| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Volume Management Device driver |
| * Copyright (c) 2015, Intel Corporation. |
| */ |
| |
| #include <linux/device.h> |
| #include <linux/interrupt.h> |
| #include <linux/irq.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/msi.h> |
| #include <linux/pci.h> |
| #include <linux/pci-acpi.h> |
| #include <linux/pci-ecam.h> |
| #include <linux/srcu.h> |
| #include <linux/rculist.h> |
| #include <linux/rcupdate.h> |
| |
| #include <asm/irqdomain.h> |
| |
| #define VMD_CFGBAR 0 |
| #define VMD_MEMBAR1 2 |
| #define VMD_MEMBAR2 4 |
| |
| #define PCI_REG_VMCAP 0x40 |
| #define BUS_RESTRICT_CAP(vmcap) (vmcap & 0x1) |
| #define PCI_REG_VMCONFIG 0x44 |
| #define BUS_RESTRICT_CFG(vmcfg) ((vmcfg >> 8) & 0x3) |
| #define VMCONFIG_MSI_REMAP 0x2 |
| #define PCI_REG_VMLOCK 0x70 |
| #define MB2_SHADOW_EN(vmlock) (vmlock & 0x2) |
| |
| #define MB2_SHADOW_OFFSET 0x2000 |
| #define MB2_SHADOW_SIZE 16 |
| |
| enum vmd_features { |
| /* |
| * Device may contain registers which hint the physical location of the |
| * membars, in order to allow proper address translation during |
| * resource assignment to enable guest virtualization |
| */ |
| VMD_FEAT_HAS_MEMBAR_SHADOW = (1 << 0), |
| |
| /* |
| * Device may provide root port configuration information which limits |
| * bus numbering |
| */ |
| VMD_FEAT_HAS_BUS_RESTRICTIONS = (1 << 1), |
| |
| /* |
| * Device contains physical location shadow registers in |
| * vendor-specific capability space |
| */ |
| VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP = (1 << 2), |
| |
| /* |
| * Device may use MSI-X vector 0 for software triggering and will not |
| * be used for MSI remapping |
| */ |
| VMD_FEAT_OFFSET_FIRST_VECTOR = (1 << 3), |
| |
| /* |
| * Device can bypass remapping MSI-X transactions into its MSI-X table, |
| * avoiding the requirement of a VMD MSI domain for child device |
| * interrupt handling. |
| */ |
| VMD_FEAT_CAN_BYPASS_MSI_REMAP = (1 << 4), |
| |
| /* |
| * Enable ASPM on the PCIE root ports and set the default LTR of the |
| * storage devices on platforms where these values are not configured by |
| * BIOS. This is needed for laptops, which require these settings for |
| * proper power management of the SoC. |
| */ |
| VMD_FEAT_BIOS_PM_QUIRK = (1 << 5), |
| }; |
| |
| #define VMD_BIOS_PM_QUIRK_LTR 0x1003 /* 3145728 ns */ |
| |
| #define VMD_FEATS_CLIENT (VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP | \ |
| VMD_FEAT_HAS_BUS_RESTRICTIONS | \ |
| VMD_FEAT_OFFSET_FIRST_VECTOR | \ |
| VMD_FEAT_BIOS_PM_QUIRK) |
| |
| static DEFINE_IDA(vmd_instance_ida); |
| |
| /* |
| * Lock for manipulating VMD IRQ lists. |
| */ |
| static DEFINE_RAW_SPINLOCK(list_lock); |
| |
| /** |
| * struct vmd_irq - private data to map driver IRQ to the VMD shared vector |
| * @node: list item for parent traversal. |
| * @irq: back pointer to parent. |
| * @enabled: true if driver enabled IRQ |
| * @virq: the virtual IRQ value provided to the requesting driver. |
| * |
| * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to |
| * a VMD IRQ using this structure. |
| */ |
| struct vmd_irq { |
| struct list_head node; |
| struct vmd_irq_list *irq; |
| bool enabled; |
| unsigned int virq; |
| }; |
| |
| /** |
| * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector |
| * @irq_list: the list of irq's the VMD one demuxes to. |
| * @srcu: SRCU struct for local synchronization. |
| * @count: number of child IRQs assigned to this vector; used to track |
| * sharing. |
| * @virq: The underlying VMD Linux interrupt number |
| */ |
| struct vmd_irq_list { |
| struct list_head irq_list; |
| struct srcu_struct srcu; |
| unsigned int count; |
| unsigned int virq; |
| }; |
| |
| struct vmd_dev { |
| struct pci_dev *dev; |
| |
| spinlock_t cfg_lock; |
| void __iomem *cfgbar; |
| |
| int msix_count; |
| struct vmd_irq_list *irqs; |
| |
| struct pci_sysdata sysdata; |
| struct resource resources[3]; |
| struct irq_domain *irq_domain; |
| struct pci_bus *bus; |
| u8 busn_start; |
| u8 first_vec; |
| char *name; |
| int instance; |
| }; |
| |
| static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus) |
| { |
| return container_of(bus->sysdata, struct vmd_dev, sysdata); |
| } |
| |
| static inline unsigned int index_from_irqs(struct vmd_dev *vmd, |
| struct vmd_irq_list *irqs) |
| { |
| return irqs - vmd->irqs; |
| } |
| |
| /* |
| * Drivers managing a device in a VMD domain allocate their own IRQs as before, |
| * but the MSI entry for the hardware it's driving will be programmed with a |
| * destination ID for the VMD MSI-X table. The VMD muxes interrupts in its |
| * domain into one of its own, and the VMD driver de-muxes these for the |
| * handlers sharing that VMD IRQ. The vmd irq_domain provides the operations |
| * and irq_chip to set this up. |
| */ |
| static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) |
| { |
| struct vmd_irq *vmdirq = data->chip_data; |
| struct vmd_irq_list *irq = vmdirq->irq; |
| struct vmd_dev *vmd = irq_data_get_irq_handler_data(data); |
| |
| memset(msg, 0, sizeof(*msg)); |
| msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH; |
| msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW; |
| msg->arch_addr_lo.destid_0_7 = index_from_irqs(vmd, irq); |
| } |
| |
| /* |
| * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops. |
| */ |
| static void vmd_irq_enable(struct irq_data *data) |
| { |
| struct vmd_irq *vmdirq = data->chip_data; |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&list_lock, flags); |
| WARN_ON(vmdirq->enabled); |
| list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list); |
| vmdirq->enabled = true; |
| raw_spin_unlock_irqrestore(&list_lock, flags); |
| |
| data->chip->irq_unmask(data); |
| } |
| |
| static void vmd_irq_disable(struct irq_data *data) |
| { |
| struct vmd_irq *vmdirq = data->chip_data; |
| unsigned long flags; |
| |
| data->chip->irq_mask(data); |
| |
| raw_spin_lock_irqsave(&list_lock, flags); |
| if (vmdirq->enabled) { |
| list_del_rcu(&vmdirq->node); |
| vmdirq->enabled = false; |
| } |
| raw_spin_unlock_irqrestore(&list_lock, flags); |
| } |
| |
| /* |
| * XXX: Stubbed until we develop acceptable way to not create conflicts with |
| * other devices sharing the same vector. |
| */ |
| static int vmd_irq_set_affinity(struct irq_data *data, |
| const struct cpumask *dest, bool force) |
| { |
| return -EINVAL; |
| } |
| |
| static struct irq_chip vmd_msi_controller = { |
| .name = "VMD-MSI", |
| .irq_enable = vmd_irq_enable, |
| .irq_disable = vmd_irq_disable, |
| .irq_compose_msi_msg = vmd_compose_msi_msg, |
| .irq_set_affinity = vmd_irq_set_affinity, |
| }; |
| |
| static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info, |
| msi_alloc_info_t *arg) |
| { |
| return 0; |
| } |
| |
| /* |
| * XXX: We can be even smarter selecting the best IRQ once we solve the |
| * affinity problem. |
| */ |
| static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc) |
| { |
| unsigned long flags; |
| int i, best; |
| |
| if (vmd->msix_count == 1 + vmd->first_vec) |
| return &vmd->irqs[vmd->first_vec]; |
| |
| /* |
| * White list for fast-interrupt handlers. All others will share the |
| * "slow" interrupt vector. |
| */ |
| switch (msi_desc_to_pci_dev(desc)->class) { |
| case PCI_CLASS_STORAGE_EXPRESS: |
| break; |
| default: |
| return &vmd->irqs[vmd->first_vec]; |
| } |
| |
| raw_spin_lock_irqsave(&list_lock, flags); |
| best = vmd->first_vec + 1; |
| for (i = best; i < vmd->msix_count; i++) |
| if (vmd->irqs[i].count < vmd->irqs[best].count) |
| best = i; |
| vmd->irqs[best].count++; |
| raw_spin_unlock_irqrestore(&list_lock, flags); |
| |
| return &vmd->irqs[best]; |
| } |
| |
| static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info, |
| unsigned int virq, irq_hw_number_t hwirq, |
| msi_alloc_info_t *arg) |
| { |
| struct msi_desc *desc = arg->desc; |
| struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus); |
| struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL); |
| |
| if (!vmdirq) |
| return -ENOMEM; |
| |
| INIT_LIST_HEAD(&vmdirq->node); |
| vmdirq->irq = vmd_next_irq(vmd, desc); |
| vmdirq->virq = virq; |
| |
| irq_domain_set_info(domain, virq, vmdirq->irq->virq, info->chip, vmdirq, |
| handle_untracked_irq, vmd, NULL); |
| return 0; |
| } |
| |
| static void vmd_msi_free(struct irq_domain *domain, |
| struct msi_domain_info *info, unsigned int virq) |
| { |
| struct vmd_irq *vmdirq = irq_get_chip_data(virq); |
| unsigned long flags; |
| |
| synchronize_srcu(&vmdirq->irq->srcu); |
| |
| /* XXX: Potential optimization to rebalance */ |
| raw_spin_lock_irqsave(&list_lock, flags); |
| vmdirq->irq->count--; |
| raw_spin_unlock_irqrestore(&list_lock, flags); |
| |
| kfree(vmdirq); |
| } |
| |
| static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev, |
| int nvec, msi_alloc_info_t *arg) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct vmd_dev *vmd = vmd_from_bus(pdev->bus); |
| |
| if (nvec > vmd->msix_count) |
| return vmd->msix_count; |
| |
| memset(arg, 0, sizeof(*arg)); |
| return 0; |
| } |
| |
| static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc) |
| { |
| arg->desc = desc; |
| } |
| |
| static struct msi_domain_ops vmd_msi_domain_ops = { |
| .get_hwirq = vmd_get_hwirq, |
| .msi_init = vmd_msi_init, |
| .msi_free = vmd_msi_free, |
| .msi_prepare = vmd_msi_prepare, |
| .set_desc = vmd_set_desc, |
| }; |
| |
| static struct msi_domain_info vmd_msi_domain_info = { |
| .flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS | |
| MSI_FLAG_PCI_MSIX, |
| .ops = &vmd_msi_domain_ops, |
| .chip = &vmd_msi_controller, |
| }; |
| |
| static void vmd_set_msi_remapping(struct vmd_dev *vmd, bool enable) |
| { |
| u16 reg; |
| |
| pci_read_config_word(vmd->dev, PCI_REG_VMCONFIG, ®); |
| reg = enable ? (reg & ~VMCONFIG_MSI_REMAP) : |
| (reg | VMCONFIG_MSI_REMAP); |
| pci_write_config_word(vmd->dev, PCI_REG_VMCONFIG, reg); |
| } |
| |
| static int vmd_create_irq_domain(struct vmd_dev *vmd) |
| { |
| struct fwnode_handle *fn; |
| |
| fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain); |
| if (!fn) |
| return -ENODEV; |
| |
| vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info, NULL); |
| if (!vmd->irq_domain) { |
| irq_domain_free_fwnode(fn); |
| return -ENODEV; |
| } |
| |
| return 0; |
| } |
| |
| static void vmd_remove_irq_domain(struct vmd_dev *vmd) |
| { |
| /* |
| * Some production BIOS won't enable remapping between soft reboots. |
| * Ensure remapping is restored before unloading the driver. |
| */ |
| if (!vmd->msix_count) |
| vmd_set_msi_remapping(vmd, true); |
| |
| if (vmd->irq_domain) { |
| struct fwnode_handle *fn = vmd->irq_domain->fwnode; |
| |
| irq_domain_remove(vmd->irq_domain); |
| irq_domain_free_fwnode(fn); |
| } |
| } |
| |
| static void __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus, |
| unsigned int devfn, int reg, int len) |
| { |
| unsigned int busnr_ecam = bus->number - vmd->busn_start; |
| u32 offset = PCIE_ECAM_OFFSET(busnr_ecam, devfn, reg); |
| |
| if (offset + len >= resource_size(&vmd->dev->resource[VMD_CFGBAR])) |
| return NULL; |
| |
| return vmd->cfgbar + offset; |
| } |
| |
| /* |
| * CPU may deadlock if config space is not serialized on some versions of this |
| * hardware, so all config space access is done under a spinlock. |
| */ |
| static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg, |
| int len, u32 *value) |
| { |
| struct vmd_dev *vmd = vmd_from_bus(bus); |
| void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len); |
| unsigned long flags; |
| int ret = 0; |
| |
| if (!addr) |
| return -EFAULT; |
| |
| spin_lock_irqsave(&vmd->cfg_lock, flags); |
| switch (len) { |
| case 1: |
| *value = readb(addr); |
| break; |
| case 2: |
| *value = readw(addr); |
| break; |
| case 4: |
| *value = readl(addr); |
| break; |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| spin_unlock_irqrestore(&vmd->cfg_lock, flags); |
| return ret; |
| } |
| |
| /* |
| * VMD h/w converts non-posted config writes to posted memory writes. The |
| * read-back in this function forces the completion so it returns only after |
| * the config space was written, as expected. |
| */ |
| static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg, |
| int len, u32 value) |
| { |
| struct vmd_dev *vmd = vmd_from_bus(bus); |
| void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len); |
| unsigned long flags; |
| int ret = 0; |
| |
| if (!addr) |
| return -EFAULT; |
| |
| spin_lock_irqsave(&vmd->cfg_lock, flags); |
| switch (len) { |
| case 1: |
| writeb(value, addr); |
| readb(addr); |
| break; |
| case 2: |
| writew(value, addr); |
| readw(addr); |
| break; |
| case 4: |
| writel(value, addr); |
| readl(addr); |
| break; |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| spin_unlock_irqrestore(&vmd->cfg_lock, flags); |
| return ret; |
| } |
| |
| static struct pci_ops vmd_ops = { |
| .read = vmd_pci_read, |
| .write = vmd_pci_write, |
| }; |
| |
| #ifdef CONFIG_ACPI |
| static struct acpi_device *vmd_acpi_find_companion(struct pci_dev *pci_dev) |
| { |
| struct pci_host_bridge *bridge; |
| u32 busnr, addr; |
| |
| if (pci_dev->bus->ops != &vmd_ops) |
| return NULL; |
| |
| bridge = pci_find_host_bridge(pci_dev->bus); |
| busnr = pci_dev->bus->number - bridge->bus->number; |
| /* |
| * The address computation below is only applicable to relative bus |
| * numbers below 32. |
| */ |
| if (busnr > 31) |
| return NULL; |
| |
| addr = (busnr << 24) | ((u32)pci_dev->devfn << 16) | 0x8000FFFFU; |
| |
| dev_dbg(&pci_dev->dev, "Looking for ACPI companion (address 0x%x)\n", |
| addr); |
| |
| return acpi_find_child_device(ACPI_COMPANION(bridge->dev.parent), addr, |
| false); |
| } |
| |
| static bool hook_installed; |
| |
| static void vmd_acpi_begin(void) |
| { |
| if (pci_acpi_set_companion_lookup_hook(vmd_acpi_find_companion)) |
| return; |
| |
| hook_installed = true; |
| } |
| |
| static void vmd_acpi_end(void) |
| { |
| if (!hook_installed) |
| return; |
| |
| pci_acpi_clear_companion_lookup_hook(); |
| hook_installed = false; |
| } |
| #else |
| static inline void vmd_acpi_begin(void) { } |
| static inline void vmd_acpi_end(void) { } |
| #endif /* CONFIG_ACPI */ |
| |
| static void vmd_domain_reset(struct vmd_dev *vmd) |
| { |
| u16 bus, max_buses = resource_size(&vmd->resources[0]); |
| u8 dev, functions, fn, hdr_type; |
| char __iomem *base; |
| |
| for (bus = 0; bus < max_buses; bus++) { |
| for (dev = 0; dev < 32; dev++) { |
| base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus, |
| PCI_DEVFN(dev, 0), 0); |
| |
| hdr_type = readb(base + PCI_HEADER_TYPE); |
| |
| functions = (hdr_type & PCI_HEADER_TYPE_MFD) ? 8 : 1; |
| for (fn = 0; fn < functions; fn++) { |
| base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus, |
| PCI_DEVFN(dev, fn), 0); |
| |
| hdr_type = readb(base + PCI_HEADER_TYPE) & |
| PCI_HEADER_TYPE_MASK; |
| |
| if (hdr_type != PCI_HEADER_TYPE_BRIDGE || |
| (readw(base + PCI_CLASS_DEVICE) != |
| PCI_CLASS_BRIDGE_PCI)) |
| continue; |
| |
| /* |
| * Temporarily disable the I/O range before updating |
| * PCI_IO_BASE. |
| */ |
| writel(0x0000ffff, base + PCI_IO_BASE_UPPER16); |
| /* Update lower 16 bits of I/O base/limit */ |
| writew(0x00f0, base + PCI_IO_BASE); |
| /* Update upper 16 bits of I/O base/limit */ |
| writel(0, base + PCI_IO_BASE_UPPER16); |
| |
| /* MMIO Base/Limit */ |
| writel(0x0000fff0, base + PCI_MEMORY_BASE); |
| |
| /* Prefetchable MMIO Base/Limit */ |
| writel(0, base + PCI_PREF_LIMIT_UPPER32); |
| writel(0x0000fff0, base + PCI_PREF_MEMORY_BASE); |
| writel(0xffffffff, base + PCI_PREF_BASE_UPPER32); |
| } |
| } |
| } |
| } |
| |
| static void vmd_attach_resources(struct vmd_dev *vmd) |
| { |
| vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1]; |
| vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2]; |
| } |
| |
| static void vmd_detach_resources(struct vmd_dev *vmd) |
| { |
| vmd->dev->resource[VMD_MEMBAR1].child = NULL; |
| vmd->dev->resource[VMD_MEMBAR2].child = NULL; |
| } |
| |
| /* |
| * VMD domains start at 0x10000 to not clash with ACPI _SEG domains. |
| * Per ACPI r6.0, sec 6.5.6, _SEG returns an integer, of which the lower |
| * 16 bits are the PCI Segment Group (domain) number. Other bits are |
| * currently reserved. |
| */ |
| static int vmd_find_free_domain(void) |
| { |
| int domain = 0xffff; |
| struct pci_bus *bus = NULL; |
| |
| while ((bus = pci_find_next_bus(bus)) != NULL) |
| domain = max_t(int, domain, pci_domain_nr(bus)); |
| return domain + 1; |
| } |
| |
| static int vmd_get_phys_offsets(struct vmd_dev *vmd, bool native_hint, |
| resource_size_t *offset1, |
| resource_size_t *offset2) |
| { |
| struct pci_dev *dev = vmd->dev; |
| u64 phys1, phys2; |
| |
| if (native_hint) { |
| u32 vmlock; |
| int ret; |
| |
| ret = pci_read_config_dword(dev, PCI_REG_VMLOCK, &vmlock); |
| if (ret || PCI_POSSIBLE_ERROR(vmlock)) |
| return -ENODEV; |
| |
| if (MB2_SHADOW_EN(vmlock)) { |
| void __iomem *membar2; |
| |
| membar2 = pci_iomap(dev, VMD_MEMBAR2, 0); |
| if (!membar2) |
| return -ENOMEM; |
| phys1 = readq(membar2 + MB2_SHADOW_OFFSET); |
| phys2 = readq(membar2 + MB2_SHADOW_OFFSET + 8); |
| pci_iounmap(dev, membar2); |
| } else |
| return 0; |
| } else { |
| /* Hypervisor-Emulated Vendor-Specific Capability */ |
| int pos = pci_find_capability(dev, PCI_CAP_ID_VNDR); |
| u32 reg, regu; |
| |
| pci_read_config_dword(dev, pos + 4, ®); |
| |
| /* "SHDW" */ |
| if (pos && reg == 0x53484457) { |
| pci_read_config_dword(dev, pos + 8, ®); |
| pci_read_config_dword(dev, pos + 12, ®u); |
| phys1 = (u64) regu << 32 | reg; |
| |
| pci_read_config_dword(dev, pos + 16, ®); |
| pci_read_config_dword(dev, pos + 20, ®u); |
| phys2 = (u64) regu << 32 | reg; |
| } else |
| return 0; |
| } |
| |
| *offset1 = dev->resource[VMD_MEMBAR1].start - |
| (phys1 & PCI_BASE_ADDRESS_MEM_MASK); |
| *offset2 = dev->resource[VMD_MEMBAR2].start - |
| (phys2 & PCI_BASE_ADDRESS_MEM_MASK); |
| |
| return 0; |
| } |
| |
| static int vmd_get_bus_number_start(struct vmd_dev *vmd) |
| { |
| struct pci_dev *dev = vmd->dev; |
| u16 reg; |
| |
| pci_read_config_word(dev, PCI_REG_VMCAP, ®); |
| if (BUS_RESTRICT_CAP(reg)) { |
| pci_read_config_word(dev, PCI_REG_VMCONFIG, ®); |
| |
| switch (BUS_RESTRICT_CFG(reg)) { |
| case 0: |
| vmd->busn_start = 0; |
| break; |
| case 1: |
| vmd->busn_start = 128; |
| break; |
| case 2: |
| vmd->busn_start = 224; |
| break; |
| default: |
| pci_err(dev, "Unknown Bus Offset Setting (%d)\n", |
| BUS_RESTRICT_CFG(reg)); |
| return -ENODEV; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static irqreturn_t vmd_irq(int irq, void *data) |
| { |
| struct vmd_irq_list *irqs = data; |
| struct vmd_irq *vmdirq; |
| int idx; |
| |
| idx = srcu_read_lock(&irqs->srcu); |
| list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node) |
| generic_handle_irq(vmdirq->virq); |
| srcu_read_unlock(&irqs->srcu, idx); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int vmd_alloc_irqs(struct vmd_dev *vmd) |
| { |
| struct pci_dev *dev = vmd->dev; |
| int i, err; |
| |
| vmd->msix_count = pci_msix_vec_count(dev); |
| if (vmd->msix_count < 0) |
| return -ENODEV; |
| |
| vmd->msix_count = pci_alloc_irq_vectors(dev, vmd->first_vec + 1, |
| vmd->msix_count, PCI_IRQ_MSIX); |
| if (vmd->msix_count < 0) |
| return vmd->msix_count; |
| |
| vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs), |
| GFP_KERNEL); |
| if (!vmd->irqs) |
| return -ENOMEM; |
| |
| for (i = 0; i < vmd->msix_count; i++) { |
| err = init_srcu_struct(&vmd->irqs[i].srcu); |
| if (err) |
| return err; |
| |
| INIT_LIST_HEAD(&vmd->irqs[i].irq_list); |
| vmd->irqs[i].virq = pci_irq_vector(dev, i); |
| err = devm_request_irq(&dev->dev, vmd->irqs[i].virq, |
| vmd_irq, IRQF_NO_THREAD, |
| vmd->name, &vmd->irqs[i]); |
| if (err) |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Since VMD is an aperture to regular PCIe root ports, only allow it to |
| * control features that the OS is allowed to control on the physical PCI bus. |
| */ |
| static void vmd_copy_host_bridge_flags(struct pci_host_bridge *root_bridge, |
| struct pci_host_bridge *vmd_bridge) |
| { |
| vmd_bridge->native_pcie_hotplug = root_bridge->native_pcie_hotplug; |
| vmd_bridge->native_shpc_hotplug = root_bridge->native_shpc_hotplug; |
| vmd_bridge->native_aer = root_bridge->native_aer; |
| vmd_bridge->native_pme = root_bridge->native_pme; |
| vmd_bridge->native_ltr = root_bridge->native_ltr; |
| vmd_bridge->native_dpc = root_bridge->native_dpc; |
| } |
| |
| /* |
| * Enable ASPM and LTR settings on devices that aren't configured by BIOS. |
| */ |
| static int vmd_pm_enable_quirk(struct pci_dev *pdev, void *userdata) |
| { |
| unsigned long features = *(unsigned long *)userdata; |
| u16 ltr = VMD_BIOS_PM_QUIRK_LTR; |
| u32 ltr_reg; |
| int pos; |
| |
| if (!(features & VMD_FEAT_BIOS_PM_QUIRK)) |
| return 0; |
| |
| pci_enable_link_state_locked(pdev, PCIE_LINK_STATE_ALL); |
| |
| pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_LTR); |
| if (!pos) |
| return 0; |
| |
| /* |
| * Skip if the max snoop LTR is non-zero, indicating BIOS has set it |
| * so the LTR quirk is not needed. |
| */ |
| pci_read_config_dword(pdev, pos + PCI_LTR_MAX_SNOOP_LAT, <r_reg); |
| if (!!(ltr_reg & (PCI_LTR_VALUE_MASK | PCI_LTR_SCALE_MASK))) |
| return 0; |
| |
| /* |
| * Set the default values to the maximum required by the platform to |
| * allow the deepest power management savings. Write as a DWORD where |
| * the lower word is the max snoop latency and the upper word is the |
| * max non-snoop latency. |
| */ |
| ltr_reg = (ltr << 16) | ltr; |
| pci_write_config_dword(pdev, pos + PCI_LTR_MAX_SNOOP_LAT, ltr_reg); |
| pci_info(pdev, "VMD: Default LTR value set by driver\n"); |
| |
| return 0; |
| } |
| |
| static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features) |
| { |
| struct pci_sysdata *sd = &vmd->sysdata; |
| struct resource *res; |
| u32 upper_bits; |
| unsigned long flags; |
| LIST_HEAD(resources); |
| resource_size_t offset[2] = {0}; |
| resource_size_t membar2_offset = 0x2000; |
| struct pci_bus *child; |
| struct pci_dev *dev; |
| int ret; |
| |
| /* |
| * Shadow registers may exist in certain VMD device ids which allow |
| * guests to correctly assign host physical addresses to the root ports |
| * and child devices. These registers will either return the host value |
| * or 0, depending on an enable bit in the VMD device. |
| */ |
| if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) { |
| membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE; |
| ret = vmd_get_phys_offsets(vmd, true, &offset[0], &offset[1]); |
| if (ret) |
| return ret; |
| } else if (features & VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP) { |
| ret = vmd_get_phys_offsets(vmd, false, &offset[0], &offset[1]); |
| if (ret) |
| return ret; |
| } |
| |
| /* |
| * Certain VMD devices may have a root port configuration option which |
| * limits the bus range to between 0-127, 128-255, or 224-255 |
| */ |
| if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) { |
| ret = vmd_get_bus_number_start(vmd); |
| if (ret) |
| return ret; |
| } |
| |
| res = &vmd->dev->resource[VMD_CFGBAR]; |
| vmd->resources[0] = (struct resource) { |
| .name = "VMD CFGBAR", |
| .start = vmd->busn_start, |
| .end = vmd->busn_start + (resource_size(res) >> 20) - 1, |
| .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED, |
| }; |
| |
| /* |
| * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can |
| * put 32-bit resources in the window. |
| * |
| * There's no hardware reason why a 64-bit window *couldn't* |
| * contain a 32-bit resource, but pbus_size_mem() computes the |
| * bridge window size assuming a 64-bit window will contain no |
| * 32-bit resources. __pci_assign_resource() enforces that |
| * artificial restriction to make sure everything will fit. |
| * |
| * The only way we could use a 64-bit non-prefetchable MEMBAR is |
| * if its address is <4GB so that we can convert it to a 32-bit |
| * resource. To be visible to the host OS, all VMD endpoints must |
| * be initially configured by platform BIOS, which includes setting |
| * up these resources. We can assume the device is configured |
| * according to the platform needs. |
| */ |
| res = &vmd->dev->resource[VMD_MEMBAR1]; |
| upper_bits = upper_32_bits(res->end); |
| flags = res->flags & ~IORESOURCE_SIZEALIGN; |
| if (!upper_bits) |
| flags &= ~IORESOURCE_MEM_64; |
| vmd->resources[1] = (struct resource) { |
| .name = "VMD MEMBAR1", |
| .start = res->start, |
| .end = res->end, |
| .flags = flags, |
| .parent = res, |
| }; |
| |
| res = &vmd->dev->resource[VMD_MEMBAR2]; |
| upper_bits = upper_32_bits(res->end); |
| flags = res->flags & ~IORESOURCE_SIZEALIGN; |
| if (!upper_bits) |
| flags &= ~IORESOURCE_MEM_64; |
| vmd->resources[2] = (struct resource) { |
| .name = "VMD MEMBAR2", |
| .start = res->start + membar2_offset, |
| .end = res->end, |
| .flags = flags, |
| .parent = res, |
| }; |
| |
| sd->vmd_dev = vmd->dev; |
| sd->domain = vmd_find_free_domain(); |
| if (sd->domain < 0) |
| return sd->domain; |
| |
| sd->node = pcibus_to_node(vmd->dev->bus); |
| |
| /* |
| * Currently MSI remapping must be enabled in guest passthrough mode |
| * due to some missing interrupt remapping plumbing. This is probably |
| * acceptable because the guest is usually CPU-limited and MSI |
| * remapping doesn't become a performance bottleneck. |
| */ |
| if (!(features & VMD_FEAT_CAN_BYPASS_MSI_REMAP) || |
| offset[0] || offset[1]) { |
| ret = vmd_alloc_irqs(vmd); |
| if (ret) |
| return ret; |
| |
| vmd_set_msi_remapping(vmd, true); |
| |
| ret = vmd_create_irq_domain(vmd); |
| if (ret) |
| return ret; |
| |
| /* |
| * Override the IRQ domain bus token so the domain can be |
| * distinguished from a regular PCI/MSI domain. |
| */ |
| irq_domain_update_bus_token(vmd->irq_domain, DOMAIN_BUS_VMD_MSI); |
| } else { |
| vmd_set_msi_remapping(vmd, false); |
| } |
| |
| pci_add_resource(&resources, &vmd->resources[0]); |
| pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]); |
| pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]); |
| |
| vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start, |
| &vmd_ops, sd, &resources); |
| if (!vmd->bus) { |
| pci_free_resource_list(&resources); |
| vmd_remove_irq_domain(vmd); |
| return -ENODEV; |
| } |
| |
| vmd_copy_host_bridge_flags(pci_find_host_bridge(vmd->dev->bus), |
| to_pci_host_bridge(vmd->bus->bridge)); |
| |
| vmd_attach_resources(vmd); |
| if (vmd->irq_domain) |
| dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain); |
| else |
| dev_set_msi_domain(&vmd->bus->dev, |
| dev_get_msi_domain(&vmd->dev->dev)); |
| |
| WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj, |
| "domain"), "Can't create symlink to domain\n"); |
| |
| vmd_acpi_begin(); |
| |
| pci_scan_child_bus(vmd->bus); |
| vmd_domain_reset(vmd); |
| |
| /* When Intel VMD is enabled, the OS does not discover the Root Ports |
| * owned by Intel VMD within the MMCFG space. pci_reset_bus() applies |
| * a reset to the parent of the PCI device supplied as argument. This |
| * is why we pass a child device, so the reset can be triggered at |
| * the Intel bridge level and propagated to all the children in the |
| * hierarchy. |
| */ |
| list_for_each_entry(child, &vmd->bus->children, node) { |
| if (!list_empty(&child->devices)) { |
| dev = list_first_entry(&child->devices, |
| struct pci_dev, bus_list); |
| ret = pci_reset_bus(dev); |
| if (ret) |
| pci_warn(dev, "can't reset device: %d\n", ret); |
| |
| break; |
| } |
| } |
| |
| pci_assign_unassigned_bus_resources(vmd->bus); |
| |
| pci_walk_bus(vmd->bus, vmd_pm_enable_quirk, &features); |
| |
| /* |
| * VMD root buses are virtual and don't return true on pci_is_pcie() |
| * and will fail pcie_bus_configure_settings() early. It can instead be |
| * run on each of the real root ports. |
| */ |
| list_for_each_entry(child, &vmd->bus->children, node) |
| pcie_bus_configure_settings(child); |
| |
| pci_bus_add_devices(vmd->bus); |
| |
| vmd_acpi_end(); |
| return 0; |
| } |
| |
| static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id) |
| { |
| unsigned long features = (unsigned long) id->driver_data; |
| struct vmd_dev *vmd; |
| int err; |
| |
| if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20)) |
| return -ENOMEM; |
| |
| vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL); |
| if (!vmd) |
| return -ENOMEM; |
| |
| vmd->dev = dev; |
| vmd->instance = ida_alloc(&vmd_instance_ida, GFP_KERNEL); |
| if (vmd->instance < 0) |
| return vmd->instance; |
| |
| vmd->name = devm_kasprintf(&dev->dev, GFP_KERNEL, "vmd%d", |
| vmd->instance); |
| if (!vmd->name) { |
| err = -ENOMEM; |
| goto out_release_instance; |
| } |
| |
| err = pcim_enable_device(dev); |
| if (err < 0) |
| goto out_release_instance; |
| |
| vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0); |
| if (!vmd->cfgbar) { |
| err = -ENOMEM; |
| goto out_release_instance; |
| } |
| |
| pci_set_master(dev); |
| if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) && |
| dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32))) { |
| err = -ENODEV; |
| goto out_release_instance; |
| } |
| |
| if (features & VMD_FEAT_OFFSET_FIRST_VECTOR) |
| vmd->first_vec = 1; |
| |
| spin_lock_init(&vmd->cfg_lock); |
| pci_set_drvdata(dev, vmd); |
| err = vmd_enable_domain(vmd, features); |
| if (err) |
| goto out_release_instance; |
| |
| dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n", |
| vmd->sysdata.domain); |
| return 0; |
| |
| out_release_instance: |
| ida_free(&vmd_instance_ida, vmd->instance); |
| return err; |
| } |
| |
| static void vmd_cleanup_srcu(struct vmd_dev *vmd) |
| { |
| int i; |
| |
| for (i = 0; i < vmd->msix_count; i++) |
| cleanup_srcu_struct(&vmd->irqs[i].srcu); |
| } |
| |
| static void vmd_remove(struct pci_dev *dev) |
| { |
| struct vmd_dev *vmd = pci_get_drvdata(dev); |
| |
| pci_stop_root_bus(vmd->bus); |
| sysfs_remove_link(&vmd->dev->dev.kobj, "domain"); |
| pci_remove_root_bus(vmd->bus); |
| vmd_cleanup_srcu(vmd); |
| vmd_detach_resources(vmd); |
| vmd_remove_irq_domain(vmd); |
| ida_free(&vmd_instance_ida, vmd->instance); |
| } |
| |
| static void vmd_shutdown(struct pci_dev *dev) |
| { |
| struct vmd_dev *vmd = pci_get_drvdata(dev); |
| |
| vmd_remove_irq_domain(vmd); |
| } |
| |
| #ifdef CONFIG_PM_SLEEP |
| static int vmd_suspend(struct device *dev) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct vmd_dev *vmd = pci_get_drvdata(pdev); |
| int i; |
| |
| for (i = 0; i < vmd->msix_count; i++) |
| devm_free_irq(dev, vmd->irqs[i].virq, &vmd->irqs[i]); |
| |
| return 0; |
| } |
| |
| static int vmd_resume(struct device *dev) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct vmd_dev *vmd = pci_get_drvdata(pdev); |
| int err, i; |
| |
| vmd_set_msi_remapping(vmd, !!vmd->irq_domain); |
| |
| for (i = 0; i < vmd->msix_count; i++) { |
| err = devm_request_irq(dev, vmd->irqs[i].virq, |
| vmd_irq, IRQF_NO_THREAD, |
| vmd->name, &vmd->irqs[i]); |
| if (err) |
| return err; |
| } |
| |
| return 0; |
| } |
| #endif |
| static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume); |
| |
| static const struct pci_device_id vmd_ids[] = { |
| {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_201D), |
| .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP,}, |
| {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0), |
| .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW | |
| VMD_FEAT_HAS_BUS_RESTRICTIONS | |
| VMD_FEAT_CAN_BYPASS_MSI_REMAP,}, |
| {PCI_VDEVICE(INTEL, 0x467f), |
| .driver_data = VMD_FEATS_CLIENT,}, |
| {PCI_VDEVICE(INTEL, 0x4c3d), |
| .driver_data = VMD_FEATS_CLIENT,}, |
| {PCI_VDEVICE(INTEL, 0xa77f), |
| .driver_data = VMD_FEATS_CLIENT,}, |
| {PCI_VDEVICE(INTEL, 0x7d0b), |
| .driver_data = VMD_FEATS_CLIENT,}, |
| {PCI_VDEVICE(INTEL, 0xad0b), |
| .driver_data = VMD_FEATS_CLIENT,}, |
| {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B), |
| .driver_data = VMD_FEATS_CLIENT,}, |
| {0,} |
| }; |
| MODULE_DEVICE_TABLE(pci, vmd_ids); |
| |
| static struct pci_driver vmd_drv = { |
| .name = "vmd", |
| .id_table = vmd_ids, |
| .probe = vmd_probe, |
| .remove = vmd_remove, |
| .shutdown = vmd_shutdown, |
| .driver = { |
| .pm = &vmd_dev_pm_ops, |
| }, |
| }; |
| module_pci_driver(vmd_drv); |
| |
| MODULE_AUTHOR("Intel Corporation"); |
| MODULE_DESCRIPTION("Volume Management Device driver"); |
| MODULE_LICENSE("GPL v2"); |
| MODULE_VERSION("0.6"); |