| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (c) 2000-2005 Silicon Graphics, Inc. |
| * Copyright (c) 2016-2018 Christoph Hellwig. |
| * All Rights Reserved. |
| */ |
| #include "xfs.h" |
| #include "xfs_shared.h" |
| #include "xfs_format.h" |
| #include "xfs_log_format.h" |
| #include "xfs_trans_resv.h" |
| #include "xfs_mount.h" |
| #include "xfs_inode.h" |
| #include "xfs_trans.h" |
| #include "xfs_iomap.h" |
| #include "xfs_trace.h" |
| #include "xfs_bmap.h" |
| #include "xfs_bmap_util.h" |
| #include "xfs_reflink.h" |
| |
| struct xfs_writepage_ctx { |
| struct iomap_writepage_ctx ctx; |
| unsigned int data_seq; |
| unsigned int cow_seq; |
| }; |
| |
| static inline struct xfs_writepage_ctx * |
| XFS_WPC(struct iomap_writepage_ctx *ctx) |
| { |
| return container_of(ctx, struct xfs_writepage_ctx, ctx); |
| } |
| |
| /* |
| * Fast and loose check if this write could update the on-disk inode size. |
| */ |
| static inline bool xfs_ioend_is_append(struct iomap_ioend *ioend) |
| { |
| return ioend->io_offset + ioend->io_size > |
| XFS_I(ioend->io_inode)->i_d.di_size; |
| } |
| |
| STATIC int |
| xfs_setfilesize_trans_alloc( |
| struct iomap_ioend *ioend) |
| { |
| struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; |
| struct xfs_trans *tp; |
| int error; |
| |
| error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); |
| if (error) |
| return error; |
| |
| ioend->io_private = tp; |
| |
| /* |
| * We may pass freeze protection with a transaction. So tell lockdep |
| * we released it. |
| */ |
| __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS); |
| /* |
| * We hand off the transaction to the completion thread now, so |
| * clear the flag here. |
| */ |
| current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS); |
| return 0; |
| } |
| |
| /* |
| * Update on-disk file size now that data has been written to disk. |
| */ |
| STATIC int |
| __xfs_setfilesize( |
| struct xfs_inode *ip, |
| struct xfs_trans *tp, |
| xfs_off_t offset, |
| size_t size) |
| { |
| xfs_fsize_t isize; |
| |
| xfs_ilock(ip, XFS_ILOCK_EXCL); |
| isize = xfs_new_eof(ip, offset + size); |
| if (!isize) { |
| xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| xfs_trans_cancel(tp); |
| return 0; |
| } |
| |
| trace_xfs_setfilesize(ip, offset, size); |
| |
| ip->i_d.di_size = isize; |
| xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); |
| xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); |
| |
| return xfs_trans_commit(tp); |
| } |
| |
| int |
| xfs_setfilesize( |
| struct xfs_inode *ip, |
| xfs_off_t offset, |
| size_t size) |
| { |
| struct xfs_mount *mp = ip->i_mount; |
| struct xfs_trans *tp; |
| int error; |
| |
| error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); |
| if (error) |
| return error; |
| |
| return __xfs_setfilesize(ip, tp, offset, size); |
| } |
| |
| STATIC int |
| xfs_setfilesize_ioend( |
| struct iomap_ioend *ioend, |
| int error) |
| { |
| struct xfs_inode *ip = XFS_I(ioend->io_inode); |
| struct xfs_trans *tp = ioend->io_private; |
| |
| /* |
| * The transaction may have been allocated in the I/O submission thread, |
| * thus we need to mark ourselves as being in a transaction manually. |
| * Similarly for freeze protection. |
| */ |
| current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS); |
| __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS); |
| |
| /* we abort the update if there was an IO error */ |
| if (error) { |
| xfs_trans_cancel(tp); |
| return error; |
| } |
| |
| return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size); |
| } |
| |
| /* |
| * IO write completion. |
| */ |
| STATIC void |
| xfs_end_ioend( |
| struct iomap_ioend *ioend) |
| { |
| struct xfs_inode *ip = XFS_I(ioend->io_inode); |
| xfs_off_t offset = ioend->io_offset; |
| size_t size = ioend->io_size; |
| unsigned int nofs_flag; |
| int error; |
| |
| /* |
| * We can allocate memory here while doing writeback on behalf of |
| * memory reclaim. To avoid memory allocation deadlocks set the |
| * task-wide nofs context for the following operations. |
| */ |
| nofs_flag = memalloc_nofs_save(); |
| |
| /* |
| * Just clean up the in-memory strutures if the fs has been shut down. |
| */ |
| if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { |
| error = -EIO; |
| goto done; |
| } |
| |
| /* |
| * Clean up any COW blocks on an I/O error. |
| */ |
| error = blk_status_to_errno(ioend->io_bio->bi_status); |
| if (unlikely(error)) { |
| if (ioend->io_flags & IOMAP_F_SHARED) |
| xfs_reflink_cancel_cow_range(ip, offset, size, true); |
| goto done; |
| } |
| |
| /* |
| * Success: commit the COW or unwritten blocks if needed. |
| */ |
| if (ioend->io_flags & IOMAP_F_SHARED) |
| error = xfs_reflink_end_cow(ip, offset, size); |
| else if (ioend->io_type == IOMAP_UNWRITTEN) |
| error = xfs_iomap_write_unwritten(ip, offset, size, false); |
| else |
| ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_private); |
| |
| done: |
| if (ioend->io_private) |
| error = xfs_setfilesize_ioend(ioend, error); |
| iomap_finish_ioends(ioend, error); |
| memalloc_nofs_restore(nofs_flag); |
| } |
| |
| /* |
| * If the to be merged ioend has a preallocated transaction for file |
| * size updates we need to ensure the ioend it is merged into also |
| * has one. If it already has one we can simply cancel the transaction |
| * as it is guaranteed to be clean. |
| */ |
| static void |
| xfs_ioend_merge_private( |
| struct iomap_ioend *ioend, |
| struct iomap_ioend *next) |
| { |
| if (!ioend->io_private) { |
| ioend->io_private = next->io_private; |
| next->io_private = NULL; |
| } else { |
| xfs_setfilesize_ioend(next, -ECANCELED); |
| } |
| } |
| |
| /* Finish all pending io completions. */ |
| void |
| xfs_end_io( |
| struct work_struct *work) |
| { |
| struct xfs_inode *ip = |
| container_of(work, struct xfs_inode, i_ioend_work); |
| struct iomap_ioend *ioend; |
| struct list_head tmp; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&ip->i_ioend_lock, flags); |
| list_replace_init(&ip->i_ioend_list, &tmp); |
| spin_unlock_irqrestore(&ip->i_ioend_lock, flags); |
| |
| iomap_sort_ioends(&tmp); |
| while ((ioend = list_first_entry_or_null(&tmp, struct iomap_ioend, |
| io_list))) { |
| list_del_init(&ioend->io_list); |
| iomap_ioend_try_merge(ioend, &tmp, xfs_ioend_merge_private); |
| xfs_end_ioend(ioend); |
| } |
| } |
| |
| static inline bool xfs_ioend_needs_workqueue(struct iomap_ioend *ioend) |
| { |
| return ioend->io_private || |
| ioend->io_type == IOMAP_UNWRITTEN || |
| (ioend->io_flags & IOMAP_F_SHARED); |
| } |
| |
| STATIC void |
| xfs_end_bio( |
| struct bio *bio) |
| { |
| struct iomap_ioend *ioend = bio->bi_private; |
| struct xfs_inode *ip = XFS_I(ioend->io_inode); |
| unsigned long flags; |
| |
| ASSERT(xfs_ioend_needs_workqueue(ioend)); |
| |
| spin_lock_irqsave(&ip->i_ioend_lock, flags); |
| if (list_empty(&ip->i_ioend_list)) |
| WARN_ON_ONCE(!queue_work(ip->i_mount->m_unwritten_workqueue, |
| &ip->i_ioend_work)); |
| list_add_tail(&ioend->io_list, &ip->i_ioend_list); |
| spin_unlock_irqrestore(&ip->i_ioend_lock, flags); |
| } |
| |
| /* |
| * Fast revalidation of the cached writeback mapping. Return true if the current |
| * mapping is valid, false otherwise. |
| */ |
| static bool |
| xfs_imap_valid( |
| struct iomap_writepage_ctx *wpc, |
| struct xfs_inode *ip, |
| loff_t offset) |
| { |
| if (offset < wpc->iomap.offset || |
| offset >= wpc->iomap.offset + wpc->iomap.length) |
| return false; |
| /* |
| * If this is a COW mapping, it is sufficient to check that the mapping |
| * covers the offset. Be careful to check this first because the caller |
| * can revalidate a COW mapping without updating the data seqno. |
| */ |
| if (wpc->iomap.flags & IOMAP_F_SHARED) |
| return true; |
| |
| /* |
| * This is not a COW mapping. Check the sequence number of the data fork |
| * because concurrent changes could have invalidated the extent. Check |
| * the COW fork because concurrent changes since the last time we |
| * checked (and found nothing at this offset) could have added |
| * overlapping blocks. |
| */ |
| if (XFS_WPC(wpc)->data_seq != READ_ONCE(ip->i_df.if_seq)) |
| return false; |
| if (xfs_inode_has_cow_data(ip) && |
| XFS_WPC(wpc)->cow_seq != READ_ONCE(ip->i_cowfp->if_seq)) |
| return false; |
| return true; |
| } |
| |
| /* |
| * Pass in a dellalloc extent and convert it to real extents, return the real |
| * extent that maps offset_fsb in wpc->iomap. |
| * |
| * The current page is held locked so nothing could have removed the block |
| * backing offset_fsb, although it could have moved from the COW to the data |
| * fork by another thread. |
| */ |
| static int |
| xfs_convert_blocks( |
| struct iomap_writepage_ctx *wpc, |
| struct xfs_inode *ip, |
| int whichfork, |
| loff_t offset) |
| { |
| int error; |
| unsigned *seq; |
| |
| if (whichfork == XFS_COW_FORK) |
| seq = &XFS_WPC(wpc)->cow_seq; |
| else |
| seq = &XFS_WPC(wpc)->data_seq; |
| |
| /* |
| * Attempt to allocate whatever delalloc extent currently backs offset |
| * and put the result into wpc->iomap. Allocate in a loop because it |
| * may take several attempts to allocate real blocks for a contiguous |
| * delalloc extent if free space is sufficiently fragmented. |
| */ |
| do { |
| error = xfs_bmapi_convert_delalloc(ip, whichfork, offset, |
| &wpc->iomap, seq); |
| if (error) |
| return error; |
| } while (wpc->iomap.offset + wpc->iomap.length <= offset); |
| |
| return 0; |
| } |
| |
| static int |
| xfs_map_blocks( |
| struct iomap_writepage_ctx *wpc, |
| struct inode *inode, |
| loff_t offset) |
| { |
| struct xfs_inode *ip = XFS_I(inode); |
| struct xfs_mount *mp = ip->i_mount; |
| ssize_t count = i_blocksize(inode); |
| xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); |
| xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count); |
| xfs_fileoff_t cow_fsb = NULLFILEOFF; |
| int whichfork = XFS_DATA_FORK; |
| struct xfs_bmbt_irec imap; |
| struct xfs_iext_cursor icur; |
| int retries = 0; |
| int error = 0; |
| |
| if (XFS_FORCED_SHUTDOWN(mp)) |
| return -EIO; |
| |
| /* |
| * COW fork blocks can overlap data fork blocks even if the blocks |
| * aren't shared. COW I/O always takes precedent, so we must always |
| * check for overlap on reflink inodes unless the mapping is already a |
| * COW one, or the COW fork hasn't changed from the last time we looked |
| * at it. |
| * |
| * It's safe to check the COW fork if_seq here without the ILOCK because |
| * we've indirectly protected against concurrent updates: writeback has |
| * the page locked, which prevents concurrent invalidations by reflink |
| * and directio and prevents concurrent buffered writes to the same |
| * page. Changes to if_seq always happen under i_lock, which protects |
| * against concurrent updates and provides a memory barrier on the way |
| * out that ensures that we always see the current value. |
| */ |
| if (xfs_imap_valid(wpc, ip, offset)) |
| return 0; |
| |
| /* |
| * If we don't have a valid map, now it's time to get a new one for this |
| * offset. This will convert delayed allocations (including COW ones) |
| * into real extents. If we return without a valid map, it means we |
| * landed in a hole and we skip the block. |
| */ |
| retry: |
| xfs_ilock(ip, XFS_ILOCK_SHARED); |
| ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || |
| (ip->i_df.if_flags & XFS_IFEXTENTS)); |
| |
| /* |
| * Check if this is offset is covered by a COW extents, and if yes use |
| * it directly instead of looking up anything in the data fork. |
| */ |
| if (xfs_inode_has_cow_data(ip) && |
| xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap)) |
| cow_fsb = imap.br_startoff; |
| if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) { |
| XFS_WPC(wpc)->cow_seq = READ_ONCE(ip->i_cowfp->if_seq); |
| xfs_iunlock(ip, XFS_ILOCK_SHARED); |
| |
| whichfork = XFS_COW_FORK; |
| goto allocate_blocks; |
| } |
| |
| /* |
| * No COW extent overlap. Revalidate now that we may have updated |
| * ->cow_seq. If the data mapping is still valid, we're done. |
| */ |
| if (xfs_imap_valid(wpc, ip, offset)) { |
| xfs_iunlock(ip, XFS_ILOCK_SHARED); |
| return 0; |
| } |
| |
| /* |
| * If we don't have a valid map, now it's time to get a new one for this |
| * offset. This will convert delayed allocations (including COW ones) |
| * into real extents. |
| */ |
| if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) |
| imap.br_startoff = end_fsb; /* fake a hole past EOF */ |
| XFS_WPC(wpc)->data_seq = READ_ONCE(ip->i_df.if_seq); |
| xfs_iunlock(ip, XFS_ILOCK_SHARED); |
| |
| /* landed in a hole or beyond EOF? */ |
| if (imap.br_startoff > offset_fsb) { |
| imap.br_blockcount = imap.br_startoff - offset_fsb; |
| imap.br_startoff = offset_fsb; |
| imap.br_startblock = HOLESTARTBLOCK; |
| imap.br_state = XFS_EXT_NORM; |
| } |
| |
| /* |
| * Truncate to the next COW extent if there is one. This is the only |
| * opportunity to do this because we can skip COW fork lookups for the |
| * subsequent blocks in the mapping; however, the requirement to treat |
| * the COW range separately remains. |
| */ |
| if (cow_fsb != NULLFILEOFF && |
| cow_fsb < imap.br_startoff + imap.br_blockcount) |
| imap.br_blockcount = cow_fsb - imap.br_startoff; |
| |
| /* got a delalloc extent? */ |
| if (imap.br_startblock != HOLESTARTBLOCK && |
| isnullstartblock(imap.br_startblock)) |
| goto allocate_blocks; |
| |
| xfs_bmbt_to_iomap(ip, &wpc->iomap, &imap, 0); |
| trace_xfs_map_blocks_found(ip, offset, count, whichfork, &imap); |
| return 0; |
| allocate_blocks: |
| error = xfs_convert_blocks(wpc, ip, whichfork, offset); |
| if (error) { |
| /* |
| * If we failed to find the extent in the COW fork we might have |
| * raced with a COW to data fork conversion or truncate. |
| * Restart the lookup to catch the extent in the data fork for |
| * the former case, but prevent additional retries to avoid |
| * looping forever for the latter case. |
| */ |
| if (error == -EAGAIN && whichfork == XFS_COW_FORK && !retries++) |
| goto retry; |
| ASSERT(error != -EAGAIN); |
| return error; |
| } |
| |
| /* |
| * Due to merging the return real extent might be larger than the |
| * original delalloc one. Trim the return extent to the next COW |
| * boundary again to force a re-lookup. |
| */ |
| if (whichfork != XFS_COW_FORK && cow_fsb != NULLFILEOFF) { |
| loff_t cow_offset = XFS_FSB_TO_B(mp, cow_fsb); |
| |
| if (cow_offset < wpc->iomap.offset + wpc->iomap.length) |
| wpc->iomap.length = cow_offset - wpc->iomap.offset; |
| } |
| |
| ASSERT(wpc->iomap.offset <= offset); |
| ASSERT(wpc->iomap.offset + wpc->iomap.length > offset); |
| trace_xfs_map_blocks_alloc(ip, offset, count, whichfork, &imap); |
| return 0; |
| } |
| |
| static int |
| xfs_prepare_ioend( |
| struct iomap_ioend *ioend, |
| int status) |
| { |
| unsigned int nofs_flag; |
| |
| /* |
| * We can allocate memory here while doing writeback on behalf of |
| * memory reclaim. To avoid memory allocation deadlocks set the |
| * task-wide nofs context for the following operations. |
| */ |
| nofs_flag = memalloc_nofs_save(); |
| |
| /* Convert CoW extents to regular */ |
| if (!status && (ioend->io_flags & IOMAP_F_SHARED)) { |
| status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode), |
| ioend->io_offset, ioend->io_size); |
| } |
| |
| /* Reserve log space if we might write beyond the on-disk inode size. */ |
| if (!status && |
| ((ioend->io_flags & IOMAP_F_SHARED) || |
| ioend->io_type != IOMAP_UNWRITTEN) && |
| xfs_ioend_is_append(ioend) && |
| !ioend->io_private) |
| status = xfs_setfilesize_trans_alloc(ioend); |
| |
| memalloc_nofs_restore(nofs_flag); |
| |
| if (xfs_ioend_needs_workqueue(ioend)) |
| ioend->io_bio->bi_end_io = xfs_end_bio; |
| return status; |
| } |
| |
| /* |
| * If the page has delalloc blocks on it, we need to punch them out before we |
| * invalidate the page. If we don't, we leave a stale delalloc mapping on the |
| * inode that can trip up a later direct I/O read operation on the same region. |
| * |
| * We prevent this by truncating away the delalloc regions on the page. Because |
| * they are delalloc, we can do this without needing a transaction. Indeed - if |
| * we get ENOSPC errors, we have to be able to do this truncation without a |
| * transaction as there is no space left for block reservation (typically why we |
| * see a ENOSPC in writeback). |
| */ |
| static void |
| xfs_discard_page( |
| struct page *page) |
| { |
| struct inode *inode = page->mapping->host; |
| struct xfs_inode *ip = XFS_I(inode); |
| struct xfs_mount *mp = ip->i_mount; |
| loff_t offset = page_offset(page); |
| xfs_fileoff_t start_fsb = XFS_B_TO_FSBT(mp, offset); |
| int error; |
| |
| if (XFS_FORCED_SHUTDOWN(mp)) |
| goto out_invalidate; |
| |
| xfs_alert(mp, |
| "page discard on page "PTR_FMT", inode 0x%llx, offset %llu.", |
| page, ip->i_ino, offset); |
| |
| error = xfs_bmap_punch_delalloc_range(ip, start_fsb, |
| PAGE_SIZE / i_blocksize(inode)); |
| if (error && !XFS_FORCED_SHUTDOWN(mp)) |
| xfs_alert(mp, "page discard unable to remove delalloc mapping."); |
| out_invalidate: |
| iomap_invalidatepage(page, 0, PAGE_SIZE); |
| } |
| |
| static const struct iomap_writeback_ops xfs_writeback_ops = { |
| .map_blocks = xfs_map_blocks, |
| .prepare_ioend = xfs_prepare_ioend, |
| .discard_page = xfs_discard_page, |
| }; |
| |
| STATIC int |
| xfs_vm_writepage( |
| struct page *page, |
| struct writeback_control *wbc) |
| { |
| struct xfs_writepage_ctx wpc = { }; |
| |
| return iomap_writepage(page, wbc, &wpc.ctx, &xfs_writeback_ops); |
| } |
| |
| STATIC int |
| xfs_vm_writepages( |
| struct address_space *mapping, |
| struct writeback_control *wbc) |
| { |
| struct xfs_writepage_ctx wpc = { }; |
| |
| xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); |
| return iomap_writepages(mapping, wbc, &wpc.ctx, &xfs_writeback_ops); |
| } |
| |
| STATIC int |
| xfs_dax_writepages( |
| struct address_space *mapping, |
| struct writeback_control *wbc) |
| { |
| struct xfs_inode *ip = XFS_I(mapping->host); |
| |
| xfs_iflags_clear(ip, XFS_ITRUNCATED); |
| return dax_writeback_mapping_range(mapping, |
| xfs_inode_buftarg(ip)->bt_bdev, wbc); |
| } |
| |
| STATIC sector_t |
| xfs_vm_bmap( |
| struct address_space *mapping, |
| sector_t block) |
| { |
| struct xfs_inode *ip = XFS_I(mapping->host); |
| |
| trace_xfs_vm_bmap(ip); |
| |
| /* |
| * The swap code (ab-)uses ->bmap to get a block mapping and then |
| * bypasses the file system for actual I/O. We really can't allow |
| * that on reflinks inodes, so we have to skip out here. And yes, |
| * 0 is the magic code for a bmap error. |
| * |
| * Since we don't pass back blockdev info, we can't return bmap |
| * information for rt files either. |
| */ |
| if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip)) |
| return 0; |
| return iomap_bmap(mapping, block, &xfs_read_iomap_ops); |
| } |
| |
| STATIC int |
| xfs_vm_readpage( |
| struct file *unused, |
| struct page *page) |
| { |
| return iomap_readpage(page, &xfs_read_iomap_ops); |
| } |
| |
| STATIC int |
| xfs_vm_readpages( |
| struct file *unused, |
| struct address_space *mapping, |
| struct list_head *pages, |
| unsigned nr_pages) |
| { |
| return iomap_readpages(mapping, pages, nr_pages, &xfs_read_iomap_ops); |
| } |
| |
| static int |
| xfs_iomap_swapfile_activate( |
| struct swap_info_struct *sis, |
| struct file *swap_file, |
| sector_t *span) |
| { |
| sis->bdev = xfs_inode_buftarg(XFS_I(file_inode(swap_file)))->bt_bdev; |
| return iomap_swapfile_activate(sis, swap_file, span, |
| &xfs_read_iomap_ops); |
| } |
| |
| const struct address_space_operations xfs_address_space_operations = { |
| .readpage = xfs_vm_readpage, |
| .readpages = xfs_vm_readpages, |
| .writepage = xfs_vm_writepage, |
| .writepages = xfs_vm_writepages, |
| .set_page_dirty = iomap_set_page_dirty, |
| .releasepage = iomap_releasepage, |
| .invalidatepage = iomap_invalidatepage, |
| .bmap = xfs_vm_bmap, |
| .direct_IO = noop_direct_IO, |
| .migratepage = iomap_migrate_page, |
| .is_partially_uptodate = iomap_is_partially_uptodate, |
| .error_remove_page = generic_error_remove_page, |
| .swap_activate = xfs_iomap_swapfile_activate, |
| }; |
| |
| const struct address_space_operations xfs_dax_aops = { |
| .writepages = xfs_dax_writepages, |
| .direct_IO = noop_direct_IO, |
| .set_page_dirty = noop_set_page_dirty, |
| .invalidatepage = noop_invalidatepage, |
| .swap_activate = xfs_iomap_swapfile_activate, |
| }; |