| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * |
| * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved. |
| * |
| */ |
| |
| #include <linux/blkdev.h> |
| #include <linux/buffer_head.h> |
| #include <linux/fs.h> |
| #include <linux/kernel.h> |
| |
| #include "debug.h" |
| #include "ntfs.h" |
| #include "ntfs_fs.h" |
| |
| static const struct INDEX_NAMES { |
| const __le16 *name; |
| u8 name_len; |
| } s_index_names[INDEX_MUTEX_TOTAL] = { |
| { I30_NAME, ARRAY_SIZE(I30_NAME) }, { SII_NAME, ARRAY_SIZE(SII_NAME) }, |
| { SDH_NAME, ARRAY_SIZE(SDH_NAME) }, { SO_NAME, ARRAY_SIZE(SO_NAME) }, |
| { SQ_NAME, ARRAY_SIZE(SQ_NAME) }, { SR_NAME, ARRAY_SIZE(SR_NAME) }, |
| }; |
| |
| /* |
| * cmp_fnames - Compare two names in index. |
| * |
| * if l1 != 0 |
| * Both names are little endian on-disk ATTR_FILE_NAME structs. |
| * else |
| * key1 - cpu_str, key2 - ATTR_FILE_NAME |
| */ |
| static int cmp_fnames(const void *key1, size_t l1, const void *key2, size_t l2, |
| const void *data) |
| { |
| const struct ATTR_FILE_NAME *f2 = key2; |
| const struct ntfs_sb_info *sbi = data; |
| const struct ATTR_FILE_NAME *f1; |
| u16 fsize2; |
| bool both_case; |
| |
| if (l2 <= offsetof(struct ATTR_FILE_NAME, name)) |
| return -1; |
| |
| fsize2 = fname_full_size(f2); |
| if (l2 < fsize2) |
| return -1; |
| |
| both_case = f2->type != FILE_NAME_DOS && !sbi->options->nocase; |
| if (!l1) { |
| const struct le_str *s2 = (struct le_str *)&f2->name_len; |
| |
| /* |
| * If names are equal (case insensitive) |
| * try to compare it case sensitive. |
| */ |
| return ntfs_cmp_names_cpu(key1, s2, sbi->upcase, both_case); |
| } |
| |
| f1 = key1; |
| return ntfs_cmp_names(f1->name, f1->name_len, f2->name, f2->name_len, |
| sbi->upcase, both_case); |
| } |
| |
| /* |
| * cmp_uint - $SII of $Secure and $Q of Quota |
| */ |
| static int cmp_uint(const void *key1, size_t l1, const void *key2, size_t l2, |
| const void *data) |
| { |
| const u32 *k1 = key1; |
| const u32 *k2 = key2; |
| |
| if (l2 < sizeof(u32)) |
| return -1; |
| |
| if (*k1 < *k2) |
| return -1; |
| if (*k1 > *k2) |
| return 1; |
| return 0; |
| } |
| |
| /* |
| * cmp_sdh - $SDH of $Secure |
| */ |
| static int cmp_sdh(const void *key1, size_t l1, const void *key2, size_t l2, |
| const void *data) |
| { |
| const struct SECURITY_KEY *k1 = key1; |
| const struct SECURITY_KEY *k2 = key2; |
| u32 t1, t2; |
| |
| if (l2 < sizeof(struct SECURITY_KEY)) |
| return -1; |
| |
| t1 = le32_to_cpu(k1->hash); |
| t2 = le32_to_cpu(k2->hash); |
| |
| /* First value is a hash value itself. */ |
| if (t1 < t2) |
| return -1; |
| if (t1 > t2) |
| return 1; |
| |
| /* Second value is security Id. */ |
| if (data) { |
| t1 = le32_to_cpu(k1->sec_id); |
| t2 = le32_to_cpu(k2->sec_id); |
| if (t1 < t2) |
| return -1; |
| if (t1 > t2) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * cmp_uints - $O of ObjId and "$R" for Reparse. |
| */ |
| static int cmp_uints(const void *key1, size_t l1, const void *key2, size_t l2, |
| const void *data) |
| { |
| const __le32 *k1 = key1; |
| const __le32 *k2 = key2; |
| size_t count; |
| |
| if ((size_t)data == 1) { |
| /* |
| * ni_delete_all -> ntfs_remove_reparse -> |
| * delete all with this reference. |
| * k1, k2 - pointers to REPARSE_KEY |
| */ |
| |
| k1 += 1; // Skip REPARSE_KEY.ReparseTag |
| k2 += 1; // Skip REPARSE_KEY.ReparseTag |
| if (l2 <= sizeof(int)) |
| return -1; |
| l2 -= sizeof(int); |
| if (l1 <= sizeof(int)) |
| return 1; |
| l1 -= sizeof(int); |
| } |
| |
| if (l2 < sizeof(int)) |
| return -1; |
| |
| for (count = min(l1, l2) >> 2; count > 0; --count, ++k1, ++k2) { |
| u32 t1 = le32_to_cpu(*k1); |
| u32 t2 = le32_to_cpu(*k2); |
| |
| if (t1 > t2) |
| return 1; |
| if (t1 < t2) |
| return -1; |
| } |
| |
| if (l1 > l2) |
| return 1; |
| if (l1 < l2) |
| return -1; |
| |
| return 0; |
| } |
| |
| static inline NTFS_CMP_FUNC get_cmp_func(const struct INDEX_ROOT *root) |
| { |
| switch (root->type) { |
| case ATTR_NAME: |
| if (root->rule == NTFS_COLLATION_TYPE_FILENAME) |
| return &cmp_fnames; |
| break; |
| case ATTR_ZERO: |
| switch (root->rule) { |
| case NTFS_COLLATION_TYPE_UINT: |
| return &cmp_uint; |
| case NTFS_COLLATION_TYPE_SECURITY_HASH: |
| return &cmp_sdh; |
| case NTFS_COLLATION_TYPE_UINTS: |
| return &cmp_uints; |
| default: |
| break; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| return NULL; |
| } |
| |
| struct bmp_buf { |
| struct ATTRIB *b; |
| struct mft_inode *mi; |
| struct buffer_head *bh; |
| ulong *buf; |
| size_t bit; |
| u32 nbits; |
| u64 new_valid; |
| }; |
| |
| static int bmp_buf_get(struct ntfs_index *indx, struct ntfs_inode *ni, |
| size_t bit, struct bmp_buf *bbuf) |
| { |
| struct ATTRIB *b; |
| size_t data_size, valid_size, vbo, off = bit >> 3; |
| struct ntfs_sb_info *sbi = ni->mi.sbi; |
| CLST vcn = off >> sbi->cluster_bits; |
| struct ATTR_LIST_ENTRY *le = NULL; |
| struct buffer_head *bh; |
| struct super_block *sb; |
| u32 blocksize; |
| const struct INDEX_NAMES *in = &s_index_names[indx->type]; |
| |
| bbuf->bh = NULL; |
| |
| b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len, |
| &vcn, &bbuf->mi); |
| bbuf->b = b; |
| if (!b) |
| return -EINVAL; |
| |
| if (!b->non_res) { |
| data_size = le32_to_cpu(b->res.data_size); |
| |
| if (off >= data_size) |
| return -EINVAL; |
| |
| bbuf->buf = (ulong *)resident_data(b); |
| bbuf->bit = 0; |
| bbuf->nbits = data_size * 8; |
| |
| return 0; |
| } |
| |
| data_size = le64_to_cpu(b->nres.data_size); |
| if (WARN_ON(off >= data_size)) { |
| /* Looks like filesystem error. */ |
| return -EINVAL; |
| } |
| |
| valid_size = le64_to_cpu(b->nres.valid_size); |
| |
| bh = ntfs_bread_run(sbi, &indx->bitmap_run, off); |
| if (!bh) |
| return -EIO; |
| |
| if (IS_ERR(bh)) |
| return PTR_ERR(bh); |
| |
| bbuf->bh = bh; |
| |
| if (buffer_locked(bh)) |
| __wait_on_buffer(bh); |
| |
| lock_buffer(bh); |
| |
| sb = sbi->sb; |
| blocksize = sb->s_blocksize; |
| |
| vbo = off & ~(size_t)sbi->block_mask; |
| |
| bbuf->new_valid = vbo + blocksize; |
| if (bbuf->new_valid <= valid_size) |
| bbuf->new_valid = 0; |
| else if (bbuf->new_valid > data_size) |
| bbuf->new_valid = data_size; |
| |
| if (vbo >= valid_size) { |
| memset(bh->b_data, 0, blocksize); |
| } else if (vbo + blocksize > valid_size) { |
| u32 voff = valid_size & sbi->block_mask; |
| |
| memset(bh->b_data + voff, 0, blocksize - voff); |
| } |
| |
| bbuf->buf = (ulong *)bh->b_data; |
| bbuf->bit = 8 * (off & ~(size_t)sbi->block_mask); |
| bbuf->nbits = 8 * blocksize; |
| |
| return 0; |
| } |
| |
| static void bmp_buf_put(struct bmp_buf *bbuf, bool dirty) |
| { |
| struct buffer_head *bh = bbuf->bh; |
| struct ATTRIB *b = bbuf->b; |
| |
| if (!bh) { |
| if (b && !b->non_res && dirty) |
| bbuf->mi->dirty = true; |
| return; |
| } |
| |
| if (!dirty) |
| goto out; |
| |
| if (bbuf->new_valid) { |
| b->nres.valid_size = cpu_to_le64(bbuf->new_valid); |
| bbuf->mi->dirty = true; |
| } |
| |
| set_buffer_uptodate(bh); |
| mark_buffer_dirty(bh); |
| |
| out: |
| unlock_buffer(bh); |
| put_bh(bh); |
| } |
| |
| /* |
| * indx_mark_used - Mark the bit @bit as used. |
| */ |
| static int indx_mark_used(struct ntfs_index *indx, struct ntfs_inode *ni, |
| size_t bit) |
| { |
| int err; |
| struct bmp_buf bbuf; |
| |
| err = bmp_buf_get(indx, ni, bit, &bbuf); |
| if (err) |
| return err; |
| |
| __set_bit_le(bit - bbuf.bit, bbuf.buf); |
| |
| bmp_buf_put(&bbuf, true); |
| |
| return 0; |
| } |
| |
| /* |
| * indx_mark_free - Mark the bit @bit as free. |
| */ |
| static int indx_mark_free(struct ntfs_index *indx, struct ntfs_inode *ni, |
| size_t bit) |
| { |
| int err; |
| struct bmp_buf bbuf; |
| |
| err = bmp_buf_get(indx, ni, bit, &bbuf); |
| if (err) |
| return err; |
| |
| __clear_bit_le(bit - bbuf.bit, bbuf.buf); |
| |
| bmp_buf_put(&bbuf, true); |
| |
| return 0; |
| } |
| |
| /* |
| * scan_nres_bitmap |
| * |
| * If ntfs_readdir calls this function (indx_used_bit -> scan_nres_bitmap), |
| * inode is shared locked and no ni_lock. |
| * Use rw_semaphore for read/write access to bitmap_run. |
| */ |
| static int scan_nres_bitmap(struct ntfs_inode *ni, struct ATTRIB *bitmap, |
| struct ntfs_index *indx, size_t from, |
| bool (*fn)(const ulong *buf, u32 bit, u32 bits, |
| size_t *ret), |
| size_t *ret) |
| { |
| struct ntfs_sb_info *sbi = ni->mi.sbi; |
| struct super_block *sb = sbi->sb; |
| struct runs_tree *run = &indx->bitmap_run; |
| struct rw_semaphore *lock = &indx->run_lock; |
| u32 nbits = sb->s_blocksize * 8; |
| u32 blocksize = sb->s_blocksize; |
| u64 valid_size = le64_to_cpu(bitmap->nres.valid_size); |
| u64 data_size = le64_to_cpu(bitmap->nres.data_size); |
| sector_t eblock = bytes_to_block(sb, data_size); |
| size_t vbo = from >> 3; |
| sector_t blk = (vbo & sbi->cluster_mask) >> sb->s_blocksize_bits; |
| sector_t vblock = vbo >> sb->s_blocksize_bits; |
| sector_t blen, block; |
| CLST lcn, clen, vcn, vcn_next; |
| size_t idx; |
| struct buffer_head *bh; |
| bool ok; |
| |
| *ret = MINUS_ONE_T; |
| |
| if (vblock >= eblock) |
| return 0; |
| |
| from &= nbits - 1; |
| vcn = vbo >> sbi->cluster_bits; |
| |
| down_read(lock); |
| ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx); |
| up_read(lock); |
| |
| next_run: |
| if (!ok) { |
| int err; |
| const struct INDEX_NAMES *name = &s_index_names[indx->type]; |
| |
| down_write(lock); |
| err = attr_load_runs_vcn(ni, ATTR_BITMAP, name->name, |
| name->name_len, run, vcn); |
| up_write(lock); |
| if (err) |
| return err; |
| down_read(lock); |
| ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx); |
| up_read(lock); |
| if (!ok) |
| return -EINVAL; |
| } |
| |
| blen = (sector_t)clen * sbi->blocks_per_cluster; |
| block = (sector_t)lcn * sbi->blocks_per_cluster; |
| |
| for (; blk < blen; blk++, from = 0) { |
| bh = ntfs_bread(sb, block + blk); |
| if (!bh) |
| return -EIO; |
| |
| vbo = (u64)vblock << sb->s_blocksize_bits; |
| if (vbo >= valid_size) { |
| memset(bh->b_data, 0, blocksize); |
| } else if (vbo + blocksize > valid_size) { |
| u32 voff = valid_size & sbi->block_mask; |
| |
| memset(bh->b_data + voff, 0, blocksize - voff); |
| } |
| |
| if (vbo + blocksize > data_size) |
| nbits = 8 * (data_size - vbo); |
| |
| ok = nbits > from ? (*fn)((ulong *)bh->b_data, from, nbits, ret) |
| : false; |
| put_bh(bh); |
| |
| if (ok) { |
| *ret += 8 * vbo; |
| return 0; |
| } |
| |
| if (++vblock >= eblock) { |
| *ret = MINUS_ONE_T; |
| return 0; |
| } |
| } |
| blk = 0; |
| vcn_next = vcn + clen; |
| down_read(lock); |
| ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) && vcn == vcn_next; |
| if (!ok) |
| vcn = vcn_next; |
| up_read(lock); |
| goto next_run; |
| } |
| |
| static bool scan_for_free(const ulong *buf, u32 bit, u32 bits, size_t *ret) |
| { |
| size_t pos = find_next_zero_bit_le(buf, bits, bit); |
| |
| if (pos >= bits) |
| return false; |
| *ret = pos; |
| return true; |
| } |
| |
| /* |
| * indx_find_free - Look for free bit. |
| * |
| * Return: -1 if no free bits. |
| */ |
| static int indx_find_free(struct ntfs_index *indx, struct ntfs_inode *ni, |
| size_t *bit, struct ATTRIB **bitmap) |
| { |
| struct ATTRIB *b; |
| struct ATTR_LIST_ENTRY *le = NULL; |
| const struct INDEX_NAMES *in = &s_index_names[indx->type]; |
| int err; |
| |
| b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len, |
| NULL, NULL); |
| |
| if (!b) |
| return -ENOENT; |
| |
| *bitmap = b; |
| *bit = MINUS_ONE_T; |
| |
| if (!b->non_res) { |
| u32 nbits = 8 * le32_to_cpu(b->res.data_size); |
| size_t pos = find_next_zero_bit_le(resident_data(b), nbits, 0); |
| |
| if (pos < nbits) |
| *bit = pos; |
| } else { |
| err = scan_nres_bitmap(ni, b, indx, 0, &scan_for_free, bit); |
| |
| if (err) |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| static bool scan_for_used(const ulong *buf, u32 bit, u32 bits, size_t *ret) |
| { |
| size_t pos = find_next_bit_le(buf, bits, bit); |
| |
| if (pos >= bits) |
| return false; |
| *ret = pos; |
| return true; |
| } |
| |
| /* |
| * indx_used_bit - Look for used bit. |
| * |
| * Return: MINUS_ONE_T if no used bits. |
| */ |
| int indx_used_bit(struct ntfs_index *indx, struct ntfs_inode *ni, size_t *bit) |
| { |
| struct ATTRIB *b; |
| struct ATTR_LIST_ENTRY *le = NULL; |
| size_t from = *bit; |
| const struct INDEX_NAMES *in = &s_index_names[indx->type]; |
| int err; |
| |
| b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len, |
| NULL, NULL); |
| |
| if (!b) |
| return -ENOENT; |
| |
| *bit = MINUS_ONE_T; |
| |
| if (!b->non_res) { |
| u32 nbits = le32_to_cpu(b->res.data_size) * 8; |
| size_t pos = find_next_bit_le(resident_data(b), nbits, from); |
| |
| if (pos < nbits) |
| *bit = pos; |
| } else { |
| err = scan_nres_bitmap(ni, b, indx, from, &scan_for_used, bit); |
| if (err) |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * hdr_find_split |
| * |
| * Find a point at which the index allocation buffer would like to be split. |
| * NOTE: This function should never return 'END' entry NULL returns on error. |
| */ |
| static const struct NTFS_DE *hdr_find_split(const struct INDEX_HDR *hdr) |
| { |
| size_t o; |
| const struct NTFS_DE *e = hdr_first_de(hdr); |
| u32 used_2 = le32_to_cpu(hdr->used) >> 1; |
| u16 esize; |
| |
| if (!e || de_is_last(e)) |
| return NULL; |
| |
| esize = le16_to_cpu(e->size); |
| for (o = le32_to_cpu(hdr->de_off) + esize; o < used_2; o += esize) { |
| const struct NTFS_DE *p = e; |
| |
| e = Add2Ptr(hdr, o); |
| |
| /* We must not return END entry. */ |
| if (de_is_last(e)) |
| return p; |
| |
| esize = le16_to_cpu(e->size); |
| } |
| |
| return e; |
| } |
| |
| /* |
| * hdr_insert_head - Insert some entries at the beginning of the buffer. |
| * |
| * It is used to insert entries into a newly-created buffer. |
| */ |
| static const struct NTFS_DE *hdr_insert_head(struct INDEX_HDR *hdr, |
| const void *ins, u32 ins_bytes) |
| { |
| u32 to_move; |
| struct NTFS_DE *e = hdr_first_de(hdr); |
| u32 used = le32_to_cpu(hdr->used); |
| |
| if (!e) |
| return NULL; |
| |
| /* Now we just make room for the inserted entries and jam it in. */ |
| to_move = used - le32_to_cpu(hdr->de_off); |
| memmove(Add2Ptr(e, ins_bytes), e, to_move); |
| memcpy(e, ins, ins_bytes); |
| hdr->used = cpu_to_le32(used + ins_bytes); |
| |
| return e; |
| } |
| |
| /* |
| * index_hdr_check |
| * |
| * return true if INDEX_HDR is valid |
| */ |
| static bool index_hdr_check(const struct INDEX_HDR *hdr, u32 bytes) |
| { |
| u32 end = le32_to_cpu(hdr->used); |
| u32 tot = le32_to_cpu(hdr->total); |
| u32 off = le32_to_cpu(hdr->de_off); |
| |
| if (!IS_ALIGNED(off, 8) || tot > bytes || end > tot || |
| off + sizeof(struct NTFS_DE) > end) { |
| /* incorrect index buffer. */ |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* |
| * index_buf_check |
| * |
| * return true if INDEX_BUFFER seems is valid |
| */ |
| static bool index_buf_check(const struct INDEX_BUFFER *ib, u32 bytes, |
| const CLST *vbn) |
| { |
| const struct NTFS_RECORD_HEADER *rhdr = &ib->rhdr; |
| u16 fo = le16_to_cpu(rhdr->fix_off); |
| u16 fn = le16_to_cpu(rhdr->fix_num); |
| |
| if (bytes <= offsetof(struct INDEX_BUFFER, ihdr) || |
| rhdr->sign != NTFS_INDX_SIGNATURE || |
| fo < sizeof(struct INDEX_BUFFER) |
| /* Check index buffer vbn. */ |
| || (vbn && *vbn != le64_to_cpu(ib->vbn)) || (fo % sizeof(short)) || |
| fo + fn * sizeof(short) >= bytes || |
| fn != ((bytes >> SECTOR_SHIFT) + 1)) { |
| /* incorrect index buffer. */ |
| return false; |
| } |
| |
| return index_hdr_check(&ib->ihdr, |
| bytes - offsetof(struct INDEX_BUFFER, ihdr)); |
| } |
| |
| void fnd_clear(struct ntfs_fnd *fnd) |
| { |
| int i; |
| |
| for (i = fnd->level - 1; i >= 0; i--) { |
| struct indx_node *n = fnd->nodes[i]; |
| |
| if (!n) |
| continue; |
| |
| put_indx_node(n); |
| fnd->nodes[i] = NULL; |
| } |
| fnd->level = 0; |
| fnd->root_de = NULL; |
| } |
| |
| static int fnd_push(struct ntfs_fnd *fnd, struct indx_node *n, |
| struct NTFS_DE *e) |
| { |
| int i = fnd->level; |
| |
| if (i < 0 || i >= ARRAY_SIZE(fnd->nodes)) |
| return -EINVAL; |
| fnd->nodes[i] = n; |
| fnd->de[i] = e; |
| fnd->level += 1; |
| return 0; |
| } |
| |
| static struct indx_node *fnd_pop(struct ntfs_fnd *fnd) |
| { |
| struct indx_node *n; |
| int i = fnd->level; |
| |
| i -= 1; |
| n = fnd->nodes[i]; |
| fnd->nodes[i] = NULL; |
| fnd->level = i; |
| |
| return n; |
| } |
| |
| static bool fnd_is_empty(struct ntfs_fnd *fnd) |
| { |
| if (!fnd->level) |
| return !fnd->root_de; |
| |
| return !fnd->de[fnd->level - 1]; |
| } |
| |
| /* |
| * hdr_find_e - Locate an entry the index buffer. |
| * |
| * If no matching entry is found, it returns the first entry which is greater |
| * than the desired entry If the search key is greater than all the entries the |
| * buffer, it returns the 'end' entry. This function does a binary search of the |
| * current index buffer, for the first entry that is <= to the search value. |
| * |
| * Return: NULL if error. |
| */ |
| static struct NTFS_DE *hdr_find_e(const struct ntfs_index *indx, |
| const struct INDEX_HDR *hdr, const void *key, |
| size_t key_len, const void *ctx, int *diff) |
| { |
| struct NTFS_DE *e, *found = NULL; |
| NTFS_CMP_FUNC cmp = indx->cmp; |
| int min_idx = 0, mid_idx, max_idx = 0; |
| int diff2; |
| int table_size = 8; |
| u32 e_size, e_key_len; |
| u32 end = le32_to_cpu(hdr->used); |
| u32 off = le32_to_cpu(hdr->de_off); |
| u16 offs[128]; |
| |
| fill_table: |
| if (off + sizeof(struct NTFS_DE) > end) |
| return NULL; |
| |
| e = Add2Ptr(hdr, off); |
| e_size = le16_to_cpu(e->size); |
| |
| if (e_size < sizeof(struct NTFS_DE) || off + e_size > end) |
| return NULL; |
| |
| if (!de_is_last(e)) { |
| offs[max_idx] = off; |
| off += e_size; |
| |
| max_idx++; |
| if (max_idx < table_size) |
| goto fill_table; |
| |
| max_idx--; |
| } |
| |
| binary_search: |
| e_key_len = le16_to_cpu(e->key_size); |
| |
| diff2 = (*cmp)(key, key_len, e + 1, e_key_len, ctx); |
| if (diff2 > 0) { |
| if (found) { |
| min_idx = mid_idx + 1; |
| } else { |
| if (de_is_last(e)) |
| return NULL; |
| |
| max_idx = 0; |
| table_size = min(table_size * 2, |
| (int)ARRAY_SIZE(offs)); |
| goto fill_table; |
| } |
| } else if (diff2 < 0) { |
| if (found) |
| max_idx = mid_idx - 1; |
| else |
| max_idx--; |
| |
| found = e; |
| } else { |
| *diff = 0; |
| return e; |
| } |
| |
| if (min_idx > max_idx) { |
| *diff = -1; |
| return found; |
| } |
| |
| mid_idx = (min_idx + max_idx) >> 1; |
| e = Add2Ptr(hdr, offs[mid_idx]); |
| |
| goto binary_search; |
| } |
| |
| /* |
| * hdr_insert_de - Insert an index entry into the buffer. |
| * |
| * 'before' should be a pointer previously returned from hdr_find_e. |
| */ |
| static struct NTFS_DE *hdr_insert_de(const struct ntfs_index *indx, |
| struct INDEX_HDR *hdr, |
| const struct NTFS_DE *de, |
| struct NTFS_DE *before, const void *ctx) |
| { |
| int diff; |
| size_t off = PtrOffset(hdr, before); |
| u32 used = le32_to_cpu(hdr->used); |
| u32 total = le32_to_cpu(hdr->total); |
| u16 de_size = le16_to_cpu(de->size); |
| |
| /* First, check to see if there's enough room. */ |
| if (used + de_size > total) |
| return NULL; |
| |
| /* We know there's enough space, so we know we'll succeed. */ |
| if (before) { |
| /* Check that before is inside Index. */ |
| if (off >= used || off < le32_to_cpu(hdr->de_off) || |
| off + le16_to_cpu(before->size) > total) { |
| return NULL; |
| } |
| goto ok; |
| } |
| /* No insert point is applied. Get it manually. */ |
| before = hdr_find_e(indx, hdr, de + 1, le16_to_cpu(de->key_size), ctx, |
| &diff); |
| if (!before) |
| return NULL; |
| off = PtrOffset(hdr, before); |
| |
| ok: |
| /* Now we just make room for the entry and jam it in. */ |
| memmove(Add2Ptr(before, de_size), before, used - off); |
| |
| hdr->used = cpu_to_le32(used + de_size); |
| memcpy(before, de, de_size); |
| |
| return before; |
| } |
| |
| /* |
| * hdr_delete_de - Remove an entry from the index buffer. |
| */ |
| static inline struct NTFS_DE *hdr_delete_de(struct INDEX_HDR *hdr, |
| struct NTFS_DE *re) |
| { |
| u32 used = le32_to_cpu(hdr->used); |
| u16 esize = le16_to_cpu(re->size); |
| u32 off = PtrOffset(hdr, re); |
| int bytes = used - (off + esize); |
| |
| if (off >= used || esize < sizeof(struct NTFS_DE) || |
| bytes < sizeof(struct NTFS_DE)) |
| return NULL; |
| |
| hdr->used = cpu_to_le32(used - esize); |
| memmove(re, Add2Ptr(re, esize), bytes); |
| |
| return re; |
| } |
| |
| void indx_clear(struct ntfs_index *indx) |
| { |
| run_close(&indx->alloc_run); |
| run_close(&indx->bitmap_run); |
| } |
| |
| int indx_init(struct ntfs_index *indx, struct ntfs_sb_info *sbi, |
| const struct ATTRIB *attr, enum index_mutex_classed type) |
| { |
| u32 t32; |
| const struct INDEX_ROOT *root = resident_data(attr); |
| |
| t32 = le32_to_cpu(attr->res.data_size); |
| if (t32 <= offsetof(struct INDEX_ROOT, ihdr) || |
| !index_hdr_check(&root->ihdr, |
| t32 - offsetof(struct INDEX_ROOT, ihdr))) { |
| goto out; |
| } |
| |
| /* Check root fields. */ |
| if (!root->index_block_clst) |
| goto out; |
| |
| indx->type = type; |
| indx->idx2vbn_bits = __ffs(root->index_block_clst); |
| |
| t32 = le32_to_cpu(root->index_block_size); |
| indx->index_bits = blksize_bits(t32); |
| |
| /* Check index record size. */ |
| if (t32 < sbi->cluster_size) { |
| /* Index record is smaller than a cluster, use 512 blocks. */ |
| if (t32 != root->index_block_clst * SECTOR_SIZE) |
| goto out; |
| |
| /* Check alignment to a cluster. */ |
| if ((sbi->cluster_size >> SECTOR_SHIFT) & |
| (root->index_block_clst - 1)) { |
| goto out; |
| } |
| |
| indx->vbn2vbo_bits = SECTOR_SHIFT; |
| } else { |
| /* Index record must be a multiple of cluster size. */ |
| if (t32 != root->index_block_clst << sbi->cluster_bits) |
| goto out; |
| |
| indx->vbn2vbo_bits = sbi->cluster_bits; |
| } |
| |
| init_rwsem(&indx->run_lock); |
| |
| indx->cmp = get_cmp_func(root); |
| if (!indx->cmp) |
| goto out; |
| |
| return 0; |
| |
| out: |
| ntfs_set_state(sbi, NTFS_DIRTY_DIRTY); |
| return -EINVAL; |
| } |
| |
| static struct indx_node *indx_new(struct ntfs_index *indx, |
| struct ntfs_inode *ni, CLST vbn, |
| const __le64 *sub_vbn) |
| { |
| int err; |
| struct NTFS_DE *e; |
| struct indx_node *r; |
| struct INDEX_HDR *hdr; |
| struct INDEX_BUFFER *index; |
| u64 vbo = (u64)vbn << indx->vbn2vbo_bits; |
| u32 bytes = 1u << indx->index_bits; |
| u16 fn; |
| u32 eo; |
| |
| r = kzalloc(sizeof(struct indx_node), GFP_NOFS); |
| if (!r) |
| return ERR_PTR(-ENOMEM); |
| |
| index = kzalloc(bytes, GFP_NOFS); |
| if (!index) { |
| kfree(r); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| err = ntfs_get_bh(ni->mi.sbi, &indx->alloc_run, vbo, bytes, &r->nb); |
| |
| if (err) { |
| kfree(index); |
| kfree(r); |
| return ERR_PTR(err); |
| } |
| |
| /* Create header. */ |
| index->rhdr.sign = NTFS_INDX_SIGNATURE; |
| index->rhdr.fix_off = cpu_to_le16(sizeof(struct INDEX_BUFFER)); // 0x28 |
| fn = (bytes >> SECTOR_SHIFT) + 1; // 9 |
| index->rhdr.fix_num = cpu_to_le16(fn); |
| index->vbn = cpu_to_le64(vbn); |
| hdr = &index->ihdr; |
| eo = ALIGN(sizeof(struct INDEX_BUFFER) + fn * sizeof(short), 8); |
| hdr->de_off = cpu_to_le32(eo); |
| |
| e = Add2Ptr(hdr, eo); |
| |
| if (sub_vbn) { |
| e->flags = NTFS_IE_LAST | NTFS_IE_HAS_SUBNODES; |
| e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64)); |
| hdr->used = |
| cpu_to_le32(eo + sizeof(struct NTFS_DE) + sizeof(u64)); |
| de_set_vbn_le(e, *sub_vbn); |
| hdr->flags = 1; |
| } else { |
| e->size = cpu_to_le16(sizeof(struct NTFS_DE)); |
| hdr->used = cpu_to_le32(eo + sizeof(struct NTFS_DE)); |
| e->flags = NTFS_IE_LAST; |
| } |
| |
| hdr->total = cpu_to_le32(bytes - offsetof(struct INDEX_BUFFER, ihdr)); |
| |
| r->index = index; |
| return r; |
| } |
| |
| struct INDEX_ROOT *indx_get_root(struct ntfs_index *indx, struct ntfs_inode *ni, |
| struct ATTRIB **attr, struct mft_inode **mi) |
| { |
| struct ATTR_LIST_ENTRY *le = NULL; |
| struct ATTRIB *a; |
| const struct INDEX_NAMES *in = &s_index_names[indx->type]; |
| |
| a = ni_find_attr(ni, NULL, &le, ATTR_ROOT, in->name, in->name_len, NULL, |
| mi); |
| if (!a) |
| return NULL; |
| |
| if (attr) |
| *attr = a; |
| |
| return resident_data_ex(a, sizeof(struct INDEX_ROOT)); |
| } |
| |
| static int indx_write(struct ntfs_index *indx, struct ntfs_inode *ni, |
| struct indx_node *node, int sync) |
| { |
| struct INDEX_BUFFER *ib = node->index; |
| |
| return ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &node->nb, sync); |
| } |
| |
| /* |
| * indx_read |
| * |
| * If ntfs_readdir calls this function |
| * inode is shared locked and no ni_lock. |
| * Use rw_semaphore for read/write access to alloc_run. |
| */ |
| int indx_read(struct ntfs_index *indx, struct ntfs_inode *ni, CLST vbn, |
| struct indx_node **node) |
| { |
| int err; |
| struct INDEX_BUFFER *ib; |
| struct runs_tree *run = &indx->alloc_run; |
| struct rw_semaphore *lock = &indx->run_lock; |
| u64 vbo = (u64)vbn << indx->vbn2vbo_bits; |
| u32 bytes = 1u << indx->index_bits; |
| struct indx_node *in = *node; |
| const struct INDEX_NAMES *name; |
| |
| if (!in) { |
| in = kzalloc(sizeof(struct indx_node), GFP_NOFS); |
| if (!in) |
| return -ENOMEM; |
| } else { |
| nb_put(&in->nb); |
| } |
| |
| ib = in->index; |
| if (!ib) { |
| ib = kmalloc(bytes, GFP_NOFS); |
| if (!ib) { |
| err = -ENOMEM; |
| goto out; |
| } |
| } |
| |
| down_read(lock); |
| err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb); |
| up_read(lock); |
| if (!err) |
| goto ok; |
| |
| if (err == -E_NTFS_FIXUP) |
| goto ok; |
| |
| if (err != -ENOENT) |
| goto out; |
| |
| name = &s_index_names[indx->type]; |
| down_write(lock); |
| err = attr_load_runs_range(ni, ATTR_ALLOC, name->name, name->name_len, |
| run, vbo, vbo + bytes); |
| up_write(lock); |
| if (err) |
| goto out; |
| |
| down_read(lock); |
| err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb); |
| up_read(lock); |
| if (err == -E_NTFS_FIXUP) |
| goto ok; |
| |
| if (err) |
| goto out; |
| |
| ok: |
| if (!index_buf_check(ib, bytes, &vbn)) { |
| ntfs_inode_err(&ni->vfs_inode, "directory corrupted"); |
| ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR); |
| err = -EINVAL; |
| goto out; |
| } |
| |
| if (err == -E_NTFS_FIXUP) { |
| ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &in->nb, 0); |
| err = 0; |
| } |
| |
| /* check for index header length */ |
| if (offsetof(struct INDEX_BUFFER, ihdr) + ib->ihdr.used > bytes) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| in->index = ib; |
| *node = in; |
| |
| out: |
| if (ib != in->index) |
| kfree(ib); |
| |
| if (*node != in) { |
| nb_put(&in->nb); |
| kfree(in); |
| } |
| |
| return err; |
| } |
| |
| /* |
| * indx_find - Scan NTFS directory for given entry. |
| */ |
| int indx_find(struct ntfs_index *indx, struct ntfs_inode *ni, |
| const struct INDEX_ROOT *root, const void *key, size_t key_len, |
| const void *ctx, int *diff, struct NTFS_DE **entry, |
| struct ntfs_fnd *fnd) |
| { |
| int err; |
| struct NTFS_DE *e; |
| struct indx_node *node; |
| |
| if (!root) |
| root = indx_get_root(&ni->dir, ni, NULL, NULL); |
| |
| if (!root) { |
| /* Should not happen. */ |
| return -EINVAL; |
| } |
| |
| /* Check cache. */ |
| e = fnd->level ? fnd->de[fnd->level - 1] : fnd->root_de; |
| if (e && !de_is_last(e) && |
| !(*indx->cmp)(key, key_len, e + 1, le16_to_cpu(e->key_size), ctx)) { |
| *entry = e; |
| *diff = 0; |
| return 0; |
| } |
| |
| /* Soft finder reset. */ |
| fnd_clear(fnd); |
| |
| /* Lookup entry that is <= to the search value. */ |
| e = hdr_find_e(indx, &root->ihdr, key, key_len, ctx, diff); |
| if (!e) |
| return -EINVAL; |
| |
| fnd->root_de = e; |
| |
| for (;;) { |
| node = NULL; |
| if (*diff >= 0 || !de_has_vcn_ex(e)) |
| break; |
| |
| /* Read next level. */ |
| err = indx_read(indx, ni, de_get_vbn(e), &node); |
| if (err) |
| return err; |
| |
| /* Lookup entry that is <= to the search value. */ |
| e = hdr_find_e(indx, &node->index->ihdr, key, key_len, ctx, |
| diff); |
| if (!e) { |
| put_indx_node(node); |
| return -EINVAL; |
| } |
| |
| fnd_push(fnd, node, e); |
| } |
| |
| *entry = e; |
| return 0; |
| } |
| |
| int indx_find_sort(struct ntfs_index *indx, struct ntfs_inode *ni, |
| const struct INDEX_ROOT *root, struct NTFS_DE **entry, |
| struct ntfs_fnd *fnd) |
| { |
| int err; |
| struct indx_node *n = NULL; |
| struct NTFS_DE *e; |
| size_t iter = 0; |
| int level = fnd->level; |
| |
| if (!*entry) { |
| /* Start find. */ |
| e = hdr_first_de(&root->ihdr); |
| if (!e) |
| return 0; |
| fnd_clear(fnd); |
| fnd->root_de = e; |
| } else if (!level) { |
| if (de_is_last(fnd->root_de)) { |
| *entry = NULL; |
| return 0; |
| } |
| |
| e = hdr_next_de(&root->ihdr, fnd->root_de); |
| if (!e) |
| return -EINVAL; |
| fnd->root_de = e; |
| } else { |
| n = fnd->nodes[level - 1]; |
| e = fnd->de[level - 1]; |
| |
| if (de_is_last(e)) |
| goto pop_level; |
| |
| e = hdr_next_de(&n->index->ihdr, e); |
| if (!e) |
| return -EINVAL; |
| |
| fnd->de[level - 1] = e; |
| } |
| |
| /* Just to avoid tree cycle. */ |
| next_iter: |
| if (iter++ >= 1000) |
| return -EINVAL; |
| |
| while (de_has_vcn_ex(e)) { |
| if (le16_to_cpu(e->size) < |
| sizeof(struct NTFS_DE) + sizeof(u64)) { |
| if (n) { |
| fnd_pop(fnd); |
| kfree(n); |
| } |
| return -EINVAL; |
| } |
| |
| /* Read next level. */ |
| err = indx_read(indx, ni, de_get_vbn(e), &n); |
| if (err) |
| return err; |
| |
| /* Try next level. */ |
| e = hdr_first_de(&n->index->ihdr); |
| if (!e) { |
| kfree(n); |
| return -EINVAL; |
| } |
| |
| fnd_push(fnd, n, e); |
| } |
| |
| if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) { |
| *entry = e; |
| return 0; |
| } |
| |
| pop_level: |
| for (;;) { |
| if (!de_is_last(e)) |
| goto next_iter; |
| |
| /* Pop one level. */ |
| if (n) { |
| fnd_pop(fnd); |
| kfree(n); |
| } |
| |
| level = fnd->level; |
| |
| if (level) { |
| n = fnd->nodes[level - 1]; |
| e = fnd->de[level - 1]; |
| } else if (fnd->root_de) { |
| n = NULL; |
| e = fnd->root_de; |
| fnd->root_de = NULL; |
| } else { |
| *entry = NULL; |
| return 0; |
| } |
| |
| if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) { |
| *entry = e; |
| if (!fnd->root_de) |
| fnd->root_de = e; |
| return 0; |
| } |
| } |
| } |
| |
| int indx_find_raw(struct ntfs_index *indx, struct ntfs_inode *ni, |
| const struct INDEX_ROOT *root, struct NTFS_DE **entry, |
| size_t *off, struct ntfs_fnd *fnd) |
| { |
| int err; |
| struct indx_node *n = NULL; |
| struct NTFS_DE *e = NULL; |
| struct NTFS_DE *e2; |
| size_t bit; |
| CLST next_used_vbn; |
| CLST next_vbn; |
| u32 record_size = ni->mi.sbi->record_size; |
| |
| /* Use non sorted algorithm. */ |
| if (!*entry) { |
| /* This is the first call. */ |
| e = hdr_first_de(&root->ihdr); |
| if (!e) |
| return 0; |
| fnd_clear(fnd); |
| fnd->root_de = e; |
| |
| /* The first call with setup of initial element. */ |
| if (*off >= record_size) { |
| next_vbn = (((*off - record_size) >> indx->index_bits)) |
| << indx->idx2vbn_bits; |
| /* Jump inside cycle 'for'. */ |
| goto next; |
| } |
| |
| /* Start enumeration from root. */ |
| *off = 0; |
| } else if (!fnd->root_de) |
| return -EINVAL; |
| |
| for (;;) { |
| /* Check if current entry can be used. */ |
| if (e && le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) |
| goto ok; |
| |
| if (!fnd->level) { |
| /* Continue to enumerate root. */ |
| if (!de_is_last(fnd->root_de)) { |
| e = hdr_next_de(&root->ihdr, fnd->root_de); |
| if (!e) |
| return -EINVAL; |
| fnd->root_de = e; |
| continue; |
| } |
| |
| /* Start to enumerate indexes from 0. */ |
| next_vbn = 0; |
| } else { |
| /* Continue to enumerate indexes. */ |
| e2 = fnd->de[fnd->level - 1]; |
| |
| n = fnd->nodes[fnd->level - 1]; |
| |
| if (!de_is_last(e2)) { |
| e = hdr_next_de(&n->index->ihdr, e2); |
| if (!e) |
| return -EINVAL; |
| fnd->de[fnd->level - 1] = e; |
| continue; |
| } |
| |
| /* Continue with next index. */ |
| next_vbn = le64_to_cpu(n->index->vbn) + |
| root->index_block_clst; |
| } |
| |
| next: |
| /* Release current index. */ |
| if (n) { |
| fnd_pop(fnd); |
| put_indx_node(n); |
| n = NULL; |
| } |
| |
| /* Skip all free indexes. */ |
| bit = next_vbn >> indx->idx2vbn_bits; |
| err = indx_used_bit(indx, ni, &bit); |
| if (err == -ENOENT || bit == MINUS_ONE_T) { |
| /* No used indexes. */ |
| *entry = NULL; |
| return 0; |
| } |
| |
| next_used_vbn = bit << indx->idx2vbn_bits; |
| |
| /* Read buffer into memory. */ |
| err = indx_read(indx, ni, next_used_vbn, &n); |
| if (err) |
| return err; |
| |
| e = hdr_first_de(&n->index->ihdr); |
| fnd_push(fnd, n, e); |
| if (!e) |
| return -EINVAL; |
| } |
| |
| ok: |
| /* Return offset to restore enumerator if necessary. */ |
| if (!n) { |
| /* 'e' points in root, */ |
| *off = PtrOffset(&root->ihdr, e); |
| } else { |
| /* 'e' points in index, */ |
| *off = (le64_to_cpu(n->index->vbn) << indx->vbn2vbo_bits) + |
| record_size + PtrOffset(&n->index->ihdr, e); |
| } |
| |
| *entry = e; |
| return 0; |
| } |
| |
| /* |
| * indx_create_allocate - Create "Allocation + Bitmap" attributes. |
| */ |
| static int indx_create_allocate(struct ntfs_index *indx, struct ntfs_inode *ni, |
| CLST *vbn) |
| { |
| int err; |
| struct ntfs_sb_info *sbi = ni->mi.sbi; |
| struct ATTRIB *bitmap; |
| struct ATTRIB *alloc; |
| u32 data_size = 1u << indx->index_bits; |
| u32 alloc_size = ntfs_up_cluster(sbi, data_size); |
| CLST len = alloc_size >> sbi->cluster_bits; |
| const struct INDEX_NAMES *in = &s_index_names[indx->type]; |
| CLST alen; |
| struct runs_tree run; |
| |
| run_init(&run); |
| |
| err = attr_allocate_clusters(sbi, &run, 0, 0, len, NULL, ALLOCATE_DEF, |
| &alen, 0, NULL, NULL); |
| if (err) |
| goto out; |
| |
| err = ni_insert_nonresident(ni, ATTR_ALLOC, in->name, in->name_len, |
| &run, 0, len, 0, &alloc, NULL, NULL); |
| if (err) |
| goto out1; |
| |
| alloc->nres.valid_size = alloc->nres.data_size = cpu_to_le64(data_size); |
| |
| err = ni_insert_resident(ni, bitmap_size(1), ATTR_BITMAP, in->name, |
| in->name_len, &bitmap, NULL, NULL); |
| if (err) |
| goto out2; |
| |
| if (in->name == I30_NAME) { |
| ni->vfs_inode.i_size = data_size; |
| inode_set_bytes(&ni->vfs_inode, alloc_size); |
| } |
| |
| memcpy(&indx->alloc_run, &run, sizeof(run)); |
| |
| *vbn = 0; |
| |
| return 0; |
| |
| out2: |
| mi_remove_attr(NULL, &ni->mi, alloc); |
| |
| out1: |
| run_deallocate(sbi, &run, false); |
| |
| out: |
| return err; |
| } |
| |
| /* |
| * indx_add_allocate - Add clusters to index. |
| */ |
| static int indx_add_allocate(struct ntfs_index *indx, struct ntfs_inode *ni, |
| CLST *vbn) |
| { |
| int err; |
| size_t bit; |
| u64 data_size; |
| u64 bmp_size, bmp_size_v; |
| struct ATTRIB *bmp, *alloc; |
| struct mft_inode *mi; |
| const struct INDEX_NAMES *in = &s_index_names[indx->type]; |
| |
| err = indx_find_free(indx, ni, &bit, &bmp); |
| if (err) |
| goto out1; |
| |
| if (bit != MINUS_ONE_T) { |
| bmp = NULL; |
| } else { |
| if (bmp->non_res) { |
| bmp_size = le64_to_cpu(bmp->nres.data_size); |
| bmp_size_v = le64_to_cpu(bmp->nres.valid_size); |
| } else { |
| bmp_size = bmp_size_v = le32_to_cpu(bmp->res.data_size); |
| } |
| |
| bit = bmp_size << 3; |
| } |
| |
| data_size = (u64)(bit + 1) << indx->index_bits; |
| |
| if (bmp) { |
| /* Increase bitmap. */ |
| err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len, |
| &indx->bitmap_run, bitmap_size(bit + 1), |
| NULL, true, NULL); |
| if (err) |
| goto out1; |
| } |
| |
| alloc = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, in->name, in->name_len, |
| NULL, &mi); |
| if (!alloc) { |
| err = -EINVAL; |
| if (bmp) |
| goto out2; |
| goto out1; |
| } |
| |
| /* Increase allocation. */ |
| err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len, |
| &indx->alloc_run, data_size, &data_size, true, |
| NULL); |
| if (err) { |
| if (bmp) |
| goto out2; |
| goto out1; |
| } |
| |
| if (in->name == I30_NAME) |
| ni->vfs_inode.i_size = data_size; |
| |
| *vbn = bit << indx->idx2vbn_bits; |
| |
| return 0; |
| |
| out2: |
| /* Ops. No space? */ |
| attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len, |
| &indx->bitmap_run, bmp_size, &bmp_size_v, false, NULL); |
| |
| out1: |
| return err; |
| } |
| |
| /* |
| * indx_insert_into_root - Attempt to insert an entry into the index root. |
| * |
| * @undo - True if we undoing previous remove. |
| * If necessary, it will twiddle the index b-tree. |
| */ |
| static int indx_insert_into_root(struct ntfs_index *indx, struct ntfs_inode *ni, |
| const struct NTFS_DE *new_de, |
| struct NTFS_DE *root_de, const void *ctx, |
| struct ntfs_fnd *fnd, bool undo) |
| { |
| int err = 0; |
| struct NTFS_DE *e, *e0, *re; |
| struct mft_inode *mi; |
| struct ATTRIB *attr; |
| struct INDEX_HDR *hdr; |
| struct indx_node *n; |
| CLST new_vbn; |
| __le64 *sub_vbn, t_vbn; |
| u16 new_de_size; |
| u32 hdr_used, hdr_total, asize, to_move; |
| u32 root_size, new_root_size; |
| struct ntfs_sb_info *sbi; |
| int ds_root; |
| struct INDEX_ROOT *root, *a_root; |
| |
| /* Get the record this root placed in. */ |
| root = indx_get_root(indx, ni, &attr, &mi); |
| if (!root) |
| return -EINVAL; |
| |
| /* |
| * Try easy case: |
| * hdr_insert_de will succeed if there's |
| * room the root for the new entry. |
| */ |
| hdr = &root->ihdr; |
| sbi = ni->mi.sbi; |
| new_de_size = le16_to_cpu(new_de->size); |
| hdr_used = le32_to_cpu(hdr->used); |
| hdr_total = le32_to_cpu(hdr->total); |
| asize = le32_to_cpu(attr->size); |
| root_size = le32_to_cpu(attr->res.data_size); |
| |
| ds_root = new_de_size + hdr_used - hdr_total; |
| |
| /* If 'undo' is set then reduce requirements. */ |
| if ((undo || asize + ds_root < sbi->max_bytes_per_attr) && |
| mi_resize_attr(mi, attr, ds_root)) { |
| hdr->total = cpu_to_le32(hdr_total + ds_root); |
| e = hdr_insert_de(indx, hdr, new_de, root_de, ctx); |
| WARN_ON(!e); |
| fnd_clear(fnd); |
| fnd->root_de = e; |
| |
| return 0; |
| } |
| |
| /* Make a copy of root attribute to restore if error. */ |
| a_root = kmemdup(attr, asize, GFP_NOFS); |
| if (!a_root) |
| return -ENOMEM; |
| |
| /* |
| * Copy all the non-end entries from |
| * the index root to the new buffer. |
| */ |
| to_move = 0; |
| e0 = hdr_first_de(hdr); |
| |
| /* Calculate the size to copy. */ |
| for (e = e0;; e = hdr_next_de(hdr, e)) { |
| if (!e) { |
| err = -EINVAL; |
| goto out_free_root; |
| } |
| |
| if (de_is_last(e)) |
| break; |
| to_move += le16_to_cpu(e->size); |
| } |
| |
| if (!to_move) { |
| re = NULL; |
| } else { |
| re = kmemdup(e0, to_move, GFP_NOFS); |
| if (!re) { |
| err = -ENOMEM; |
| goto out_free_root; |
| } |
| } |
| |
| sub_vbn = NULL; |
| if (de_has_vcn(e)) { |
| t_vbn = de_get_vbn_le(e); |
| sub_vbn = &t_vbn; |
| } |
| |
| new_root_size = sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE) + |
| sizeof(u64); |
| ds_root = new_root_size - root_size; |
| |
| if (ds_root > 0 && asize + ds_root > sbi->max_bytes_per_attr) { |
| /* Make root external. */ |
| err = -EOPNOTSUPP; |
| goto out_free_re; |
| } |
| |
| if (ds_root) |
| mi_resize_attr(mi, attr, ds_root); |
| |
| /* Fill first entry (vcn will be set later). */ |
| e = (struct NTFS_DE *)(root + 1); |
| memset(e, 0, sizeof(struct NTFS_DE)); |
| e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64)); |
| e->flags = NTFS_IE_HAS_SUBNODES | NTFS_IE_LAST; |
| |
| hdr->flags = 1; |
| hdr->used = hdr->total = |
| cpu_to_le32(new_root_size - offsetof(struct INDEX_ROOT, ihdr)); |
| |
| fnd->root_de = hdr_first_de(hdr); |
| mi->dirty = true; |
| |
| /* Create alloc and bitmap attributes (if not). */ |
| err = run_is_empty(&indx->alloc_run) |
| ? indx_create_allocate(indx, ni, &new_vbn) |
| : indx_add_allocate(indx, ni, &new_vbn); |
| |
| /* Layout of record may be changed, so rescan root. */ |
| root = indx_get_root(indx, ni, &attr, &mi); |
| if (!root) { |
| /* Bug? */ |
| ntfs_set_state(sbi, NTFS_DIRTY_ERROR); |
| err = -EINVAL; |
| goto out_free_re; |
| } |
| |
| if (err) { |
| /* Restore root. */ |
| if (mi_resize_attr(mi, attr, -ds_root)) { |
| memcpy(attr, a_root, asize); |
| } else { |
| /* Bug? */ |
| ntfs_set_state(sbi, NTFS_DIRTY_ERROR); |
| } |
| goto out_free_re; |
| } |
| |
| e = (struct NTFS_DE *)(root + 1); |
| *(__le64 *)(e + 1) = cpu_to_le64(new_vbn); |
| mi->dirty = true; |
| |
| /* Now we can create/format the new buffer and copy the entries into. */ |
| n = indx_new(indx, ni, new_vbn, sub_vbn); |
| if (IS_ERR(n)) { |
| err = PTR_ERR(n); |
| goto out_free_re; |
| } |
| |
| hdr = &n->index->ihdr; |
| hdr_used = le32_to_cpu(hdr->used); |
| hdr_total = le32_to_cpu(hdr->total); |
| |
| /* Copy root entries into new buffer. */ |
| hdr_insert_head(hdr, re, to_move); |
| |
| /* Update bitmap attribute. */ |
| indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits); |
| |
| /* Check if we can insert new entry new index buffer. */ |
| if (hdr_used + new_de_size > hdr_total) { |
| /* |
| * This occurs if MFT record is the same or bigger than index |
| * buffer. Move all root new index and have no space to add |
| * new entry classic case when MFT record is 1K and index |
| * buffer 4K the problem should not occurs. |
| */ |
| kfree(re); |
| indx_write(indx, ni, n, 0); |
| |
| put_indx_node(n); |
| fnd_clear(fnd); |
| err = indx_insert_entry(indx, ni, new_de, ctx, fnd, undo); |
| goto out_free_root; |
| } |
| |
| /* |
| * Now root is a parent for new index buffer. |
| * Insert NewEntry a new buffer. |
| */ |
| e = hdr_insert_de(indx, hdr, new_de, NULL, ctx); |
| if (!e) { |
| err = -EINVAL; |
| goto out_put_n; |
| } |
| fnd_push(fnd, n, e); |
| |
| /* Just write updates index into disk. */ |
| indx_write(indx, ni, n, 0); |
| |
| n = NULL; |
| |
| out_put_n: |
| put_indx_node(n); |
| out_free_re: |
| kfree(re); |
| out_free_root: |
| kfree(a_root); |
| return err; |
| } |
| |
| /* |
| * indx_insert_into_buffer |
| * |
| * Attempt to insert an entry into an Index Allocation Buffer. |
| * If necessary, it will split the buffer. |
| */ |
| static int |
| indx_insert_into_buffer(struct ntfs_index *indx, struct ntfs_inode *ni, |
| struct INDEX_ROOT *root, const struct NTFS_DE *new_de, |
| const void *ctx, int level, struct ntfs_fnd *fnd) |
| { |
| int err; |
| const struct NTFS_DE *sp; |
| struct NTFS_DE *e, *de_t, *up_e; |
| struct indx_node *n2; |
| struct indx_node *n1 = fnd->nodes[level]; |
| struct INDEX_HDR *hdr1 = &n1->index->ihdr; |
| struct INDEX_HDR *hdr2; |
| u32 to_copy, used; |
| CLST new_vbn; |
| __le64 t_vbn, *sub_vbn; |
| u16 sp_size; |
| |
| /* Try the most easy case. */ |
| e = fnd->level - 1 == level ? fnd->de[level] : NULL; |
| e = hdr_insert_de(indx, hdr1, new_de, e, ctx); |
| fnd->de[level] = e; |
| if (e) { |
| /* Just write updated index into disk. */ |
| indx_write(indx, ni, n1, 0); |
| return 0; |
| } |
| |
| /* |
| * No space to insert into buffer. Split it. |
| * To split we: |
| * - Save split point ('cause index buffers will be changed) |
| * - Allocate NewBuffer and copy all entries <= sp into new buffer |
| * - Remove all entries (sp including) from TargetBuffer |
| * - Insert NewEntry into left or right buffer (depending on sp <=> |
| * NewEntry) |
| * - Insert sp into parent buffer (or root) |
| * - Make sp a parent for new buffer |
| */ |
| sp = hdr_find_split(hdr1); |
| if (!sp) |
| return -EINVAL; |
| |
| sp_size = le16_to_cpu(sp->size); |
| up_e = kmalloc(sp_size + sizeof(u64), GFP_NOFS); |
| if (!up_e) |
| return -ENOMEM; |
| memcpy(up_e, sp, sp_size); |
| |
| if (!hdr1->flags) { |
| up_e->flags |= NTFS_IE_HAS_SUBNODES; |
| up_e->size = cpu_to_le16(sp_size + sizeof(u64)); |
| sub_vbn = NULL; |
| } else { |
| t_vbn = de_get_vbn_le(up_e); |
| sub_vbn = &t_vbn; |
| } |
| |
| /* Allocate on disk a new index allocation buffer. */ |
| err = indx_add_allocate(indx, ni, &new_vbn); |
| if (err) |
| goto out; |
| |
| /* Allocate and format memory a new index buffer. */ |
| n2 = indx_new(indx, ni, new_vbn, sub_vbn); |
| if (IS_ERR(n2)) { |
| err = PTR_ERR(n2); |
| goto out; |
| } |
| |
| hdr2 = &n2->index->ihdr; |
| |
| /* Make sp a parent for new buffer. */ |
| de_set_vbn(up_e, new_vbn); |
| |
| /* Copy all the entries <= sp into the new buffer. */ |
| de_t = hdr_first_de(hdr1); |
| to_copy = PtrOffset(de_t, sp); |
| hdr_insert_head(hdr2, de_t, to_copy); |
| |
| /* Remove all entries (sp including) from hdr1. */ |
| used = le32_to_cpu(hdr1->used) - to_copy - sp_size; |
| memmove(de_t, Add2Ptr(sp, sp_size), used - le32_to_cpu(hdr1->de_off)); |
| hdr1->used = cpu_to_le32(used); |
| |
| /* |
| * Insert new entry into left or right buffer |
| * (depending on sp <=> new_de). |
| */ |
| hdr_insert_de(indx, |
| (*indx->cmp)(new_de + 1, le16_to_cpu(new_de->key_size), |
| up_e + 1, le16_to_cpu(up_e->key_size), |
| ctx) < 0 |
| ? hdr2 |
| : hdr1, |
| new_de, NULL, ctx); |
| |
| indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits); |
| |
| indx_write(indx, ni, n1, 0); |
| indx_write(indx, ni, n2, 0); |
| |
| put_indx_node(n2); |
| |
| /* |
| * We've finished splitting everybody, so we are ready to |
| * insert the promoted entry into the parent. |
| */ |
| if (!level) { |
| /* Insert in root. */ |
| err = indx_insert_into_root(indx, ni, up_e, NULL, ctx, fnd, 0); |
| if (err) |
| goto out; |
| } else { |
| /* |
| * The target buffer's parent is another index buffer. |
| * TODO: Remove recursion. |
| */ |
| err = indx_insert_into_buffer(indx, ni, root, up_e, ctx, |
| level - 1, fnd); |
| if (err) |
| goto out; |
| } |
| |
| out: |
| kfree(up_e); |
| |
| return err; |
| } |
| |
| /* |
| * indx_insert_entry - Insert new entry into index. |
| * |
| * @undo - True if we undoing previous remove. |
| */ |
| int indx_insert_entry(struct ntfs_index *indx, struct ntfs_inode *ni, |
| const struct NTFS_DE *new_de, const void *ctx, |
| struct ntfs_fnd *fnd, bool undo) |
| { |
| int err; |
| int diff; |
| struct NTFS_DE *e; |
| struct ntfs_fnd *fnd_a = NULL; |
| struct INDEX_ROOT *root; |
| |
| if (!fnd) { |
| fnd_a = fnd_get(); |
| if (!fnd_a) { |
| err = -ENOMEM; |
| goto out1; |
| } |
| fnd = fnd_a; |
| } |
| |
| root = indx_get_root(indx, ni, NULL, NULL); |
| if (!root) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| if (fnd_is_empty(fnd)) { |
| /* |
| * Find the spot the tree where we want to |
| * insert the new entry. |
| */ |
| err = indx_find(indx, ni, root, new_de + 1, |
| le16_to_cpu(new_de->key_size), ctx, &diff, &e, |
| fnd); |
| if (err) |
| goto out; |
| |
| if (!diff) { |
| err = -EEXIST; |
| goto out; |
| } |
| } |
| |
| if (!fnd->level) { |
| /* |
| * The root is also a leaf, so we'll insert the |
| * new entry into it. |
| */ |
| err = indx_insert_into_root(indx, ni, new_de, fnd->root_de, ctx, |
| fnd, undo); |
| if (err) |
| goto out; |
| } else { |
| /* |
| * Found a leaf buffer, so we'll insert the new entry into it. |
| */ |
| err = indx_insert_into_buffer(indx, ni, root, new_de, ctx, |
| fnd->level - 1, fnd); |
| if (err) |
| goto out; |
| } |
| |
| out: |
| fnd_put(fnd_a); |
| out1: |
| return err; |
| } |
| |
| /* |
| * indx_find_buffer - Locate a buffer from the tree. |
| */ |
| static struct indx_node *indx_find_buffer(struct ntfs_index *indx, |
| struct ntfs_inode *ni, |
| const struct INDEX_ROOT *root, |
| __le64 vbn, struct indx_node *n) |
| { |
| int err; |
| const struct NTFS_DE *e; |
| struct indx_node *r; |
| const struct INDEX_HDR *hdr = n ? &n->index->ihdr : &root->ihdr; |
| |
| /* Step 1: Scan one level. */ |
| for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) { |
| if (!e) |
| return ERR_PTR(-EINVAL); |
| |
| if (de_has_vcn(e) && vbn == de_get_vbn_le(e)) |
| return n; |
| |
| if (de_is_last(e)) |
| break; |
| } |
| |
| /* Step2: Do recursion. */ |
| e = Add2Ptr(hdr, le32_to_cpu(hdr->de_off)); |
| for (;;) { |
| if (de_has_vcn_ex(e)) { |
| err = indx_read(indx, ni, de_get_vbn(e), &n); |
| if (err) |
| return ERR_PTR(err); |
| |
| r = indx_find_buffer(indx, ni, root, vbn, n); |
| if (r) |
| return r; |
| } |
| |
| if (de_is_last(e)) |
| break; |
| |
| e = Add2Ptr(e, le16_to_cpu(e->size)); |
| } |
| |
| return NULL; |
| } |
| |
| /* |
| * indx_shrink - Deallocate unused tail indexes. |
| */ |
| static int indx_shrink(struct ntfs_index *indx, struct ntfs_inode *ni, |
| size_t bit) |
| { |
| int err = 0; |
| u64 bpb, new_data; |
| size_t nbits; |
| struct ATTRIB *b; |
| struct ATTR_LIST_ENTRY *le = NULL; |
| const struct INDEX_NAMES *in = &s_index_names[indx->type]; |
| |
| b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len, |
| NULL, NULL); |
| |
| if (!b) |
| return -ENOENT; |
| |
| if (!b->non_res) { |
| unsigned long pos; |
| const unsigned long *bm = resident_data(b); |
| |
| nbits = (size_t)le32_to_cpu(b->res.data_size) * 8; |
| |
| if (bit >= nbits) |
| return 0; |
| |
| pos = find_next_bit_le(bm, nbits, bit); |
| if (pos < nbits) |
| return 0; |
| } else { |
| size_t used = MINUS_ONE_T; |
| |
| nbits = le64_to_cpu(b->nres.data_size) * 8; |
| |
| if (bit >= nbits) |
| return 0; |
| |
| err = scan_nres_bitmap(ni, b, indx, bit, &scan_for_used, &used); |
| if (err) |
| return err; |
| |
| if (used != MINUS_ONE_T) |
| return 0; |
| } |
| |
| new_data = (u64)bit << indx->index_bits; |
| |
| err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len, |
| &indx->alloc_run, new_data, &new_data, false, NULL); |
| if (err) |
| return err; |
| |
| if (in->name == I30_NAME) |
| ni->vfs_inode.i_size = new_data; |
| |
| bpb = bitmap_size(bit); |
| if (bpb * 8 == nbits) |
| return 0; |
| |
| err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len, |
| &indx->bitmap_run, bpb, &bpb, false, NULL); |
| |
| return err; |
| } |
| |
| static int indx_free_children(struct ntfs_index *indx, struct ntfs_inode *ni, |
| const struct NTFS_DE *e, bool trim) |
| { |
| int err; |
| struct indx_node *n = NULL; |
| struct INDEX_HDR *hdr; |
| CLST vbn = de_get_vbn(e); |
| size_t i; |
| |
| err = indx_read(indx, ni, vbn, &n); |
| if (err) |
| return err; |
| |
| hdr = &n->index->ihdr; |
| /* First, recurse into the children, if any. */ |
| if (hdr_has_subnode(hdr)) { |
| for (e = hdr_first_de(hdr); e; e = hdr_next_de(hdr, e)) { |
| indx_free_children(indx, ni, e, false); |
| if (de_is_last(e)) |
| break; |
| } |
| } |
| |
| put_indx_node(n); |
| |
| i = vbn >> indx->idx2vbn_bits; |
| /* |
| * We've gotten rid of the children; add this buffer to the free list. |
| */ |
| indx_mark_free(indx, ni, i); |
| |
| if (!trim) |
| return 0; |
| |
| /* |
| * If there are no used indexes after current free index |
| * then we can truncate allocation and bitmap. |
| * Use bitmap to estimate the case. |
| */ |
| indx_shrink(indx, ni, i + 1); |
| return 0; |
| } |
| |
| /* |
| * indx_get_entry_to_replace |
| * |
| * Find a replacement entry for a deleted entry. |
| * Always returns a node entry: |
| * NTFS_IE_HAS_SUBNODES is set the flags and the size includes the sub_vcn. |
| */ |
| static int indx_get_entry_to_replace(struct ntfs_index *indx, |
| struct ntfs_inode *ni, |
| const struct NTFS_DE *de_next, |
| struct NTFS_DE **de_to_replace, |
| struct ntfs_fnd *fnd) |
| { |
| int err; |
| int level = -1; |
| CLST vbn; |
| struct NTFS_DE *e, *te, *re; |
| struct indx_node *n; |
| struct INDEX_BUFFER *ib; |
| |
| *de_to_replace = NULL; |
| |
| /* Find first leaf entry down from de_next. */ |
| vbn = de_get_vbn(de_next); |
| for (;;) { |
| n = NULL; |
| err = indx_read(indx, ni, vbn, &n); |
| if (err) |
| goto out; |
| |
| e = hdr_first_de(&n->index->ihdr); |
| fnd_push(fnd, n, e); |
| |
| if (!de_is_last(e)) { |
| /* |
| * This buffer is non-empty, so its first entry |
| * could be used as the replacement entry. |
| */ |
| level = fnd->level - 1; |
| } |
| |
| if (!de_has_vcn(e)) |
| break; |
| |
| /* This buffer is a node. Continue to go down. */ |
| vbn = de_get_vbn(e); |
| } |
| |
| if (level == -1) |
| goto out; |
| |
| n = fnd->nodes[level]; |
| te = hdr_first_de(&n->index->ihdr); |
| /* Copy the candidate entry into the replacement entry buffer. */ |
| re = kmalloc(le16_to_cpu(te->size) + sizeof(u64), GFP_NOFS); |
| if (!re) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| *de_to_replace = re; |
| memcpy(re, te, le16_to_cpu(te->size)); |
| |
| if (!de_has_vcn(re)) { |
| /* |
| * The replacement entry we found doesn't have a sub_vcn. |
| * increase its size to hold one. |
| */ |
| le16_add_cpu(&re->size, sizeof(u64)); |
| re->flags |= NTFS_IE_HAS_SUBNODES; |
| } else { |
| /* |
| * The replacement entry we found was a node entry, which |
| * means that all its child buffers are empty. Return them |
| * to the free pool. |
| */ |
| indx_free_children(indx, ni, te, true); |
| } |
| |
| /* |
| * Expunge the replacement entry from its former location, |
| * and then write that buffer. |
| */ |
| ib = n->index; |
| e = hdr_delete_de(&ib->ihdr, te); |
| |
| fnd->de[level] = e; |
| indx_write(indx, ni, n, 0); |
| |
| if (ib_is_leaf(ib) && ib_is_empty(ib)) { |
| /* An empty leaf. */ |
| return 0; |
| } |
| |
| out: |
| fnd_clear(fnd); |
| return err; |
| } |
| |
| /* |
| * indx_delete_entry - Delete an entry from the index. |
| */ |
| int indx_delete_entry(struct ntfs_index *indx, struct ntfs_inode *ni, |
| const void *key, u32 key_len, const void *ctx) |
| { |
| int err, diff; |
| struct INDEX_ROOT *root; |
| struct INDEX_HDR *hdr; |
| struct ntfs_fnd *fnd, *fnd2; |
| struct INDEX_BUFFER *ib; |
| struct NTFS_DE *e, *re, *next, *prev, *me; |
| struct indx_node *n, *n2d = NULL; |
| __le64 sub_vbn; |
| int level, level2; |
| struct ATTRIB *attr; |
| struct mft_inode *mi; |
| u32 e_size, root_size, new_root_size; |
| size_t trim_bit; |
| const struct INDEX_NAMES *in; |
| |
| fnd = fnd_get(); |
| if (!fnd) { |
| err = -ENOMEM; |
| goto out2; |
| } |
| |
| fnd2 = fnd_get(); |
| if (!fnd2) { |
| err = -ENOMEM; |
| goto out1; |
| } |
| |
| root = indx_get_root(indx, ni, &attr, &mi); |
| if (!root) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| /* Locate the entry to remove. */ |
| err = indx_find(indx, ni, root, key, key_len, ctx, &diff, &e, fnd); |
| if (err) |
| goto out; |
| |
| if (!e || diff) { |
| err = -ENOENT; |
| goto out; |
| } |
| |
| level = fnd->level; |
| |
| if (level) { |
| n = fnd->nodes[level - 1]; |
| e = fnd->de[level - 1]; |
| ib = n->index; |
| hdr = &ib->ihdr; |
| } else { |
| hdr = &root->ihdr; |
| e = fnd->root_de; |
| n = NULL; |
| } |
| |
| e_size = le16_to_cpu(e->size); |
| |
| if (!de_has_vcn_ex(e)) { |
| /* The entry to delete is a leaf, so we can just rip it out. */ |
| hdr_delete_de(hdr, e); |
| |
| if (!level) { |
| hdr->total = hdr->used; |
| |
| /* Shrink resident root attribute. */ |
| mi_resize_attr(mi, attr, 0 - e_size); |
| goto out; |
| } |
| |
| indx_write(indx, ni, n, 0); |
| |
| /* |
| * Check to see if removing that entry made |
| * the leaf empty. |
| */ |
| if (ib_is_leaf(ib) && ib_is_empty(ib)) { |
| fnd_pop(fnd); |
| fnd_push(fnd2, n, e); |
| } |
| } else { |
| /* |
| * The entry we wish to delete is a node buffer, so we |
| * have to find a replacement for it. |
| */ |
| next = de_get_next(e); |
| |
| err = indx_get_entry_to_replace(indx, ni, next, &re, fnd2); |
| if (err) |
| goto out; |
| |
| if (re) { |
| de_set_vbn_le(re, de_get_vbn_le(e)); |
| hdr_delete_de(hdr, e); |
| |
| err = level ? indx_insert_into_buffer(indx, ni, root, |
| re, ctx, |
| fnd->level - 1, |
| fnd) |
| : indx_insert_into_root(indx, ni, re, e, |
| ctx, fnd, 0); |
| kfree(re); |
| |
| if (err) |
| goto out; |
| } else { |
| /* |
| * There is no replacement for the current entry. |
| * This means that the subtree rooted at its node |
| * is empty, and can be deleted, which turn means |
| * that the node can just inherit the deleted |
| * entry sub_vcn. |
| */ |
| indx_free_children(indx, ni, next, true); |
| |
| de_set_vbn_le(next, de_get_vbn_le(e)); |
| hdr_delete_de(hdr, e); |
| if (level) { |
| indx_write(indx, ni, n, 0); |
| } else { |
| hdr->total = hdr->used; |
| |
| /* Shrink resident root attribute. */ |
| mi_resize_attr(mi, attr, 0 - e_size); |
| } |
| } |
| } |
| |
| /* Delete a branch of tree. */ |
| if (!fnd2 || !fnd2->level) |
| goto out; |
| |
| /* Reinit root 'cause it can be changed. */ |
| root = indx_get_root(indx, ni, &attr, &mi); |
| if (!root) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| n2d = NULL; |
| sub_vbn = fnd2->nodes[0]->index->vbn; |
| level2 = 0; |
| level = fnd->level; |
| |
| hdr = level ? &fnd->nodes[level - 1]->index->ihdr : &root->ihdr; |
| |
| /* Scan current level. */ |
| for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) { |
| if (!e) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e)) |
| break; |
| |
| if (de_is_last(e)) { |
| e = NULL; |
| break; |
| } |
| } |
| |
| if (!e) { |
| /* Do slow search from root. */ |
| struct indx_node *in; |
| |
| fnd_clear(fnd); |
| |
| in = indx_find_buffer(indx, ni, root, sub_vbn, NULL); |
| if (IS_ERR(in)) { |
| err = PTR_ERR(in); |
| goto out; |
| } |
| |
| if (in) |
| fnd_push(fnd, in, NULL); |
| } |
| |
| /* Merge fnd2 -> fnd. */ |
| for (level = 0; level < fnd2->level; level++) { |
| fnd_push(fnd, fnd2->nodes[level], fnd2->de[level]); |
| fnd2->nodes[level] = NULL; |
| } |
| fnd2->level = 0; |
| |
| hdr = NULL; |
| for (level = fnd->level; level; level--) { |
| struct indx_node *in = fnd->nodes[level - 1]; |
| |
| ib = in->index; |
| if (ib_is_empty(ib)) { |
| sub_vbn = ib->vbn; |
| } else { |
| hdr = &ib->ihdr; |
| n2d = in; |
| level2 = level; |
| break; |
| } |
| } |
| |
| if (!hdr) |
| hdr = &root->ihdr; |
| |
| e = hdr_first_de(hdr); |
| if (!e) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| if (hdr != &root->ihdr || !de_is_last(e)) { |
| prev = NULL; |
| while (!de_is_last(e)) { |
| if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e)) |
| break; |
| prev = e; |
| e = hdr_next_de(hdr, e); |
| if (!e) { |
| err = -EINVAL; |
| goto out; |
| } |
| } |
| |
| if (sub_vbn != de_get_vbn_le(e)) { |
| /* |
| * Didn't find the parent entry, although this buffer |
| * is the parent trail. Something is corrupt. |
| */ |
| err = -EINVAL; |
| goto out; |
| } |
| |
| if (de_is_last(e)) { |
| /* |
| * Since we can't remove the end entry, we'll remove |
| * its predecessor instead. This means we have to |
| * transfer the predecessor's sub_vcn to the end entry. |
| * Note: This index block is not empty, so the |
| * predecessor must exist. |
| */ |
| if (!prev) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| if (de_has_vcn(prev)) { |
| de_set_vbn_le(e, de_get_vbn_le(prev)); |
| } else if (de_has_vcn(e)) { |
| le16_sub_cpu(&e->size, sizeof(u64)); |
| e->flags &= ~NTFS_IE_HAS_SUBNODES; |
| le32_sub_cpu(&hdr->used, sizeof(u64)); |
| } |
| e = prev; |
| } |
| |
| /* |
| * Copy the current entry into a temporary buffer (stripping |
| * off its down-pointer, if any) and delete it from the current |
| * buffer or root, as appropriate. |
| */ |
| e_size = le16_to_cpu(e->size); |
| me = kmemdup(e, e_size, GFP_NOFS); |
| if (!me) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| if (de_has_vcn(me)) { |
| me->flags &= ~NTFS_IE_HAS_SUBNODES; |
| le16_sub_cpu(&me->size, sizeof(u64)); |
| } |
| |
| hdr_delete_de(hdr, e); |
| |
| if (hdr == &root->ihdr) { |
| level = 0; |
| hdr->total = hdr->used; |
| |
| /* Shrink resident root attribute. */ |
| mi_resize_attr(mi, attr, 0 - e_size); |
| } else { |
| indx_write(indx, ni, n2d, 0); |
| level = level2; |
| } |
| |
| /* Mark unused buffers as free. */ |
| trim_bit = -1; |
| for (; level < fnd->level; level++) { |
| ib = fnd->nodes[level]->index; |
| if (ib_is_empty(ib)) { |
| size_t k = le64_to_cpu(ib->vbn) >> |
| indx->idx2vbn_bits; |
| |
| indx_mark_free(indx, ni, k); |
| if (k < trim_bit) |
| trim_bit = k; |
| } |
| } |
| |
| fnd_clear(fnd); |
| /*fnd->root_de = NULL;*/ |
| |
| /* |
| * Re-insert the entry into the tree. |
| * Find the spot the tree where we want to insert the new entry. |
| */ |
| err = indx_insert_entry(indx, ni, me, ctx, fnd, 0); |
| kfree(me); |
| if (err) |
| goto out; |
| |
| if (trim_bit != -1) |
| indx_shrink(indx, ni, trim_bit); |
| } else { |
| /* |
| * This tree needs to be collapsed down to an empty root. |
| * Recreate the index root as an empty leaf and free all |
| * the bits the index allocation bitmap. |
| */ |
| fnd_clear(fnd); |
| fnd_clear(fnd2); |
| |
| in = &s_index_names[indx->type]; |
| |
| err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len, |
| &indx->alloc_run, 0, NULL, false, NULL); |
| if (in->name == I30_NAME) |
| ni->vfs_inode.i_size = 0; |
| |
| err = ni_remove_attr(ni, ATTR_ALLOC, in->name, in->name_len, |
| false, NULL); |
| run_close(&indx->alloc_run); |
| |
| err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len, |
| &indx->bitmap_run, 0, NULL, false, NULL); |
| err = ni_remove_attr(ni, ATTR_BITMAP, in->name, in->name_len, |
| false, NULL); |
| run_close(&indx->bitmap_run); |
| |
| root = indx_get_root(indx, ni, &attr, &mi); |
| if (!root) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| root_size = le32_to_cpu(attr->res.data_size); |
| new_root_size = |
| sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE); |
| |
| if (new_root_size != root_size && |
| !mi_resize_attr(mi, attr, new_root_size - root_size)) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| /* Fill first entry. */ |
| e = (struct NTFS_DE *)(root + 1); |
| e->ref.low = 0; |
| e->ref.high = 0; |
| e->ref.seq = 0; |
| e->size = cpu_to_le16(sizeof(struct NTFS_DE)); |
| e->flags = NTFS_IE_LAST; // 0x02 |
| e->key_size = 0; |
| e->res = 0; |
| |
| hdr = &root->ihdr; |
| hdr->flags = 0; |
| hdr->used = hdr->total = cpu_to_le32( |
| new_root_size - offsetof(struct INDEX_ROOT, ihdr)); |
| mi->dirty = true; |
| } |
| |
| out: |
| fnd_put(fnd2); |
| out1: |
| fnd_put(fnd); |
| out2: |
| return err; |
| } |
| |
| /* |
| * Update duplicated information in directory entry |
| * 'dup' - info from MFT record |
| */ |
| int indx_update_dup(struct ntfs_inode *ni, struct ntfs_sb_info *sbi, |
| const struct ATTR_FILE_NAME *fname, |
| const struct NTFS_DUP_INFO *dup, int sync) |
| { |
| int err, diff; |
| struct NTFS_DE *e = NULL; |
| struct ATTR_FILE_NAME *e_fname; |
| struct ntfs_fnd *fnd; |
| struct INDEX_ROOT *root; |
| struct mft_inode *mi; |
| struct ntfs_index *indx = &ni->dir; |
| |
| fnd = fnd_get(); |
| if (!fnd) |
| return -ENOMEM; |
| |
| root = indx_get_root(indx, ni, NULL, &mi); |
| if (!root) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| /* Find entry in directory. */ |
| err = indx_find(indx, ni, root, fname, fname_full_size(fname), sbi, |
| &diff, &e, fnd); |
| if (err) |
| goto out; |
| |
| if (!e) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| if (diff) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| e_fname = (struct ATTR_FILE_NAME *)(e + 1); |
| |
| if (!memcmp(&e_fname->dup, dup, sizeof(*dup))) { |
| /* |
| * Nothing to update in index! Try to avoid this call. |
| */ |
| goto out; |
| } |
| |
| memcpy(&e_fname->dup, dup, sizeof(*dup)); |
| |
| if (fnd->level) { |
| /* Directory entry in index. */ |
| err = indx_write(indx, ni, fnd->nodes[fnd->level - 1], sync); |
| } else { |
| /* Directory entry in directory MFT record. */ |
| mi->dirty = true; |
| if (sync) |
| err = mi_write(mi, 1); |
| else |
| mark_inode_dirty(&ni->vfs_inode); |
| } |
| |
| out: |
| fnd_put(fnd); |
| return err; |
| } |