blob: 468003583b2a3ad76be7538c4624ad9802389812 [file] [log] [blame]
/*
* Copyright 2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: monk liu <monk.liu@amd.com>
*/
#include <drm/drm_auth.h>
#include "amdgpu.h"
#include "amdgpu_sched.h"
#include "amdgpu_ras.h"
#include <linux/nospec.h>
#define to_amdgpu_ctx_entity(e) \
container_of((e), struct amdgpu_ctx_entity, entity)
const unsigned int amdgpu_ctx_num_entities[AMDGPU_HW_IP_NUM] = {
[AMDGPU_HW_IP_GFX] = 1,
[AMDGPU_HW_IP_COMPUTE] = 4,
[AMDGPU_HW_IP_DMA] = 2,
[AMDGPU_HW_IP_UVD] = 1,
[AMDGPU_HW_IP_VCE] = 1,
[AMDGPU_HW_IP_UVD_ENC] = 1,
[AMDGPU_HW_IP_VCN_DEC] = 1,
[AMDGPU_HW_IP_VCN_ENC] = 1,
[AMDGPU_HW_IP_VCN_JPEG] = 1,
};
bool amdgpu_ctx_priority_is_valid(int32_t ctx_prio)
{
switch (ctx_prio) {
case AMDGPU_CTX_PRIORITY_UNSET:
case AMDGPU_CTX_PRIORITY_VERY_LOW:
case AMDGPU_CTX_PRIORITY_LOW:
case AMDGPU_CTX_PRIORITY_NORMAL:
case AMDGPU_CTX_PRIORITY_HIGH:
case AMDGPU_CTX_PRIORITY_VERY_HIGH:
return true;
default:
return false;
}
}
static enum drm_sched_priority
amdgpu_ctx_to_drm_sched_prio(int32_t ctx_prio)
{
switch (ctx_prio) {
case AMDGPU_CTX_PRIORITY_UNSET:
return DRM_SCHED_PRIORITY_UNSET;
case AMDGPU_CTX_PRIORITY_VERY_LOW:
return DRM_SCHED_PRIORITY_MIN;
case AMDGPU_CTX_PRIORITY_LOW:
return DRM_SCHED_PRIORITY_MIN;
case AMDGPU_CTX_PRIORITY_NORMAL:
return DRM_SCHED_PRIORITY_NORMAL;
case AMDGPU_CTX_PRIORITY_HIGH:
return DRM_SCHED_PRIORITY_HIGH;
case AMDGPU_CTX_PRIORITY_VERY_HIGH:
return DRM_SCHED_PRIORITY_HIGH;
/* This should not happen as we sanitized userspace provided priority
* already, WARN if this happens.
*/
default:
WARN(1, "Invalid context priority %d\n", ctx_prio);
return DRM_SCHED_PRIORITY_NORMAL;
}
}
static int amdgpu_ctx_priority_permit(struct drm_file *filp,
int32_t priority)
{
if (!amdgpu_ctx_priority_is_valid(priority))
return -EINVAL;
/* NORMAL and below are accessible by everyone */
if (priority <= AMDGPU_CTX_PRIORITY_NORMAL)
return 0;
if (capable(CAP_SYS_NICE))
return 0;
if (drm_is_current_master(filp))
return 0;
return -EACCES;
}
static enum amdgpu_gfx_pipe_priority amdgpu_ctx_prio_to_compute_prio(int32_t prio)
{
switch (prio) {
case AMDGPU_CTX_PRIORITY_HIGH:
case AMDGPU_CTX_PRIORITY_VERY_HIGH:
return AMDGPU_GFX_PIPE_PRIO_HIGH;
default:
return AMDGPU_GFX_PIPE_PRIO_NORMAL;
}
}
static enum amdgpu_ring_priority_level amdgpu_ctx_sched_prio_to_ring_prio(int32_t prio)
{
switch (prio) {
case AMDGPU_CTX_PRIORITY_HIGH:
return AMDGPU_RING_PRIO_1;
case AMDGPU_CTX_PRIORITY_VERY_HIGH:
return AMDGPU_RING_PRIO_2;
default:
return AMDGPU_RING_PRIO_0;
}
}
static unsigned int amdgpu_ctx_get_hw_prio(struct amdgpu_ctx *ctx, u32 hw_ip)
{
struct amdgpu_device *adev = ctx->adev;
int32_t ctx_prio;
unsigned int hw_prio;
ctx_prio = (ctx->override_priority == AMDGPU_CTX_PRIORITY_UNSET) ?
ctx->init_priority : ctx->override_priority;
switch (hw_ip) {
case AMDGPU_HW_IP_COMPUTE:
hw_prio = amdgpu_ctx_prio_to_compute_prio(ctx_prio);
break;
case AMDGPU_HW_IP_VCE:
case AMDGPU_HW_IP_VCN_ENC:
hw_prio = amdgpu_ctx_sched_prio_to_ring_prio(ctx_prio);
break;
default:
hw_prio = AMDGPU_RING_PRIO_DEFAULT;
break;
}
hw_ip = array_index_nospec(hw_ip, AMDGPU_HW_IP_NUM);
if (adev->gpu_sched[hw_ip][hw_prio].num_scheds == 0)
hw_prio = AMDGPU_RING_PRIO_DEFAULT;
return hw_prio;
}
static int amdgpu_ctx_init_entity(struct amdgpu_ctx *ctx, u32 hw_ip,
const u32 ring)
{
struct amdgpu_device *adev = ctx->adev;
struct amdgpu_ctx_entity *entity;
struct drm_gpu_scheduler **scheds = NULL, *sched = NULL;
unsigned num_scheds = 0;
int32_t ctx_prio;
unsigned int hw_prio;
enum drm_sched_priority drm_prio;
int r;
entity = kzalloc(struct_size(entity, fences, amdgpu_sched_jobs),
GFP_KERNEL);
if (!entity)
return -ENOMEM;
ctx_prio = (ctx->override_priority == AMDGPU_CTX_PRIORITY_UNSET) ?
ctx->init_priority : ctx->override_priority;
entity->sequence = 1;
hw_prio = amdgpu_ctx_get_hw_prio(ctx, hw_ip);
drm_prio = amdgpu_ctx_to_drm_sched_prio(ctx_prio);
hw_ip = array_index_nospec(hw_ip, AMDGPU_HW_IP_NUM);
scheds = adev->gpu_sched[hw_ip][hw_prio].sched;
num_scheds = adev->gpu_sched[hw_ip][hw_prio].num_scheds;
/* disable load balance if the hw engine retains context among dependent jobs */
if (hw_ip == AMDGPU_HW_IP_VCN_ENC ||
hw_ip == AMDGPU_HW_IP_VCN_DEC ||
hw_ip == AMDGPU_HW_IP_UVD_ENC ||
hw_ip == AMDGPU_HW_IP_UVD) {
sched = drm_sched_pick_best(scheds, num_scheds);
scheds = &sched;
num_scheds = 1;
}
r = drm_sched_entity_init(&entity->entity, drm_prio, scheds, num_scheds,
&ctx->guilty);
if (r)
goto error_free_entity;
ctx->entities[hw_ip][ring] = entity;
return 0;
error_free_entity:
kfree(entity);
return r;
}
static int amdgpu_ctx_init(struct amdgpu_device *adev,
int32_t priority,
struct drm_file *filp,
struct amdgpu_ctx *ctx)
{
int r;
r = amdgpu_ctx_priority_permit(filp, priority);
if (r)
return r;
memset(ctx, 0, sizeof(*ctx));
ctx->adev = adev;
kref_init(&ctx->refcount);
spin_lock_init(&ctx->ring_lock);
mutex_init(&ctx->lock);
ctx->reset_counter = atomic_read(&adev->gpu_reset_counter);
ctx->reset_counter_query = ctx->reset_counter;
ctx->vram_lost_counter = atomic_read(&adev->vram_lost_counter);
ctx->init_priority = priority;
ctx->override_priority = AMDGPU_CTX_PRIORITY_UNSET;
return 0;
}
static void amdgpu_ctx_fini_entity(struct amdgpu_ctx_entity *entity)
{
int i;
if (!entity)
return;
for (i = 0; i < amdgpu_sched_jobs; ++i)
dma_fence_put(entity->fences[i]);
kfree(entity);
}
static void amdgpu_ctx_fini(struct kref *ref)
{
struct amdgpu_ctx *ctx = container_of(ref, struct amdgpu_ctx, refcount);
struct amdgpu_device *adev = ctx->adev;
unsigned i, j;
if (!adev)
return;
for (i = 0; i < AMDGPU_HW_IP_NUM; ++i) {
for (j = 0; j < AMDGPU_MAX_ENTITY_NUM; ++j) {
amdgpu_ctx_fini_entity(ctx->entities[i][j]);
ctx->entities[i][j] = NULL;
}
}
mutex_destroy(&ctx->lock);
kfree(ctx);
}
int amdgpu_ctx_get_entity(struct amdgpu_ctx *ctx, u32 hw_ip, u32 instance,
u32 ring, struct drm_sched_entity **entity)
{
int r;
if (hw_ip >= AMDGPU_HW_IP_NUM) {
DRM_ERROR("unknown HW IP type: %d\n", hw_ip);
return -EINVAL;
}
/* Right now all IPs have only one instance - multiple rings. */
if (instance != 0) {
DRM_DEBUG("invalid ip instance: %d\n", instance);
return -EINVAL;
}
if (ring >= amdgpu_ctx_num_entities[hw_ip]) {
DRM_DEBUG("invalid ring: %d %d\n", hw_ip, ring);
return -EINVAL;
}
if (ctx->entities[hw_ip][ring] == NULL) {
r = amdgpu_ctx_init_entity(ctx, hw_ip, ring);
if (r)
return r;
}
*entity = &ctx->entities[hw_ip][ring]->entity;
return 0;
}
static int amdgpu_ctx_alloc(struct amdgpu_device *adev,
struct amdgpu_fpriv *fpriv,
struct drm_file *filp,
int32_t priority,
uint32_t *id)
{
struct amdgpu_ctx_mgr *mgr = &fpriv->ctx_mgr;
struct amdgpu_ctx *ctx;
int r;
ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
mutex_lock(&mgr->lock);
r = idr_alloc(&mgr->ctx_handles, ctx, 1, AMDGPU_VM_MAX_NUM_CTX, GFP_KERNEL);
if (r < 0) {
mutex_unlock(&mgr->lock);
kfree(ctx);
return r;
}
*id = (uint32_t)r;
r = amdgpu_ctx_init(adev, priority, filp, ctx);
if (r) {
idr_remove(&mgr->ctx_handles, *id);
*id = 0;
kfree(ctx);
}
mutex_unlock(&mgr->lock);
return r;
}
static void amdgpu_ctx_do_release(struct kref *ref)
{
struct amdgpu_ctx *ctx;
u32 i, j;
ctx = container_of(ref, struct amdgpu_ctx, refcount);
for (i = 0; i < AMDGPU_HW_IP_NUM; ++i) {
for (j = 0; j < amdgpu_ctx_num_entities[i]; ++j) {
if (!ctx->entities[i][j])
continue;
drm_sched_entity_destroy(&ctx->entities[i][j]->entity);
}
}
amdgpu_ctx_fini(ref);
}
static int amdgpu_ctx_free(struct amdgpu_fpriv *fpriv, uint32_t id)
{
struct amdgpu_ctx_mgr *mgr = &fpriv->ctx_mgr;
struct amdgpu_ctx *ctx;
mutex_lock(&mgr->lock);
ctx = idr_remove(&mgr->ctx_handles, id);
if (ctx)
kref_put(&ctx->refcount, amdgpu_ctx_do_release);
mutex_unlock(&mgr->lock);
return ctx ? 0 : -EINVAL;
}
static int amdgpu_ctx_query(struct amdgpu_device *adev,
struct amdgpu_fpriv *fpriv, uint32_t id,
union drm_amdgpu_ctx_out *out)
{
struct amdgpu_ctx *ctx;
struct amdgpu_ctx_mgr *mgr;
unsigned reset_counter;
if (!fpriv)
return -EINVAL;
mgr = &fpriv->ctx_mgr;
mutex_lock(&mgr->lock);
ctx = idr_find(&mgr->ctx_handles, id);
if (!ctx) {
mutex_unlock(&mgr->lock);
return -EINVAL;
}
/* TODO: these two are always zero */
out->state.flags = 0x0;
out->state.hangs = 0x0;
/* determine if a GPU reset has occured since the last call */
reset_counter = atomic_read(&adev->gpu_reset_counter);
/* TODO: this should ideally return NO, GUILTY, or INNOCENT. */
if (ctx->reset_counter_query == reset_counter)
out->state.reset_status = AMDGPU_CTX_NO_RESET;
else
out->state.reset_status = AMDGPU_CTX_UNKNOWN_RESET;
ctx->reset_counter_query = reset_counter;
mutex_unlock(&mgr->lock);
return 0;
}
#define AMDGPU_RAS_COUNTE_DELAY_MS 3000
static int amdgpu_ctx_query2(struct amdgpu_device *adev,
struct amdgpu_fpriv *fpriv, uint32_t id,
union drm_amdgpu_ctx_out *out)
{
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
struct amdgpu_ctx *ctx;
struct amdgpu_ctx_mgr *mgr;
if (!fpriv)
return -EINVAL;
mgr = &fpriv->ctx_mgr;
mutex_lock(&mgr->lock);
ctx = idr_find(&mgr->ctx_handles, id);
if (!ctx) {
mutex_unlock(&mgr->lock);
return -EINVAL;
}
out->state.flags = 0x0;
out->state.hangs = 0x0;
if (ctx->reset_counter != atomic_read(&adev->gpu_reset_counter))
out->state.flags |= AMDGPU_CTX_QUERY2_FLAGS_RESET;
if (ctx->vram_lost_counter != atomic_read(&adev->vram_lost_counter))
out->state.flags |= AMDGPU_CTX_QUERY2_FLAGS_VRAMLOST;
if (atomic_read(&ctx->guilty))
out->state.flags |= AMDGPU_CTX_QUERY2_FLAGS_GUILTY;
if (adev->ras_enabled && con) {
/* Return the cached values in O(1),
* and schedule delayed work to cache
* new vaues.
*/
int ce_count, ue_count;
ce_count = atomic_read(&con->ras_ce_count);
ue_count = atomic_read(&con->ras_ue_count);
if (ce_count != ctx->ras_counter_ce) {
ctx->ras_counter_ce = ce_count;
out->state.flags |= AMDGPU_CTX_QUERY2_FLAGS_RAS_CE;
}
if (ue_count != ctx->ras_counter_ue) {
ctx->ras_counter_ue = ue_count;
out->state.flags |= AMDGPU_CTX_QUERY2_FLAGS_RAS_UE;
}
schedule_delayed_work(&con->ras_counte_delay_work,
msecs_to_jiffies(AMDGPU_RAS_COUNTE_DELAY_MS));
}
mutex_unlock(&mgr->lock);
return 0;
}
int amdgpu_ctx_ioctl(struct drm_device *dev, void *data,
struct drm_file *filp)
{
int r;
uint32_t id;
int32_t priority;
union drm_amdgpu_ctx *args = data;
struct amdgpu_device *adev = drm_to_adev(dev);
struct amdgpu_fpriv *fpriv = filp->driver_priv;
id = args->in.ctx_id;
priority = args->in.priority;
/* For backwards compatibility reasons, we need to accept
* ioctls with garbage in the priority field */
if (!amdgpu_ctx_priority_is_valid(priority))
priority = AMDGPU_CTX_PRIORITY_NORMAL;
switch (args->in.op) {
case AMDGPU_CTX_OP_ALLOC_CTX:
r = amdgpu_ctx_alloc(adev, fpriv, filp, priority, &id);
args->out.alloc.ctx_id = id;
break;
case AMDGPU_CTX_OP_FREE_CTX:
r = amdgpu_ctx_free(fpriv, id);
break;
case AMDGPU_CTX_OP_QUERY_STATE:
r = amdgpu_ctx_query(adev, fpriv, id, &args->out);
break;
case AMDGPU_CTX_OP_QUERY_STATE2:
r = amdgpu_ctx_query2(adev, fpriv, id, &args->out);
break;
default:
return -EINVAL;
}
return r;
}
struct amdgpu_ctx *amdgpu_ctx_get(struct amdgpu_fpriv *fpriv, uint32_t id)
{
struct amdgpu_ctx *ctx;
struct amdgpu_ctx_mgr *mgr;
if (!fpriv)
return NULL;
mgr = &fpriv->ctx_mgr;
mutex_lock(&mgr->lock);
ctx = idr_find(&mgr->ctx_handles, id);
if (ctx)
kref_get(&ctx->refcount);
mutex_unlock(&mgr->lock);
return ctx;
}
int amdgpu_ctx_put(struct amdgpu_ctx *ctx)
{
if (ctx == NULL)
return -EINVAL;
kref_put(&ctx->refcount, amdgpu_ctx_do_release);
return 0;
}
void amdgpu_ctx_add_fence(struct amdgpu_ctx *ctx,
struct drm_sched_entity *entity,
struct dma_fence *fence, uint64_t *handle)
{
struct amdgpu_ctx_entity *centity = to_amdgpu_ctx_entity(entity);
uint64_t seq = centity->sequence;
struct dma_fence *other = NULL;
unsigned idx = 0;
idx = seq & (amdgpu_sched_jobs - 1);
other = centity->fences[idx];
if (other)
BUG_ON(!dma_fence_is_signaled(other));
dma_fence_get(fence);
spin_lock(&ctx->ring_lock);
centity->fences[idx] = fence;
centity->sequence++;
spin_unlock(&ctx->ring_lock);
dma_fence_put(other);
if (handle)
*handle = seq;
}
struct dma_fence *amdgpu_ctx_get_fence(struct amdgpu_ctx *ctx,
struct drm_sched_entity *entity,
uint64_t seq)
{
struct amdgpu_ctx_entity *centity = to_amdgpu_ctx_entity(entity);
struct dma_fence *fence;
spin_lock(&ctx->ring_lock);
if (seq == ~0ull)
seq = centity->sequence - 1;
if (seq >= centity->sequence) {
spin_unlock(&ctx->ring_lock);
return ERR_PTR(-EINVAL);
}
if (seq + amdgpu_sched_jobs < centity->sequence) {
spin_unlock(&ctx->ring_lock);
return NULL;
}
fence = dma_fence_get(centity->fences[seq & (amdgpu_sched_jobs - 1)]);
spin_unlock(&ctx->ring_lock);
return fence;
}
static void amdgpu_ctx_set_entity_priority(struct amdgpu_ctx *ctx,
struct amdgpu_ctx_entity *aentity,
int hw_ip,
int32_t priority)
{
struct amdgpu_device *adev = ctx->adev;
unsigned int hw_prio;
struct drm_gpu_scheduler **scheds = NULL;
unsigned num_scheds;
/* set sw priority */
drm_sched_entity_set_priority(&aentity->entity,
amdgpu_ctx_to_drm_sched_prio(priority));
/* set hw priority */
if (hw_ip == AMDGPU_HW_IP_COMPUTE) {
hw_prio = amdgpu_ctx_get_hw_prio(ctx, hw_ip);
hw_prio = array_index_nospec(hw_prio, AMDGPU_RING_PRIO_MAX);
scheds = adev->gpu_sched[hw_ip][hw_prio].sched;
num_scheds = adev->gpu_sched[hw_ip][hw_prio].num_scheds;
drm_sched_entity_modify_sched(&aentity->entity, scheds,
num_scheds);
}
}
void amdgpu_ctx_priority_override(struct amdgpu_ctx *ctx,
int32_t priority)
{
int32_t ctx_prio;
unsigned i, j;
ctx->override_priority = priority;
ctx_prio = (ctx->override_priority == AMDGPU_CTX_PRIORITY_UNSET) ?
ctx->init_priority : ctx->override_priority;
for (i = 0; i < AMDGPU_HW_IP_NUM; ++i) {
for (j = 0; j < amdgpu_ctx_num_entities[i]; ++j) {
if (!ctx->entities[i][j])
continue;
amdgpu_ctx_set_entity_priority(ctx, ctx->entities[i][j],
i, ctx_prio);
}
}
}
int amdgpu_ctx_wait_prev_fence(struct amdgpu_ctx *ctx,
struct drm_sched_entity *entity)
{
struct amdgpu_ctx_entity *centity = to_amdgpu_ctx_entity(entity);
struct dma_fence *other;
unsigned idx;
long r;
spin_lock(&ctx->ring_lock);
idx = centity->sequence & (amdgpu_sched_jobs - 1);
other = dma_fence_get(centity->fences[idx]);
spin_unlock(&ctx->ring_lock);
if (!other)
return 0;
r = dma_fence_wait(other, true);
if (r < 0 && r != -ERESTARTSYS)
DRM_ERROR("Error (%ld) waiting for fence!\n", r);
dma_fence_put(other);
return r;
}
void amdgpu_ctx_mgr_init(struct amdgpu_ctx_mgr *mgr)
{
mutex_init(&mgr->lock);
idr_init(&mgr->ctx_handles);
}
long amdgpu_ctx_mgr_entity_flush(struct amdgpu_ctx_mgr *mgr, long timeout)
{
struct amdgpu_ctx *ctx;
struct idr *idp;
uint32_t id, i, j;
idp = &mgr->ctx_handles;
mutex_lock(&mgr->lock);
idr_for_each_entry(idp, ctx, id) {
for (i = 0; i < AMDGPU_HW_IP_NUM; ++i) {
for (j = 0; j < amdgpu_ctx_num_entities[i]; ++j) {
struct drm_sched_entity *entity;
if (!ctx->entities[i][j])
continue;
entity = &ctx->entities[i][j]->entity;
timeout = drm_sched_entity_flush(entity, timeout);
}
}
}
mutex_unlock(&mgr->lock);
return timeout;
}
void amdgpu_ctx_mgr_entity_fini(struct amdgpu_ctx_mgr *mgr)
{
struct amdgpu_ctx *ctx;
struct idr *idp;
uint32_t id, i, j;
idp = &mgr->ctx_handles;
idr_for_each_entry(idp, ctx, id) {
if (kref_read(&ctx->refcount) != 1) {
DRM_ERROR("ctx %p is still alive\n", ctx);
continue;
}
for (i = 0; i < AMDGPU_HW_IP_NUM; ++i) {
for (j = 0; j < amdgpu_ctx_num_entities[i]; ++j) {
struct drm_sched_entity *entity;
if (!ctx->entities[i][j])
continue;
entity = &ctx->entities[i][j]->entity;
drm_sched_entity_fini(entity);
}
}
}
}
void amdgpu_ctx_mgr_fini(struct amdgpu_ctx_mgr *mgr)
{
struct amdgpu_ctx *ctx;
struct idr *idp;
uint32_t id;
amdgpu_ctx_mgr_entity_fini(mgr);
idp = &mgr->ctx_handles;
idr_for_each_entry(idp, ctx, id) {
if (kref_put(&ctx->refcount, amdgpu_ctx_fini) != 1)
DRM_ERROR("ctx %p is still alive\n", ctx);
}
idr_destroy(&mgr->ctx_handles);
mutex_destroy(&mgr->lock);
}
static void amdgpu_ctx_fence_time(struct amdgpu_ctx *ctx,
struct amdgpu_ctx_entity *centity, ktime_t *total, ktime_t *max)
{
ktime_t now, t1;
uint32_t i;
*total = *max = 0;
now = ktime_get();
for (i = 0; i < amdgpu_sched_jobs; i++) {
struct dma_fence *fence;
struct drm_sched_fence *s_fence;
spin_lock(&ctx->ring_lock);
fence = dma_fence_get(centity->fences[i]);
spin_unlock(&ctx->ring_lock);
if (!fence)
continue;
s_fence = to_drm_sched_fence(fence);
if (!dma_fence_is_signaled(&s_fence->scheduled)) {
dma_fence_put(fence);
continue;
}
t1 = s_fence->scheduled.timestamp;
if (!ktime_before(t1, now)) {
dma_fence_put(fence);
continue;
}
if (dma_fence_is_signaled(&s_fence->finished) &&
s_fence->finished.timestamp < now)
*total += ktime_sub(s_fence->finished.timestamp, t1);
else
*total += ktime_sub(now, t1);
t1 = ktime_sub(now, t1);
dma_fence_put(fence);
*max = max(t1, *max);
}
}
ktime_t amdgpu_ctx_mgr_fence_usage(struct amdgpu_ctx_mgr *mgr, uint32_t hwip,
uint32_t idx, uint64_t *elapsed)
{
struct idr *idp;
struct amdgpu_ctx *ctx;
uint32_t id;
struct amdgpu_ctx_entity *centity;
ktime_t total = 0, max = 0;
if (idx >= AMDGPU_MAX_ENTITY_NUM)
return 0;
idp = &mgr->ctx_handles;
mutex_lock(&mgr->lock);
idr_for_each_entry(idp, ctx, id) {
ktime_t ttotal, tmax;
if (!ctx->entities[hwip][idx])
continue;
centity = ctx->entities[hwip][idx];
amdgpu_ctx_fence_time(ctx, centity, &ttotal, &tmax);
/* Harmonic mean approximation diverges for very small
* values. If ratio < 0.01% ignore
*/
if (AMDGPU_CTX_FENCE_USAGE_MIN_RATIO(tmax, ttotal))
continue;
total = ktime_add(total, ttotal);
max = ktime_after(tmax, max) ? tmax : max;
}
mutex_unlock(&mgr->lock);
if (elapsed)
*elapsed = max;
return total;
}