| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (c) 2012-2014, The Linux Foundation. All rights reserved. |
| */ |
| |
| #include <crypto/internal/hash.h> |
| #include <linux/err.h> |
| #include <linux/interrupt.h> |
| #include <linux/types.h> |
| #include <crypto/scatterwalk.h> |
| #include <crypto/sha1.h> |
| #include <crypto/sha2.h> |
| |
| #include "cipher.h" |
| #include "common.h" |
| #include "core.h" |
| #include "regs-v5.h" |
| #include "sha.h" |
| #include "aead.h" |
| |
| static inline u32 qce_read(struct qce_device *qce, u32 offset) |
| { |
| return readl(qce->base + offset); |
| } |
| |
| static inline void qce_write(struct qce_device *qce, u32 offset, u32 val) |
| { |
| writel(val, qce->base + offset); |
| } |
| |
| static inline void qce_write_array(struct qce_device *qce, u32 offset, |
| const u32 *val, unsigned int len) |
| { |
| int i; |
| |
| for (i = 0; i < len; i++) |
| qce_write(qce, offset + i * sizeof(u32), val[i]); |
| } |
| |
| static inline void |
| qce_clear_array(struct qce_device *qce, u32 offset, unsigned int len) |
| { |
| int i; |
| |
| for (i = 0; i < len; i++) |
| qce_write(qce, offset + i * sizeof(u32), 0); |
| } |
| |
| static u32 qce_config_reg(struct qce_device *qce, int little) |
| { |
| u32 beats = (qce->burst_size >> 3) - 1; |
| u32 pipe_pair = qce->pipe_pair_id; |
| u32 config; |
| |
| config = (beats << REQ_SIZE_SHIFT) & REQ_SIZE_MASK; |
| config |= BIT(MASK_DOUT_INTR_SHIFT) | BIT(MASK_DIN_INTR_SHIFT) | |
| BIT(MASK_OP_DONE_INTR_SHIFT) | BIT(MASK_ERR_INTR_SHIFT); |
| config |= (pipe_pair << PIPE_SET_SELECT_SHIFT) & PIPE_SET_SELECT_MASK; |
| config &= ~HIGH_SPD_EN_N_SHIFT; |
| |
| if (little) |
| config |= BIT(LITTLE_ENDIAN_MODE_SHIFT); |
| |
| return config; |
| } |
| |
| void qce_cpu_to_be32p_array(__be32 *dst, const u8 *src, unsigned int len) |
| { |
| __be32 *d = dst; |
| const u8 *s = src; |
| unsigned int n; |
| |
| n = len / sizeof(u32); |
| for (; n > 0; n--) { |
| *d = cpu_to_be32p((const __u32 *) s); |
| s += sizeof(__u32); |
| d++; |
| } |
| } |
| |
| static void qce_setup_config(struct qce_device *qce) |
| { |
| u32 config; |
| |
| /* get big endianness */ |
| config = qce_config_reg(qce, 0); |
| |
| /* clear status */ |
| qce_write(qce, REG_STATUS, 0); |
| qce_write(qce, REG_CONFIG, config); |
| } |
| |
| static inline void qce_crypto_go(struct qce_device *qce, bool result_dump) |
| { |
| if (result_dump) |
| qce_write(qce, REG_GOPROC, BIT(GO_SHIFT) | BIT(RESULTS_DUMP_SHIFT)); |
| else |
| qce_write(qce, REG_GOPROC, BIT(GO_SHIFT)); |
| } |
| |
| #if defined(CONFIG_CRYPTO_DEV_QCE_SHA) || defined(CONFIG_CRYPTO_DEV_QCE_AEAD) |
| static u32 qce_auth_cfg(unsigned long flags, u32 key_size, u32 auth_size) |
| { |
| u32 cfg = 0; |
| |
| if (IS_CCM(flags) || IS_CMAC(flags)) |
| cfg |= AUTH_ALG_AES << AUTH_ALG_SHIFT; |
| else |
| cfg |= AUTH_ALG_SHA << AUTH_ALG_SHIFT; |
| |
| if (IS_CCM(flags) || IS_CMAC(flags)) { |
| if (key_size == AES_KEYSIZE_128) |
| cfg |= AUTH_KEY_SZ_AES128 << AUTH_KEY_SIZE_SHIFT; |
| else if (key_size == AES_KEYSIZE_256) |
| cfg |= AUTH_KEY_SZ_AES256 << AUTH_KEY_SIZE_SHIFT; |
| } |
| |
| if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) |
| cfg |= AUTH_SIZE_SHA1 << AUTH_SIZE_SHIFT; |
| else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) |
| cfg |= AUTH_SIZE_SHA256 << AUTH_SIZE_SHIFT; |
| else if (IS_CMAC(flags)) |
| cfg |= AUTH_SIZE_ENUM_16_BYTES << AUTH_SIZE_SHIFT; |
| else if (IS_CCM(flags)) |
| cfg |= (auth_size - 1) << AUTH_SIZE_SHIFT; |
| |
| if (IS_SHA1(flags) || IS_SHA256(flags)) |
| cfg |= AUTH_MODE_HASH << AUTH_MODE_SHIFT; |
| else if (IS_SHA1_HMAC(flags) || IS_SHA256_HMAC(flags)) |
| cfg |= AUTH_MODE_HMAC << AUTH_MODE_SHIFT; |
| else if (IS_CCM(flags)) |
| cfg |= AUTH_MODE_CCM << AUTH_MODE_SHIFT; |
| else if (IS_CMAC(flags)) |
| cfg |= AUTH_MODE_CMAC << AUTH_MODE_SHIFT; |
| |
| if (IS_SHA(flags) || IS_SHA_HMAC(flags)) |
| cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT; |
| |
| if (IS_CCM(flags)) |
| cfg |= QCE_MAX_NONCE_WORDS << AUTH_NONCE_NUM_WORDS_SHIFT; |
| |
| return cfg; |
| } |
| #endif |
| |
| #ifdef CONFIG_CRYPTO_DEV_QCE_SHA |
| static int qce_setup_regs_ahash(struct crypto_async_request *async_req) |
| { |
| struct ahash_request *req = ahash_request_cast(async_req); |
| struct crypto_ahash *ahash = __crypto_ahash_cast(async_req->tfm); |
| struct qce_sha_reqctx *rctx = ahash_request_ctx_dma(req); |
| struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm); |
| struct qce_device *qce = tmpl->qce; |
| unsigned int digestsize = crypto_ahash_digestsize(ahash); |
| unsigned int blocksize = crypto_tfm_alg_blocksize(async_req->tfm); |
| __be32 auth[SHA256_DIGEST_SIZE / sizeof(__be32)] = {0}; |
| __be32 mackey[QCE_SHA_HMAC_KEY_SIZE / sizeof(__be32)] = {0}; |
| u32 auth_cfg = 0, config; |
| unsigned int iv_words; |
| |
| /* if not the last, the size has to be on the block boundary */ |
| if (!rctx->last_blk && req->nbytes % blocksize) |
| return -EINVAL; |
| |
| qce_setup_config(qce); |
| |
| if (IS_CMAC(rctx->flags)) { |
| qce_write(qce, REG_AUTH_SEG_CFG, 0); |
| qce_write(qce, REG_ENCR_SEG_CFG, 0); |
| qce_write(qce, REG_ENCR_SEG_SIZE, 0); |
| qce_clear_array(qce, REG_AUTH_IV0, 16); |
| qce_clear_array(qce, REG_AUTH_KEY0, 16); |
| qce_clear_array(qce, REG_AUTH_BYTECNT0, 4); |
| |
| auth_cfg = qce_auth_cfg(rctx->flags, rctx->authklen, digestsize); |
| } |
| |
| if (IS_SHA_HMAC(rctx->flags) || IS_CMAC(rctx->flags)) { |
| u32 authkey_words = rctx->authklen / sizeof(u32); |
| |
| qce_cpu_to_be32p_array(mackey, rctx->authkey, rctx->authklen); |
| qce_write_array(qce, REG_AUTH_KEY0, (u32 *)mackey, |
| authkey_words); |
| } |
| |
| if (IS_CMAC(rctx->flags)) |
| goto go_proc; |
| |
| if (rctx->first_blk) |
| memcpy(auth, rctx->digest, digestsize); |
| else |
| qce_cpu_to_be32p_array(auth, rctx->digest, digestsize); |
| |
| iv_words = (IS_SHA1(rctx->flags) || IS_SHA1_HMAC(rctx->flags)) ? 5 : 8; |
| qce_write_array(qce, REG_AUTH_IV0, (u32 *)auth, iv_words); |
| |
| if (rctx->first_blk) |
| qce_clear_array(qce, REG_AUTH_BYTECNT0, 4); |
| else |
| qce_write_array(qce, REG_AUTH_BYTECNT0, |
| (u32 *)rctx->byte_count, 2); |
| |
| auth_cfg = qce_auth_cfg(rctx->flags, 0, digestsize); |
| |
| if (rctx->last_blk) |
| auth_cfg |= BIT(AUTH_LAST_SHIFT); |
| else |
| auth_cfg &= ~BIT(AUTH_LAST_SHIFT); |
| |
| if (rctx->first_blk) |
| auth_cfg |= BIT(AUTH_FIRST_SHIFT); |
| else |
| auth_cfg &= ~BIT(AUTH_FIRST_SHIFT); |
| |
| go_proc: |
| qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg); |
| qce_write(qce, REG_AUTH_SEG_SIZE, req->nbytes); |
| qce_write(qce, REG_AUTH_SEG_START, 0); |
| qce_write(qce, REG_ENCR_SEG_CFG, 0); |
| qce_write(qce, REG_SEG_SIZE, req->nbytes); |
| |
| /* get little endianness */ |
| config = qce_config_reg(qce, 1); |
| qce_write(qce, REG_CONFIG, config); |
| |
| qce_crypto_go(qce, true); |
| |
| return 0; |
| } |
| #endif |
| |
| #if defined(CONFIG_CRYPTO_DEV_QCE_SKCIPHER) || defined(CONFIG_CRYPTO_DEV_QCE_AEAD) |
| static u32 qce_encr_cfg(unsigned long flags, u32 aes_key_size) |
| { |
| u32 cfg = 0; |
| |
| if (IS_AES(flags)) { |
| if (aes_key_size == AES_KEYSIZE_128) |
| cfg |= ENCR_KEY_SZ_AES128 << ENCR_KEY_SZ_SHIFT; |
| else if (aes_key_size == AES_KEYSIZE_256) |
| cfg |= ENCR_KEY_SZ_AES256 << ENCR_KEY_SZ_SHIFT; |
| } |
| |
| if (IS_AES(flags)) |
| cfg |= ENCR_ALG_AES << ENCR_ALG_SHIFT; |
| else if (IS_DES(flags) || IS_3DES(flags)) |
| cfg |= ENCR_ALG_DES << ENCR_ALG_SHIFT; |
| |
| if (IS_DES(flags)) |
| cfg |= ENCR_KEY_SZ_DES << ENCR_KEY_SZ_SHIFT; |
| |
| if (IS_3DES(flags)) |
| cfg |= ENCR_KEY_SZ_3DES << ENCR_KEY_SZ_SHIFT; |
| |
| switch (flags & QCE_MODE_MASK) { |
| case QCE_MODE_ECB: |
| cfg |= ENCR_MODE_ECB << ENCR_MODE_SHIFT; |
| break; |
| case QCE_MODE_CBC: |
| cfg |= ENCR_MODE_CBC << ENCR_MODE_SHIFT; |
| break; |
| case QCE_MODE_CTR: |
| cfg |= ENCR_MODE_CTR << ENCR_MODE_SHIFT; |
| break; |
| case QCE_MODE_XTS: |
| cfg |= ENCR_MODE_XTS << ENCR_MODE_SHIFT; |
| break; |
| case QCE_MODE_CCM: |
| cfg |= ENCR_MODE_CCM << ENCR_MODE_SHIFT; |
| cfg |= LAST_CCM_XFR << LAST_CCM_SHIFT; |
| break; |
| default: |
| return ~0; |
| } |
| |
| return cfg; |
| } |
| #endif |
| |
| #ifdef CONFIG_CRYPTO_DEV_QCE_SKCIPHER |
| static void qce_xts_swapiv(__be32 *dst, const u8 *src, unsigned int ivsize) |
| { |
| u8 swap[QCE_AES_IV_LENGTH]; |
| u32 i, j; |
| |
| if (ivsize > QCE_AES_IV_LENGTH) |
| return; |
| |
| memset(swap, 0, QCE_AES_IV_LENGTH); |
| |
| for (i = (QCE_AES_IV_LENGTH - ivsize), j = ivsize - 1; |
| i < QCE_AES_IV_LENGTH; i++, j--) |
| swap[i] = src[j]; |
| |
| qce_cpu_to_be32p_array(dst, swap, QCE_AES_IV_LENGTH); |
| } |
| |
| static void qce_xtskey(struct qce_device *qce, const u8 *enckey, |
| unsigned int enckeylen, unsigned int cryptlen) |
| { |
| u32 xtskey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(u32)] = {0}; |
| unsigned int xtsklen = enckeylen / (2 * sizeof(u32)); |
| |
| qce_cpu_to_be32p_array((__be32 *)xtskey, enckey + enckeylen / 2, |
| enckeylen / 2); |
| qce_write_array(qce, REG_ENCR_XTS_KEY0, xtskey, xtsklen); |
| |
| /* Set data unit size to cryptlen. Anything else causes |
| * crypto engine to return back incorrect results. |
| */ |
| qce_write(qce, REG_ENCR_XTS_DU_SIZE, cryptlen); |
| } |
| |
| static int qce_setup_regs_skcipher(struct crypto_async_request *async_req) |
| { |
| struct skcipher_request *req = skcipher_request_cast(async_req); |
| struct qce_cipher_reqctx *rctx = skcipher_request_ctx(req); |
| struct qce_cipher_ctx *ctx = crypto_tfm_ctx(async_req->tfm); |
| struct qce_alg_template *tmpl = to_cipher_tmpl(crypto_skcipher_reqtfm(req)); |
| struct qce_device *qce = tmpl->qce; |
| __be32 enckey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(__be32)] = {0}; |
| __be32 enciv[QCE_MAX_IV_SIZE / sizeof(__be32)] = {0}; |
| unsigned int enckey_words, enciv_words; |
| unsigned int keylen; |
| u32 encr_cfg = 0, auth_cfg = 0, config; |
| unsigned int ivsize = rctx->ivsize; |
| unsigned long flags = rctx->flags; |
| |
| qce_setup_config(qce); |
| |
| if (IS_XTS(flags)) |
| keylen = ctx->enc_keylen / 2; |
| else |
| keylen = ctx->enc_keylen; |
| |
| qce_cpu_to_be32p_array(enckey, ctx->enc_key, keylen); |
| enckey_words = keylen / sizeof(u32); |
| |
| qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg); |
| |
| encr_cfg = qce_encr_cfg(flags, keylen); |
| |
| if (IS_DES(flags)) { |
| enciv_words = 2; |
| enckey_words = 2; |
| } else if (IS_3DES(flags)) { |
| enciv_words = 2; |
| enckey_words = 6; |
| } else if (IS_AES(flags)) { |
| if (IS_XTS(flags)) |
| qce_xtskey(qce, ctx->enc_key, ctx->enc_keylen, |
| rctx->cryptlen); |
| enciv_words = 4; |
| } else { |
| return -EINVAL; |
| } |
| |
| qce_write_array(qce, REG_ENCR_KEY0, (u32 *)enckey, enckey_words); |
| |
| if (!IS_ECB(flags)) { |
| if (IS_XTS(flags)) |
| qce_xts_swapiv(enciv, rctx->iv, ivsize); |
| else |
| qce_cpu_to_be32p_array(enciv, rctx->iv, ivsize); |
| |
| qce_write_array(qce, REG_CNTR0_IV0, (u32 *)enciv, enciv_words); |
| } |
| |
| if (IS_ENCRYPT(flags)) |
| encr_cfg |= BIT(ENCODE_SHIFT); |
| |
| qce_write(qce, REG_ENCR_SEG_CFG, encr_cfg); |
| qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen); |
| qce_write(qce, REG_ENCR_SEG_START, 0); |
| |
| if (IS_CTR(flags)) { |
| qce_write(qce, REG_CNTR_MASK, ~0); |
| qce_write(qce, REG_CNTR_MASK0, ~0); |
| qce_write(qce, REG_CNTR_MASK1, ~0); |
| qce_write(qce, REG_CNTR_MASK2, ~0); |
| } |
| |
| qce_write(qce, REG_SEG_SIZE, rctx->cryptlen); |
| |
| /* get little endianness */ |
| config = qce_config_reg(qce, 1); |
| qce_write(qce, REG_CONFIG, config); |
| |
| qce_crypto_go(qce, true); |
| |
| return 0; |
| } |
| #endif |
| |
| #ifdef CONFIG_CRYPTO_DEV_QCE_AEAD |
| static const u32 std_iv_sha1[SHA256_DIGEST_SIZE / sizeof(u32)] = { |
| SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 0, 0, 0 |
| }; |
| |
| static const u32 std_iv_sha256[SHA256_DIGEST_SIZE / sizeof(u32)] = { |
| SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3, |
| SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7 |
| }; |
| |
| static unsigned int qce_be32_to_cpu_array(u32 *dst, const u8 *src, unsigned int len) |
| { |
| u32 *d = dst; |
| const u8 *s = src; |
| unsigned int n; |
| |
| n = len / sizeof(u32); |
| for (; n > 0; n--) { |
| *d = be32_to_cpup((const __be32 *)s); |
| s += sizeof(u32); |
| d++; |
| } |
| return DIV_ROUND_UP(len, sizeof(u32)); |
| } |
| |
| static int qce_setup_regs_aead(struct crypto_async_request *async_req) |
| { |
| struct aead_request *req = aead_request_cast(async_req); |
| struct qce_aead_reqctx *rctx = aead_request_ctx_dma(req); |
| struct qce_aead_ctx *ctx = crypto_tfm_ctx(async_req->tfm); |
| struct qce_alg_template *tmpl = to_aead_tmpl(crypto_aead_reqtfm(req)); |
| struct qce_device *qce = tmpl->qce; |
| u32 enckey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(u32)] = {0}; |
| u32 enciv[QCE_MAX_IV_SIZE / sizeof(u32)] = {0}; |
| u32 authkey[QCE_SHA_HMAC_KEY_SIZE / sizeof(u32)] = {0}; |
| u32 authiv[SHA256_DIGEST_SIZE / sizeof(u32)] = {0}; |
| u32 authnonce[QCE_MAX_NONCE / sizeof(u32)] = {0}; |
| unsigned int enc_keylen = ctx->enc_keylen; |
| unsigned int auth_keylen = ctx->auth_keylen; |
| unsigned int enc_ivsize = rctx->ivsize; |
| unsigned int auth_ivsize = 0; |
| unsigned int enckey_words, enciv_words; |
| unsigned int authkey_words, authiv_words, authnonce_words; |
| unsigned long flags = rctx->flags; |
| u32 encr_cfg, auth_cfg, config, totallen; |
| u32 iv_last_word; |
| |
| qce_setup_config(qce); |
| |
| /* Write encryption key */ |
| enckey_words = qce_be32_to_cpu_array(enckey, ctx->enc_key, enc_keylen); |
| qce_write_array(qce, REG_ENCR_KEY0, enckey, enckey_words); |
| |
| /* Write encryption iv */ |
| enciv_words = qce_be32_to_cpu_array(enciv, rctx->iv, enc_ivsize); |
| qce_write_array(qce, REG_CNTR0_IV0, enciv, enciv_words); |
| |
| if (IS_CCM(rctx->flags)) { |
| iv_last_word = enciv[enciv_words - 1]; |
| qce_write(qce, REG_CNTR3_IV3, iv_last_word + 1); |
| qce_write_array(qce, REG_ENCR_CCM_INT_CNTR0, (u32 *)enciv, enciv_words); |
| qce_write(qce, REG_CNTR_MASK, ~0); |
| qce_write(qce, REG_CNTR_MASK0, ~0); |
| qce_write(qce, REG_CNTR_MASK1, ~0); |
| qce_write(qce, REG_CNTR_MASK2, ~0); |
| } |
| |
| /* Clear authentication IV and KEY registers of previous values */ |
| qce_clear_array(qce, REG_AUTH_IV0, 16); |
| qce_clear_array(qce, REG_AUTH_KEY0, 16); |
| |
| /* Clear byte count */ |
| qce_clear_array(qce, REG_AUTH_BYTECNT0, 4); |
| |
| /* Write authentication key */ |
| authkey_words = qce_be32_to_cpu_array(authkey, ctx->auth_key, auth_keylen); |
| qce_write_array(qce, REG_AUTH_KEY0, (u32 *)authkey, authkey_words); |
| |
| /* Write initial authentication IV only for HMAC algorithms */ |
| if (IS_SHA_HMAC(rctx->flags)) { |
| /* Write default authentication iv */ |
| if (IS_SHA1_HMAC(rctx->flags)) { |
| auth_ivsize = SHA1_DIGEST_SIZE; |
| memcpy(authiv, std_iv_sha1, auth_ivsize); |
| } else if (IS_SHA256_HMAC(rctx->flags)) { |
| auth_ivsize = SHA256_DIGEST_SIZE; |
| memcpy(authiv, std_iv_sha256, auth_ivsize); |
| } |
| authiv_words = auth_ivsize / sizeof(u32); |
| qce_write_array(qce, REG_AUTH_IV0, (u32 *)authiv, authiv_words); |
| } else if (IS_CCM(rctx->flags)) { |
| /* Write nonce for CCM algorithms */ |
| authnonce_words = qce_be32_to_cpu_array(authnonce, rctx->ccm_nonce, QCE_MAX_NONCE); |
| qce_write_array(qce, REG_AUTH_INFO_NONCE0, authnonce, authnonce_words); |
| } |
| |
| /* Set up ENCR_SEG_CFG */ |
| encr_cfg = qce_encr_cfg(flags, enc_keylen); |
| if (IS_ENCRYPT(flags)) |
| encr_cfg |= BIT(ENCODE_SHIFT); |
| qce_write(qce, REG_ENCR_SEG_CFG, encr_cfg); |
| |
| /* Set up AUTH_SEG_CFG */ |
| auth_cfg = qce_auth_cfg(rctx->flags, auth_keylen, ctx->authsize); |
| auth_cfg |= BIT(AUTH_LAST_SHIFT); |
| auth_cfg |= BIT(AUTH_FIRST_SHIFT); |
| if (IS_ENCRYPT(flags)) { |
| if (IS_CCM(rctx->flags)) |
| auth_cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT; |
| else |
| auth_cfg |= AUTH_POS_AFTER << AUTH_POS_SHIFT; |
| } else { |
| if (IS_CCM(rctx->flags)) |
| auth_cfg |= AUTH_POS_AFTER << AUTH_POS_SHIFT; |
| else |
| auth_cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT; |
| } |
| qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg); |
| |
| totallen = rctx->cryptlen + rctx->assoclen; |
| |
| /* Set the encryption size and start offset */ |
| if (IS_CCM(rctx->flags) && IS_DECRYPT(rctx->flags)) |
| qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen + ctx->authsize); |
| else |
| qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen); |
| qce_write(qce, REG_ENCR_SEG_START, rctx->assoclen & 0xffff); |
| |
| /* Set the authentication size and start offset */ |
| qce_write(qce, REG_AUTH_SEG_SIZE, totallen); |
| qce_write(qce, REG_AUTH_SEG_START, 0); |
| |
| /* Write total length */ |
| if (IS_CCM(rctx->flags) && IS_DECRYPT(rctx->flags)) |
| qce_write(qce, REG_SEG_SIZE, totallen + ctx->authsize); |
| else |
| qce_write(qce, REG_SEG_SIZE, totallen); |
| |
| /* get little endianness */ |
| config = qce_config_reg(qce, 1); |
| qce_write(qce, REG_CONFIG, config); |
| |
| /* Start the process */ |
| qce_crypto_go(qce, !IS_CCM(flags)); |
| |
| return 0; |
| } |
| #endif |
| |
| int qce_start(struct crypto_async_request *async_req, u32 type) |
| { |
| switch (type) { |
| #ifdef CONFIG_CRYPTO_DEV_QCE_SKCIPHER |
| case CRYPTO_ALG_TYPE_SKCIPHER: |
| return qce_setup_regs_skcipher(async_req); |
| #endif |
| #ifdef CONFIG_CRYPTO_DEV_QCE_SHA |
| case CRYPTO_ALG_TYPE_AHASH: |
| return qce_setup_regs_ahash(async_req); |
| #endif |
| #ifdef CONFIG_CRYPTO_DEV_QCE_AEAD |
| case CRYPTO_ALG_TYPE_AEAD: |
| return qce_setup_regs_aead(async_req); |
| #endif |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| #define STATUS_ERRORS \ |
| (BIT(SW_ERR_SHIFT) | BIT(AXI_ERR_SHIFT) | BIT(HSD_ERR_SHIFT)) |
| |
| int qce_check_status(struct qce_device *qce, u32 *status) |
| { |
| int ret = 0; |
| |
| *status = qce_read(qce, REG_STATUS); |
| |
| /* |
| * Don't use result dump status. The operation may not be complete. |
| * Instead, use the status we just read from device. In case, we need to |
| * use result_status from result dump the result_status needs to be byte |
| * swapped, since we set the device to little endian. |
| */ |
| if (*status & STATUS_ERRORS || !(*status & BIT(OPERATION_DONE_SHIFT))) |
| ret = -ENXIO; |
| else if (*status & BIT(MAC_FAILED_SHIFT)) |
| ret = -EBADMSG; |
| |
| return ret; |
| } |
| |
| void qce_get_version(struct qce_device *qce, u32 *major, u32 *minor, u32 *step) |
| { |
| u32 val; |
| |
| val = qce_read(qce, REG_VERSION); |
| *major = (val & CORE_MAJOR_REV_MASK) >> CORE_MAJOR_REV_SHIFT; |
| *minor = (val & CORE_MINOR_REV_MASK) >> CORE_MINOR_REV_SHIFT; |
| *step = (val & CORE_STEP_REV_MASK) >> CORE_STEP_REV_SHIFT; |
| } |