| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Thermal throttle event support code (such as syslog messaging and rate |
| * limiting) that was factored out from x86_64 (mce_intel.c) and i386 (p4.c). |
| * |
| * This allows consistent reporting of CPU thermal throttle events. |
| * |
| * Maintains a counter in /sys that keeps track of the number of thermal |
| * events, such that the user knows how bad the thermal problem might be |
| * (since the logging to syslog is rate limited). |
| * |
| * Author: Dmitriy Zavin (dmitriyz@google.com) |
| * |
| * Credits: Adapted from Zwane Mwaikambo's original code in mce_intel.c. |
| * Inspired by Ross Biro's and Al Borchers' counter code. |
| */ |
| #include <linux/interrupt.h> |
| #include <linux/notifier.h> |
| #include <linux/jiffies.h> |
| #include <linux/kernel.h> |
| #include <linux/percpu.h> |
| #include <linux/export.h> |
| #include <linux/types.h> |
| #include <linux/init.h> |
| #include <linux/smp.h> |
| #include <linux/cpu.h> |
| |
| #include <asm/processor.h> |
| #include <asm/thermal.h> |
| #include <asm/traps.h> |
| #include <asm/apic.h> |
| #include <asm/irq.h> |
| #include <asm/msr.h> |
| |
| #include "intel_hfi.h" |
| #include "thermal_interrupt.h" |
| |
| /* How long to wait between reporting thermal events */ |
| #define CHECK_INTERVAL (300 * HZ) |
| |
| #define THERMAL_THROTTLING_EVENT 0 |
| #define POWER_LIMIT_EVENT 1 |
| |
| /** |
| * struct _thermal_state - Represent the current thermal event state |
| * @next_check: Stores the next timestamp, when it is allowed |
| * to log the next warning message. |
| * @last_interrupt_time: Stores the timestamp for the last threshold |
| * high event. |
| * @therm_work: Delayed workqueue structure |
| * @count: Stores the current running count for thermal |
| * or power threshold interrupts. |
| * @last_count: Stores the previous running count for thermal |
| * or power threshold interrupts. |
| * @max_time_ms: This shows the maximum amount of time CPU was |
| * in throttled state for a single thermal |
| * threshold high to low state. |
| * @total_time_ms: This is a cumulative time during which CPU was |
| * in the throttled state. |
| * @rate_control_active: Set when a throttling message is logged. |
| * This is used for the purpose of rate-control. |
| * @new_event: Stores the last high/low status of the |
| * THERM_STATUS_PROCHOT or |
| * THERM_STATUS_POWER_LIMIT. |
| * @level: Stores whether this _thermal_state instance is |
| * for a CORE level or for PACKAGE level. |
| * @sample_index: Index for storing the next sample in the buffer |
| * temp_samples[]. |
| * @sample_count: Total number of samples collected in the buffer |
| * temp_samples[]. |
| * @average: The last moving average of temperature samples |
| * @baseline_temp: Temperature at which thermal threshold high |
| * interrupt was generated. |
| * @temp_samples: Storage for temperature samples to calculate |
| * moving average. |
| * |
| * This structure is used to represent data related to thermal state for a CPU. |
| * There is a separate storage for core and package level for each CPU. |
| */ |
| struct _thermal_state { |
| u64 next_check; |
| u64 last_interrupt_time; |
| struct delayed_work therm_work; |
| unsigned long count; |
| unsigned long last_count; |
| unsigned long max_time_ms; |
| unsigned long total_time_ms; |
| bool rate_control_active; |
| bool new_event; |
| u8 level; |
| u8 sample_index; |
| u8 sample_count; |
| u8 average; |
| u8 baseline_temp; |
| u8 temp_samples[3]; |
| }; |
| |
| struct thermal_state { |
| struct _thermal_state core_throttle; |
| struct _thermal_state core_power_limit; |
| struct _thermal_state package_throttle; |
| struct _thermal_state package_power_limit; |
| struct _thermal_state core_thresh0; |
| struct _thermal_state core_thresh1; |
| struct _thermal_state pkg_thresh0; |
| struct _thermal_state pkg_thresh1; |
| }; |
| |
| /* Callback to handle core threshold interrupts */ |
| int (*platform_thermal_notify)(__u64 msr_val); |
| EXPORT_SYMBOL(platform_thermal_notify); |
| |
| /* Callback to handle core package threshold_interrupts */ |
| int (*platform_thermal_package_notify)(__u64 msr_val); |
| EXPORT_SYMBOL_GPL(platform_thermal_package_notify); |
| |
| /* Callback support of rate control, return true, if |
| * callback has rate control */ |
| bool (*platform_thermal_package_rate_control)(void); |
| EXPORT_SYMBOL_GPL(platform_thermal_package_rate_control); |
| |
| |
| static DEFINE_PER_CPU(struct thermal_state, thermal_state); |
| |
| static atomic_t therm_throt_en = ATOMIC_INIT(0); |
| |
| static u32 lvtthmr_init __read_mostly; |
| |
| #ifdef CONFIG_SYSFS |
| #define define_therm_throt_device_one_ro(_name) \ |
| static DEVICE_ATTR(_name, 0444, \ |
| therm_throt_device_show_##_name, \ |
| NULL) \ |
| |
| #define define_therm_throt_device_show_func(event, name) \ |
| \ |
| static ssize_t therm_throt_device_show_##event##_##name( \ |
| struct device *dev, \ |
| struct device_attribute *attr, \ |
| char *buf) \ |
| { \ |
| unsigned int cpu = dev->id; \ |
| ssize_t ret; \ |
| \ |
| preempt_disable(); /* CPU hotplug */ \ |
| if (cpu_online(cpu)) { \ |
| ret = sprintf(buf, "%lu\n", \ |
| per_cpu(thermal_state, cpu).event.name); \ |
| } else \ |
| ret = 0; \ |
| preempt_enable(); \ |
| \ |
| return ret; \ |
| } |
| |
| define_therm_throt_device_show_func(core_throttle, count); |
| define_therm_throt_device_one_ro(core_throttle_count); |
| |
| define_therm_throt_device_show_func(core_power_limit, count); |
| define_therm_throt_device_one_ro(core_power_limit_count); |
| |
| define_therm_throt_device_show_func(package_throttle, count); |
| define_therm_throt_device_one_ro(package_throttle_count); |
| |
| define_therm_throt_device_show_func(package_power_limit, count); |
| define_therm_throt_device_one_ro(package_power_limit_count); |
| |
| define_therm_throt_device_show_func(core_throttle, max_time_ms); |
| define_therm_throt_device_one_ro(core_throttle_max_time_ms); |
| |
| define_therm_throt_device_show_func(package_throttle, max_time_ms); |
| define_therm_throt_device_one_ro(package_throttle_max_time_ms); |
| |
| define_therm_throt_device_show_func(core_throttle, total_time_ms); |
| define_therm_throt_device_one_ro(core_throttle_total_time_ms); |
| |
| define_therm_throt_device_show_func(package_throttle, total_time_ms); |
| define_therm_throt_device_one_ro(package_throttle_total_time_ms); |
| |
| static struct attribute *thermal_throttle_attrs[] = { |
| &dev_attr_core_throttle_count.attr, |
| &dev_attr_core_throttle_max_time_ms.attr, |
| &dev_attr_core_throttle_total_time_ms.attr, |
| NULL |
| }; |
| |
| static const struct attribute_group thermal_attr_group = { |
| .attrs = thermal_throttle_attrs, |
| .name = "thermal_throttle" |
| }; |
| #endif /* CONFIG_SYSFS */ |
| |
| #define THERM_THROT_POLL_INTERVAL HZ |
| #define THERM_STATUS_PROCHOT_LOG BIT(1) |
| |
| #define THERM_STATUS_CLEAR_CORE_MASK (BIT(1) | BIT(3) | BIT(5) | BIT(7) | BIT(9) | BIT(11) | BIT(13) | BIT(15)) |
| #define THERM_STATUS_CLEAR_PKG_MASK (BIT(1) | BIT(3) | BIT(5) | BIT(7) | BIT(9) | BIT(11)) |
| |
| /* |
| * Clear the bits in package thermal status register for bit = 1 |
| * in bitmask |
| */ |
| void thermal_clear_package_intr_status(int level, u64 bit_mask) |
| { |
| u64 msr_val; |
| int msr; |
| |
| if (level == CORE_LEVEL) { |
| msr = MSR_IA32_THERM_STATUS; |
| msr_val = THERM_STATUS_CLEAR_CORE_MASK; |
| } else { |
| msr = MSR_IA32_PACKAGE_THERM_STATUS; |
| msr_val = THERM_STATUS_CLEAR_PKG_MASK; |
| if (boot_cpu_has(X86_FEATURE_HFI)) |
| msr_val |= BIT(26); |
| |
| } |
| |
| msr_val &= ~bit_mask; |
| wrmsrl(msr, msr_val); |
| } |
| EXPORT_SYMBOL_GPL(thermal_clear_package_intr_status); |
| |
| static void get_therm_status(int level, bool *proc_hot, u8 *temp) |
| { |
| int msr; |
| u64 msr_val; |
| |
| if (level == CORE_LEVEL) |
| msr = MSR_IA32_THERM_STATUS; |
| else |
| msr = MSR_IA32_PACKAGE_THERM_STATUS; |
| |
| rdmsrl(msr, msr_val); |
| if (msr_val & THERM_STATUS_PROCHOT_LOG) |
| *proc_hot = true; |
| else |
| *proc_hot = false; |
| |
| *temp = (msr_val >> 16) & 0x7F; |
| } |
| |
| static void __maybe_unused throttle_active_work(struct work_struct *work) |
| { |
| struct _thermal_state *state = container_of(to_delayed_work(work), |
| struct _thermal_state, therm_work); |
| unsigned int i, avg, this_cpu = smp_processor_id(); |
| u64 now = get_jiffies_64(); |
| bool hot; |
| u8 temp; |
| |
| get_therm_status(state->level, &hot, &temp); |
| /* temperature value is offset from the max so lesser means hotter */ |
| if (!hot && temp > state->baseline_temp) { |
| if (state->rate_control_active) |
| pr_info("CPU%d: %s temperature/speed normal (total events = %lu)\n", |
| this_cpu, |
| state->level == CORE_LEVEL ? "Core" : "Package", |
| state->count); |
| |
| state->rate_control_active = false; |
| return; |
| } |
| |
| if (time_before64(now, state->next_check) && |
| state->rate_control_active) |
| goto re_arm; |
| |
| state->next_check = now + CHECK_INTERVAL; |
| |
| if (state->count != state->last_count) { |
| /* There was one new thermal interrupt */ |
| state->last_count = state->count; |
| state->average = 0; |
| state->sample_count = 0; |
| state->sample_index = 0; |
| } |
| |
| state->temp_samples[state->sample_index] = temp; |
| state->sample_count++; |
| state->sample_index = (state->sample_index + 1) % ARRAY_SIZE(state->temp_samples); |
| if (state->sample_count < ARRAY_SIZE(state->temp_samples)) |
| goto re_arm; |
| |
| avg = 0; |
| for (i = 0; i < ARRAY_SIZE(state->temp_samples); ++i) |
| avg += state->temp_samples[i]; |
| |
| avg /= ARRAY_SIZE(state->temp_samples); |
| |
| if (state->average > avg) { |
| pr_warn("CPU%d: %s temperature is above threshold, cpu clock is throttled (total events = %lu)\n", |
| this_cpu, |
| state->level == CORE_LEVEL ? "Core" : "Package", |
| state->count); |
| state->rate_control_active = true; |
| } |
| |
| state->average = avg; |
| |
| re_arm: |
| thermal_clear_package_intr_status(state->level, THERM_STATUS_PROCHOT_LOG); |
| schedule_delayed_work_on(this_cpu, &state->therm_work, THERM_THROT_POLL_INTERVAL); |
| } |
| |
| /*** |
| * therm_throt_process - Process thermal throttling event from interrupt |
| * @curr: Whether the condition is current or not (boolean), since the |
| * thermal interrupt normally gets called both when the thermal |
| * event begins and once the event has ended. |
| * |
| * This function is called by the thermal interrupt after the |
| * IRQ has been acknowledged. |
| * |
| * It will take care of rate limiting and printing messages to the syslog. |
| */ |
| static void therm_throt_process(bool new_event, int event, int level) |
| { |
| struct _thermal_state *state; |
| unsigned int this_cpu = smp_processor_id(); |
| bool old_event; |
| u64 now; |
| struct thermal_state *pstate = &per_cpu(thermal_state, this_cpu); |
| |
| now = get_jiffies_64(); |
| if (level == CORE_LEVEL) { |
| if (event == THERMAL_THROTTLING_EVENT) |
| state = &pstate->core_throttle; |
| else if (event == POWER_LIMIT_EVENT) |
| state = &pstate->core_power_limit; |
| else |
| return; |
| } else if (level == PACKAGE_LEVEL) { |
| if (event == THERMAL_THROTTLING_EVENT) |
| state = &pstate->package_throttle; |
| else if (event == POWER_LIMIT_EVENT) |
| state = &pstate->package_power_limit; |
| else |
| return; |
| } else |
| return; |
| |
| old_event = state->new_event; |
| state->new_event = new_event; |
| |
| if (new_event) |
| state->count++; |
| |
| if (event != THERMAL_THROTTLING_EVENT) |
| return; |
| |
| if (new_event && !state->last_interrupt_time) { |
| bool hot; |
| u8 temp; |
| |
| get_therm_status(state->level, &hot, &temp); |
| /* |
| * Ignore short temperature spike as the system is not close |
| * to PROCHOT. 10C offset is large enough to ignore. It is |
| * already dropped from the high threshold temperature. |
| */ |
| if (temp > 10) |
| return; |
| |
| state->baseline_temp = temp; |
| state->last_interrupt_time = now; |
| schedule_delayed_work_on(this_cpu, &state->therm_work, THERM_THROT_POLL_INTERVAL); |
| } else if (old_event && state->last_interrupt_time) { |
| unsigned long throttle_time; |
| |
| throttle_time = jiffies_delta_to_msecs(now - state->last_interrupt_time); |
| if (throttle_time > state->max_time_ms) |
| state->max_time_ms = throttle_time; |
| state->total_time_ms += throttle_time; |
| state->last_interrupt_time = 0; |
| } |
| } |
| |
| static int thresh_event_valid(int level, int event) |
| { |
| struct _thermal_state *state; |
| unsigned int this_cpu = smp_processor_id(); |
| struct thermal_state *pstate = &per_cpu(thermal_state, this_cpu); |
| u64 now = get_jiffies_64(); |
| |
| if (level == PACKAGE_LEVEL) |
| state = (event == 0) ? &pstate->pkg_thresh0 : |
| &pstate->pkg_thresh1; |
| else |
| state = (event == 0) ? &pstate->core_thresh0 : |
| &pstate->core_thresh1; |
| |
| if (time_before64(now, state->next_check)) |
| return 0; |
| |
| state->next_check = now + CHECK_INTERVAL; |
| |
| return 1; |
| } |
| |
| static bool int_pln_enable; |
| static int __init int_pln_enable_setup(char *s) |
| { |
| int_pln_enable = true; |
| |
| return 1; |
| } |
| __setup("int_pln_enable", int_pln_enable_setup); |
| |
| #ifdef CONFIG_SYSFS |
| /* Add/Remove thermal_throttle interface for CPU device: */ |
| static int thermal_throttle_add_dev(struct device *dev, unsigned int cpu) |
| { |
| int err; |
| struct cpuinfo_x86 *c = &cpu_data(cpu); |
| |
| err = sysfs_create_group(&dev->kobj, &thermal_attr_group); |
| if (err) |
| return err; |
| |
| if (cpu_has(c, X86_FEATURE_PLN) && int_pln_enable) { |
| err = sysfs_add_file_to_group(&dev->kobj, |
| &dev_attr_core_power_limit_count.attr, |
| thermal_attr_group.name); |
| if (err) |
| goto del_group; |
| } |
| |
| if (cpu_has(c, X86_FEATURE_PTS)) { |
| err = sysfs_add_file_to_group(&dev->kobj, |
| &dev_attr_package_throttle_count.attr, |
| thermal_attr_group.name); |
| if (err) |
| goto del_group; |
| |
| err = sysfs_add_file_to_group(&dev->kobj, |
| &dev_attr_package_throttle_max_time_ms.attr, |
| thermal_attr_group.name); |
| if (err) |
| goto del_group; |
| |
| err = sysfs_add_file_to_group(&dev->kobj, |
| &dev_attr_package_throttle_total_time_ms.attr, |
| thermal_attr_group.name); |
| if (err) |
| goto del_group; |
| |
| if (cpu_has(c, X86_FEATURE_PLN) && int_pln_enable) { |
| err = sysfs_add_file_to_group(&dev->kobj, |
| &dev_attr_package_power_limit_count.attr, |
| thermal_attr_group.name); |
| if (err) |
| goto del_group; |
| } |
| } |
| |
| return 0; |
| |
| del_group: |
| sysfs_remove_group(&dev->kobj, &thermal_attr_group); |
| |
| return err; |
| } |
| |
| static void thermal_throttle_remove_dev(struct device *dev) |
| { |
| sysfs_remove_group(&dev->kobj, &thermal_attr_group); |
| } |
| |
| /* Get notified when a cpu comes on/off. Be hotplug friendly. */ |
| static int thermal_throttle_online(unsigned int cpu) |
| { |
| struct thermal_state *state = &per_cpu(thermal_state, cpu); |
| struct device *dev = get_cpu_device(cpu); |
| u32 l; |
| |
| state->package_throttle.level = PACKAGE_LEVEL; |
| state->core_throttle.level = CORE_LEVEL; |
| |
| INIT_DELAYED_WORK(&state->package_throttle.therm_work, throttle_active_work); |
| INIT_DELAYED_WORK(&state->core_throttle.therm_work, throttle_active_work); |
| |
| /* |
| * The first CPU coming online will enable the HFI. Usually this causes |
| * hardware to issue an HFI thermal interrupt. Such interrupt will reach |
| * the CPU once we enable the thermal vector in the local APIC. |
| */ |
| intel_hfi_online(cpu); |
| |
| /* Unmask the thermal vector after the above workqueues are initialized. */ |
| l = apic_read(APIC_LVTTHMR); |
| apic_write(APIC_LVTTHMR, l & ~APIC_LVT_MASKED); |
| |
| return thermal_throttle_add_dev(dev, cpu); |
| } |
| |
| static int thermal_throttle_offline(unsigned int cpu) |
| { |
| struct thermal_state *state = &per_cpu(thermal_state, cpu); |
| struct device *dev = get_cpu_device(cpu); |
| u32 l; |
| |
| /* Mask the thermal vector before draining evtl. pending work */ |
| l = apic_read(APIC_LVTTHMR); |
| apic_write(APIC_LVTTHMR, l | APIC_LVT_MASKED); |
| |
| intel_hfi_offline(cpu); |
| |
| cancel_delayed_work_sync(&state->package_throttle.therm_work); |
| cancel_delayed_work_sync(&state->core_throttle.therm_work); |
| |
| state->package_throttle.rate_control_active = false; |
| state->core_throttle.rate_control_active = false; |
| |
| thermal_throttle_remove_dev(dev); |
| return 0; |
| } |
| |
| static __init int thermal_throttle_init_device(void) |
| { |
| int ret; |
| |
| if (!atomic_read(&therm_throt_en)) |
| return 0; |
| |
| intel_hfi_init(); |
| |
| ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/therm:online", |
| thermal_throttle_online, |
| thermal_throttle_offline); |
| return ret < 0 ? ret : 0; |
| } |
| device_initcall(thermal_throttle_init_device); |
| |
| #endif /* CONFIG_SYSFS */ |
| |
| static void notify_package_thresholds(__u64 msr_val) |
| { |
| bool notify_thres_0 = false; |
| bool notify_thres_1 = false; |
| |
| if (!platform_thermal_package_notify) |
| return; |
| |
| /* lower threshold check */ |
| if (msr_val & THERM_LOG_THRESHOLD0) |
| notify_thres_0 = true; |
| /* higher threshold check */ |
| if (msr_val & THERM_LOG_THRESHOLD1) |
| notify_thres_1 = true; |
| |
| if (!notify_thres_0 && !notify_thres_1) |
| return; |
| |
| if (platform_thermal_package_rate_control && |
| platform_thermal_package_rate_control()) { |
| /* Rate control is implemented in callback */ |
| platform_thermal_package_notify(msr_val); |
| return; |
| } |
| |
| /* lower threshold reached */ |
| if (notify_thres_0 && thresh_event_valid(PACKAGE_LEVEL, 0)) |
| platform_thermal_package_notify(msr_val); |
| /* higher threshold reached */ |
| if (notify_thres_1 && thresh_event_valid(PACKAGE_LEVEL, 1)) |
| platform_thermal_package_notify(msr_val); |
| } |
| |
| static void notify_thresholds(__u64 msr_val) |
| { |
| /* check whether the interrupt handler is defined; |
| * otherwise simply return |
| */ |
| if (!platform_thermal_notify) |
| return; |
| |
| /* lower threshold reached */ |
| if ((msr_val & THERM_LOG_THRESHOLD0) && |
| thresh_event_valid(CORE_LEVEL, 0)) |
| platform_thermal_notify(msr_val); |
| /* higher threshold reached */ |
| if ((msr_val & THERM_LOG_THRESHOLD1) && |
| thresh_event_valid(CORE_LEVEL, 1)) |
| platform_thermal_notify(msr_val); |
| } |
| |
| void __weak notify_hwp_interrupt(void) |
| { |
| wrmsrl_safe(MSR_HWP_STATUS, 0); |
| } |
| |
| /* Thermal transition interrupt handler */ |
| void intel_thermal_interrupt(void) |
| { |
| __u64 msr_val; |
| |
| if (static_cpu_has(X86_FEATURE_HWP)) |
| notify_hwp_interrupt(); |
| |
| rdmsrl(MSR_IA32_THERM_STATUS, msr_val); |
| |
| /* Check for violation of core thermal thresholds*/ |
| notify_thresholds(msr_val); |
| |
| therm_throt_process(msr_val & THERM_STATUS_PROCHOT, |
| THERMAL_THROTTLING_EVENT, |
| CORE_LEVEL); |
| |
| if (this_cpu_has(X86_FEATURE_PLN) && int_pln_enable) |
| therm_throt_process(msr_val & THERM_STATUS_POWER_LIMIT, |
| POWER_LIMIT_EVENT, |
| CORE_LEVEL); |
| |
| if (this_cpu_has(X86_FEATURE_PTS)) { |
| rdmsrl(MSR_IA32_PACKAGE_THERM_STATUS, msr_val); |
| /* check violations of package thermal thresholds */ |
| notify_package_thresholds(msr_val); |
| therm_throt_process(msr_val & PACKAGE_THERM_STATUS_PROCHOT, |
| THERMAL_THROTTLING_EVENT, |
| PACKAGE_LEVEL); |
| if (this_cpu_has(X86_FEATURE_PLN) && int_pln_enable) |
| therm_throt_process(msr_val & |
| PACKAGE_THERM_STATUS_POWER_LIMIT, |
| POWER_LIMIT_EVENT, |
| PACKAGE_LEVEL); |
| |
| if (this_cpu_has(X86_FEATURE_HFI)) |
| intel_hfi_process_event(msr_val & |
| PACKAGE_THERM_STATUS_HFI_UPDATED); |
| } |
| } |
| |
| /* Thermal monitoring depends on APIC, ACPI and clock modulation */ |
| static int intel_thermal_supported(struct cpuinfo_x86 *c) |
| { |
| if (!boot_cpu_has(X86_FEATURE_APIC)) |
| return 0; |
| if (!cpu_has(c, X86_FEATURE_ACPI) || !cpu_has(c, X86_FEATURE_ACC)) |
| return 0; |
| return 1; |
| } |
| |
| bool x86_thermal_enabled(void) |
| { |
| return atomic_read(&therm_throt_en); |
| } |
| |
| void __init therm_lvt_init(void) |
| { |
| /* |
| * This function is only called on boot CPU. Save the init thermal |
| * LVT value on BSP and use that value to restore APs' thermal LVT |
| * entry BIOS programmed later |
| */ |
| if (intel_thermal_supported(&boot_cpu_data)) |
| lvtthmr_init = apic_read(APIC_LVTTHMR); |
| } |
| |
| void intel_init_thermal(struct cpuinfo_x86 *c) |
| { |
| unsigned int cpu = smp_processor_id(); |
| int tm2 = 0; |
| u32 l, h; |
| |
| if (!intel_thermal_supported(c)) |
| return; |
| |
| /* |
| * First check if its enabled already, in which case there might |
| * be some SMM goo which handles it, so we can't even put a handler |
| * since it might be delivered via SMI already: |
| */ |
| rdmsr(MSR_IA32_MISC_ENABLE, l, h); |
| |
| h = lvtthmr_init; |
| /* |
| * The initial value of thermal LVT entries on all APs always reads |
| * 0x10000 because APs are woken up by BSP issuing INIT-SIPI-SIPI |
| * sequence to them and LVT registers are reset to 0s except for |
| * the mask bits which are set to 1s when APs receive INIT IPI. |
| * If BIOS takes over the thermal interrupt and sets its interrupt |
| * delivery mode to SMI (not fixed), it restores the value that the |
| * BIOS has programmed on AP based on BSP's info we saved since BIOS |
| * is always setting the same value for all threads/cores. |
| */ |
| if ((h & APIC_DM_FIXED_MASK) != APIC_DM_FIXED) |
| apic_write(APIC_LVTTHMR, lvtthmr_init); |
| |
| |
| if ((l & MSR_IA32_MISC_ENABLE_TM1) && (h & APIC_DM_SMI)) { |
| if (system_state == SYSTEM_BOOTING) |
| pr_debug("CPU%d: Thermal monitoring handled by SMI\n", cpu); |
| return; |
| } |
| |
| /* early Pentium M models use different method for enabling TM2 */ |
| if (cpu_has(c, X86_FEATURE_TM2)) { |
| if (c->x86 == 6 && (c->x86_model == 9 || c->x86_model == 13)) { |
| rdmsr(MSR_THERM2_CTL, l, h); |
| if (l & MSR_THERM2_CTL_TM_SELECT) |
| tm2 = 1; |
| } else if (l & MSR_IA32_MISC_ENABLE_TM2) |
| tm2 = 1; |
| } |
| |
| /* We'll mask the thermal vector in the lapic till we're ready: */ |
| h = THERMAL_APIC_VECTOR | APIC_DM_FIXED | APIC_LVT_MASKED; |
| apic_write(APIC_LVTTHMR, h); |
| |
| rdmsr(MSR_IA32_THERM_INTERRUPT, l, h); |
| if (cpu_has(c, X86_FEATURE_PLN) && !int_pln_enable) |
| wrmsr(MSR_IA32_THERM_INTERRUPT, |
| (l | (THERM_INT_LOW_ENABLE |
| | THERM_INT_HIGH_ENABLE)) & ~THERM_INT_PLN_ENABLE, h); |
| else if (cpu_has(c, X86_FEATURE_PLN) && int_pln_enable) |
| wrmsr(MSR_IA32_THERM_INTERRUPT, |
| l | (THERM_INT_LOW_ENABLE |
| | THERM_INT_HIGH_ENABLE | THERM_INT_PLN_ENABLE), h); |
| else |
| wrmsr(MSR_IA32_THERM_INTERRUPT, |
| l | (THERM_INT_LOW_ENABLE | THERM_INT_HIGH_ENABLE), h); |
| |
| if (cpu_has(c, X86_FEATURE_PTS)) { |
| rdmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h); |
| if (cpu_has(c, X86_FEATURE_PLN) && !int_pln_enable) |
| wrmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT, |
| (l | (PACKAGE_THERM_INT_LOW_ENABLE |
| | PACKAGE_THERM_INT_HIGH_ENABLE)) |
| & ~PACKAGE_THERM_INT_PLN_ENABLE, h); |
| else if (cpu_has(c, X86_FEATURE_PLN) && int_pln_enable) |
| wrmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT, |
| l | (PACKAGE_THERM_INT_LOW_ENABLE |
| | PACKAGE_THERM_INT_HIGH_ENABLE |
| | PACKAGE_THERM_INT_PLN_ENABLE), h); |
| else |
| wrmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT, |
| l | (PACKAGE_THERM_INT_LOW_ENABLE |
| | PACKAGE_THERM_INT_HIGH_ENABLE), h); |
| |
| if (cpu_has(c, X86_FEATURE_HFI)) { |
| rdmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h); |
| wrmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT, |
| l | PACKAGE_THERM_INT_HFI_ENABLE, h); |
| } |
| } |
| |
| rdmsr(MSR_IA32_MISC_ENABLE, l, h); |
| wrmsr(MSR_IA32_MISC_ENABLE, l | MSR_IA32_MISC_ENABLE_TM1, h); |
| |
| pr_info_once("CPU0: Thermal monitoring enabled (%s)\n", |
| tm2 ? "TM2" : "TM1"); |
| |
| /* enable thermal throttle processing */ |
| atomic_set(&therm_throt_en, 1); |
| } |