blob: e6f634971228e4993f26ac17a19fb41d8a588ed5 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
/* Authors: Bernard Metzler <bmt@zurich.ibm.com> */
/* Copyright (c) 2008-2019, IBM Corporation */
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/net.h>
#include <linux/scatterlist.h>
#include <linux/llist.h>
#include <asm/barrier.h>
#include <net/tcp.h>
#include "siw.h"
#include "siw_verbs.h"
#include "siw_mem.h"
static char siw_qp_state_to_string[SIW_QP_STATE_COUNT][sizeof "TERMINATE"] = {
[SIW_QP_STATE_IDLE] = "IDLE",
[SIW_QP_STATE_RTR] = "RTR",
[SIW_QP_STATE_RTS] = "RTS",
[SIW_QP_STATE_CLOSING] = "CLOSING",
[SIW_QP_STATE_TERMINATE] = "TERMINATE",
[SIW_QP_STATE_ERROR] = "ERROR"
};
/*
* iWARP (RDMAP, DDP and MPA) parameters as well as Softiwarp settings on a
* per-RDMAP message basis. Please keep order of initializer. All MPA len
* is initialized to minimum packet size.
*/
struct iwarp_msg_info iwarp_pktinfo[RDMAP_TERMINATE + 1] = {
{ /* RDMAP_RDMA_WRITE */
.hdr_len = sizeof(struct iwarp_rdma_write),
.ctrl.mpa_len = htons(sizeof(struct iwarp_rdma_write) - 2),
.ctrl.ddp_rdmap_ctrl = DDP_FLAG_TAGGED | DDP_FLAG_LAST |
cpu_to_be16(DDP_VERSION << 8) |
cpu_to_be16(RDMAP_VERSION << 6) |
cpu_to_be16(RDMAP_RDMA_WRITE),
.rx_data = siw_proc_write },
{ /* RDMAP_RDMA_READ_REQ */
.hdr_len = sizeof(struct iwarp_rdma_rreq),
.ctrl.mpa_len = htons(sizeof(struct iwarp_rdma_rreq) - 2),
.ctrl.ddp_rdmap_ctrl = DDP_FLAG_LAST | cpu_to_be16(DDP_VERSION << 8) |
cpu_to_be16(RDMAP_VERSION << 6) |
cpu_to_be16(RDMAP_RDMA_READ_REQ),
.rx_data = siw_proc_rreq },
{ /* RDMAP_RDMA_READ_RESP */
.hdr_len = sizeof(struct iwarp_rdma_rresp),
.ctrl.mpa_len = htons(sizeof(struct iwarp_rdma_rresp) - 2),
.ctrl.ddp_rdmap_ctrl = DDP_FLAG_TAGGED | DDP_FLAG_LAST |
cpu_to_be16(DDP_VERSION << 8) |
cpu_to_be16(RDMAP_VERSION << 6) |
cpu_to_be16(RDMAP_RDMA_READ_RESP),
.rx_data = siw_proc_rresp },
{ /* RDMAP_SEND */
.hdr_len = sizeof(struct iwarp_send),
.ctrl.mpa_len = htons(sizeof(struct iwarp_send) - 2),
.ctrl.ddp_rdmap_ctrl = DDP_FLAG_LAST | cpu_to_be16(DDP_VERSION << 8) |
cpu_to_be16(RDMAP_VERSION << 6) |
cpu_to_be16(RDMAP_SEND),
.rx_data = siw_proc_send },
{ /* RDMAP_SEND_INVAL */
.hdr_len = sizeof(struct iwarp_send_inv),
.ctrl.mpa_len = htons(sizeof(struct iwarp_send_inv) - 2),
.ctrl.ddp_rdmap_ctrl = DDP_FLAG_LAST | cpu_to_be16(DDP_VERSION << 8) |
cpu_to_be16(RDMAP_VERSION << 6) |
cpu_to_be16(RDMAP_SEND_INVAL),
.rx_data = siw_proc_send },
{ /* RDMAP_SEND_SE */
.hdr_len = sizeof(struct iwarp_send),
.ctrl.mpa_len = htons(sizeof(struct iwarp_send) - 2),
.ctrl.ddp_rdmap_ctrl = DDP_FLAG_LAST | cpu_to_be16(DDP_VERSION << 8) |
cpu_to_be16(RDMAP_VERSION << 6) |
cpu_to_be16(RDMAP_SEND_SE),
.rx_data = siw_proc_send },
{ /* RDMAP_SEND_SE_INVAL */
.hdr_len = sizeof(struct iwarp_send_inv),
.ctrl.mpa_len = htons(sizeof(struct iwarp_send_inv) - 2),
.ctrl.ddp_rdmap_ctrl = DDP_FLAG_LAST | cpu_to_be16(DDP_VERSION << 8) |
cpu_to_be16(RDMAP_VERSION << 6) |
cpu_to_be16(RDMAP_SEND_SE_INVAL),
.rx_data = siw_proc_send },
{ /* RDMAP_TERMINATE */
.hdr_len = sizeof(struct iwarp_terminate),
.ctrl.mpa_len = htons(sizeof(struct iwarp_terminate) - 2),
.ctrl.ddp_rdmap_ctrl = DDP_FLAG_LAST | cpu_to_be16(DDP_VERSION << 8) |
cpu_to_be16(RDMAP_VERSION << 6) |
cpu_to_be16(RDMAP_TERMINATE),
.rx_data = siw_proc_terminate }
};
void siw_qp_llp_data_ready(struct sock *sk)
{
struct siw_qp *qp;
read_lock(&sk->sk_callback_lock);
if (unlikely(!sk->sk_user_data || !sk_to_qp(sk)))
goto done;
qp = sk_to_qp(sk);
if (likely(!qp->rx_stream.rx_suspend &&
down_read_trylock(&qp->state_lock))) {
read_descriptor_t rd_desc = { .arg.data = qp, .count = 1 };
if (likely(qp->attrs.state == SIW_QP_STATE_RTS))
/*
* Implements data receive operation during
* socket callback. TCP gracefully catches
* the case where there is nothing to receive
* (not calling siw_tcp_rx_data() then).
*/
tcp_read_sock(sk, &rd_desc, siw_tcp_rx_data);
up_read(&qp->state_lock);
} else {
siw_dbg_qp(qp, "unable to process RX, suspend: %d\n",
qp->rx_stream.rx_suspend);
}
done:
read_unlock(&sk->sk_callback_lock);
}
void siw_qp_llp_close(struct siw_qp *qp)
{
siw_dbg_qp(qp, "enter llp close, state = %s\n",
siw_qp_state_to_string[qp->attrs.state]);
down_write(&qp->state_lock);
qp->rx_stream.rx_suspend = 1;
qp->tx_ctx.tx_suspend = 1;
qp->attrs.sk = NULL;
switch (qp->attrs.state) {
case SIW_QP_STATE_RTS:
case SIW_QP_STATE_RTR:
case SIW_QP_STATE_IDLE:
case SIW_QP_STATE_TERMINATE:
qp->attrs.state = SIW_QP_STATE_ERROR;
break;
/*
* SIW_QP_STATE_CLOSING:
*
* This is a forced close. shall the QP be moved to
* ERROR or IDLE ?
*/
case SIW_QP_STATE_CLOSING:
if (tx_wqe(qp)->wr_status == SIW_WR_IDLE)
qp->attrs.state = SIW_QP_STATE_ERROR;
else
qp->attrs.state = SIW_QP_STATE_IDLE;
break;
default:
siw_dbg_qp(qp, "llp close: no state transition needed: %s\n",
siw_qp_state_to_string[qp->attrs.state]);
break;
}
siw_sq_flush(qp);
siw_rq_flush(qp);
/*
* Dereference closing CEP
*/
if (qp->cep) {
siw_cep_put(qp->cep);
qp->cep = NULL;
}
up_write(&qp->state_lock);
siw_dbg_qp(qp, "llp close exit: state %s\n",
siw_qp_state_to_string[qp->attrs.state]);
}
/*
* socket callback routine informing about newly available send space.
* Function schedules SQ work for processing SQ items.
*/
void siw_qp_llp_write_space(struct sock *sk)
{
struct siw_cep *cep;
read_lock(&sk->sk_callback_lock);
cep = sk_to_cep(sk);
if (cep) {
cep->sk_write_space(sk);
if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
(void)siw_sq_start(cep->qp);
}
read_unlock(&sk->sk_callback_lock);
}
static int siw_qp_readq_init(struct siw_qp *qp, int irq_size, int orq_size)
{
if (irq_size) {
irq_size = roundup_pow_of_two(irq_size);
qp->irq = vzalloc(irq_size * sizeof(struct siw_sqe));
if (!qp->irq) {
qp->attrs.irq_size = 0;
return -ENOMEM;
}
}
if (orq_size) {
orq_size = roundup_pow_of_two(orq_size);
qp->orq = vzalloc(orq_size * sizeof(struct siw_sqe));
if (!qp->orq) {
qp->attrs.orq_size = 0;
qp->attrs.irq_size = 0;
vfree(qp->irq);
return -ENOMEM;
}
}
qp->attrs.irq_size = irq_size;
qp->attrs.orq_size = orq_size;
siw_dbg_qp(qp, "ORD %d, IRD %d\n", orq_size, irq_size);
return 0;
}
static int siw_qp_enable_crc(struct siw_qp *qp)
{
struct siw_rx_stream *c_rx = &qp->rx_stream;
struct siw_iwarp_tx *c_tx = &qp->tx_ctx;
int size;
if (siw_crypto_shash == NULL)
return -ENOENT;
size = crypto_shash_descsize(siw_crypto_shash) +
sizeof(struct shash_desc);
c_tx->mpa_crc_hd = kzalloc(size, GFP_KERNEL);
c_rx->mpa_crc_hd = kzalloc(size, GFP_KERNEL);
if (!c_tx->mpa_crc_hd || !c_rx->mpa_crc_hd) {
kfree(c_tx->mpa_crc_hd);
kfree(c_rx->mpa_crc_hd);
c_tx->mpa_crc_hd = NULL;
c_rx->mpa_crc_hd = NULL;
return -ENOMEM;
}
c_tx->mpa_crc_hd->tfm = siw_crypto_shash;
c_rx->mpa_crc_hd->tfm = siw_crypto_shash;
return 0;
}
/*
* Send a non signalled READ or WRITE to peer side as negotiated
* with MPAv2 P2P setup protocol. The work request is only created
* as a current active WR and does not consume Send Queue space.
*
* Caller must hold QP state lock.
*/
int siw_qp_mpa_rts(struct siw_qp *qp, enum mpa_v2_ctrl ctrl)
{
struct siw_wqe *wqe = tx_wqe(qp);
unsigned long flags;
int rv = 0;
spin_lock_irqsave(&qp->sq_lock, flags);
if (unlikely(wqe->wr_status != SIW_WR_IDLE)) {
spin_unlock_irqrestore(&qp->sq_lock, flags);
return -EIO;
}
memset(wqe->mem, 0, sizeof(*wqe->mem) * SIW_MAX_SGE);
wqe->wr_status = SIW_WR_QUEUED;
wqe->sqe.flags = 0;
wqe->sqe.num_sge = 1;
wqe->sqe.sge[0].length = 0;
wqe->sqe.sge[0].laddr = 0;
wqe->sqe.sge[0].lkey = 0;
/*
* While it must not be checked for inbound zero length
* READ/WRITE, some HW may treat STag 0 special.
*/
wqe->sqe.rkey = 1;
wqe->sqe.raddr = 0;
wqe->processed = 0;
if (ctrl & MPA_V2_RDMA_WRITE_RTR)
wqe->sqe.opcode = SIW_OP_WRITE;
else if (ctrl & MPA_V2_RDMA_READ_RTR) {
struct siw_sqe *rreq = NULL;
wqe->sqe.opcode = SIW_OP_READ;
spin_lock(&qp->orq_lock);
if (qp->attrs.orq_size)
rreq = orq_get_free(qp);
if (rreq) {
siw_read_to_orq(rreq, &wqe->sqe);
qp->orq_put++;
} else
rv = -EIO;
spin_unlock(&qp->orq_lock);
} else
rv = -EINVAL;
if (rv)
wqe->wr_status = SIW_WR_IDLE;
spin_unlock_irqrestore(&qp->sq_lock, flags);
if (!rv)
rv = siw_sq_start(qp);
return rv;
}
/*
* Map memory access error to DDP tagged error
*/
enum ddp_ecode siw_tagged_error(enum siw_access_state state)
{
switch (state) {
case E_STAG_INVALID:
return DDP_ECODE_T_INVALID_STAG;
case E_BASE_BOUNDS:
return DDP_ECODE_T_BASE_BOUNDS;
case E_PD_MISMATCH:
return DDP_ECODE_T_STAG_NOT_ASSOC;
case E_ACCESS_PERM:
/*
* RFC 5041 (DDP) lacks an ecode for insufficient access
* permissions. 'Invalid STag' seem to be the closest
* match though.
*/
return DDP_ECODE_T_INVALID_STAG;
default:
WARN_ON(1);
return DDP_ECODE_T_INVALID_STAG;
}
}
/*
* Map memory access error to RDMAP protection error
*/
enum rdmap_ecode siw_rdmap_error(enum siw_access_state state)
{
switch (state) {
case E_STAG_INVALID:
return RDMAP_ECODE_INVALID_STAG;
case E_BASE_BOUNDS:
return RDMAP_ECODE_BASE_BOUNDS;
case E_PD_MISMATCH:
return RDMAP_ECODE_STAG_NOT_ASSOC;
case E_ACCESS_PERM:
return RDMAP_ECODE_ACCESS_RIGHTS;
default:
return RDMAP_ECODE_UNSPECIFIED;
}
}
void siw_init_terminate(struct siw_qp *qp, enum term_elayer layer, u8 etype,
u8 ecode, int in_tx)
{
if (!qp->term_info.valid) {
memset(&qp->term_info, 0, sizeof(qp->term_info));
qp->term_info.layer = layer;
qp->term_info.etype = etype;
qp->term_info.ecode = ecode;
qp->term_info.in_tx = in_tx;
qp->term_info.valid = 1;
}
siw_dbg_qp(qp, "init TERM: layer %d, type %d, code %d, in tx %s\n",
layer, etype, ecode, in_tx ? "yes" : "no");
}
/*
* Send a TERMINATE message, as defined in RFC's 5040/5041/5044/6581.
* Sending TERMINATE messages is best effort - such messages
* can only be send if the QP is still connected and it does
* not have another outbound message in-progress, i.e. the
* TERMINATE message must not interfer with an incomplete current
* transmit operation.
*/
void siw_send_terminate(struct siw_qp *qp)
{
struct kvec iov[3];
struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_EOR };
struct iwarp_terminate *term = NULL;
union iwarp_hdr *err_hdr = NULL;
struct socket *s = qp->attrs.sk;
struct siw_rx_stream *srx = &qp->rx_stream;
union iwarp_hdr *rx_hdr = &srx->hdr;
u32 crc = 0;
int num_frags, len_terminate, rv;
if (!qp->term_info.valid)
return;
qp->term_info.valid = 0;
if (tx_wqe(qp)->wr_status == SIW_WR_INPROGRESS) {
siw_dbg_qp(qp, "cannot send TERMINATE: op %d in progress\n",
tx_type(tx_wqe(qp)));
return;
}
if (!s && qp->cep)
/* QP not yet in RTS. Take socket from connection end point */
s = qp->cep->sock;
if (!s) {
siw_dbg_qp(qp, "cannot send TERMINATE: not connected\n");
return;
}
term = kzalloc(sizeof(*term), GFP_KERNEL);
if (!term)
return;
term->ddp_qn = cpu_to_be32(RDMAP_UNTAGGED_QN_TERMINATE);
term->ddp_mo = 0;
term->ddp_msn = cpu_to_be32(1);
iov[0].iov_base = term;
iov[0].iov_len = sizeof(*term);
if ((qp->term_info.layer == TERM_ERROR_LAYER_DDP) ||
((qp->term_info.layer == TERM_ERROR_LAYER_RDMAP) &&
(qp->term_info.etype != RDMAP_ETYPE_CATASTROPHIC))) {
err_hdr = kzalloc(sizeof(*err_hdr), GFP_KERNEL);
if (!err_hdr) {
kfree(term);
return;
}
}
memcpy(&term->ctrl, &iwarp_pktinfo[RDMAP_TERMINATE].ctrl,
sizeof(struct iwarp_ctrl));
__rdmap_term_set_layer(term, qp->term_info.layer);
__rdmap_term_set_etype(term, qp->term_info.etype);
__rdmap_term_set_ecode(term, qp->term_info.ecode);
switch (qp->term_info.layer) {
case TERM_ERROR_LAYER_RDMAP:
if (qp->term_info.etype == RDMAP_ETYPE_CATASTROPHIC)
/* No additional DDP/RDMAP header to be included */
break;
if (qp->term_info.etype == RDMAP_ETYPE_REMOTE_PROTECTION) {
/*
* Complete RDMAP frame will get attached, and
* DDP segment length is valid
*/
term->flag_m = 1;
term->flag_d = 1;
term->flag_r = 1;
if (qp->term_info.in_tx) {
struct iwarp_rdma_rreq *rreq;
struct siw_wqe *wqe = tx_wqe(qp);
/* Inbound RREQ error, detected during
* RRESP creation. Take state from
* current TX work queue element to
* reconstruct peers RREQ.
*/
rreq = (struct iwarp_rdma_rreq *)err_hdr;
memcpy(&rreq->ctrl,
&iwarp_pktinfo[RDMAP_RDMA_READ_REQ].ctrl,
sizeof(struct iwarp_ctrl));
rreq->rsvd = 0;
rreq->ddp_qn =
htonl(RDMAP_UNTAGGED_QN_RDMA_READ);
/* Provide RREQ's MSN as kept aside */
rreq->ddp_msn = htonl(wqe->sqe.sge[0].length);
rreq->ddp_mo = htonl(wqe->processed);
rreq->sink_stag = htonl(wqe->sqe.rkey);
rreq->sink_to = cpu_to_be64(wqe->sqe.raddr);
rreq->read_size = htonl(wqe->sqe.sge[0].length);
rreq->source_stag = htonl(wqe->sqe.sge[0].lkey);
rreq->source_to =
cpu_to_be64(wqe->sqe.sge[0].laddr);
iov[1].iov_base = rreq;
iov[1].iov_len = sizeof(*rreq);
rx_hdr = (union iwarp_hdr *)rreq;
} else {
/* Take RDMAP/DDP information from
* current (failed) inbound frame.
*/
iov[1].iov_base = rx_hdr;
if (__rdmap_get_opcode(&rx_hdr->ctrl) ==
RDMAP_RDMA_READ_REQ)
iov[1].iov_len =
sizeof(struct iwarp_rdma_rreq);
else /* SEND type */
iov[1].iov_len =
sizeof(struct iwarp_send);
}
} else {
/* Do not report DDP hdr information if packet
* layout is unknown
*/
if ((qp->term_info.ecode == RDMAP_ECODE_VERSION) ||
(qp->term_info.ecode == RDMAP_ECODE_OPCODE))
break;
iov[1].iov_base = rx_hdr;
/* Only DDP frame will get attached */
if (rx_hdr->ctrl.ddp_rdmap_ctrl & DDP_FLAG_TAGGED)
iov[1].iov_len =
sizeof(struct iwarp_rdma_write);
else
iov[1].iov_len = sizeof(struct iwarp_send);
term->flag_m = 1;
term->flag_d = 1;
}
term->ctrl.mpa_len = cpu_to_be16(iov[1].iov_len);
break;
case TERM_ERROR_LAYER_DDP:
/* Report error encountered while DDP processing.
* This can only happen as a result of inbound
* DDP processing
*/
/* Do not report DDP hdr information if packet
* layout is unknown
*/
if (((qp->term_info.etype == DDP_ETYPE_TAGGED_BUF) &&
(qp->term_info.ecode == DDP_ECODE_T_VERSION)) ||
((qp->term_info.etype == DDP_ETYPE_UNTAGGED_BUF) &&
(qp->term_info.ecode == DDP_ECODE_UT_VERSION)))
break;
iov[1].iov_base = rx_hdr;
if (rx_hdr->ctrl.ddp_rdmap_ctrl & DDP_FLAG_TAGGED)
iov[1].iov_len = sizeof(struct iwarp_ctrl_tagged);
else
iov[1].iov_len = sizeof(struct iwarp_ctrl_untagged);
term->flag_m = 1;
term->flag_d = 1;
break;
default:
break;
}
if (term->flag_m || term->flag_d || term->flag_r) {
iov[2].iov_base = &crc;
iov[2].iov_len = sizeof(crc);
len_terminate = sizeof(*term) + iov[1].iov_len + MPA_CRC_SIZE;
num_frags = 3;
} else {
iov[1].iov_base = &crc;
iov[1].iov_len = sizeof(crc);
len_terminate = sizeof(*term) + MPA_CRC_SIZE;
num_frags = 2;
}
/* Adjust DDP Segment Length parameter, if valid */
if (term->flag_m) {
u32 real_ddp_len = be16_to_cpu(rx_hdr->ctrl.mpa_len);
enum rdma_opcode op = __rdmap_get_opcode(&rx_hdr->ctrl);
real_ddp_len -= iwarp_pktinfo[op].hdr_len - MPA_HDR_SIZE;
rx_hdr->ctrl.mpa_len = cpu_to_be16(real_ddp_len);
}
term->ctrl.mpa_len =
cpu_to_be16(len_terminate - (MPA_HDR_SIZE + MPA_CRC_SIZE));
if (qp->tx_ctx.mpa_crc_hd) {
crypto_shash_init(qp->tx_ctx.mpa_crc_hd);
if (crypto_shash_update(qp->tx_ctx.mpa_crc_hd,
(u8 *)iov[0].iov_base,
iov[0].iov_len))
goto out;
if (num_frags == 3) {
if (crypto_shash_update(qp->tx_ctx.mpa_crc_hd,
(u8 *)iov[1].iov_base,
iov[1].iov_len))
goto out;
}
crypto_shash_final(qp->tx_ctx.mpa_crc_hd, (u8 *)&crc);
}
rv = kernel_sendmsg(s, &msg, iov, num_frags, len_terminate);
siw_dbg_qp(qp, "sent TERM: %s, layer %d, type %d, code %d (%d bytes)\n",
rv == len_terminate ? "success" : "failure",
__rdmap_term_layer(term), __rdmap_term_etype(term),
__rdmap_term_ecode(term), rv);
out:
kfree(term);
kfree(err_hdr);
}
/*
* Handle all attrs other than state
*/
static void siw_qp_modify_nonstate(struct siw_qp *qp,
struct siw_qp_attrs *attrs,
enum siw_qp_attr_mask mask)
{
if (mask & SIW_QP_ATTR_ACCESS_FLAGS) {
if (attrs->flags & SIW_RDMA_BIND_ENABLED)
qp->attrs.flags |= SIW_RDMA_BIND_ENABLED;
else
qp->attrs.flags &= ~SIW_RDMA_BIND_ENABLED;
if (attrs->flags & SIW_RDMA_WRITE_ENABLED)
qp->attrs.flags |= SIW_RDMA_WRITE_ENABLED;
else
qp->attrs.flags &= ~SIW_RDMA_WRITE_ENABLED;
if (attrs->flags & SIW_RDMA_READ_ENABLED)
qp->attrs.flags |= SIW_RDMA_READ_ENABLED;
else
qp->attrs.flags &= ~SIW_RDMA_READ_ENABLED;
}
}
static int siw_qp_nextstate_from_idle(struct siw_qp *qp,
struct siw_qp_attrs *attrs,
enum siw_qp_attr_mask mask)
{
int rv = 0;
switch (attrs->state) {
case SIW_QP_STATE_RTS:
if (attrs->flags & SIW_MPA_CRC) {
rv = siw_qp_enable_crc(qp);
if (rv)
break;
}
if (!(mask & SIW_QP_ATTR_LLP_HANDLE)) {
siw_dbg_qp(qp, "no socket\n");
rv = -EINVAL;
break;
}
if (!(mask & SIW_QP_ATTR_MPA)) {
siw_dbg_qp(qp, "no MPA\n");
rv = -EINVAL;
break;
}
/*
* Initialize iWARP TX state
*/
qp->tx_ctx.ddp_msn[RDMAP_UNTAGGED_QN_SEND] = 0;
qp->tx_ctx.ddp_msn[RDMAP_UNTAGGED_QN_RDMA_READ] = 0;
qp->tx_ctx.ddp_msn[RDMAP_UNTAGGED_QN_TERMINATE] = 0;
/*
* Initialize iWARP RX state
*/
qp->rx_stream.ddp_msn[RDMAP_UNTAGGED_QN_SEND] = 1;
qp->rx_stream.ddp_msn[RDMAP_UNTAGGED_QN_RDMA_READ] = 1;
qp->rx_stream.ddp_msn[RDMAP_UNTAGGED_QN_TERMINATE] = 1;
/*
* init IRD free queue, caller has already checked
* limits.
*/
rv = siw_qp_readq_init(qp, attrs->irq_size,
attrs->orq_size);
if (rv)
break;
qp->attrs.sk = attrs->sk;
qp->attrs.state = SIW_QP_STATE_RTS;
siw_dbg_qp(qp, "enter RTS: crc=%s, ord=%u, ird=%u\n",
attrs->flags & SIW_MPA_CRC ? "y" : "n",
qp->attrs.orq_size, qp->attrs.irq_size);
break;
case SIW_QP_STATE_ERROR:
siw_rq_flush(qp);
qp->attrs.state = SIW_QP_STATE_ERROR;
if (qp->cep) {
siw_cep_put(qp->cep);
qp->cep = NULL;
}
break;
default:
break;
}
return rv;
}
static int siw_qp_nextstate_from_rts(struct siw_qp *qp,
struct siw_qp_attrs *attrs)
{
int drop_conn = 0;
switch (attrs->state) {
case SIW_QP_STATE_CLOSING:
/*
* Verbs: move to IDLE if SQ and ORQ are empty.
* Move to ERROR otherwise. But first of all we must
* close the connection. So we keep CLOSING or ERROR
* as a transient state, schedule connection drop work
* and wait for the socket state change upcall to
* come back closed.
*/
if (tx_wqe(qp)->wr_status == SIW_WR_IDLE) {
qp->attrs.state = SIW_QP_STATE_CLOSING;
} else {
qp->attrs.state = SIW_QP_STATE_ERROR;
siw_sq_flush(qp);
}
siw_rq_flush(qp);
drop_conn = 1;
break;
case SIW_QP_STATE_TERMINATE:
qp->attrs.state = SIW_QP_STATE_TERMINATE;
siw_init_terminate(qp, TERM_ERROR_LAYER_RDMAP,
RDMAP_ETYPE_CATASTROPHIC,
RDMAP_ECODE_UNSPECIFIED, 1);
drop_conn = 1;
break;
case SIW_QP_STATE_ERROR:
/*
* This is an emergency close.
*
* Any in progress transmit operation will get
* cancelled.
* This will likely result in a protocol failure,
* if a TX operation is in transit. The caller
* could unconditional wait to give the current
* operation a chance to complete.
* Esp., how to handle the non-empty IRQ case?
* The peer was asking for data transfer at a valid
* point in time.
*/
siw_sq_flush(qp);
siw_rq_flush(qp);
qp->attrs.state = SIW_QP_STATE_ERROR;
drop_conn = 1;
break;
default:
break;
}
return drop_conn;
}
static void siw_qp_nextstate_from_term(struct siw_qp *qp,
struct siw_qp_attrs *attrs)
{
switch (attrs->state) {
case SIW_QP_STATE_ERROR:
siw_rq_flush(qp);
qp->attrs.state = SIW_QP_STATE_ERROR;
if (tx_wqe(qp)->wr_status != SIW_WR_IDLE)
siw_sq_flush(qp);
break;
default:
break;
}
}
static int siw_qp_nextstate_from_close(struct siw_qp *qp,
struct siw_qp_attrs *attrs)
{
int rv = 0;
switch (attrs->state) {
case SIW_QP_STATE_IDLE:
WARN_ON(tx_wqe(qp)->wr_status != SIW_WR_IDLE);
qp->attrs.state = SIW_QP_STATE_IDLE;
break;
case SIW_QP_STATE_CLOSING:
/*
* The LLP may already moved the QP to closing
* due to graceful peer close init
*/
break;
case SIW_QP_STATE_ERROR:
/*
* QP was moved to CLOSING by LLP event
* not yet seen by user.
*/
qp->attrs.state = SIW_QP_STATE_ERROR;
if (tx_wqe(qp)->wr_status != SIW_WR_IDLE)
siw_sq_flush(qp);
siw_rq_flush(qp);
break;
default:
siw_dbg_qp(qp, "state transition undefined: %s => %s\n",
siw_qp_state_to_string[qp->attrs.state],
siw_qp_state_to_string[attrs->state]);
rv = -ECONNABORTED;
}
return rv;
}
/*
* Caller must hold qp->state_lock
*/
int siw_qp_modify(struct siw_qp *qp, struct siw_qp_attrs *attrs,
enum siw_qp_attr_mask mask)
{
int drop_conn = 0, rv = 0;
if (!mask)
return 0;
siw_dbg_qp(qp, "state: %s => %s\n",
siw_qp_state_to_string[qp->attrs.state],
siw_qp_state_to_string[attrs->state]);
if (mask != SIW_QP_ATTR_STATE)
siw_qp_modify_nonstate(qp, attrs, mask);
if (!(mask & SIW_QP_ATTR_STATE))
return 0;
switch (qp->attrs.state) {
case SIW_QP_STATE_IDLE:
case SIW_QP_STATE_RTR:
rv = siw_qp_nextstate_from_idle(qp, attrs, mask);
break;
case SIW_QP_STATE_RTS:
drop_conn = siw_qp_nextstate_from_rts(qp, attrs);
break;
case SIW_QP_STATE_TERMINATE:
siw_qp_nextstate_from_term(qp, attrs);
break;
case SIW_QP_STATE_CLOSING:
siw_qp_nextstate_from_close(qp, attrs);
break;
default:
break;
}
if (drop_conn)
siw_qp_cm_drop(qp, 0);
return rv;
}
void siw_read_to_orq(struct siw_sqe *rreq, struct siw_sqe *sqe)
{
rreq->id = sqe->id;
rreq->opcode = sqe->opcode;
rreq->sge[0].laddr = sqe->sge[0].laddr;
rreq->sge[0].length = sqe->sge[0].length;
rreq->sge[0].lkey = sqe->sge[0].lkey;
rreq->sge[1].lkey = sqe->sge[1].lkey;
rreq->flags = sqe->flags | SIW_WQE_VALID;
rreq->num_sge = 1;
}
static int siw_activate_tx_from_sq(struct siw_qp *qp)
{
struct siw_sqe *sqe;
struct siw_wqe *wqe = tx_wqe(qp);
int rv = 1;
sqe = sq_get_next(qp);
if (!sqe)
return 0;
memset(wqe->mem, 0, sizeof(*wqe->mem) * SIW_MAX_SGE);
wqe->wr_status = SIW_WR_QUEUED;
/* First copy SQE to kernel private memory */
memcpy(&wqe->sqe, sqe, sizeof(*sqe));
if (wqe->sqe.opcode >= SIW_NUM_OPCODES) {
rv = -EINVAL;
goto out;
}
if (wqe->sqe.flags & SIW_WQE_INLINE) {
if (wqe->sqe.opcode != SIW_OP_SEND &&
wqe->sqe.opcode != SIW_OP_WRITE) {
rv = -EINVAL;
goto out;
}
if (wqe->sqe.sge[0].length > SIW_MAX_INLINE) {
rv = -EINVAL;
goto out;
}
wqe->sqe.sge[0].laddr = (uintptr_t)&wqe->sqe.sge[1];
wqe->sqe.sge[0].lkey = 0;
wqe->sqe.num_sge = 1;
}
if (wqe->sqe.flags & SIW_WQE_READ_FENCE) {
/* A READ cannot be fenced */
if (unlikely(wqe->sqe.opcode == SIW_OP_READ ||
wqe->sqe.opcode ==
SIW_OP_READ_LOCAL_INV)) {
siw_dbg_qp(qp, "cannot fence read\n");
rv = -EINVAL;
goto out;
}
spin_lock(&qp->orq_lock);
if (qp->attrs.orq_size && !siw_orq_empty(qp)) {
qp->tx_ctx.orq_fence = 1;
rv = 0;
}
spin_unlock(&qp->orq_lock);
} else if (wqe->sqe.opcode == SIW_OP_READ ||
wqe->sqe.opcode == SIW_OP_READ_LOCAL_INV) {
struct siw_sqe *rreq;
if (unlikely(!qp->attrs.orq_size)) {
/* We negotiated not to send READ req's */
rv = -EINVAL;
goto out;
}
wqe->sqe.num_sge = 1;
spin_lock(&qp->orq_lock);
rreq = orq_get_free(qp);
if (rreq) {
/*
* Make an immediate copy in ORQ to be ready
* to process loopback READ reply
*/
siw_read_to_orq(rreq, &wqe->sqe);
qp->orq_put++;
} else {
qp->tx_ctx.orq_fence = 1;
rv = 0;
}
spin_unlock(&qp->orq_lock);
}
/* Clear SQE, can be re-used by application */
smp_store_mb(sqe->flags, 0);
qp->sq_get++;
out:
if (unlikely(rv < 0)) {
siw_dbg_qp(qp, "error %d\n", rv);
wqe->wr_status = SIW_WR_IDLE;
}
return rv;
}
/*
* Must be called with SQ locked.
* To avoid complete SQ starvation by constant inbound READ requests,
* the active IRQ will not be served after qp->irq_burst, if the
* SQ has pending work.
*/
int siw_activate_tx(struct siw_qp *qp)
{
struct siw_sqe *irqe;
struct siw_wqe *wqe = tx_wqe(qp);
if (!qp->attrs.irq_size)
return siw_activate_tx_from_sq(qp);
irqe = &qp->irq[qp->irq_get % qp->attrs.irq_size];
if (!(irqe->flags & SIW_WQE_VALID))
return siw_activate_tx_from_sq(qp);
/*
* Avoid local WQE processing starvation in case
* of constant inbound READ request stream
*/
if (sq_get_next(qp) && ++qp->irq_burst >= SIW_IRQ_MAXBURST_SQ_ACTIVE) {
qp->irq_burst = 0;
return siw_activate_tx_from_sq(qp);
}
memset(wqe->mem, 0, sizeof(*wqe->mem) * SIW_MAX_SGE);
wqe->wr_status = SIW_WR_QUEUED;
/* start READ RESPONSE */
wqe->sqe.opcode = SIW_OP_READ_RESPONSE;
wqe->sqe.flags = 0;
if (irqe->num_sge) {
wqe->sqe.num_sge = 1;
wqe->sqe.sge[0].length = irqe->sge[0].length;
wqe->sqe.sge[0].laddr = irqe->sge[0].laddr;
wqe->sqe.sge[0].lkey = irqe->sge[0].lkey;
} else {
wqe->sqe.num_sge = 0;
}
/* Retain original RREQ's message sequence number for
* potential error reporting cases.
*/
wqe->sqe.sge[1].length = irqe->sge[1].length;
wqe->sqe.rkey = irqe->rkey;
wqe->sqe.raddr = irqe->raddr;
wqe->processed = 0;
qp->irq_get++;
/* mark current IRQ entry free */
smp_store_mb(irqe->flags, 0);
return 1;
}
/*
* Check if current CQ state qualifies for calling CQ completion
* handler. Must be called with CQ lock held.
*/
static bool siw_cq_notify_now(struct siw_cq *cq, u32 flags)
{
u32 cq_notify;
if (!cq->base_cq.comp_handler)
return false;
/* Read application shared notification state */
cq_notify = READ_ONCE(cq->notify->flags);
if ((cq_notify & SIW_NOTIFY_NEXT_COMPLETION) ||
((cq_notify & SIW_NOTIFY_SOLICITED) &&
(flags & SIW_WQE_SOLICITED))) {
/*
* CQ notification is one-shot: Since the
* current CQE causes user notification,
* the CQ gets dis-aremd and must be re-aremd
* by the user for a new notification.
*/
WRITE_ONCE(cq->notify->flags, SIW_NOTIFY_NOT);
return true;
}
return false;
}
int siw_sqe_complete(struct siw_qp *qp, struct siw_sqe *sqe, u32 bytes,
enum siw_wc_status status)
{
struct siw_cq *cq = qp->scq;
int rv = 0;
if (cq) {
u32 sqe_flags = sqe->flags;
struct siw_cqe *cqe;
u32 idx;
unsigned long flags;
spin_lock_irqsave(&cq->lock, flags);
idx = cq->cq_put % cq->num_cqe;
cqe = &cq->queue[idx];
if (!READ_ONCE(cqe->flags)) {
bool notify;
cqe->id = sqe->id;
cqe->opcode = sqe->opcode;
cqe->status = status;
cqe->imm_data = 0;
cqe->bytes = bytes;
if (rdma_is_kernel_res(&cq->base_cq.res))
cqe->base_qp = &qp->base_qp;
else
cqe->qp_id = qp_id(qp);
/* mark CQE valid for application */
WRITE_ONCE(cqe->flags, SIW_WQE_VALID);
/* recycle SQE */
smp_store_mb(sqe->flags, 0);
cq->cq_put++;
notify = siw_cq_notify_now(cq, sqe_flags);
spin_unlock_irqrestore(&cq->lock, flags);
if (notify) {
siw_dbg_cq(cq, "Call completion handler\n");
cq->base_cq.comp_handler(&cq->base_cq,
cq->base_cq.cq_context);
}
} else {
spin_unlock_irqrestore(&cq->lock, flags);
rv = -ENOMEM;
siw_cq_event(cq, IB_EVENT_CQ_ERR);
}
} else {
/* recycle SQE */
smp_store_mb(sqe->flags, 0);
}
return rv;
}
int siw_rqe_complete(struct siw_qp *qp, struct siw_rqe *rqe, u32 bytes,
u32 inval_stag, enum siw_wc_status status)
{
struct siw_cq *cq = qp->rcq;
int rv = 0;
if (cq) {
struct siw_cqe *cqe;
u32 idx;
unsigned long flags;
spin_lock_irqsave(&cq->lock, flags);
idx = cq->cq_put % cq->num_cqe;
cqe = &cq->queue[idx];
if (!READ_ONCE(cqe->flags)) {
bool notify;
u8 cqe_flags = SIW_WQE_VALID;
cqe->id = rqe->id;
cqe->opcode = SIW_OP_RECEIVE;
cqe->status = status;
cqe->imm_data = 0;
cqe->bytes = bytes;
if (rdma_is_kernel_res(&cq->base_cq.res)) {
cqe->base_qp = &qp->base_qp;
if (inval_stag) {
cqe_flags |= SIW_WQE_REM_INVAL;
cqe->inval_stag = inval_stag;
}
} else {
cqe->qp_id = qp_id(qp);
}
/* mark CQE valid for application */
WRITE_ONCE(cqe->flags, cqe_flags);
/* recycle RQE */
smp_store_mb(rqe->flags, 0);
cq->cq_put++;
notify = siw_cq_notify_now(cq, SIW_WQE_SIGNALLED);
spin_unlock_irqrestore(&cq->lock, flags);
if (notify) {
siw_dbg_cq(cq, "Call completion handler\n");
cq->base_cq.comp_handler(&cq->base_cq,
cq->base_cq.cq_context);
}
} else {
spin_unlock_irqrestore(&cq->lock, flags);
rv = -ENOMEM;
siw_cq_event(cq, IB_EVENT_CQ_ERR);
}
} else {
/* recycle RQE */
smp_store_mb(rqe->flags, 0);
}
return rv;
}
/*
* siw_sq_flush()
*
* Flush SQ and ORRQ entries to CQ.
*
* Must be called with QP state write lock held.
* Therefore, SQ and ORQ lock must not be taken.
*/
void siw_sq_flush(struct siw_qp *qp)
{
struct siw_sqe *sqe;
struct siw_wqe *wqe = tx_wqe(qp);
int async_event = 0;
/*
* Start with completing any work currently on the ORQ
*/
while (qp->attrs.orq_size) {
sqe = &qp->orq[qp->orq_get % qp->attrs.orq_size];
if (!READ_ONCE(sqe->flags))
break;
if (siw_sqe_complete(qp, sqe, 0, SIW_WC_WR_FLUSH_ERR) != 0)
break;
WRITE_ONCE(sqe->flags, 0);
qp->orq_get++;
}
/*
* Flush an in-progress WQE if present
*/
if (wqe->wr_status != SIW_WR_IDLE) {
siw_dbg_qp(qp, "flush current SQE, type %d, status %d\n",
tx_type(wqe), wqe->wr_status);
siw_wqe_put_mem(wqe, tx_type(wqe));
if (tx_type(wqe) != SIW_OP_READ_RESPONSE &&
((tx_type(wqe) != SIW_OP_READ &&
tx_type(wqe) != SIW_OP_READ_LOCAL_INV) ||
wqe->wr_status == SIW_WR_QUEUED))
/*
* An in-progress Read Request is already in
* the ORQ
*/
siw_sqe_complete(qp, &wqe->sqe, wqe->bytes,
SIW_WC_WR_FLUSH_ERR);
wqe->wr_status = SIW_WR_IDLE;
}
/*
* Flush the Send Queue
*/
while (qp->attrs.sq_size) {
sqe = &qp->sendq[qp->sq_get % qp->attrs.sq_size];
if (!READ_ONCE(sqe->flags))
break;
async_event = 1;
if (siw_sqe_complete(qp, sqe, 0, SIW_WC_WR_FLUSH_ERR) != 0)
/*
* Shall IB_EVENT_SQ_DRAINED be supressed if work
* completion fails?
*/
break;
WRITE_ONCE(sqe->flags, 0);
qp->sq_get++;
}
if (async_event)
siw_qp_event(qp, IB_EVENT_SQ_DRAINED);
}
/*
* siw_rq_flush()
*
* Flush recv queue entries to CQ. Also
* takes care of pending active tagged and untagged
* inbound transfers, which have target memory
* referenced.
*
* Must be called with QP state write lock held.
* Therefore, RQ lock must not be taken.
*/
void siw_rq_flush(struct siw_qp *qp)
{
struct siw_wqe *wqe = &qp->rx_untagged.wqe_active;
/*
* Flush an in-progress untagged operation if present
*/
if (wqe->wr_status != SIW_WR_IDLE) {
siw_dbg_qp(qp, "flush current rqe, type %d, status %d\n",
rx_type(wqe), wqe->wr_status);
siw_wqe_put_mem(wqe, rx_type(wqe));
if (rx_type(wqe) == SIW_OP_RECEIVE) {
siw_rqe_complete(qp, &wqe->rqe, wqe->bytes,
0, SIW_WC_WR_FLUSH_ERR);
} else if (rx_type(wqe) != SIW_OP_READ &&
rx_type(wqe) != SIW_OP_READ_RESPONSE &&
rx_type(wqe) != SIW_OP_WRITE) {
siw_sqe_complete(qp, &wqe->sqe, 0, SIW_WC_WR_FLUSH_ERR);
}
wqe->wr_status = SIW_WR_IDLE;
}
wqe = &qp->rx_tagged.wqe_active;
if (wqe->wr_status != SIW_WR_IDLE) {
siw_wqe_put_mem(wqe, rx_type(wqe));
wqe->wr_status = SIW_WR_IDLE;
}
/*
* Flush the Receive Queue
*/
while (qp->attrs.rq_size) {
struct siw_rqe *rqe =
&qp->recvq[qp->rq_get % qp->attrs.rq_size];
if (!READ_ONCE(rqe->flags))
break;
if (siw_rqe_complete(qp, rqe, 0, 0, SIW_WC_WR_FLUSH_ERR) != 0)
break;
WRITE_ONCE(rqe->flags, 0);
qp->rq_get++;
}
}
int siw_qp_add(struct siw_device *sdev, struct siw_qp *qp)
{
int rv = xa_alloc(&sdev->qp_xa, &qp->base_qp.qp_num, qp, xa_limit_32b,
GFP_KERNEL);
if (!rv) {
kref_init(&qp->ref);
qp->sdev = sdev;
siw_dbg_qp(qp, "new QP\n");
}
return rv;
}
void siw_free_qp(struct kref *ref)
{
struct siw_qp *found, *qp = container_of(ref, struct siw_qp, ref);
struct siw_device *sdev = qp->sdev;
unsigned long flags;
if (qp->cep)
siw_cep_put(qp->cep);
found = xa_erase(&sdev->qp_xa, qp_id(qp));
WARN_ON(found != qp);
spin_lock_irqsave(&sdev->lock, flags);
list_del(&qp->devq);
spin_unlock_irqrestore(&sdev->lock, flags);
vfree(qp->sendq);
vfree(qp->recvq);
vfree(qp->irq);
vfree(qp->orq);
siw_put_tx_cpu(qp->tx_cpu);
complete(&qp->qp_free);
atomic_dec(&sdev->num_qp);
}