| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Special handling for DW DMA core |
| * |
| * Copyright (c) 2009, 2014 Intel Corporation. |
| */ |
| |
| #include <linux/completion.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/dmaengine.h> |
| #include <linux/irqreturn.h> |
| #include <linux/jiffies.h> |
| #include <linux/module.h> |
| #include <linux/pci.h> |
| #include <linux/platform_data/dma-dw.h> |
| #include <linux/spi/spi.h> |
| #include <linux/types.h> |
| |
| #include "spi-dw.h" |
| |
| #define DW_SPI_RX_BUSY 0 |
| #define DW_SPI_RX_BURST_LEVEL 16 |
| #define DW_SPI_TX_BUSY 1 |
| #define DW_SPI_TX_BURST_LEVEL 16 |
| |
| static bool dw_spi_dma_chan_filter(struct dma_chan *chan, void *param) |
| { |
| struct dw_dma_slave *s = param; |
| |
| if (s->dma_dev != chan->device->dev) |
| return false; |
| |
| chan->private = s; |
| return true; |
| } |
| |
| static void dw_spi_dma_maxburst_init(struct dw_spi *dws) |
| { |
| struct dma_slave_caps caps; |
| u32 max_burst, def_burst; |
| int ret; |
| |
| def_burst = dws->fifo_len / 2; |
| |
| ret = dma_get_slave_caps(dws->rxchan, &caps); |
| if (!ret && caps.max_burst) |
| max_burst = caps.max_burst; |
| else |
| max_burst = DW_SPI_RX_BURST_LEVEL; |
| |
| dws->rxburst = min(max_burst, def_burst); |
| dw_writel(dws, DW_SPI_DMARDLR, dws->rxburst - 1); |
| |
| ret = dma_get_slave_caps(dws->txchan, &caps); |
| if (!ret && caps.max_burst) |
| max_burst = caps.max_burst; |
| else |
| max_burst = DW_SPI_TX_BURST_LEVEL; |
| |
| /* |
| * Having a Rx DMA channel serviced with higher priority than a Tx DMA |
| * channel might not be enough to provide a well balanced DMA-based |
| * SPI transfer interface. There might still be moments when the Tx DMA |
| * channel is occasionally handled faster than the Rx DMA channel. |
| * That in its turn will eventually cause the SPI Rx FIFO overflow if |
| * SPI bus speed is high enough to fill the SPI Rx FIFO in before it's |
| * cleared by the Rx DMA channel. In order to fix the problem the Tx |
| * DMA activity is intentionally slowed down by limiting the SPI Tx |
| * FIFO depth with a value twice bigger than the Tx burst length. |
| */ |
| dws->txburst = min(max_burst, def_burst); |
| dw_writel(dws, DW_SPI_DMATDLR, dws->txburst); |
| } |
| |
| static void dw_spi_dma_sg_burst_init(struct dw_spi *dws) |
| { |
| struct dma_slave_caps tx = {0}, rx = {0}; |
| |
| dma_get_slave_caps(dws->txchan, &tx); |
| dma_get_slave_caps(dws->rxchan, &rx); |
| |
| if (tx.max_sg_burst > 0 && rx.max_sg_burst > 0) |
| dws->dma_sg_burst = min(tx.max_sg_burst, rx.max_sg_burst); |
| else if (tx.max_sg_burst > 0) |
| dws->dma_sg_burst = tx.max_sg_burst; |
| else if (rx.max_sg_burst > 0) |
| dws->dma_sg_burst = rx.max_sg_burst; |
| else |
| dws->dma_sg_burst = 0; |
| } |
| |
| static int dw_spi_dma_init_mfld(struct device *dev, struct dw_spi *dws) |
| { |
| struct dw_dma_slave dma_tx = { .dst_id = 1 }, *tx = &dma_tx; |
| struct dw_dma_slave dma_rx = { .src_id = 0 }, *rx = &dma_rx; |
| struct pci_dev *dma_dev; |
| dma_cap_mask_t mask; |
| |
| /* |
| * Get pci device for DMA controller, currently it could only |
| * be the DMA controller of Medfield |
| */ |
| dma_dev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL); |
| if (!dma_dev) |
| return -ENODEV; |
| |
| dma_cap_zero(mask); |
| dma_cap_set(DMA_SLAVE, mask); |
| |
| /* 1. Init rx channel */ |
| rx->dma_dev = &dma_dev->dev; |
| dws->rxchan = dma_request_channel(mask, dw_spi_dma_chan_filter, rx); |
| if (!dws->rxchan) |
| goto err_exit; |
| |
| /* 2. Init tx channel */ |
| tx->dma_dev = &dma_dev->dev; |
| dws->txchan = dma_request_channel(mask, dw_spi_dma_chan_filter, tx); |
| if (!dws->txchan) |
| goto free_rxchan; |
| |
| dws->master->dma_rx = dws->rxchan; |
| dws->master->dma_tx = dws->txchan; |
| |
| init_completion(&dws->dma_completion); |
| |
| dw_spi_dma_maxburst_init(dws); |
| |
| dw_spi_dma_sg_burst_init(dws); |
| |
| pci_dev_put(dma_dev); |
| |
| return 0; |
| |
| free_rxchan: |
| dma_release_channel(dws->rxchan); |
| dws->rxchan = NULL; |
| err_exit: |
| pci_dev_put(dma_dev); |
| return -EBUSY; |
| } |
| |
| static int dw_spi_dma_init_generic(struct device *dev, struct dw_spi *dws) |
| { |
| int ret; |
| |
| dws->rxchan = dma_request_chan(dev, "rx"); |
| if (IS_ERR(dws->rxchan)) { |
| ret = PTR_ERR(dws->rxchan); |
| dws->rxchan = NULL; |
| goto err_exit; |
| } |
| |
| dws->txchan = dma_request_chan(dev, "tx"); |
| if (IS_ERR(dws->txchan)) { |
| ret = PTR_ERR(dws->txchan); |
| dws->txchan = NULL; |
| goto free_rxchan; |
| } |
| |
| dws->master->dma_rx = dws->rxchan; |
| dws->master->dma_tx = dws->txchan; |
| |
| init_completion(&dws->dma_completion); |
| |
| dw_spi_dma_maxburst_init(dws); |
| |
| dw_spi_dma_sg_burst_init(dws); |
| |
| return 0; |
| |
| free_rxchan: |
| dma_release_channel(dws->rxchan); |
| dws->rxchan = NULL; |
| err_exit: |
| return ret; |
| } |
| |
| static void dw_spi_dma_exit(struct dw_spi *dws) |
| { |
| if (dws->txchan) { |
| dmaengine_terminate_sync(dws->txchan); |
| dma_release_channel(dws->txchan); |
| } |
| |
| if (dws->rxchan) { |
| dmaengine_terminate_sync(dws->rxchan); |
| dma_release_channel(dws->rxchan); |
| } |
| } |
| |
| static irqreturn_t dw_spi_dma_transfer_handler(struct dw_spi *dws) |
| { |
| dw_spi_check_status(dws, false); |
| |
| complete(&dws->dma_completion); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static bool dw_spi_can_dma(struct spi_controller *master, |
| struct spi_device *spi, struct spi_transfer *xfer) |
| { |
| struct dw_spi *dws = spi_controller_get_devdata(master); |
| |
| return xfer->len > dws->fifo_len; |
| } |
| |
| static enum dma_slave_buswidth dw_spi_dma_convert_width(u8 n_bytes) |
| { |
| if (n_bytes == 1) |
| return DMA_SLAVE_BUSWIDTH_1_BYTE; |
| else if (n_bytes == 2) |
| return DMA_SLAVE_BUSWIDTH_2_BYTES; |
| |
| return DMA_SLAVE_BUSWIDTH_UNDEFINED; |
| } |
| |
| static int dw_spi_dma_wait(struct dw_spi *dws, unsigned int len, u32 speed) |
| { |
| unsigned long long ms; |
| |
| ms = len * MSEC_PER_SEC * BITS_PER_BYTE; |
| do_div(ms, speed); |
| ms += ms + 200; |
| |
| if (ms > UINT_MAX) |
| ms = UINT_MAX; |
| |
| ms = wait_for_completion_timeout(&dws->dma_completion, |
| msecs_to_jiffies(ms)); |
| |
| if (ms == 0) { |
| dev_err(&dws->master->cur_msg->spi->dev, |
| "DMA transaction timed out\n"); |
| return -ETIMEDOUT; |
| } |
| |
| return 0; |
| } |
| |
| static inline bool dw_spi_dma_tx_busy(struct dw_spi *dws) |
| { |
| return !(dw_readl(dws, DW_SPI_SR) & DW_SPI_SR_TF_EMPT); |
| } |
| |
| static int dw_spi_dma_wait_tx_done(struct dw_spi *dws, |
| struct spi_transfer *xfer) |
| { |
| int retry = DW_SPI_WAIT_RETRIES; |
| struct spi_delay delay; |
| u32 nents; |
| |
| nents = dw_readl(dws, DW_SPI_TXFLR); |
| delay.unit = SPI_DELAY_UNIT_SCK; |
| delay.value = nents * dws->n_bytes * BITS_PER_BYTE; |
| |
| while (dw_spi_dma_tx_busy(dws) && retry--) |
| spi_delay_exec(&delay, xfer); |
| |
| if (retry < 0) { |
| dev_err(&dws->master->dev, "Tx hanged up\n"); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * dws->dma_chan_busy is set before the dma transfer starts, callback for tx |
| * channel will clear a corresponding bit. |
| */ |
| static void dw_spi_dma_tx_done(void *arg) |
| { |
| struct dw_spi *dws = arg; |
| |
| clear_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy); |
| if (test_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy)) |
| return; |
| |
| complete(&dws->dma_completion); |
| } |
| |
| static int dw_spi_dma_config_tx(struct dw_spi *dws) |
| { |
| struct dma_slave_config txconf; |
| |
| memset(&txconf, 0, sizeof(txconf)); |
| txconf.direction = DMA_MEM_TO_DEV; |
| txconf.dst_addr = dws->dma_addr; |
| txconf.dst_maxburst = dws->txburst; |
| txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| txconf.dst_addr_width = dw_spi_dma_convert_width(dws->n_bytes); |
| txconf.device_fc = false; |
| |
| return dmaengine_slave_config(dws->txchan, &txconf); |
| } |
| |
| static int dw_spi_dma_submit_tx(struct dw_spi *dws, struct scatterlist *sgl, |
| unsigned int nents) |
| { |
| struct dma_async_tx_descriptor *txdesc; |
| dma_cookie_t cookie; |
| int ret; |
| |
| txdesc = dmaengine_prep_slave_sg(dws->txchan, sgl, nents, |
| DMA_MEM_TO_DEV, |
| DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
| if (!txdesc) |
| return -ENOMEM; |
| |
| txdesc->callback = dw_spi_dma_tx_done; |
| txdesc->callback_param = dws; |
| |
| cookie = dmaengine_submit(txdesc); |
| ret = dma_submit_error(cookie); |
| if (ret) { |
| dmaengine_terminate_sync(dws->txchan); |
| return ret; |
| } |
| |
| set_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy); |
| |
| return 0; |
| } |
| |
| static inline bool dw_spi_dma_rx_busy(struct dw_spi *dws) |
| { |
| return !!(dw_readl(dws, DW_SPI_SR) & DW_SPI_SR_RF_NOT_EMPT); |
| } |
| |
| static int dw_spi_dma_wait_rx_done(struct dw_spi *dws) |
| { |
| int retry = DW_SPI_WAIT_RETRIES; |
| struct spi_delay delay; |
| unsigned long ns, us; |
| u32 nents; |
| |
| /* |
| * It's unlikely that DMA engine is still doing the data fetching, but |
| * if it's let's give it some reasonable time. The timeout calculation |
| * is based on the synchronous APB/SSI reference clock rate, on a |
| * number of data entries left in the Rx FIFO, times a number of clock |
| * periods normally needed for a single APB read/write transaction |
| * without PREADY signal utilized (which is true for the DW APB SSI |
| * controller). |
| */ |
| nents = dw_readl(dws, DW_SPI_RXFLR); |
| ns = 4U * NSEC_PER_SEC / dws->max_freq * nents; |
| if (ns <= NSEC_PER_USEC) { |
| delay.unit = SPI_DELAY_UNIT_NSECS; |
| delay.value = ns; |
| } else { |
| us = DIV_ROUND_UP(ns, NSEC_PER_USEC); |
| delay.unit = SPI_DELAY_UNIT_USECS; |
| delay.value = clamp_val(us, 0, USHRT_MAX); |
| } |
| |
| while (dw_spi_dma_rx_busy(dws) && retry--) |
| spi_delay_exec(&delay, NULL); |
| |
| if (retry < 0) { |
| dev_err(&dws->master->dev, "Rx hanged up\n"); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * dws->dma_chan_busy is set before the dma transfer starts, callback for rx |
| * channel will clear a corresponding bit. |
| */ |
| static void dw_spi_dma_rx_done(void *arg) |
| { |
| struct dw_spi *dws = arg; |
| |
| clear_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy); |
| if (test_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy)) |
| return; |
| |
| complete(&dws->dma_completion); |
| } |
| |
| static int dw_spi_dma_config_rx(struct dw_spi *dws) |
| { |
| struct dma_slave_config rxconf; |
| |
| memset(&rxconf, 0, sizeof(rxconf)); |
| rxconf.direction = DMA_DEV_TO_MEM; |
| rxconf.src_addr = dws->dma_addr; |
| rxconf.src_maxburst = dws->rxburst; |
| rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| rxconf.src_addr_width = dw_spi_dma_convert_width(dws->n_bytes); |
| rxconf.device_fc = false; |
| |
| return dmaengine_slave_config(dws->rxchan, &rxconf); |
| } |
| |
| static int dw_spi_dma_submit_rx(struct dw_spi *dws, struct scatterlist *sgl, |
| unsigned int nents) |
| { |
| struct dma_async_tx_descriptor *rxdesc; |
| dma_cookie_t cookie; |
| int ret; |
| |
| rxdesc = dmaengine_prep_slave_sg(dws->rxchan, sgl, nents, |
| DMA_DEV_TO_MEM, |
| DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
| if (!rxdesc) |
| return -ENOMEM; |
| |
| rxdesc->callback = dw_spi_dma_rx_done; |
| rxdesc->callback_param = dws; |
| |
| cookie = dmaengine_submit(rxdesc); |
| ret = dma_submit_error(cookie); |
| if (ret) { |
| dmaengine_terminate_sync(dws->rxchan); |
| return ret; |
| } |
| |
| set_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy); |
| |
| return 0; |
| } |
| |
| static int dw_spi_dma_setup(struct dw_spi *dws, struct spi_transfer *xfer) |
| { |
| u16 imr, dma_ctrl; |
| int ret; |
| |
| if (!xfer->tx_buf) |
| return -EINVAL; |
| |
| /* Setup DMA channels */ |
| ret = dw_spi_dma_config_tx(dws); |
| if (ret) |
| return ret; |
| |
| if (xfer->rx_buf) { |
| ret = dw_spi_dma_config_rx(dws); |
| if (ret) |
| return ret; |
| } |
| |
| /* Set the DMA handshaking interface */ |
| dma_ctrl = DW_SPI_DMACR_TDMAE; |
| if (xfer->rx_buf) |
| dma_ctrl |= DW_SPI_DMACR_RDMAE; |
| dw_writel(dws, DW_SPI_DMACR, dma_ctrl); |
| |
| /* Set the interrupt mask */ |
| imr = DW_SPI_INT_TXOI; |
| if (xfer->rx_buf) |
| imr |= DW_SPI_INT_RXUI | DW_SPI_INT_RXOI; |
| dw_spi_umask_intr(dws, imr); |
| |
| reinit_completion(&dws->dma_completion); |
| |
| dws->transfer_handler = dw_spi_dma_transfer_handler; |
| |
| return 0; |
| } |
| |
| static int dw_spi_dma_transfer_all(struct dw_spi *dws, |
| struct spi_transfer *xfer) |
| { |
| int ret; |
| |
| /* Submit the DMA Tx transfer */ |
| ret = dw_spi_dma_submit_tx(dws, xfer->tx_sg.sgl, xfer->tx_sg.nents); |
| if (ret) |
| goto err_clear_dmac; |
| |
| /* Submit the DMA Rx transfer if required */ |
| if (xfer->rx_buf) { |
| ret = dw_spi_dma_submit_rx(dws, xfer->rx_sg.sgl, |
| xfer->rx_sg.nents); |
| if (ret) |
| goto err_clear_dmac; |
| |
| /* rx must be started before tx due to spi instinct */ |
| dma_async_issue_pending(dws->rxchan); |
| } |
| |
| dma_async_issue_pending(dws->txchan); |
| |
| ret = dw_spi_dma_wait(dws, xfer->len, xfer->effective_speed_hz); |
| |
| err_clear_dmac: |
| dw_writel(dws, DW_SPI_DMACR, 0); |
| |
| return ret; |
| } |
| |
| /* |
| * In case if at least one of the requested DMA channels doesn't support the |
| * hardware accelerated SG list entries traverse, the DMA driver will most |
| * likely work that around by performing the IRQ-based SG list entries |
| * resubmission. That might and will cause a problem if the DMA Tx channel is |
| * recharged and re-executed before the Rx DMA channel. Due to |
| * non-deterministic IRQ-handler execution latency the DMA Tx channel will |
| * start pushing data to the SPI bus before the Rx DMA channel is even |
| * reinitialized with the next inbound SG list entry. By doing so the DMA Tx |
| * channel will implicitly start filling the DW APB SSI Rx FIFO up, which while |
| * the DMA Rx channel being recharged and re-executed will eventually be |
| * overflown. |
| * |
| * In order to solve the problem we have to feed the DMA engine with SG list |
| * entries one-by-one. It shall keep the DW APB SSI Tx and Rx FIFOs |
| * synchronized and prevent the Rx FIFO overflow. Since in general the tx_sg |
| * and rx_sg lists may have different number of entries of different lengths |
| * (though total length should match) let's virtually split the SG-lists to the |
| * set of DMA transfers, which length is a minimum of the ordered SG-entries |
| * lengths. An ASCII-sketch of the implemented algo is following: |
| * xfer->len |
| * |___________| |
| * tx_sg list: |___|____|__| |
| * rx_sg list: |_|____|____| |
| * DMA transfers: |_|_|__|_|__| |
| * |
| * Note in order to have this workaround solving the denoted problem the DMA |
| * engine driver should properly initialize the max_sg_burst capability and set |
| * the DMA device max segment size parameter with maximum data block size the |
| * DMA engine supports. |
| */ |
| |
| static int dw_spi_dma_transfer_one(struct dw_spi *dws, |
| struct spi_transfer *xfer) |
| { |
| struct scatterlist *tx_sg = NULL, *rx_sg = NULL, tx_tmp, rx_tmp; |
| unsigned int tx_len = 0, rx_len = 0; |
| unsigned int base, len; |
| int ret; |
| |
| sg_init_table(&tx_tmp, 1); |
| sg_init_table(&rx_tmp, 1); |
| |
| for (base = 0, len = 0; base < xfer->len; base += len) { |
| /* Fetch next Tx DMA data chunk */ |
| if (!tx_len) { |
| tx_sg = !tx_sg ? &xfer->tx_sg.sgl[0] : sg_next(tx_sg); |
| sg_dma_address(&tx_tmp) = sg_dma_address(tx_sg); |
| tx_len = sg_dma_len(tx_sg); |
| } |
| |
| /* Fetch next Rx DMA data chunk */ |
| if (!rx_len) { |
| rx_sg = !rx_sg ? &xfer->rx_sg.sgl[0] : sg_next(rx_sg); |
| sg_dma_address(&rx_tmp) = sg_dma_address(rx_sg); |
| rx_len = sg_dma_len(rx_sg); |
| } |
| |
| len = min(tx_len, rx_len); |
| |
| sg_dma_len(&tx_tmp) = len; |
| sg_dma_len(&rx_tmp) = len; |
| |
| /* Submit DMA Tx transfer */ |
| ret = dw_spi_dma_submit_tx(dws, &tx_tmp, 1); |
| if (ret) |
| break; |
| |
| /* Submit DMA Rx transfer */ |
| ret = dw_spi_dma_submit_rx(dws, &rx_tmp, 1); |
| if (ret) |
| break; |
| |
| /* Rx must be started before Tx due to SPI instinct */ |
| dma_async_issue_pending(dws->rxchan); |
| |
| dma_async_issue_pending(dws->txchan); |
| |
| /* |
| * Here we only need to wait for the DMA transfer to be |
| * finished since SPI controller is kept enabled during the |
| * procedure this loop implements and there is no risk to lose |
| * data left in the Tx/Rx FIFOs. |
| */ |
| ret = dw_spi_dma_wait(dws, len, xfer->effective_speed_hz); |
| if (ret) |
| break; |
| |
| reinit_completion(&dws->dma_completion); |
| |
| sg_dma_address(&tx_tmp) += len; |
| sg_dma_address(&rx_tmp) += len; |
| tx_len -= len; |
| rx_len -= len; |
| } |
| |
| dw_writel(dws, DW_SPI_DMACR, 0); |
| |
| return ret; |
| } |
| |
| static int dw_spi_dma_transfer(struct dw_spi *dws, struct spi_transfer *xfer) |
| { |
| unsigned int nents; |
| int ret; |
| |
| nents = max(xfer->tx_sg.nents, xfer->rx_sg.nents); |
| |
| /* |
| * Execute normal DMA-based transfer (which submits the Rx and Tx SG |
| * lists directly to the DMA engine at once) if either full hardware |
| * accelerated SG list traverse is supported by both channels, or the |
| * Tx-only SPI transfer is requested, or the DMA engine is capable to |
| * handle both SG lists on hardware accelerated basis. |
| */ |
| if (!dws->dma_sg_burst || !xfer->rx_buf || nents <= dws->dma_sg_burst) |
| ret = dw_spi_dma_transfer_all(dws, xfer); |
| else |
| ret = dw_spi_dma_transfer_one(dws, xfer); |
| if (ret) |
| return ret; |
| |
| if (dws->master->cur_msg->status == -EINPROGRESS) { |
| ret = dw_spi_dma_wait_tx_done(dws, xfer); |
| if (ret) |
| return ret; |
| } |
| |
| if (xfer->rx_buf && dws->master->cur_msg->status == -EINPROGRESS) |
| ret = dw_spi_dma_wait_rx_done(dws); |
| |
| return ret; |
| } |
| |
| static void dw_spi_dma_stop(struct dw_spi *dws) |
| { |
| if (test_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy)) { |
| dmaengine_terminate_sync(dws->txchan); |
| clear_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy); |
| } |
| if (test_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy)) { |
| dmaengine_terminate_sync(dws->rxchan); |
| clear_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy); |
| } |
| } |
| |
| static const struct dw_spi_dma_ops dw_spi_dma_mfld_ops = { |
| .dma_init = dw_spi_dma_init_mfld, |
| .dma_exit = dw_spi_dma_exit, |
| .dma_setup = dw_spi_dma_setup, |
| .can_dma = dw_spi_can_dma, |
| .dma_transfer = dw_spi_dma_transfer, |
| .dma_stop = dw_spi_dma_stop, |
| }; |
| |
| void dw_spi_dma_setup_mfld(struct dw_spi *dws) |
| { |
| dws->dma_ops = &dw_spi_dma_mfld_ops; |
| } |
| EXPORT_SYMBOL_NS_GPL(dw_spi_dma_setup_mfld, SPI_DW_CORE); |
| |
| static const struct dw_spi_dma_ops dw_spi_dma_generic_ops = { |
| .dma_init = dw_spi_dma_init_generic, |
| .dma_exit = dw_spi_dma_exit, |
| .dma_setup = dw_spi_dma_setup, |
| .can_dma = dw_spi_can_dma, |
| .dma_transfer = dw_spi_dma_transfer, |
| .dma_stop = dw_spi_dma_stop, |
| }; |
| |
| void dw_spi_dma_setup_generic(struct dw_spi *dws) |
| { |
| dws->dma_ops = &dw_spi_dma_generic_ops; |
| } |
| EXPORT_SYMBOL_NS_GPL(dw_spi_dma_setup_generic, SPI_DW_CORE); |