
| while (!IS_ERR_OR_NULL(data)) |
| data = add_table(acpi_desc, &prev, data, end); |
| |
| if (IS_ERR(data)) { |
| dev_dbg(dev, "nfit table parsing error: %ld\n", PTR_ERR(data)); |
| rc = PTR_ERR(data); |
| goto out_unlock; |
| } |
| |
| rc = acpi_nfit_check_deletions(acpi_desc, &prev); |
| if (rc) |
| goto out_unlock; |
| |
| rc = nfit_mem_init(acpi_desc); |
| if (rc) |
| goto out_unlock; |
| |
| rc = acpi_nfit_register_dimms(acpi_desc); |
| if (rc) |
| goto out_unlock; |
| |
| rc = acpi_nfit_register_regions(acpi_desc); |
| |
| out_unlock: |
| mutex_unlock(&acpi_desc->init_mutex); |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(acpi_nfit_init); |
| |
| static int acpi_nfit_flush_probe(struct nvdimm_bus_descriptor *nd_desc) |
| { |
| struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); |
| struct device *dev = acpi_desc->dev; |
| |
| /* Bounce the device lock to flush acpi_nfit_add / acpi_nfit_notify */ |
| device_lock(dev); |
| device_unlock(dev); |
| |
| /* Bounce the init_mutex to complete initial registration */ |
| mutex_lock(&acpi_desc->init_mutex); |
| mutex_unlock(&acpi_desc->init_mutex); |
| |
| return 0; |
| } |
| |
| static int __acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc, |
| struct nvdimm *nvdimm, unsigned int cmd) |
| { |
| struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); |
| |
| if (nvdimm) |
| return 0; |
| if (cmd != ND_CMD_ARS_START) |
| return 0; |
| |
| /* |
| * The kernel and userspace may race to initiate a scrub, but |
| * the scrub thread is prepared to lose that initial race. It |
| * just needs guarantees that any ARS it initiates are not |
| * interrupted by any intervening start requests from userspace. |
| */ |
| if (work_busy(&acpi_desc->dwork.work)) |
| return -EBUSY; |
| |
| return 0; |
| } |
| |
| /* |
| * Prevent security and firmware activate commands from being issued via |
| * ioctl. |
| */ |
| static int acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc, |
| struct nvdimm *nvdimm, unsigned int cmd, void *buf) |
| { |
| struct nd_cmd_pkg *call_pkg = buf; |
| unsigned int func; |
| |
| if (nvdimm && cmd == ND_CMD_CALL && |
| call_pkg->nd_family == NVDIMM_FAMILY_INTEL) { |
| func = call_pkg->nd_command; |
| if (func > NVDIMM_CMD_MAX || |
| (1 << func) & NVDIMM_INTEL_DENY_CMDMASK) |
| return -EOPNOTSUPP; |
| } |
| |
| /* block all non-nfit bus commands */ |
| if (!nvdimm && cmd == ND_CMD_CALL && |
| call_pkg->nd_family != NVDIMM_BUS_FAMILY_NFIT) |
| return -EOPNOTSUPP; |
| |
| return __acpi_nfit_clear_to_send(nd_desc, nvdimm, cmd); |
| } |
| |
| int acpi_nfit_ars_rescan(struct acpi_nfit_desc *acpi_desc, |
| enum nfit_ars_state req_type) |
| { |
| struct device *dev = acpi_desc->dev; |
| int scheduled = 0, busy = 0; |
| struct nfit_spa *nfit_spa; |
| |
| mutex_lock(&acpi_desc->init_mutex); |
| if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags)) { |
| mutex_unlock(&acpi_desc->init_mutex); |
| return 0; |
| } |
| |
| list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { |
| int type = nfit_spa_type(nfit_spa->spa); |
| |
| if (type != NFIT_SPA_PM && type != NFIT_SPA_VOLATILE) |
| continue; |
| if (test_bit(ARS_FAILED, &nfit_spa->ars_state)) |
| continue; |
| |
| if (test_and_set_bit(req_type, &nfit_spa->ars_state)) |
| busy++; |
| else |
| scheduled++; |
| } |
| if (scheduled) { |
| sched_ars(acpi_desc); |
| dev_dbg(dev, "ars_scan triggered\n"); |
| } |
| mutex_unlock(&acpi_desc->init_mutex); |
| |
| if (scheduled) |
| return 0; |
| if (busy) |
| return -EBUSY; |
| return -ENOTTY; |
| } |
| |
| void acpi_nfit_desc_init(struct acpi_nfit_desc *acpi_desc, struct device *dev) |
| { |
| struct nvdimm_bus_descriptor *nd_desc; |
| |
| dev_set_drvdata(dev, acpi_desc); |
| acpi_desc->dev = dev; |
| nd_desc = &acpi_desc->nd_desc; |
| nd_desc->provider_name = "ACPI.NFIT"; |
| nd_desc->module = THIS_MODULE; |
| nd_desc->ndctl = acpi_nfit_ctl; |
| nd_desc->flush_probe = acpi_nfit_flush_probe; |
| nd_desc->clear_to_send = acpi_nfit_clear_to_send; |
| nd_desc->attr_groups = acpi_nfit_attribute_groups; |
| |
| INIT_LIST_HEAD(&acpi_desc->spas); |
| INIT_LIST_HEAD(&acpi_desc->dcrs); |
| INIT_LIST_HEAD(&acpi_desc->bdws); |
| INIT_LIST_HEAD(&acpi_desc->idts); |
| INIT_LIST_HEAD(&acpi_desc->flushes); |
| INIT_LIST_HEAD(&acpi_desc->memdevs); |
| INIT_LIST_HEAD(&acpi_desc->dimms); |
| INIT_LIST_HEAD(&acpi_desc->list); |
| mutex_init(&acpi_desc->init_mutex); |
| acpi_desc->scrub_tmo = 1; |
| INIT_DELAYED_WORK(&acpi_desc->dwork, acpi_nfit_scrub); |
| } |
| EXPORT_SYMBOL_GPL(acpi_nfit_desc_init); |
| |
| static void acpi_nfit_put_table(void *table) |
| { |
| acpi_put_table(table); |
| } |
| |
| void acpi_nfit_shutdown(void *data) |
| { |
| struct acpi_nfit_desc *acpi_desc = data; |
| struct device *bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus); |
| |
| /* |
| * Destruct under acpi_desc_lock so that nfit_handle_mce does not |
| * race teardown |
| */ |
| mutex_lock(&acpi_desc_lock); |
| list_del(&acpi_desc->list); |
| mutex_unlock(&acpi_desc_lock); |
| |
| mutex_lock(&acpi_desc->init_mutex); |
| set_bit(ARS_CANCEL, &acpi_desc->scrub_flags); |
| cancel_delayed_work_sync(&acpi_desc->dwork); |
| mutex_unlock(&acpi_desc->init_mutex); |
| |
| /* |
| * Bounce the nvdimm bus lock to make sure any in-flight |
| * acpi_nfit_ars_rescan() submissions have had a chance to |
| * either submit or see ->cancel set. |
| */ |
| device_lock(bus_dev); |
| device_unlock(bus_dev); |
| |
| flush_workqueue(nfit_wq); |
| } |
| EXPORT_SYMBOL_GPL(acpi_nfit_shutdown); |
| |
| static int acpi_nfit_add(struct acpi_device *adev) |
| { |
| struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; |
| struct acpi_nfit_desc *acpi_desc; |
| struct device *dev = &adev->dev; |
| struct acpi_table_header *tbl; |
| acpi_status status = AE_OK; |
| acpi_size sz; |
| int rc = 0; |
| |
| status = acpi_get_table(ACPI_SIG_NFIT, 0, &tbl); |
| if (ACPI_FAILURE(status)) { |
| /* The NVDIMM root device allows OS to trigger enumeration of |
| * NVDIMMs through NFIT at boot time and re-enumeration at |
| * root level via the _FIT method during runtime. |
| * This is ok to return 0 here, we could have an nvdimm |
| * hotplugged later and evaluate _FIT method which returns |
| * data in the format of a series of NFIT Structures. |
| */ |
| dev_dbg(dev, "failed to find NFIT at startup\n"); |
| return 0; |
| } |
| |
| rc = devm_add_action_or_reset(dev, acpi_nfit_put_table, tbl); |
| if (rc) |
| return rc; |
| sz = tbl->length; |
| |
| acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL); |
| if (!acpi_desc) |
| return -ENOMEM; |
| acpi_nfit_desc_init(acpi_desc, &adev->dev); |
| |
| /* Save the acpi header for exporting the revision via sysfs */ |
| acpi_desc->acpi_header = *tbl; |
| |
| /* Evaluate _FIT and override with that if present */ |
| status = acpi_evaluate_object(adev->handle, "_FIT", NULL, &buf); |
| if (ACPI_SUCCESS(status) && buf.length > 0) { |
| union acpi_object *obj = buf.pointer; |
| |
| if (obj->type == ACPI_TYPE_BUFFER) |
| rc = acpi_nfit_init(acpi_desc, obj->buffer.pointer, |
| obj->buffer.length); |
| else |
| dev_dbg(dev, "invalid type %d, ignoring _FIT\n", |
| (int) obj->type); |
| kfree(buf.pointer); |
| } else |
| /* skip over the lead-in header table */ |
| rc = acpi_nfit_init(acpi_desc, (void *) tbl |
| + sizeof(struct acpi_table_nfit), |
| sz - sizeof(struct acpi_table_nfit)); |
| |
| if (rc) |
| return rc; |
| return devm_add_action_or_reset(dev, acpi_nfit_shutdown, acpi_desc); |
| } |
| |
| static void acpi_nfit_remove(struct acpi_device *adev) |
| { |
| /* see acpi_nfit_unregister */ |
| } |
| |
| static void acpi_nfit_update_notify(struct device *dev, acpi_handle handle) |
| { |
| struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev); |
| struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; |
| union acpi_object *obj; |
| acpi_status status; |
| int ret; |
| |
| if (!dev->driver) { |
| /* dev->driver may be null if we're being removed */ |
| dev_dbg(dev, "no driver found for dev\n"); |
| return; |
| } |
| |
| if (!acpi_desc) { |
| acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL); |
| if (!acpi_desc) |
| return; |
| acpi_nfit_desc_init(acpi_desc, dev); |
| } else { |
| /* |
| * Finish previous registration before considering new |
| * regions. |
| */ |
| flush_workqueue(nfit_wq); |
| } |
| |
| /* Evaluate _FIT */ |
| status = acpi_evaluate_object(handle, "_FIT", NULL, &buf); |
| if (ACPI_FAILURE(status)) { |
| dev_err(dev, "failed to evaluate _FIT\n"); |
| return; |
| } |
| |
| obj = buf.pointer; |
| if (obj->type == ACPI_TYPE_BUFFER) { |
| ret = acpi_nfit_init(acpi_desc, obj->buffer.pointer, |
| obj->buffer.length); |
| if (ret) |
| dev_err(dev, "failed to merge updated NFIT\n"); |
| } else |
| dev_err(dev, "Invalid _FIT\n"); |
| kfree(buf.pointer); |
| } |
| |
| static void acpi_nfit_uc_error_notify(struct device *dev, acpi_handle handle) |
| { |
| struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev); |
| |
| if (acpi_desc->scrub_mode == HW_ERROR_SCRUB_ON) |
| acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG); |
| else |
| acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_SHORT); |
| } |
| |
| void __acpi_nfit_notify(struct device *dev, acpi_handle handle, u32 event) |
| { |
| dev_dbg(dev, "event: 0x%x\n", event); |
| |
| switch (event) { |
| case NFIT_NOTIFY_UPDATE: |
| return acpi_nfit_update_notify(dev, handle); |
| case NFIT_NOTIFY_UC_MEMORY_ERROR: |
| return acpi_nfit_uc_error_notify(dev, handle); |
| default: |
| return; |
| } |
| } |
| EXPORT_SYMBOL_GPL(__acpi_nfit_notify); |
| |
| static void acpi_nfit_notify(struct acpi_device *adev, u32 event) |
| { |
| device_lock(&adev->dev); |
| __acpi_nfit_notify(&adev->dev, adev->handle, event); |
| device_unlock(&adev->dev); |
| } |
| |
| static const struct acpi_device_id acpi_nfit_ids[] = { |
| { "ACPI0012", 0 }, |
| { "", 0 }, |
| }; |
| MODULE_DEVICE_TABLE(acpi, acpi_nfit_ids); |
| |
| static struct acpi_driver acpi_nfit_driver = { |
| .name = KBUILD_MODNAME, |
| .ids = acpi_nfit_ids, |
| .ops = { |
| .add = acpi_nfit_add, |
| .remove = acpi_nfit_remove, |
| .notify = acpi_nfit_notify, |
| }, |
| }; |
| |
| static __init int nfit_init(void) |
| { |
| int ret; |
| |
| BUILD_BUG_ON(sizeof(struct acpi_table_nfit) != 40); |
| BUILD_BUG_ON(sizeof(struct acpi_nfit_system_address) != 64); |
| BUILD_BUG_ON(sizeof(struct acpi_nfit_memory_map) != 48); |
| BUILD_BUG_ON(sizeof(struct acpi_nfit_interleave) != 20); |
| BUILD_BUG_ON(sizeof(struct acpi_nfit_smbios) != 9); |
| BUILD_BUG_ON(sizeof(struct acpi_nfit_control_region) != 80); |
| BUILD_BUG_ON(sizeof(struct acpi_nfit_data_region) != 40); |
| BUILD_BUG_ON(sizeof(struct acpi_nfit_capabilities) != 16); |
| |
| guid_parse(UUID_VOLATILE_MEMORY, &nfit_uuid[NFIT_SPA_VOLATILE]); |
| guid_parse(UUID_PERSISTENT_MEMORY, &nfit_uuid[NFIT_SPA_PM]); |
| guid_parse(UUID_CONTROL_REGION, &nfit_uuid[NFIT_SPA_DCR]); |
| guid_parse(UUID_DATA_REGION, &nfit_uuid[NFIT_SPA_BDW]); |
| guid_parse(UUID_VOLATILE_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_VDISK]); |
| guid_parse(UUID_VOLATILE_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_VCD]); |
| guid_parse(UUID_PERSISTENT_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_PDISK]); |
| guid_parse(UUID_PERSISTENT_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_PCD]); |
| guid_parse(UUID_NFIT_BUS, &nfit_uuid[NFIT_DEV_BUS]); |
| guid_parse(UUID_NFIT_DIMM, &nfit_uuid[NFIT_DEV_DIMM]); |
| guid_parse(UUID_NFIT_DIMM_N_HPE1, &nfit_uuid[NFIT_DEV_DIMM_N_HPE1]); |
| guid_parse(UUID_NFIT_DIMM_N_HPE2, &nfit_uuid[NFIT_DEV_DIMM_N_HPE2]); |
| guid_parse(UUID_NFIT_DIMM_N_MSFT, &nfit_uuid[NFIT_DEV_DIMM_N_MSFT]); |
| guid_parse(UUID_NFIT_DIMM_N_HYPERV, &nfit_uuid[NFIT_DEV_DIMM_N_HYPERV]); |
| guid_parse(UUID_INTEL_BUS, &nfit_uuid[NFIT_BUS_INTEL]); |
| |
| nfit_wq = create_singlethread_workqueue("nfit"); |
| if (!nfit_wq) |
| return -ENOMEM; |
| |
| nfit_mce_register(); |
| ret = acpi_bus_register_driver(&acpi_nfit_driver); |
| if (ret) { |
| nfit_mce_unregister(); |
| destroy_workqueue(nfit_wq); |
| } |
| |
| return ret; |
| |
| } |
| |
| static __exit void nfit_exit(void) |
| { |
| nfit_mce_unregister(); |
| acpi_bus_unregister_driver(&acpi_nfit_driver); |
| destroy_workqueue(nfit_wq); |
| WARN_ON(!list_empty(&acpi_descs)); |
| } |
| |
| module_init(nfit_init); |
| module_exit(nfit_exit); |
| MODULE_LICENSE("GPL v2"); |
| MODULE_AUTHOR("Intel Corporation"); |