| /* |
| * This file is provided under a dual BSD/GPLv2 license. When using or |
| * redistributing this file, you may do so under either license. |
| * |
| * GPL LICENSE SUMMARY |
| * |
| * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| * The full GNU General Public License is included in this distribution |
| * in the file called LICENSE.GPL. |
| * |
| * BSD LICENSE |
| * |
| * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * * Neither the name of Intel Corporation nor the names of its |
| * contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include <linux/device.h> |
| #include <scsi/sas.h> |
| #include "scic_controller.h" |
| #include "scic_phy.h" |
| #include "scic_port.h" |
| #include "scic_sds_controller.h" |
| #include "scu_registers.h" |
| #include "scic_sds_phy.h" |
| #include "scic_sds_port_configuration_agent.h" |
| #include "scic_sds_port.h" |
| #include "remote_device.h" |
| #include "scic_sds_request.h" |
| #include "sci_environment.h" |
| #include "sci_util.h" |
| #include "scu_completion_codes.h" |
| #include "scu_constants.h" |
| #include "scu_event_codes.h" |
| #include "scu_remote_node_context.h" |
| #include "scu_task_context.h" |
| #include "scu_unsolicited_frame.h" |
| |
| #define SCU_CONTEXT_RAM_INIT_STALL_TIME 200 |
| |
| /** |
| * smu_dcc_get_max_ports() - |
| * |
| * This macro returns the maximum number of logical ports supported by the |
| * hardware. The caller passes in the value read from the device context |
| * capacity register and this macro will mash and shift the value appropriately. |
| */ |
| #define smu_dcc_get_max_ports(dcc_value) \ |
| (\ |
| (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \ |
| >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \ |
| ) |
| |
| /** |
| * smu_dcc_get_max_task_context() - |
| * |
| * This macro returns the maximum number of task contexts supported by the |
| * hardware. The caller passes in the value read from the device context |
| * capacity register and this macro will mash and shift the value appropriately. |
| */ |
| #define smu_dcc_get_max_task_context(dcc_value) \ |
| (\ |
| (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \ |
| >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \ |
| ) |
| |
| /** |
| * smu_dcc_get_max_remote_node_context() - |
| * |
| * This macro returns the maximum number of remote node contexts supported by |
| * the hardware. The caller passes in the value read from the device context |
| * capacity register and this macro will mash and shift the value appropriately. |
| */ |
| #define smu_dcc_get_max_remote_node_context(dcc_value) \ |
| (\ |
| (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \ |
| >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \ |
| ) |
| |
| |
| static void scic_sds_controller_power_control_timer_handler( |
| void *controller); |
| #define SCIC_SDS_CONTROLLER_MIN_TIMER_COUNT 3 |
| #define SCIC_SDS_CONTROLLER_MAX_TIMER_COUNT 3 |
| |
| /** |
| * |
| * |
| * The number of milliseconds to wait for a phy to start. |
| */ |
| #define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT 100 |
| |
| /** |
| * |
| * |
| * The number of milliseconds to wait while a given phy is consuming power |
| * before allowing another set of phys to consume power. Ultimately, this will |
| * be specified by OEM parameter. |
| */ |
| #define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500 |
| |
| /** |
| * COMPLETION_QUEUE_CYCLE_BIT() - |
| * |
| * This macro will return the cycle bit of the completion queue entry |
| */ |
| #define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000) |
| |
| /** |
| * NORMALIZE_GET_POINTER() - |
| * |
| * This macro will normalize the completion queue get pointer so its value can |
| * be used as an index into an array |
| */ |
| #define NORMALIZE_GET_POINTER(x) \ |
| ((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK) |
| |
| /** |
| * NORMALIZE_PUT_POINTER() - |
| * |
| * This macro will normalize the completion queue put pointer so its value can |
| * be used as an array inde |
| */ |
| #define NORMALIZE_PUT_POINTER(x) \ |
| ((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK) |
| |
| |
| /** |
| * NORMALIZE_GET_POINTER_CYCLE_BIT() - |
| * |
| * This macro will normalize the completion queue cycle pointer so it matches |
| * the completion queue cycle bit |
| */ |
| #define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \ |
| ((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT)) |
| |
| /** |
| * NORMALIZE_EVENT_POINTER() - |
| * |
| * This macro will normalize the completion queue event entry so its value can |
| * be used as an index. |
| */ |
| #define NORMALIZE_EVENT_POINTER(x) \ |
| (\ |
| ((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \ |
| >> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \ |
| ) |
| |
| /** |
| * INCREMENT_COMPLETION_QUEUE_GET() - |
| * |
| * This macro will increment the controllers completion queue index value and |
| * possibly toggle the cycle bit if the completion queue index wraps back to 0. |
| */ |
| #define INCREMENT_COMPLETION_QUEUE_GET(controller, index, cycle) \ |
| INCREMENT_QUEUE_GET(\ |
| (index), \ |
| (cycle), \ |
| (controller)->completion_queue_entries, \ |
| SMU_CQGR_CYCLE_BIT \ |
| ) |
| |
| /** |
| * INCREMENT_EVENT_QUEUE_GET() - |
| * |
| * This macro will increment the controllers event queue index value and |
| * possibly toggle the event cycle bit if the event queue index wraps back to 0. |
| */ |
| #define INCREMENT_EVENT_QUEUE_GET(controller, index, cycle) \ |
| INCREMENT_QUEUE_GET(\ |
| (index), \ |
| (cycle), \ |
| (controller)->completion_event_entries, \ |
| SMU_CQGR_EVENT_CYCLE_BIT \ |
| ) |
| |
| static void scic_sds_controller_initialize_power_control(struct scic_sds_controller *scic) |
| { |
| struct isci_host *ihost = scic_to_ihost(scic); |
| scic->power_control.timer = isci_timer_create(ihost, |
| scic, |
| scic_sds_controller_power_control_timer_handler); |
| |
| memset(scic->power_control.requesters, 0, |
| sizeof(scic->power_control.requesters)); |
| |
| scic->power_control.phys_waiting = 0; |
| scic->power_control.phys_granted_power = 0; |
| } |
| |
| int scic_controller_mem_init(struct scic_sds_controller *scic) |
| { |
| struct device *dev = scic_to_dev(scic); |
| dma_addr_t dma_handle; |
| enum sci_status result; |
| |
| scic->completion_queue = dmam_alloc_coherent(dev, |
| scic->completion_queue_entries * sizeof(u32), |
| &dma_handle, GFP_KERNEL); |
| if (!scic->completion_queue) |
| return -ENOMEM; |
| |
| writel(lower_32_bits(dma_handle), |
| &scic->smu_registers->completion_queue_lower); |
| writel(upper_32_bits(dma_handle), |
| &scic->smu_registers->completion_queue_upper); |
| |
| scic->remote_node_context_table = dmam_alloc_coherent(dev, |
| scic->remote_node_entries * |
| sizeof(union scu_remote_node_context), |
| &dma_handle, GFP_KERNEL); |
| if (!scic->remote_node_context_table) |
| return -ENOMEM; |
| |
| writel(lower_32_bits(dma_handle), |
| &scic->smu_registers->remote_node_context_lower); |
| writel(upper_32_bits(dma_handle), |
| &scic->smu_registers->remote_node_context_upper); |
| |
| scic->task_context_table = dmam_alloc_coherent(dev, |
| scic->task_context_entries * |
| sizeof(struct scu_task_context), |
| &dma_handle, GFP_KERNEL); |
| if (!scic->task_context_table) |
| return -ENOMEM; |
| |
| writel(lower_32_bits(dma_handle), |
| &scic->smu_registers->host_task_table_lower); |
| writel(upper_32_bits(dma_handle), |
| &scic->smu_registers->host_task_table_upper); |
| |
| result = scic_sds_unsolicited_frame_control_construct(scic); |
| if (result) |
| return result; |
| |
| /* |
| * Inform the silicon as to the location of the UF headers and |
| * address table. |
| */ |
| writel(lower_32_bits(scic->uf_control.headers.physical_address), |
| &scic->scu_registers->sdma.uf_header_base_address_lower); |
| writel(upper_32_bits(scic->uf_control.headers.physical_address), |
| &scic->scu_registers->sdma.uf_header_base_address_upper); |
| |
| writel(lower_32_bits(scic->uf_control.address_table.physical_address), |
| &scic->scu_registers->sdma.uf_address_table_lower); |
| writel(upper_32_bits(scic->uf_control.address_table.physical_address), |
| &scic->scu_registers->sdma.uf_address_table_upper); |
| |
| return 0; |
| } |
| |
| /** |
| * This method initializes the task context data for the controller. |
| * @scic: |
| * |
| */ |
| static void |
| scic_sds_controller_assign_task_entries(struct scic_sds_controller *controller) |
| { |
| u32 task_assignment; |
| |
| /* |
| * Assign all the TCs to function 0 |
| * TODO: Do we actually need to read this register to write it back? |
| */ |
| |
| task_assignment = |
| readl(&controller->smu_registers->task_context_assignment[0]); |
| |
| task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) | |
| (SMU_TCA_GEN_VAL(ENDING, controller->task_context_entries - 1)) | |
| (SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE)); |
| |
| writel(task_assignment, |
| &controller->smu_registers->task_context_assignment[0]); |
| |
| } |
| |
| /** |
| * This method initializes the hardware completion queue. |
| * |
| * |
| */ |
| static void scic_sds_controller_initialize_completion_queue( |
| struct scic_sds_controller *scic) |
| { |
| u32 index; |
| u32 completion_queue_control_value; |
| u32 completion_queue_get_value; |
| u32 completion_queue_put_value; |
| |
| scic->completion_queue_get = 0; |
| |
| completion_queue_control_value = ( |
| SMU_CQC_QUEUE_LIMIT_SET(scic->completion_queue_entries - 1) |
| | SMU_CQC_EVENT_LIMIT_SET(scic->completion_event_entries - 1) |
| ); |
| |
| writel(completion_queue_control_value, |
| &scic->smu_registers->completion_queue_control); |
| |
| |
| /* Set the completion queue get pointer and enable the queue */ |
| completion_queue_get_value = ( |
| (SMU_CQGR_GEN_VAL(POINTER, 0)) |
| | (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0)) |
| | (SMU_CQGR_GEN_BIT(ENABLE)) |
| | (SMU_CQGR_GEN_BIT(EVENT_ENABLE)) |
| ); |
| |
| writel(completion_queue_get_value, |
| &scic->smu_registers->completion_queue_get); |
| |
| /* Set the completion queue put pointer */ |
| completion_queue_put_value = ( |
| (SMU_CQPR_GEN_VAL(POINTER, 0)) |
| | (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0)) |
| ); |
| |
| writel(completion_queue_put_value, |
| &scic->smu_registers->completion_queue_put); |
| |
| /* Initialize the cycle bit of the completion queue entries */ |
| for (index = 0; index < scic->completion_queue_entries; index++) { |
| /* |
| * If get.cycle_bit != completion_queue.cycle_bit |
| * its not a valid completion queue entry |
| * so at system start all entries are invalid */ |
| scic->completion_queue[index] = 0x80000000; |
| } |
| } |
| |
| /** |
| * This method initializes the hardware unsolicited frame queue. |
| * |
| * |
| */ |
| static void scic_sds_controller_initialize_unsolicited_frame_queue( |
| struct scic_sds_controller *scic) |
| { |
| u32 frame_queue_control_value; |
| u32 frame_queue_get_value; |
| u32 frame_queue_put_value; |
| |
| /* Write the queue size */ |
| frame_queue_control_value = |
| SCU_UFQC_GEN_VAL(QUEUE_SIZE, |
| scic->uf_control.address_table.count); |
| |
| writel(frame_queue_control_value, |
| &scic->scu_registers->sdma.unsolicited_frame_queue_control); |
| |
| /* Setup the get pointer for the unsolicited frame queue */ |
| frame_queue_get_value = ( |
| SCU_UFQGP_GEN_VAL(POINTER, 0) |
| | SCU_UFQGP_GEN_BIT(ENABLE_BIT) |
| ); |
| |
| writel(frame_queue_get_value, |
| &scic->scu_registers->sdma.unsolicited_frame_get_pointer); |
| /* Setup the put pointer for the unsolicited frame queue */ |
| frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0); |
| writel(frame_queue_put_value, |
| &scic->scu_registers->sdma.unsolicited_frame_put_pointer); |
| } |
| |
| /** |
| * This method enables the hardware port task scheduler. |
| * |
| * |
| */ |
| static void scic_sds_controller_enable_port_task_scheduler( |
| struct scic_sds_controller *scic) |
| { |
| u32 port_task_scheduler_value; |
| |
| port_task_scheduler_value = |
| readl(&scic->scu_registers->peg0.ptsg.control); |
| port_task_scheduler_value |= |
| (SCU_PTSGCR_GEN_BIT(ETM_ENABLE) | |
| SCU_PTSGCR_GEN_BIT(PTSG_ENABLE)); |
| writel(port_task_scheduler_value, |
| &scic->scu_registers->peg0.ptsg.control); |
| } |
| |
| /** |
| * |
| * |
| * This macro is used to delay between writes to the AFE registers during AFE |
| * initialization. |
| */ |
| #define AFE_REGISTER_WRITE_DELAY 10 |
| |
| /* Initialize the AFE for this phy index. We need to read the AFE setup from |
| * the OEM parameters none |
| */ |
| static void scic_sds_controller_afe_initialization(struct scic_sds_controller *scic) |
| { |
| const struct scic_sds_oem_params *oem = &scic->oem_parameters.sds1; |
| u32 afe_status; |
| u32 phy_id; |
| |
| /* Clear DFX Status registers */ |
| writel(0x0081000f, &scic->scu_registers->afe.afe_dfx_master_control0); |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| |
| if (is_b0()) { |
| /* PM Rx Equalization Save, PM SPhy Rx Acknowledgement |
| * Timer, PM Stagger Timer */ |
| writel(0x0007BFFF, &scic->scu_registers->afe.afe_pmsn_master_control2); |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| } |
| |
| /* Configure bias currents to normal */ |
| if (is_a0()) |
| writel(0x00005500, &scic->scu_registers->afe.afe_bias_control); |
| else if (is_a2()) |
| writel(0x00005A00, &scic->scu_registers->afe.afe_bias_control); |
| else if (is_b0()) |
| writel(0x00005F00, &scic->scu_registers->afe.afe_bias_control); |
| |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| |
| /* Enable PLL */ |
| if (is_b0()) |
| writel(0x80040A08, &scic->scu_registers->afe.afe_pll_control0); |
| else |
| writel(0x80040908, &scic->scu_registers->afe.afe_pll_control0); |
| |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| |
| /* Wait for the PLL to lock */ |
| do { |
| afe_status = readl(&scic->scu_registers->afe.afe_common_block_status); |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| } while ((afe_status & 0x00001000) == 0); |
| |
| if (is_a0() || is_a2()) { |
| /* Shorten SAS SNW lock time (RxLock timer value from 76 us to 50 us) */ |
| writel(0x7bcc96ad, &scic->scu_registers->afe.afe_pmsn_master_control0); |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| } |
| |
| for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) { |
| const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id]; |
| |
| if (is_b0()) { |
| /* Configure transmitter SSC parameters */ |
| writel(0x00030000, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_ssc_control); |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| } else { |
| /* |
| * All defaults, except the Receive Word Alignament/Comma Detect |
| * Enable....(0xe800) */ |
| writel(0x00004512, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0); |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| |
| writel(0x0050100F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control1); |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| } |
| |
| /* |
| * Power up TX and RX out from power down (PWRDNTX and PWRDNRX) |
| * & increase TX int & ext bias 20%....(0xe85c) */ |
| if (is_a0()) |
| writel(0x000003D4, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control); |
| else if (is_a2()) |
| writel(0x000003F0, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control); |
| else { |
| /* Power down TX and RX (PWRDNTX and PWRDNRX) */ |
| writel(0x000003d7, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control); |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| |
| /* |
| * Power up TX and RX out from power down (PWRDNTX and PWRDNRX) |
| * & increase TX int & ext bias 20%....(0xe85c) */ |
| writel(0x000003d4, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control); |
| } |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| |
| if (is_a0() || is_a2()) { |
| /* Enable TX equalization (0xe824) */ |
| writel(0x00040000, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control); |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| } |
| |
| /* |
| * RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0, TPD=0x0(TX Power On), |
| * RDD=0x0(RX Detect Enabled) ....(0xe800) */ |
| writel(0x00004100, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0); |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| |
| /* Leave DFE/FFE on */ |
| if (is_a0()) |
| writel(0x3F09983F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0); |
| else if (is_a2()) |
| writel(0x3F11103F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0); |
| else { |
| writel(0x3F11103F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0); |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| /* Enable TX equalization (0xe824) */ |
| writel(0x00040000, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control); |
| } |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| |
| writel(oem_phy->afe_tx_amp_control0, |
| &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control0); |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| |
| writel(oem_phy->afe_tx_amp_control1, |
| &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control1); |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| |
| writel(oem_phy->afe_tx_amp_control2, |
| &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control2); |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| |
| writel(oem_phy->afe_tx_amp_control3, |
| &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control3); |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| } |
| |
| /* Transfer control to the PEs */ |
| writel(0x00010f00, &scic->scu_registers->afe.afe_dfx_master_control0); |
| udelay(AFE_REGISTER_WRITE_DELAY); |
| } |
| |
| /* |
| * ****************************************************************************- |
| * * SCIC SDS Controller Internal Start/Stop Routines |
| * ****************************************************************************- */ |
| |
| |
| /** |
| * This method will attempt to transition into the ready state for the |
| * controller and indicate that the controller start operation has completed |
| * if all criteria are met. |
| * @scic: This parameter indicates the controller object for which |
| * to transition to ready. |
| * @status: This parameter indicates the status value to be pass into the call |
| * to scic_cb_controller_start_complete(). |
| * |
| * none. |
| */ |
| static void scic_sds_controller_transition_to_ready( |
| struct scic_sds_controller *scic, |
| enum sci_status status) |
| { |
| struct isci_host *ihost = scic_to_ihost(scic); |
| |
| if (scic->state_machine.current_state_id == |
| SCI_BASE_CONTROLLER_STATE_STARTING) { |
| /* |
| * We move into the ready state, because some of the phys/ports |
| * may be up and operational. |
| */ |
| sci_base_state_machine_change_state(&scic->state_machine, |
| SCI_BASE_CONTROLLER_STATE_READY); |
| |
| isci_host_start_complete(ihost, status); |
| } |
| } |
| |
| static void scic_sds_controller_timeout_handler(void *_scic) |
| { |
| struct scic_sds_controller *scic = _scic; |
| struct isci_host *ihost = scic_to_ihost(scic); |
| struct sci_base_state_machine *sm = &scic->state_machine; |
| |
| if (sm->current_state_id == SCI_BASE_CONTROLLER_STATE_STARTING) |
| scic_sds_controller_transition_to_ready(scic, SCI_FAILURE_TIMEOUT); |
| else if (sm->current_state_id == SCI_BASE_CONTROLLER_STATE_STOPPING) { |
| sci_base_state_machine_change_state(sm, SCI_BASE_CONTROLLER_STATE_FAILED); |
| isci_host_stop_complete(ihost, SCI_FAILURE_TIMEOUT); |
| } else /* / @todo Now what do we want to do in this case? */ |
| dev_err(scic_to_dev(scic), |
| "%s: Controller timer fired when controller was not " |
| "in a state being timed.\n", |
| __func__); |
| } |
| |
| static enum sci_status scic_sds_controller_stop_ports(struct scic_sds_controller *scic) |
| { |
| u32 index; |
| enum sci_status port_status; |
| enum sci_status status = SCI_SUCCESS; |
| struct isci_host *ihost = scic_to_ihost(scic); |
| |
| for (index = 0; index < scic->logical_port_entries; index++) { |
| struct scic_sds_port *sci_port = &ihost->ports[index].sci; |
| scic_sds_port_handler_t stop; |
| |
| stop = sci_port->state_handlers->stop_handler; |
| port_status = stop(sci_port); |
| |
| if ((port_status != SCI_SUCCESS) && |
| (port_status != SCI_FAILURE_INVALID_STATE)) { |
| status = SCI_FAILURE; |
| |
| dev_warn(scic_to_dev(scic), |
| "%s: Controller stop operation failed to " |
| "stop port %d because of status %d.\n", |
| __func__, |
| sci_port->logical_port_index, |
| port_status); |
| } |
| } |
| |
| return status; |
| } |
| |
| static inline void scic_sds_controller_phy_timer_start( |
| struct scic_sds_controller *scic) |
| { |
| isci_timer_start(scic->phy_startup_timer, |
| SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT); |
| |
| scic->phy_startup_timer_pending = true; |
| } |
| |
| static void scic_sds_controller_phy_timer_stop(struct scic_sds_controller *scic) |
| { |
| isci_timer_stop(scic->phy_startup_timer); |
| |
| scic->phy_startup_timer_pending = false; |
| } |
| |
| /** |
| * scic_sds_controller_start_next_phy - start phy |
| * @scic: controller |
| * |
| * If all the phys have been started, then attempt to transition the |
| * controller to the READY state and inform the user |
| * (scic_cb_controller_start_complete()). |
| */ |
| static enum sci_status scic_sds_controller_start_next_phy(struct scic_sds_controller *scic) |
| { |
| struct isci_host *ihost = scic_to_ihost(scic); |
| struct scic_sds_oem_params *oem = &scic->oem_parameters.sds1; |
| struct scic_sds_phy *sci_phy; |
| enum sci_status status; |
| |
| status = SCI_SUCCESS; |
| |
| if (scic->phy_startup_timer_pending) |
| return status; |
| |
| if (scic->next_phy_to_start >= SCI_MAX_PHYS) { |
| bool is_controller_start_complete = true; |
| u32 state; |
| u8 index; |
| |
| for (index = 0; index < SCI_MAX_PHYS; index++) { |
| sci_phy = &ihost->phys[index].sci; |
| state = sci_phy->state_machine.current_state_id; |
| |
| if (!scic_sds_phy_get_port(sci_phy)) |
| continue; |
| |
| /* The controller start operation is complete iff: |
| * - all links have been given an opportunity to start |
| * - have no indication of a connected device |
| * - have an indication of a connected device and it has |
| * finished the link training process. |
| */ |
| if ((sci_phy->is_in_link_training == false && |
| state == SCI_BASE_PHY_STATE_INITIAL) || |
| (sci_phy->is_in_link_training == false && |
| state == SCI_BASE_PHY_STATE_STOPPED) || |
| (sci_phy->is_in_link_training == true && |
| state == SCI_BASE_PHY_STATE_STARTING)) { |
| is_controller_start_complete = false; |
| break; |
| } |
| } |
| |
| /* |
| * The controller has successfully finished the start process. |
| * Inform the SCI Core user and transition to the READY state. */ |
| if (is_controller_start_complete == true) { |
| scic_sds_controller_transition_to_ready(scic, SCI_SUCCESS); |
| scic_sds_controller_phy_timer_stop(scic); |
| } |
| } else { |
| sci_phy = &ihost->phys[scic->next_phy_to_start].sci; |
| |
| if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) { |
| if (scic_sds_phy_get_port(sci_phy) == NULL) { |
| scic->next_phy_to_start++; |
| |
| /* Caution recursion ahead be forwarned |
| * |
| * The PHY was never added to a PORT in MPC mode |
| * so start the next phy in sequence This phy |
| * will never go link up and will not draw power |
| * the OEM parameters either configured the phy |
| * incorrectly for the PORT or it was never |
| * assigned to a PORT |
| */ |
| return scic_sds_controller_start_next_phy(scic); |
| } |
| } |
| |
| status = scic_sds_phy_start(sci_phy); |
| |
| if (status == SCI_SUCCESS) { |
| scic_sds_controller_phy_timer_start(scic); |
| } else { |
| dev_warn(scic_to_dev(scic), |
| "%s: Controller stop operation failed " |
| "to stop phy %d because of status " |
| "%d.\n", |
| __func__, |
| ihost->phys[scic->next_phy_to_start].sci.phy_index, |
| status); |
| } |
| |
| scic->next_phy_to_start++; |
| } |
| |
| return status; |
| } |
| |
| static void scic_sds_controller_phy_startup_timeout_handler(void *_scic) |
| { |
| struct scic_sds_controller *scic = _scic; |
| enum sci_status status; |
| |
| scic->phy_startup_timer_pending = false; |
| status = SCI_FAILURE; |
| while (status != SCI_SUCCESS) |
| status = scic_sds_controller_start_next_phy(scic); |
| } |
| |
| static enum sci_status scic_sds_controller_initialize_phy_startup(struct scic_sds_controller *scic) |
| { |
| struct isci_host *ihost = scic_to_ihost(scic); |
| |
| scic->phy_startup_timer = isci_timer_create(ihost, |
| scic, |
| scic_sds_controller_phy_startup_timeout_handler); |
| |
| if (scic->phy_startup_timer == NULL) |
| return SCI_FAILURE_INSUFFICIENT_RESOURCES; |
| else { |
| scic->next_phy_to_start = 0; |
| scic->phy_startup_timer_pending = false; |
| } |
| |
| return SCI_SUCCESS; |
| } |
| |
| static enum sci_status scic_sds_controller_stop_phys(struct scic_sds_controller *scic) |
| { |
| u32 index; |
| enum sci_status status; |
| enum sci_status phy_status; |
| struct isci_host *ihost = scic_to_ihost(scic); |
| |
| status = SCI_SUCCESS; |
| |
| for (index = 0; index < SCI_MAX_PHYS; index++) { |
| phy_status = scic_sds_phy_stop(&ihost->phys[index].sci); |
| |
| if (phy_status != SCI_SUCCESS && |
| phy_status != SCI_FAILURE_INVALID_STATE) { |
| status = SCI_FAILURE; |
| |
| dev_warn(scic_to_dev(scic), |
| "%s: Controller stop operation failed to stop " |
| "phy %d because of status %d.\n", |
| __func__, |
| ihost->phys[index].sci.phy_index, phy_status); |
| } |
| } |
| |
| return status; |
| } |
| |
| static enum sci_status scic_sds_controller_stop_devices(struct scic_sds_controller *scic) |
| { |
| u32 index; |
| enum sci_status status; |
| enum sci_status device_status; |
| |
| status = SCI_SUCCESS; |
| |
| for (index = 0; index < scic->remote_node_entries; index++) { |
| if (scic->device_table[index] != NULL) { |
| /* / @todo What timeout value do we want to provide to this request? */ |
| device_status = scic_remote_device_stop(scic->device_table[index], 0); |
| |
| if ((device_status != SCI_SUCCESS) && |
| (device_status != SCI_FAILURE_INVALID_STATE)) { |
| dev_warn(scic_to_dev(scic), |
| "%s: Controller stop operation failed " |
| "to stop device 0x%p because of " |
| "status %d.\n", |
| __func__, |
| scic->device_table[index], device_status); |
| } |
| } |
| } |
| |
| return status; |
| } |
| |
| static void scic_sds_controller_power_control_timer_start(struct scic_sds_controller *scic) |
| { |
| isci_timer_start(scic->power_control.timer, |
| SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL); |
| |
| scic->power_control.timer_started = true; |
| } |
| |
| static void scic_sds_controller_power_control_timer_stop(struct scic_sds_controller *scic) |
| { |
| if (scic->power_control.timer_started) { |
| isci_timer_stop(scic->power_control.timer); |
| scic->power_control.timer_started = false; |
| } |
| } |
| |
| static void scic_sds_controller_power_control_timer_restart(struct scic_sds_controller *scic) |
| { |
| scic_sds_controller_power_control_timer_stop(scic); |
| scic_sds_controller_power_control_timer_start(scic); |
| } |
| |
| static void scic_sds_controller_power_control_timer_handler( |
| void *controller) |
| { |
| struct scic_sds_controller *scic; |
| |
| scic = (struct scic_sds_controller *)controller; |
| |
| scic->power_control.phys_granted_power = 0; |
| |
| if (scic->power_control.phys_waiting == 0) { |
| scic->power_control.timer_started = false; |
| } else { |
| struct scic_sds_phy *sci_phy = NULL; |
| u8 i; |
| |
| for (i = 0; |
| (i < SCI_MAX_PHYS) |
| && (scic->power_control.phys_waiting != 0); |
| i++) { |
| if (scic->power_control.requesters[i] != NULL) { |
| if (scic->power_control.phys_granted_power < |
| scic->oem_parameters.sds1.controller.max_concurrent_dev_spin_up) { |
| sci_phy = scic->power_control.requesters[i]; |
| scic->power_control.requesters[i] = NULL; |
| scic->power_control.phys_waiting--; |
| scic->power_control.phys_granted_power++; |
| scic_sds_phy_consume_power_handler(sci_phy); |
| } else { |
| break; |
| } |
| } |
| } |
| |
| /* |
| * It doesn't matter if the power list is empty, we need to start the |
| * timer in case another phy becomes ready. |
| */ |
| scic_sds_controller_power_control_timer_start(scic); |
| } |
| } |
| |
| /** |
| * This method inserts the phy in the stagger spinup control queue. |
| * @scic: |
| * |
| * |
| */ |
| void scic_sds_controller_power_control_queue_insert( |
| struct scic_sds_controller *scic, |
| struct scic_sds_phy *sci_phy) |
| { |
| BUG_ON(sci_phy == NULL); |
| |
| if (scic->power_control.phys_granted_power < |
| scic->oem_parameters.sds1.controller.max_concurrent_dev_spin_up) { |
| scic->power_control.phys_granted_power++; |
| scic_sds_phy_consume_power_handler(sci_phy); |
| |
| /* |
| * stop and start the power_control timer. When the timer fires, the |
| * no_of_phys_granted_power will be set to 0 |
| */ |
| scic_sds_controller_power_control_timer_restart(scic); |
| } else { |
| /* Add the phy in the waiting list */ |
| scic->power_control.requesters[sci_phy->phy_index] = sci_phy; |
| scic->power_control.phys_waiting++; |
| } |
| } |
| |
| /** |
| * This method removes the phy from the stagger spinup control queue. |
| * @scic: |
| * |
| * |
| */ |
| void scic_sds_controller_power_control_queue_remove( |
| struct scic_sds_controller *scic, |
| struct scic_sds_phy *sci_phy) |
| { |
| BUG_ON(sci_phy == NULL); |
| |
| if (scic->power_control.requesters[sci_phy->phy_index] != NULL) { |
| scic->power_control.phys_waiting--; |
| } |
| |
| scic->power_control.requesters[sci_phy->phy_index] = NULL; |
| } |
| |
| /* |
| * ****************************************************************************- |
| * * SCIC SDS Controller Completion Routines |
| * ****************************************************************************- */ |
| |
| /** |
| * This method returns a true value if the completion queue has entries that |
| * can be processed |
| * @scic: |
| * |
| * bool true if the completion queue has entries to process false if the |
| * completion queue has no entries to process |
| */ |
| static bool scic_sds_controller_completion_queue_has_entries( |
| struct scic_sds_controller *scic) |
| { |
| u32 get_value = scic->completion_queue_get; |
| u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK; |
| |
| if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) == |
| COMPLETION_QUEUE_CYCLE_BIT(scic->completion_queue[get_index])) |
| return true; |
| |
| return false; |
| } |
| |
| /** |
| * This method processes a task completion notification. This is called from |
| * within the controller completion handler. |
| * @scic: |
| * @completion_entry: |
| * |
| */ |
| static void scic_sds_controller_task_completion( |
| struct scic_sds_controller *scic, |
| u32 completion_entry) |
| { |
| u32 index; |
| struct scic_sds_request *io_request; |
| |
| index = SCU_GET_COMPLETION_INDEX(completion_entry); |
| io_request = scic->io_request_table[index]; |
| |
| /* Make sure that we really want to process this IO request */ |
| if ( |
| (io_request != NULL) |
| && (io_request->io_tag != SCI_CONTROLLER_INVALID_IO_TAG) |
| && ( |
| scic_sds_io_tag_get_sequence(io_request->io_tag) |
| == scic->io_request_sequence[index] |
| ) |
| ) { |
| /* Yep this is a valid io request pass it along to the io request handler */ |
| scic_sds_io_request_tc_completion(io_request, completion_entry); |
| } |
| } |
| |
| /** |
| * This method processes an SDMA completion event. This is called from within |
| * the controller completion handler. |
| * @scic: |
| * @completion_entry: |
| * |
| */ |
| static void scic_sds_controller_sdma_completion( |
| struct scic_sds_controller *scic, |
| u32 completion_entry) |
| { |
| u32 index; |
| struct scic_sds_request *io_request; |
| struct scic_sds_remote_device *device; |
| |
| index = SCU_GET_COMPLETION_INDEX(completion_entry); |
| |
| switch (scu_get_command_request_type(completion_entry)) { |
| case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC: |
| case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC: |
| io_request = scic->io_request_table[index]; |
| dev_warn(scic_to_dev(scic), |
| "%s: SCIC SDS Completion type SDMA %x for io request " |
| "%p\n", |
| __func__, |
| completion_entry, |
| io_request); |
| /* @todo For a post TC operation we need to fail the IO |
| * request |
| */ |
| break; |
| |
| case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC: |
| case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC: |
| case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC: |
| device = scic->device_table[index]; |
| dev_warn(scic_to_dev(scic), |
| "%s: SCIC SDS Completion type SDMA %x for remote " |
| "device %p\n", |
| __func__, |
| completion_entry, |
| device); |
| /* @todo For a port RNC operation we need to fail the |
| * device |
| */ |
| break; |
| |
| default: |
| dev_warn(scic_to_dev(scic), |
| "%s: SCIC SDS Completion unknown SDMA completion " |
| "type %x\n", |
| __func__, |
| completion_entry); |
| break; |
| |
| } |
| } |
| |
| static void scic_sds_controller_unsolicited_frame(struct scic_sds_controller *scic, |
| u32 completion_entry) |
| { |
| u32 index; |
| u32 frame_index; |
| |
| struct isci_host *ihost = scic_to_ihost(scic); |
| struct scu_unsolicited_frame_header *frame_header; |
| struct scic_sds_phy *phy; |
| struct scic_sds_remote_device *device; |
| |
| enum sci_status result = SCI_FAILURE; |
| |
| frame_index = SCU_GET_FRAME_INDEX(completion_entry); |
| |
| frame_header = scic->uf_control.buffers.array[frame_index].header; |
| scic->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE; |
| |
| if (SCU_GET_FRAME_ERROR(completion_entry)) { |
| /* |
| * / @todo If the IAF frame or SIGNATURE FIS frame has an error will |
| * / this cause a problem? We expect the phy initialization will |
| * / fail if there is an error in the frame. */ |
| scic_sds_controller_release_frame(scic, frame_index); |
| return; |
| } |
| |
| if (frame_header->is_address_frame) { |
| index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry); |
| phy = &ihost->phys[index].sci; |
| result = scic_sds_phy_frame_handler(phy, frame_index); |
| } else { |
| |
| index = SCU_GET_COMPLETION_INDEX(completion_entry); |
| |
| if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) { |
| /* |
| * This is a signature fis or a frame from a direct attached SATA |
| * device that has not yet been created. In either case forwared |
| * the frame to the PE and let it take care of the frame data. */ |
| index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry); |
| phy = &ihost->phys[index].sci; |
| result = scic_sds_phy_frame_handler(phy, frame_index); |
| } else { |
| if (index < scic->remote_node_entries) |
| device = scic->device_table[index]; |
| else |
| device = NULL; |
| |
| if (device != NULL) |
| result = scic_sds_remote_device_frame_handler(device, frame_index); |
| else |
| scic_sds_controller_release_frame(scic, frame_index); |
| } |
| } |
| |
| if (result != SCI_SUCCESS) { |
| /* |
| * / @todo Is there any reason to report some additional error message |
| * / when we get this failure notifiction? */ |
| } |
| } |
| |
| static void scic_sds_controller_event_completion(struct scic_sds_controller *scic, |
| u32 completion_entry) |
| { |
| struct isci_host *ihost = scic_to_ihost(scic); |
| struct scic_sds_request *io_request; |
| struct scic_sds_remote_device *device; |
| struct scic_sds_phy *phy; |
| u32 index; |
| |
| index = SCU_GET_COMPLETION_INDEX(completion_entry); |
| |
| switch (scu_get_event_type(completion_entry)) { |
| case SCU_EVENT_TYPE_SMU_COMMAND_ERROR: |
| /* / @todo The driver did something wrong and we need to fix the condtion. */ |
| dev_err(scic_to_dev(scic), |
| "%s: SCIC Controller 0x%p received SMU command error " |
| "0x%x\n", |
| __func__, |
| scic, |
| completion_entry); |
| break; |
| |
| case SCU_EVENT_TYPE_SMU_PCQ_ERROR: |
| case SCU_EVENT_TYPE_SMU_ERROR: |
| case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR: |
| /* |
| * / @todo This is a hardware failure and its likely that we want to |
| * / reset the controller. */ |
| dev_err(scic_to_dev(scic), |
| "%s: SCIC Controller 0x%p received fatal controller " |
| "event 0x%x\n", |
| __func__, |
| scic, |
| completion_entry); |
| break; |
| |
| case SCU_EVENT_TYPE_TRANSPORT_ERROR: |
| io_request = scic->io_request_table[index]; |
| scic_sds_io_request_event_handler(io_request, completion_entry); |
| break; |
| |
| case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT: |
| switch (scu_get_event_specifier(completion_entry)) { |
| case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE: |
| case SCU_EVENT_SPECIFIC_TASK_TIMEOUT: |
| io_request = scic->io_request_table[index]; |
| if (io_request != NULL) |
| scic_sds_io_request_event_handler(io_request, completion_entry); |
| else |
| dev_warn(scic_to_dev(scic), |
| "%s: SCIC Controller 0x%p received " |
| "event 0x%x for io request object " |
| "that doesnt exist.\n", |
| __func__, |
| scic, |
| completion_entry); |
| |
| break; |
| |
| case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT: |
| device = scic->device_table[index]; |
| if (device != NULL) |
| scic_sds_remote_device_event_handler(device, completion_entry); |
| else |
| dev_warn(scic_to_dev(scic), |
| "%s: SCIC Controller 0x%p received " |
| "event 0x%x for remote device object " |
| "that doesnt exist.\n", |
| __func__, |
| scic, |
| completion_entry); |
| |
| break; |
| } |
| break; |
| |
| case SCU_EVENT_TYPE_BROADCAST_CHANGE: |
| /* |
| * direct the broadcast change event to the phy first and then let |
| * the phy redirect the broadcast change to the port object */ |
| case SCU_EVENT_TYPE_ERR_CNT_EVENT: |
| /* |
| * direct error counter event to the phy object since that is where |
| * we get the event notification. This is a type 4 event. */ |
| case SCU_EVENT_TYPE_OSSP_EVENT: |
| index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry); |
| phy = &ihost->phys[index].sci; |
| scic_sds_phy_event_handler(phy, completion_entry); |
| break; |
| |
| case SCU_EVENT_TYPE_RNC_SUSPEND_TX: |
| case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX: |
| case SCU_EVENT_TYPE_RNC_OPS_MISC: |
| if (index < scic->remote_node_entries) { |
| device = scic->device_table[index]; |
| |
| if (device != NULL) |
| scic_sds_remote_device_event_handler(device, completion_entry); |
| } else |
| dev_err(scic_to_dev(scic), |
| "%s: SCIC Controller 0x%p received event 0x%x " |
| "for remote device object 0x%0x that doesnt " |
| "exist.\n", |
| __func__, |
| scic, |
| completion_entry, |
| index); |
| |
| break; |
| |
| default: |
| dev_warn(scic_to_dev(scic), |
| "%s: SCIC Controller received unknown event code %x\n", |
| __func__, |
| completion_entry); |
| break; |
| } |
| } |
| |
| /** |
| * This method is a private routine for processing the completion queue entries. |
| * @scic: |
| * |
| */ |
| static void scic_sds_controller_process_completions( |
| struct scic_sds_controller *scic) |
| { |
| u32 completion_count = 0; |
| u32 completion_entry; |
| u32 get_index; |
| u32 get_cycle; |
| u32 event_index; |
| u32 event_cycle; |
| |
| dev_dbg(scic_to_dev(scic), |
| "%s: completion queue begining get:0x%08x\n", |
| __func__, |
| scic->completion_queue_get); |
| |
| /* Get the component parts of the completion queue */ |
| get_index = NORMALIZE_GET_POINTER(scic->completion_queue_get); |
| get_cycle = SMU_CQGR_CYCLE_BIT & scic->completion_queue_get; |
| |
| event_index = NORMALIZE_EVENT_POINTER(scic->completion_queue_get); |
| event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & scic->completion_queue_get; |
| |
| while ( |
| NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle) |
| == COMPLETION_QUEUE_CYCLE_BIT(scic->completion_queue[get_index]) |
| ) { |
| completion_count++; |
| |
| completion_entry = scic->completion_queue[get_index]; |
| INCREMENT_COMPLETION_QUEUE_GET(scic, get_index, get_cycle); |
| |
| dev_dbg(scic_to_dev(scic), |
| "%s: completion queue entry:0x%08x\n", |
| __func__, |
| completion_entry); |
| |
| switch (SCU_GET_COMPLETION_TYPE(completion_entry)) { |
| case SCU_COMPLETION_TYPE_TASK: |
| scic_sds_controller_task_completion(scic, completion_entry); |
| break; |
| |
| case SCU_COMPLETION_TYPE_SDMA: |
| scic_sds_controller_sdma_completion(scic, completion_entry); |
| break; |
| |
| case SCU_COMPLETION_TYPE_UFI: |
| scic_sds_controller_unsolicited_frame(scic, completion_entry); |
| break; |
| |
| case SCU_COMPLETION_TYPE_EVENT: |
| INCREMENT_EVENT_QUEUE_GET(scic, event_index, event_cycle); |
| scic_sds_controller_event_completion(scic, completion_entry); |
| break; |
| |
| case SCU_COMPLETION_TYPE_NOTIFY: |
| /* |
| * Presently we do the same thing with a notify event that we do with the |
| * other event codes. */ |
| INCREMENT_EVENT_QUEUE_GET(scic, event_index, event_cycle); |
| scic_sds_controller_event_completion(scic, completion_entry); |
| break; |
| |
| default: |
| dev_warn(scic_to_dev(scic), |
| "%s: SCIC Controller received unknown " |
| "completion type %x\n", |
| __func__, |
| completion_entry); |
| break; |
| } |
| } |
| |
| /* Update the get register if we completed one or more entries */ |
| if (completion_count > 0) { |
| scic->completion_queue_get = |
| SMU_CQGR_GEN_BIT(ENABLE) | |
| SMU_CQGR_GEN_BIT(EVENT_ENABLE) | |
| event_cycle | |
| SMU_CQGR_GEN_VAL(EVENT_POINTER, event_index) | |
| get_cycle | |
| SMU_CQGR_GEN_VAL(POINTER, get_index); |
| |
| writel(scic->completion_queue_get, |
| &scic->smu_registers->completion_queue_get); |
| |
| } |
| |
| dev_dbg(scic_to_dev(scic), |
| "%s: completion queue ending get:0x%08x\n", |
| __func__, |
| scic->completion_queue_get); |
| |
| } |
| |
| bool scic_sds_controller_isr(struct scic_sds_controller *scic) |
| { |
| if (scic_sds_controller_completion_queue_has_entries(scic)) { |
| return true; |
| } else { |
| /* |
| * we have a spurious interrupt it could be that we have already |
| * emptied the completion queue from a previous interrupt */ |
| writel(SMU_ISR_COMPLETION, &scic->smu_registers->interrupt_status); |
| |
| /* |
| * There is a race in the hardware that could cause us not to be notified |
| * of an interrupt completion if we do not take this step. We will mask |
| * then unmask the interrupts so if there is another interrupt pending |
| * the clearing of the interrupt source we get the next interrupt message. */ |
| writel(0xFF000000, &scic->smu_registers->interrupt_mask); |
| writel(0, &scic->smu_registers->interrupt_mask); |
| } |
| |
| return false; |
| } |
| |
| void scic_sds_controller_completion_handler(struct scic_sds_controller *scic) |
| { |
| /* Empty out the completion queue */ |
| if (scic_sds_controller_completion_queue_has_entries(scic)) |
| scic_sds_controller_process_completions(scic); |
| |
| /* Clear the interrupt and enable all interrupts again */ |
| writel(SMU_ISR_COMPLETION, &scic->smu_registers->interrupt_status); |
| /* Could we write the value of SMU_ISR_COMPLETION? */ |
| writel(0xFF000000, &scic->smu_registers->interrupt_mask); |
| writel(0, &scic->smu_registers->interrupt_mask); |
| } |
| |
| bool scic_sds_controller_error_isr(struct scic_sds_controller *scic) |
| { |
| u32 interrupt_status; |
| |
| interrupt_status = |
| readl(&scic->smu_registers->interrupt_status); |
| interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND); |
| |
| if (interrupt_status != 0) { |
| /* |
| * There is an error interrupt pending so let it through and handle |
| * in the callback */ |
| return true; |
| } |
| |
| /* |
| * There is a race in the hardware that could cause us not to be notified |
| * of an interrupt completion if we do not take this step. We will mask |
| * then unmask the error interrupts so if there was another interrupt |
| * pending we will be notified. |
| * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */ |
| writel(0xff, &scic->smu_registers->interrupt_mask); |
| writel(0, &scic->smu_registers->interrupt_mask); |
| |
| return false; |
| } |
| |
| void scic_sds_controller_error_handler(struct scic_sds_controller *scic) |
| { |
| u32 interrupt_status; |
| |
| interrupt_status = |
| readl(&scic->smu_registers->interrupt_status); |
| |
| if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) && |
| scic_sds_controller_completion_queue_has_entries(scic)) { |
| |
| scic_sds_controller_process_completions(scic); |
| writel(SMU_ISR_QUEUE_SUSPEND, &scic->smu_registers->interrupt_status); |
| } else { |
| dev_err(scic_to_dev(scic), "%s: status: %#x\n", __func__, |
| interrupt_status); |
| |
| sci_base_state_machine_change_state(&scic->state_machine, |
| SCI_BASE_CONTROLLER_STATE_FAILED); |
| |
| return; |
| } |
| |
| /* If we dont process any completions I am not sure that we want to do this. |
| * We are in the middle of a hardware fault and should probably be reset. |
| */ |
| writel(0, &scic->smu_registers->interrupt_mask); |
| } |
| |
| |
| |
| |
| void scic_sds_controller_link_up(struct scic_sds_controller *scic, |
| struct scic_sds_port *port, struct scic_sds_phy *phy) |
| { |
| switch (scic->state_machine.current_state_id) { |
| case SCI_BASE_CONTROLLER_STATE_STARTING: |
| scic_sds_controller_phy_timer_stop(scic); |
| scic->port_agent.link_up_handler(scic, &scic->port_agent, |
| port, phy); |
| scic_sds_controller_start_next_phy(scic); |
| break; |
| case SCI_BASE_CONTROLLER_STATE_READY: |
| scic->port_agent.link_up_handler(scic, &scic->port_agent, |
| port, phy); |
| break; |
| default: |
| dev_dbg(scic_to_dev(scic), |
| "%s: SCIC Controller linkup event from phy %d in " |
| "unexpected state %d\n", __func__, phy->phy_index, |
| scic->state_machine.current_state_id); |
| } |
| } |
| |
| void scic_sds_controller_link_down(struct scic_sds_controller *scic, |
| struct scic_sds_port *port, struct scic_sds_phy *phy) |
| { |
| switch (scic->state_machine.current_state_id) { |
| case SCI_BASE_CONTROLLER_STATE_STARTING: |
| case SCI_BASE_CONTROLLER_STATE_READY: |
| scic->port_agent.link_down_handler(scic, &scic->port_agent, |
| port, phy); |
| break; |
| default: |
| dev_dbg(scic_to_dev(scic), |
| "%s: SCIC Controller linkdown event from phy %d in " |
| "unexpected state %d\n", |
| __func__, |
| phy->phy_index, |
| scic->state_machine.current_state_id); |
| } |
| } |
| |
| /** |
| * This is a helper method to determine if any remote devices on this |
| * controller are still in the stopping state. |
| * |
| */ |
| static bool scic_sds_controller_has_remote_devices_stopping( |
| struct scic_sds_controller *controller) |
| { |
| u32 index; |
| |
| for (index = 0; index < controller->remote_node_entries; index++) { |
| if ((controller->device_table[index] != NULL) && |
| (controller->device_table[index]->state_machine.current_state_id |
| == SCI_BASE_REMOTE_DEVICE_STATE_STOPPING)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /** |
| * This method is called by the remote device to inform the controller |
| * object that the remote device has stopped. |
| */ |
| void scic_sds_controller_remote_device_stopped(struct scic_sds_controller *scic, |
| struct scic_sds_remote_device *sci_dev) |
| { |
| if (scic->state_machine.current_state_id != |
| SCI_BASE_CONTROLLER_STATE_STOPPING) { |
| dev_dbg(scic_to_dev(scic), |
| "SCIC Controller 0x%p remote device stopped event " |
| "from device 0x%p in unexpected state %d\n", |
| scic, sci_dev, |
| scic->state_machine.current_state_id); |
| return; |
| } |
| |
| if (!scic_sds_controller_has_remote_devices_stopping(scic)) { |
| sci_base_state_machine_change_state(&scic->state_machine, |
| SCI_BASE_CONTROLLER_STATE_STOPPED); |
| } |
| } |
| |
| /** |
| * This method will write to the SCU PCP register the request value. The method |
| * is used to suspend/resume ports, devices, and phys. |
| * @scic: |
| * |
| * |
| */ |
| void scic_sds_controller_post_request( |
| struct scic_sds_controller *scic, |
| u32 request) |
| { |
| dev_dbg(scic_to_dev(scic), |
| "%s: SCIC Controller 0x%p post request 0x%08x\n", |
| __func__, |
| scic, |
| request); |
| |
| writel(request, &scic->smu_registers->post_context_port); |
| } |
| |
| /** |
| * This method will copy the soft copy of the task context into the physical |
| * memory accessible by the controller. |
| * @scic: This parameter specifies the controller for which to copy |
| * the task context. |
| * @sci_req: This parameter specifies the request for which the task |
| * context is being copied. |
| * |
| * After this call is made the SCIC_SDS_IO_REQUEST object will always point to |
| * the physical memory version of the task context. Thus, all subsequent |
| * updates to the task context are performed in the TC table (i.e. DMAable |
| * memory). none |
| */ |
| void scic_sds_controller_copy_task_context( |
| struct scic_sds_controller *scic, |
| struct scic_sds_request *sci_req) |
| { |
| struct scu_task_context *task_context_buffer; |
| |
| task_context_buffer = scic_sds_controller_get_task_context_buffer( |
| scic, sci_req->io_tag); |
| |
| memcpy(task_context_buffer, |
| sci_req->task_context_buffer, |
| offsetof(struct scu_task_context, sgl_snapshot_ac)); |
| |
| /* |
| * Now that the soft copy of the TC has been copied into the TC |
| * table accessible by the silicon. Thus, any further changes to |
| * the TC (e.g. TC termination) occur in the appropriate location. */ |
| sci_req->task_context_buffer = task_context_buffer; |
| } |
| |
| /** |
| * This method returns the task context buffer for the given io tag. |
| * @scic: |
| * @io_tag: |
| * |
| * struct scu_task_context* |
| */ |
| struct scu_task_context *scic_sds_controller_get_task_context_buffer( |
| struct scic_sds_controller *scic, |
| u16 io_tag |
| ) { |
| u16 task_index = scic_sds_io_tag_get_index(io_tag); |
| |
| if (task_index < scic->task_context_entries) { |
| return &scic->task_context_table[task_index]; |
| } |
| |
| return NULL; |
| } |
| |
| struct scic_sds_request *scic_request_by_tag(struct scic_sds_controller *scic, |
| u16 io_tag) |
| { |
| u16 task_index; |
| u16 task_sequence; |
| |
| task_index = scic_sds_io_tag_get_index(io_tag); |
| |
| if (task_index < scic->task_context_entries) { |
| if (scic->io_request_table[task_index] != NULL) { |
| task_sequence = scic_sds_io_tag_get_sequence(io_tag); |
| |
| if (task_sequence == scic->io_request_sequence[task_index]) { |
| return scic->io_request_table[task_index]; |
| } |
| } |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * This method allocates remote node index and the reserves the remote node |
| * context space for use. This method can fail if there are no more remote |
| * node index available. |
| * @scic: This is the controller object which contains the set of |
| * free remote node ids |
| * @sci_dev: This is the device object which is requesting the a remote node |
| * id |
| * @node_id: This is the remote node id that is assinged to the device if one |
| * is available |
| * |
| * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote |
| * node index available. |
| */ |
| enum sci_status scic_sds_controller_allocate_remote_node_context( |
| struct scic_sds_controller *scic, |
| struct scic_sds_remote_device *sci_dev, |
| u16 *node_id) |
| { |
| u16 node_index; |
| u32 remote_node_count = scic_sds_remote_device_node_count(sci_dev); |
| |
| node_index = scic_sds_remote_node_table_allocate_remote_node( |
| &scic->available_remote_nodes, remote_node_count |
| ); |
| |
| if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) { |
| scic->device_table[node_index] = sci_dev; |
| |
| *node_id = node_index; |
| |
| return SCI_SUCCESS; |
| } |
| |
| return SCI_FAILURE_INSUFFICIENT_RESOURCES; |
| } |
| |
| /** |
| * This method frees the remote node index back to the available pool. Once |
| * this is done the remote node context buffer is no longer valid and can |
| * not be used. |
| * @scic: |
| * @sci_dev: |
| * @node_id: |
| * |
| */ |
| void scic_sds_controller_free_remote_node_context( |
| struct scic_sds_controller *scic, |
| struct scic_sds_remote_device *sci_dev, |
| u16 node_id) |
| { |
| u32 remote_node_count = scic_sds_remote_device_node_count(sci_dev); |
| |
| if (scic->device_table[node_id] == sci_dev) { |
| scic->device_table[node_id] = NULL; |
| |
| scic_sds_remote_node_table_release_remote_node_index( |
| &scic->available_remote_nodes, remote_node_count, node_id |
| ); |
| } |
| } |
| |
| /** |
| * This method returns the union scu_remote_node_context for the specified remote |
| * node id. |
| * @scic: |
| * @node_id: |
| * |
| * union scu_remote_node_context* |
| */ |
| union scu_remote_node_context *scic_sds_controller_get_remote_node_context_buffer( |
| struct scic_sds_controller *scic, |
| u16 node_id |
| ) { |
| if ( |
| (node_id < scic->remote_node_entries) |
| && (scic->device_table[node_id] != NULL) |
| ) { |
| return &scic->remote_node_context_table[node_id]; |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * |
| * @resposne_buffer: This is the buffer into which the D2H register FIS will be |
| * constructed. |
| * @frame_header: This is the frame header returned by the hardware. |
| * @frame_buffer: This is the frame buffer returned by the hardware. |
| * |
| * This method will combind the frame header and frame buffer to create a SATA |
| * D2H register FIS none |
| */ |
| void scic_sds_controller_copy_sata_response( |
| void *response_buffer, |
| void *frame_header, |
| void *frame_buffer) |
| { |
| memcpy(response_buffer, frame_header, sizeof(u32)); |
| |
| memcpy(response_buffer + sizeof(u32), |
| frame_buffer, |
| sizeof(struct dev_to_host_fis) - sizeof(u32)); |
| } |
| |
| /** |
| * This method releases the frame once this is done the frame is available for |
| * re-use by the hardware. The data contained in the frame header and frame |
| * buffer is no longer valid. The UF queue get pointer is only updated if UF |
| * control indicates this is appropriate. |
| * @scic: |
| * @frame_index: |
| * |
| */ |
| void scic_sds_controller_release_frame( |
| struct scic_sds_controller *scic, |
| u32 frame_index) |
| { |
| if (scic_sds_unsolicited_frame_control_release_frame( |
| &scic->uf_control, frame_index) == true) |
| writel(scic->uf_control.get, |
| &scic->scu_registers->sdma.unsolicited_frame_get_pointer); |
| } |
| |
| /** |
| * This method sets user parameters and OEM parameters to default values. |
| * Users can override these values utilizing the scic_user_parameters_set() |
| * and scic_oem_parameters_set() methods. |
| * @scic: This parameter specifies the controller for which to set the |
| * configuration parameters to their default values. |
| * |
| */ |
| static void scic_sds_controller_set_default_config_parameters(struct scic_sds_controller *scic) |
| { |
| struct isci_host *ihost = scic_to_ihost(scic); |
| u16 index; |
| |
| /* Default to APC mode. */ |
| scic->oem_parameters.sds1.controller.mode_type = SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE; |
| |
| /* Default to APC mode. */ |
| scic->oem_parameters.sds1.controller.max_concurrent_dev_spin_up = 1; |
| |
| /* Default to no SSC operation. */ |
| scic->oem_parameters.sds1.controller.do_enable_ssc = false; |
| |
| /* Initialize all of the port parameter information to narrow ports. */ |
| for (index = 0; index < SCI_MAX_PORTS; index++) { |
| scic->oem_parameters.sds1.ports[index].phy_mask = 0; |
| } |
| |
| /* Initialize all of the phy parameter information. */ |
| for (index = 0; index < SCI_MAX_PHYS; index++) { |
| /* Default to 6G (i.e. Gen 3) for now. */ |
| scic->user_parameters.sds1.phys[index].max_speed_generation = 3; |
| |
| /* the frequencies cannot be 0 */ |
| scic->user_parameters.sds1.phys[index].align_insertion_frequency = 0x7f; |
| scic->user_parameters.sds1.phys[index].in_connection_align_insertion_frequency = 0xff; |
| scic->user_parameters.sds1.phys[index].notify_enable_spin_up_insertion_frequency = 0x33; |
| |
| /* |
| * Previous Vitesse based expanders had a arbitration issue that |
| * is worked around by having the upper 32-bits of SAS address |
| * with a value greater then the Vitesse company identifier. |
| * Hence, usage of 0x5FCFFFFF. */ |
| scic->oem_parameters.sds1.phys[index].sas_address.low = 0x1 + ihost->id; |
| scic->oem_parameters.sds1.phys[index].sas_address.high = 0x5FCFFFFF; |
| } |
| |
| scic->user_parameters.sds1.stp_inactivity_timeout = 5; |
| scic->user_parameters.sds1.ssp_inactivity_timeout = 5; |
| scic->user_parameters.sds1.stp_max_occupancy_timeout = 5; |
| scic->user_parameters.sds1.ssp_max_occupancy_timeout = 20; |
| scic->user_parameters.sds1.no_outbound_task_timeout = 20; |
| } |
| |
| /** |
| * scic_controller_get_suggested_start_timeout() - This method returns the |
| * suggested scic_controller_start() timeout amount. The user is free to |
| * use any timeout value, but this method provides the suggested minimum |
| * start timeout value. The returned value is based upon empirical |
| * information determined as a result of interoperability testing. |
| * @controller: the handle to the controller object for which to return the |
| * suggested start timeout. |
| * |
| * This method returns the number of milliseconds for the suggested start |
| * operation timeout. |
| */ |
| u32 scic_controller_get_suggested_start_timeout( |
| struct scic_sds_controller *sc) |
| { |
| /* Validate the user supplied parameters. */ |
| if (sc == NULL) |
| return 0; |
| |
| /* |
| * The suggested minimum timeout value for a controller start operation: |
| * |
| * Signature FIS Timeout |
| * + Phy Start Timeout |
| * + Number of Phy Spin Up Intervals |
| * --------------------------------- |
| * Number of milliseconds for the controller start operation. |
| * |
| * NOTE: The number of phy spin up intervals will be equivalent |
| * to the number of phys divided by the number phys allowed |
| * per interval - 1 (once OEM parameters are supported). |
| * Currently we assume only 1 phy per interval. */ |
| |
| return SCIC_SDS_SIGNATURE_FIS_TIMEOUT |
| + SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT |
| + ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL); |
| } |
| |
| /** |
| * scic_controller_stop() - This method will stop an individual controller |
| * object.This method will invoke the associated user callback upon |
| * completion. The completion callback is called when the following |
| * conditions are met: -# the method return status is SCI_SUCCESS. -# the |
| * controller has been quiesced. This method will ensure that all IO |
| * requests are quiesced, phys are stopped, and all additional operation by |
| * the hardware is halted. |
| * @controller: the handle to the controller object to stop. |
| * @timeout: This parameter specifies the number of milliseconds in which the |
| * stop operation should complete. |
| * |
| * The controller must be in the STARTED or STOPPED state. Indicate if the |
| * controller stop method succeeded or failed in some way. SCI_SUCCESS if the |
| * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the |
| * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the |
| * controller is not either in the STARTED or STOPPED states. |
| */ |
| enum sci_status scic_controller_stop( |
| struct scic_sds_controller *scic, |
| u32 timeout) |
| { |
| if (scic->state_machine.current_state_id != |
| SCI_BASE_CONTROLLER_STATE_READY) { |
| dev_warn(scic_to_dev(scic), |
| "SCIC Controller stop operation requested in " |
| "invalid state\n"); |
| return SCI_FAILURE_INVALID_STATE; |
| } |
| |
| isci_timer_start(scic->timeout_timer, timeout); |
| sci_base_state_machine_change_state(&scic->state_machine, |
| SCI_BASE_CONTROLLER_STATE_STOPPING); |
| return SCI_SUCCESS; |
| } |
| |
| /** |
| * scic_controller_reset() - This method will reset the supplied core |
| * controller regardless of the state of said controller. This operation is |
| * considered destructive. In other words, all current operations are wiped |
| * out. No IO completions for outstanding devices occur. Outstanding IO |
| * requests are not aborted or completed at the actual remote device. |
| * @controller: the handle to the controller object to reset. |
| * |
| * Indicate if the controller reset method succeeded or failed in some way. |
| * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if |
| * the controller reset operation is unable to complete. |
| */ |
| enum sci_status scic_controller_reset( |
| struct scic_sds_controller *scic) |
| { |
| switch (scic->state_machine.current_state_id) { |
| case SCI_BASE_CONTROLLER_STATE_RESET: |
| case SCI_BASE_CONTROLLER_STATE_READY: |
| case SCI_BASE_CONTROLLER_STATE_STOPPED: |
| case SCI_BASE_CONTROLLER_STATE_FAILED: |
| /* |
| * The reset operation is not a graceful cleanup, just |
| * perform the state transition. |
| */ |
| sci_base_state_machine_change_state(&scic->state_machine, |
| SCI_BASE_CONTROLLER_STATE_RESETTING); |
| return SCI_SUCCESS; |
| default: |
| dev_warn(scic_to_dev(scic), |
| "SCIC Controller reset operation requested in " |
| "invalid state\n"); |
| return SCI_FAILURE_INVALID_STATE; |
| } |
| } |
| |
| /** |
| * scic_controller_start_io() - This method is called by the SCI user to |
| * send/start an IO request. If the method invocation is successful, then |
| * the IO request has been queued to the hardware for processing. |
| * @controller: the handle to the controller object for which to start an IO |
| * request. |
| * @remote_device: the handle to the remote device object for which to start an |
| * IO request. |
| * @io_request: the handle to the io request object to start. |
| * @io_tag: This parameter specifies a previously allocated IO tag that the |
| * user desires to be utilized for this request. This parameter is optional. |
| * The user is allowed to supply SCI_CONTROLLER_INVALID_IO_TAG as the value |
| * for this parameter. |
| * |
| * - IO tags are a protected resource. It is incumbent upon the SCI Core user |
| * to ensure that each of the methods that may allocate or free available IO |
| * tags are handled in a mutually exclusive manner. This method is one of said |
| * methods requiring proper critical code section protection (e.g. semaphore, |
| * spin-lock, etc.). - For SATA, the user is required to manage NCQ tags. As a |
| * result, it is expected the user will have set the NCQ tag field in the host |
| * to device register FIS prior to calling this method. There is also a |
| * requirement for the user to call scic_stp_io_set_ncq_tag() prior to invoking |
| * the scic_controller_start_io() method. scic_controller_allocate_tag() for |
| * more information on allocating a tag. Indicate if the controller |
| * successfully started the IO request. SCI_SUCCESS if the IO request was |
| * successfully started. Determine the failure situations and return values. |
| */ |
| enum sci_status scic_controller_start_io( |
| struct scic_sds_controller *scic, |
| struct scic_sds_remote_device *rdev, |
| struct scic_sds_request *req, |
| u16 io_tag) |
| { |
| enum sci_status status; |
| |
| if (scic->state_machine.current_state_id != |
| SCI_BASE_CONTROLLER_STATE_READY) { |
| dev_warn(scic_to_dev(scic), "invalid state to start I/O"); |
| return SCI_FAILURE_INVALID_STATE; |
| } |
| |
| status = scic_sds_remote_device_start_io(scic, rdev, req); |
| if (status != SCI_SUCCESS) |
| return status; |
| |
| scic->io_request_table[scic_sds_io_tag_get_index(req->io_tag)] = req; |
| scic_sds_controller_post_request(scic, scic_sds_request_get_post_context(req)); |
| return SCI_SUCCESS; |
| } |
| |
| /** |
| * scic_controller_terminate_request() - This method is called by the SCI Core |
| * user to terminate an ongoing (i.e. started) core IO request. This does |
| * not abort the IO request at the target, but rather removes the IO request |
| * from the host controller. |
| * @controller: the handle to the controller object for which to terminate a |
| * request. |
| * @remote_device: the handle to the remote device object for which to |
| * terminate a request. |
| * @request: the handle to the io or task management request object to |
| * terminate. |
| * |
| * Indicate if the controller successfully began the terminate process for the |
| * IO request. SCI_SUCCESS if the terminate process was successfully started |
| * for the request. Determine the failure situations and return values. |
| */ |
| enum sci_status scic_controller_terminate_request( |
| struct scic_sds_controller *scic, |
| struct scic_sds_remote_device *rdev, |
| struct scic_sds_request *req) |
| { |
| enum sci_status status; |
| |
| if (scic->state_machine.current_state_id != |
| SCI_BASE_CONTROLLER_STATE_READY) { |
| dev_warn(scic_to_dev(scic), |
| "invalid state to terminate request\n"); |
| return SCI_FAILURE_INVALID_STATE; |
| } |
| |
| status = scic_sds_io_request_terminate(req); |
| if (status != SCI_SUCCESS) |
| return status; |
| |
| /* |
| * Utilize the original post context command and or in the POST_TC_ABORT |
| * request sub-type. |
| */ |
| scic_sds_controller_post_request(scic, |
| scic_sds_request_get_post_context(req) | |
| SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT); |
| return SCI_SUCCESS; |
| } |
| |
| /** |
| * scic_controller_complete_io() - This method will perform core specific |
| * completion operations for an IO request. After this method is invoked, |
| * the user should consider the IO request as invalid until it is properly |
| * reused (i.e. re-constructed). |
| * @controller: The handle to the controller object for which to complete the |
| * IO request. |
| * @remote_device: The handle to the remote device object for which to complete |
| * the IO request. |
| * @io_request: the handle to the io request object to complete. |
| * |
| * - IO tags are a protected resource. It is incumbent upon the SCI Core user |
| * to ensure that each of the methods that may allocate or free available IO |
| * tags are handled in a mutually exclusive manner. This method is one of said |
| * methods requiring proper critical code section protection (e.g. semaphore, |
| * spin-lock, etc.). - If the IO tag for a request was allocated, by the SCI |
| * Core user, using the scic_controller_allocate_io_tag() method, then it is |
| * the responsibility of the caller to invoke the scic_controller_free_io_tag() |
| * method to free the tag (i.e. this method will not free the IO tag). Indicate |
| * if the controller successfully completed the IO request. SCI_SUCCESS if the |
| * completion process was successful. |
| */ |
| enum sci_status scic_controller_complete_io( |
| struct scic_sds_controller *scic, |
| struct scic_sds_remote_device *rdev, |
| struct scic_sds_request *request) |
| { |
| enum sci_status status; |
| u16 index; |
| |
| switch (scic->state_machine.current_state_id) { |
| case SCI_BASE_CONTROLLER_STATE_STOPPING: |
| /* XXX: Implement this function */ |
| return SCI_FAILURE; |
| case SCI_BASE_CONTROLLER_STATE_READY: |
| status = scic_sds_remote_device_complete_io(scic, rdev, request); |
| if (status != SCI_SUCCESS) |
| return status; |
| |
| index = scic_sds_io_tag_get_index(request->io_tag); |
| scic->io_request_table[index] = NULL; |
| return SCI_SUCCESS; |
| default: |
| dev_warn(scic_to_dev(scic), "invalid state to complete I/O"); |
| return SCI_FAILURE_INVALID_STATE; |
| } |
| |
| } |
| |
| enum sci_status scic_controller_continue_io(struct scic_sds_request *sci_req) |
| { |
| struct scic_sds_controller *scic = sci_req->owning_controller; |
| |
| if (scic->state_machine.current_state_id != |
| SCI_BASE_CONTROLLER_STATE_READY) { |
| dev_warn(scic_to_dev(scic), "invalid state to continue I/O"); |
| return SCI_FAILURE_INVALID_STATE; |
| } |
| |
| scic->io_request_table[scic_sds_io_tag_get_index(sci_req->io_tag)] = sci_req; |
| scic_sds_controller_post_request(scic, scic_sds_request_get_post_context(sci_req)); |
| return SCI_SUCCESS; |
| } |
| |
| /** |
| * scic_controller_start_task() - This method is called by the SCIC user to |
| * send/start a framework task management request. |
| * @controller: the handle to the controller object for which to start the task |
| * management request. |
| * @remote_device: the handle to the remote device object for which to start |
| * the task management request. |
| * @task_request: the handle to the task request object to start. |
| * @io_tag: This parameter specifies a previously allocated IO tag that the |
| * user desires to be utilized for this request. Note this not the io_tag |
| * of the request being managed. It is to be utilized for the task request |
| * itself. This parameter is optional. The user is allowed to supply |
| * SCI_CONTROLLER_INVALID_IO_TAG as the value for this parameter. |
| * |
| * - IO tags are a protected resource. It is incumbent upon the SCI Core user |
| * to ensure that each of the methods that may allocate or free available IO |
| * tags are handled in a mutually exclusive manner. This method is one of said |
| * methods requiring proper critical code section protection (e.g. semaphore, |
| * spin-lock, etc.). - The user must synchronize this task with completion |
| * queue processing. If they are not synchronized then it is possible for the |
| * io requests that are being managed by the task request can complete before |
| * starting the task request. scic_controller_allocate_tag() for more |
| * information on allocating a tag. Indicate if the controller successfully |
| * started the IO request. SCI_TASK_SUCCESS if the task request was |
| * successfully started. SCI_TASK_FAILURE_REQUIRES_SCSI_ABORT This value is |
| * returned if there is/are task(s) outstanding that require termination or |
| * completion before this request can succeed. |
| */ |
| enum sci_task_status scic_controller_start_task( |
| struct scic_sds_controller *scic, |
| struct scic_sds_remote_device *rdev, |
| struct scic_sds_request *req, |
| u16 task_tag) |
| { |
| enum sci_status status; |
| |
| if (scic->state_machine.current_state_id != |
| SCI_BASE_CONTROLLER_STATE_READY) { |
| dev_warn(scic_to_dev(scic), |
| "%s: SCIC Controller starting task from invalid " |
| "state\n", |
| __func__); |
| return SCI_TASK_FAILURE_INVALID_STATE; |
| } |
| |
| status = scic_sds_remote_device_start_task(scic, rdev, req); |
| switch (status) { |
| case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS: |
| scic->io_request_table[scic_sds_io_tag_get_index(req->io_tag)] = req; |
| |
| /* |
| * We will let framework know this task request started successfully, |
| * although core is still woring on starting the request (to post tc when |
| * RNC is resumed.) |
| */ |
| return SCI_SUCCESS; |
| case SCI_SUCCESS: |
| scic->io_request_table[scic_sds_io_tag_get_index(req->io_tag)] = req; |
| |
| scic_sds_controller_post_request(scic, |
| scic_sds_request_get_post_context(req)); |
| break; |
| default: |
| break; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * scic_controller_allocate_io_tag() - This method will allocate a tag from the |
| * pool of free IO tags. Direct allocation of IO tags by the SCI Core user |
| * is optional. The scic_controller_start_io() method will allocate an IO |
| * tag if this method is not utilized and the tag is not supplied to the IO |
| * construct routine. Direct allocation of IO tags may provide additional |
| * performance improvements in environments capable of supporting this usage |
| * model. Additionally, direct allocation of IO tags also provides |
| * additional flexibility to the SCI Core user. Specifically, the user may |
| * retain IO tags across the lives of multiple IO requests. |
| * @controller: the handle to the controller object for which to allocate the |
| * tag. |
| * |
| * IO tags are a protected resource. It is incumbent upon the SCI Core user to |
| * ensure that each of the methods that may allocate or free available IO tags |
| * are handled in a mutually exclusive manner. This method is one of said |
| * methods requiring proper critical code section protection (e.g. semaphore, |
| * spin-lock, etc.). An unsigned integer representing an available IO tag. |
| * SCI_CONTROLLER_INVALID_IO_TAG This value is returned if there are no |
| * currently available tags to be allocated. All return other values indicate a |
| * legitimate tag. |
| */ |
| u16 scic_controller_allocate_io_tag( |
| struct scic_sds_controller *scic) |
| { |
| u16 task_context; |
| u16 sequence_count; |
| |
| if (!sci_pool_empty(scic->tci_pool)) { |
| sci_pool_get(scic->tci_pool, task_context); |
| |
| sequence_count = scic->io_request_sequence[task_context]; |
| |
| return scic_sds_io_tag_construct(sequence_count, task_context); |
| } |
| |
| return SCI_CONTROLLER_INVALID_IO_TAG; |
| } |
| |
| /** |
| * scic_controller_free_io_tag() - This method will free an IO tag to the pool |
| * of free IO tags. This method provides the SCI Core user more flexibility |
| * with regards to IO tags. The user may desire to keep an IO tag after an |
| * IO request has completed, because they plan on re-using the tag for a |
| * subsequent IO request. This method is only legal if the tag was |
| * allocated via scic_controller_allocate_io_tag(). |
| * @controller: This parameter specifies the handle to the controller object |
| * for which to free/return the tag. |
| * @io_tag: This parameter represents the tag to be freed to the pool of |
| * available tags. |
| * |
| * - IO tags are a protected resource. It is incumbent upon the SCI Core user |
| * to ensure that each of the methods that may allocate or free available IO |
| * tags are handled in a mutually exclusive manner. This method is one of said |
| * methods requiring proper critical code section protection (e.g. semaphore, |
| * spin-lock, etc.). - If the IO tag for a request was allocated, by the SCI |
| * Core user, using the scic_controller_allocate_io_tag() method, then it is |
| * the responsibility of the caller to invoke this method to free the tag. This |
| * method returns an indication of whether the tag was successfully put back |
| * (freed) to the pool of available tags. SCI_SUCCESS This return value |
| * indicates the tag was successfully placed into the pool of available IO |
| * tags. SCI_FAILURE_INVALID_IO_TAG This value is returned if the supplied tag |
| * is not a valid IO tag value. |
| */ |
| enum sci_status scic_controller_free_io_tag( |
| struct scic_sds_controller *scic, |
| u16 io_tag) |
| { |
| u16 sequence; |
| u16 index; |
| |
| BUG_ON(io_tag == SCI_CONTROLLER_INVALID_IO_TAG); |
| |
| sequence = scic_sds_io_tag_get_sequence(io_tag); |
| index = scic_sds_io_tag_get_index(io_tag); |
| |
| if (!sci_pool_full(scic->tci_pool)) { |
| if (sequence == scic->io_request_sequence[index]) { |
| scic_sds_io_sequence_increment( |
| scic->io_request_sequence[index]); |
| |
| sci_pool_put(scic->tci_pool, index); |
| |
| return SCI_SUCCESS; |
| } |
| } |
| |
| return SCI_FAILURE_INVALID_IO_TAG; |
| } |
| |
| void scic_controller_enable_interrupts( |
| struct scic_sds_controller *scic) |
| { |
| BUG_ON(scic->smu_registers == NULL); |
| writel(0, &scic->smu_registers->interrupt_mask); |
| } |
| |
| void scic_controller_disable_interrupts( |
| struct scic_sds_controller *scic) |
| { |
| BUG_ON(scic->smu_registers == NULL); |
| writel(0xffffffff, &scic->smu_registers->interrupt_mask); |
| } |
| |
| static enum sci_status scic_controller_set_mode( |
| struct scic_sds_controller *scic, |
| enum sci_controller_mode operating_mode) |
| { |
| enum sci_status status = SCI_SUCCESS; |
| |
| if ((scic->state_machine.current_state_id == |
| SCI_BASE_CONTROLLER_STATE_INITIALIZING) || |
| (scic->state_machine.current_state_id == |
| SCI_BASE_CONTROLLER_STATE_INITIALIZED)) { |
| switch (operating_mode) { |
| case SCI_MODE_SPEED: |
| scic->remote_node_entries = SCI_MAX_REMOTE_DEVICES; |
| scic->task_context_entries = SCU_IO_REQUEST_COUNT; |
| scic->uf_control.buffers.count = |
| SCU_UNSOLICITED_FRAME_COUNT; |
| scic->completion_event_entries = SCU_EVENT_COUNT; |
| scic->completion_queue_entries = |
| SCU_COMPLETION_QUEUE_COUNT; |
| break; |
| |
| case SCI_MODE_SIZE: |
| scic->remote_node_entries = SCI_MIN_REMOTE_DEVICES; |
| scic->task_context_entries = SCI_MIN_IO_REQUESTS; |
| scic->uf_control.buffers.count = |
| SCU_MIN_UNSOLICITED_FRAMES; |
| scic->completion_event_entries = SCU_MIN_EVENTS; |
| scic->completion_queue_entries = |
| SCU_MIN_COMPLETION_QUEUE_ENTRIES; |
| break; |
| |
| default: |
| status = SCI_FAILURE_INVALID_PARAMETER_VALUE; |
| break; |
| } |
| } else |
| status = SCI_FAILURE_INVALID_STATE; |
| |
| return status; |
| } |
| |
| /** |
| * scic_sds_controller_reset_hardware() - |
| * |
| * This method will reset the controller hardware. |
| */ |
| static void scic_sds_controller_reset_hardware( |
| struct scic_sds_controller *scic) |
| { |
| /* Disable interrupts so we dont take any spurious interrupts */ |
| scic_controller_disable_interrupts(scic); |
| |
| /* Reset the SCU */ |
| writel(0xFFFFFFFF, &scic->smu_registers->soft_reset_control); |
| |
| /* Delay for 1ms to before clearing the CQP and UFQPR. */ |
| udelay(1000); |
| |
| /* The write to the CQGR clears the CQP */ |
| writel(0x00000000, &scic->smu_registers->completion_queue_get); |
| |
| /* The write to the UFQGP clears the UFQPR */ |
| writel(0, &scic->scu_registers->sdma.unsolicited_frame_get_pointer); |
| } |
| |
| enum sci_status scic_user_parameters_set( |
| struct scic_sds_controller *scic, |
| union scic_user_parameters *scic_parms) |
| { |
| u32 state = scic->state_machine.current_state_id; |
| |
| if (state == SCI_BASE_CONTROLLER_STATE_RESET || |
| state == SCI_BASE_CONTROLLER_STATE_INITIALIZING || |
| state == SCI_BASE_CONTROLLER_STATE_INITIALIZED) { |
| u16 index; |
| |
| /* |
| * Validate the user parameters. If they are not legal, then |
| * return a failure. |
| */ |
| for (index = 0; index < SCI_MAX_PHYS; index++) { |
| struct sci_phy_user_params *user_phy; |
| |
| user_phy = &scic_parms->sds1.phys[index]; |
| |
| if (!((user_phy->max_speed_generation <= |
| SCIC_SDS_PARM_MAX_SPEED) && |
| (user_phy->max_speed_generation > |
| SCIC_SDS_PARM_NO_SPEED))) |
| return SCI_FAILURE_INVALID_PARAMETER_VALUE; |
| |
| if (user_phy->in_connection_align_insertion_frequency < |
| 3) |
| return SCI_FAILURE_INVALID_PARAMETER_VALUE; |
| |
| if ((user_phy->in_connection_align_insertion_frequency < |
| 3) || |
| (user_phy->align_insertion_frequency == 0) || |
| (user_phy-> |
| notify_enable_spin_up_insertion_frequency == |
| 0)) |
| return SCI_FAILURE_INVALID_PARAMETER_VALUE; |
| } |
| |
| if ((scic_parms->sds1.stp_inactivity_timeout == 0) || |
| (scic_parms->sds1.ssp_inactivity_timeout == 0) || |
| (scic_parms->sds1.stp_max_occupancy_timeout == 0) || |
| (scic_parms->sds1.ssp_max_occupancy_timeout == 0) || |
| (scic_parms->sds1.no_outbound_task_timeout == 0)) |
| return SCI_FAILURE_INVALID_PARAMETER_VALUE; |
| |
| memcpy(&scic->user_parameters, scic_parms, sizeof(*scic_parms)); |
| |
| return SCI_SUCCESS; |
| } |
| |
| return SCI_FAILURE_INVALID_STATE; |
| } |
| |
| int scic_oem_parameters_validate(struct scic_sds_oem_params *oem) |
| { |
| int i; |
| |
| for (i = 0; i < SCI_MAX_PORTS; i++) |
| if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX) |
| return -EINVAL; |
| |
| for (i = 0; i < SCI_MAX_PHYS; i++) |
| if (oem->phys[i].sas_address.high == 0 && |
| oem->phys[i].sas_address.low == 0) |
| return -EINVAL; |
| |
| if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) { |
| for (i = 0; i < SCI_MAX_PHYS; i++) |
| if (oem->ports[i].phy_mask != 0) |
| return -EINVAL; |
| } else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) { |
| u8 phy_mask = 0; |
| |
| for (i = 0; i < SCI_MAX_PHYS; i++) |
| phy_mask |= oem->ports[i].phy_mask; |
| |
| if (phy_mask == 0) |
| return -EINVAL; |
| } else |
| return -EINVAL; |
| |
| if (oem->controller.max_concurrent_dev_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| enum sci_status scic_oem_parameters_set(struct scic_sds_controller *scic, |
| union scic_oem_parameters *scic_parms) |
| { |
| u32 state = scic->state_machine.current_state_id; |
| |
| if (state == SCI_BASE_CONTROLLER_STATE_RESET || |
| state == SCI_BASE_CONTROLLER_STATE_INITIALIZING || |
| state == SCI_BASE_CONTROLLER_STATE_INITIALIZED) { |
| |
| if (scic_oem_parameters_validate(&scic_parms->sds1)) |
| return SCI_FAILURE_INVALID_PARAMETER_VALUE; |
| scic->oem_parameters.sds1 = scic_parms->sds1; |
| |
| return SCI_SUCCESS; |
| } |
| |
| return SCI_FAILURE_INVALID_STATE; |
| } |
| |
| void scic_oem_parameters_get( |
| struct scic_sds_controller *scic, |
| union scic_oem_parameters *scic_parms) |
| { |
| memcpy(scic_parms, (&scic->oem_parameters), sizeof(*scic_parms)); |
| } |
| |
| #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853 |
| #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280 |
| #define INTERRUPT_COALESCE_TIMEOUT_MAX_US 2700000 |
| #define INTERRUPT_COALESCE_NUMBER_MAX 256 |
| #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN 7 |
| #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX 28 |
| |
| /** |
| * scic_controller_set_interrupt_coalescence() - This method allows the user to |
| * configure the interrupt coalescence. |
| * @controller: This parameter represents the handle to the controller object |
| * for which its interrupt coalesce register is overridden. |
| * @coalesce_number: Used to control the number of entries in the Completion |
| * Queue before an interrupt is generated. If the number of entries exceed |
| * this number, an interrupt will be generated. The valid range of the input |
| * is [0, 256]. A setting of 0 results in coalescing being disabled. |
| * @coalesce_timeout: Timeout value in microseconds. The valid range of the |
| * input is [0, 2700000] . A setting of 0 is allowed and results in no |
| * interrupt coalescing timeout. |
| * |
| * Indicate if the user successfully set the interrupt coalesce parameters. |
| * SCI_SUCCESS The user successfully updated the interrutp coalescence. |
| * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range. |
| */ |
| static enum sci_status scic_controller_set_interrupt_coalescence( |
| struct scic_sds_controller *scic_controller, |
| u32 coalesce_number, |
| u32 coalesce_timeout) |
| { |
| u8 timeout_encode = 0; |
| u32 min = 0; |
| u32 max = 0; |
| |
| /* Check if the input parameters fall in the range. */ |
| if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX) |
| return SCI_FAILURE_INVALID_PARAMETER_VALUE; |
| |
| /* |
| * Defined encoding for interrupt coalescing timeout: |
| * Value Min Max Units |
| * ----- --- --- ----- |
| * 0 - - Disabled |
| * 1 13.3 20.0 ns |
| * 2 26.7 40.0 |
| * 3 53.3 80.0 |
| * 4 106.7 160.0 |
| * 5 213.3 320.0 |
| * 6 426.7 640.0 |
| * 7 853.3 1280.0 |
| * 8 1.7 2.6 us |
| * 9 3.4 5.1 |
| * 10 6.8 10.2 |
| * 11 13.7 20.5 |
| * 12 27.3 41.0 |
| * 13 54.6 81.9 |
| * 14 109.2 163.8 |
| * 15 218.5 327.7 |
| * 16 436.9 655.4 |
| * 17 873.8 1310.7 |
| * 18 1.7 2.6 ms |
| * 19 3.5 5.2 |
| * 20 7.0 10.5 |
| * 21 14.0 21.0 |
| * 22 28.0 41.9 |
| * 23 55.9 83.9 |
| * 24 111.8 167.8 |
| * 25 223.7 335.5 |
| * 26 447.4 671.1 |
| * 27 894.8 1342.2 |
| * 28 1.8 2.7 s |
| * Others Undefined */ |
| |
| /* |
| * Use the table above to decide the encode of interrupt coalescing timeout |
| * value for register writing. */ |
| if (coalesce_timeout == 0) |
| timeout_encode = 0; |
| else{ |
| /* make the timeout value in unit of (10 ns). */ |
| coalesce_timeout = coalesce_timeout * 100; |
| min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10; |
| max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10; |
| |
| /* get the encode of timeout for register writing. */ |
| for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN; |
| timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX; |
| timeout_encode++) { |
| if (min <= coalesce_timeout && max > coalesce_timeout) |
| break; |
| else if (coalesce_timeout >= max && coalesce_timeout < min * 2 |
| && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) { |
| if ((coalesce_timeout - max) < (2 * min - coalesce_timeout)) |
| break; |
| else{ |
| timeout_encode++; |
| break; |
| } |
| } else { |
| max = max * 2; |
| min = min * 2; |
| } |
| } |
| |
| if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1) |
| /* the value is out of range. */ |
| return SCI_FAILURE_INVALID_PARAMETER_VALUE; |
| } |
| |
| writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) | |
| SMU_ICC_GEN_VAL(TIMER, timeout_encode), |
| &scic_controller->smu_registers->interrupt_coalesce_control); |
| |
| |
| scic_controller->interrupt_coalesce_number = (u16)coalesce_number; |
| scic_controller->interrupt_coalesce_timeout = coalesce_timeout / 100; |
| |
| return SCI_SUCCESS; |
| } |
| |
| |
| |
| enum sci_status scic_controller_initialize(struct scic_sds_controller *scic) |
| { |
| struct sci_base_state_machine *sm = &scic->state_machine; |
| enum sci_status result = SCI_SUCCESS; |
| struct isci_host *ihost = scic_to_ihost(scic); |
| u32 index, state; |
| |
| if (scic->state_machine.current_state_id != |
| SCI_BASE_CONTROLLER_STATE_RESET) { |
| dev_warn(scic_to_dev(scic), |
| "SCIC Controller initialize operation requested " |
| "in invalid state\n"); |
| return SCI_FAILURE_INVALID_STATE; |
| } |
| |
| sci_base_state_machine_change_state(sm, SCI_BASE_CONTROLLER_STATE_INITIALIZING); |
| |
| scic->timeout_timer = isci_timer_create(ihost, |
| scic, |
| scic_sds_controller_timeout_handler); |
| |
| scic_sds_controller_initialize_phy_startup(scic); |
| |
| scic_sds_controller_initialize_power_control(scic); |
| |
| /* |
| * There is nothing to do here for B0 since we do not have to |
| * program the AFE registers. |
| * / @todo The AFE settings are supposed to be correct for the B0 but |
| * / presently they seem to be wrong. */ |
| scic_sds_controller_afe_initialization(scic); |
| |
| if (result == SCI_SUCCESS) { |
| u32 status; |
| u32 terminate_loop; |
| |
| /* Take the hardware out of reset */ |
| writel(0, &scic->smu_registers->soft_reset_control); |
| |
| /* |
| * / @todo Provide meaningfull error code for hardware failure |
| * result = SCI_FAILURE_CONTROLLER_HARDWARE; */ |
| result = SCI_FAILURE; |
| terminate_loop = 100; |
| |
| while (terminate_loop-- && (result != SCI_SUCCESS)) { |
| /* Loop until the hardware reports success */ |
| udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME); |
| status = readl(&scic->smu_registers->control_status); |
| |
| if ((status & SCU_RAM_INIT_COMPLETED) == |
| SCU_RAM_INIT_COMPLETED) |
| result = SCI_SUCCESS; |
| } |
| } |
| |
| if (result == SCI_SUCCESS) { |
| u32 max_supported_ports; |
| u32 max_supported_devices; |
| u32 max_supported_io_requests; |
| u32 device_context_capacity; |
| |
| /* |
| * Determine what are the actaul device capacities that the |
| * hardware will support */ |
| device_context_capacity = |
| readl(&scic->smu_registers->device_context_capacity); |
| |
| |
| max_supported_ports = smu_dcc_get_max_ports(device_context_capacity); |
| max_supported_devices = smu_dcc_get_max_remote_node_context(device_context_capacity); |
| max_supported_io_requests = smu_dcc_get_max_task_context(device_context_capacity); |
| |
| /* |
| * Make all PEs that are unassigned match up with the |
| * logical ports |
| */ |
| for (index = 0; index < max_supported_ports; index++) { |
| struct scu_port_task_scheduler_group_registers __iomem |
| *ptsg = &scic->scu_registers->peg0.ptsg; |
| |
| writel(index, &ptsg->protocol_engine[index]); |
| } |
| |
| /* Record the smaller of the two capacity values */ |
| scic->logical_port_entries = |
| min(max_supported_ports, scic->logical_port_entries); |
| |
| scic->task_context_entries = |
| min(max_supported_io_requests, |
| scic->task_context_entries); |
| |
| scic->remote_node_entries = |
| min(max_supported_devices, scic->remote_node_entries); |
| |
| /* |
| * Now that we have the correct hardware reported minimum values |
| * build the MDL for the controller. Default to a performance |
| * configuration. |
| */ |
| scic_controller_set_mode(scic, SCI_MODE_SPEED); |
| } |
| |
| /* Initialize hardware PCI Relaxed ordering in DMA engines */ |
| if (result == SCI_SUCCESS) { |
| u32 dma_configuration; |
| |
| /* Configure the payload DMA */ |
| dma_configuration = |
| readl(&scic->scu_registers->sdma.pdma_configuration); |
| dma_configuration |= |
| SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE); |
| writel(dma_configuration, |
| &scic->scu_registers->sdma.pdma_configuration); |
| |
| /* Configure the control DMA */ |
| dma_configuration = |
| readl(&scic->scu_registers->sdma.cdma_configuration); |
| dma_configuration |= |
| SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE); |
| writel(dma_configuration, |
| &scic->scu_registers->sdma.cdma_configuration); |
| } |
| |
| /* |
| * Initialize the PHYs before the PORTs because the PHY registers |
| * are accessed during the port initialization. |
| */ |
| if (result == SCI_SUCCESS) { |
| /* Initialize the phys */ |
| for (index = 0; |
| (result == SCI_SUCCESS) && (index < SCI_MAX_PHYS); |
| index++) { |
| result = scic_sds_phy_initialize( |
| &ihost->phys[index].sci, |
| &scic->scu_registers->peg0.pe[index].tl, |
| &scic->scu_registers->peg0.pe[index].ll); |
| } |
| } |
| |
| if (result == SCI_SUCCESS) { |
| /* Initialize the logical ports */ |
| for (index = 0; |
| (index < scic->logical_port_entries) && |
| (result == SCI_SUCCESS); |
| index++) { |
| result = scic_sds_port_initialize( |
| &ihost->ports[index].sci, |
| &scic->scu_registers->peg0.ptsg.port[index], |
| &scic->scu_registers->peg0.ptsg.protocol_engine, |
| &scic->scu_registers->peg0.viit[index]); |
| } |
| } |
| |
| if (result == SCI_SUCCESS) |
| result = scic_sds_port_configuration_agent_initialize( |
| scic, |
| &scic->port_agent); |
| |
| /* Advance the controller state machine */ |
| if (result == SCI_SUCCESS) |
| state = SCI_BASE_CONTROLLER_STATE_INITIALIZED; |
| else |
| state = SCI_BASE_CONTROLLER_STATE_FAILED; |
| sci_base_state_machine_change_state(sm, state); |
| |
| return result; |
| } |
| |
| enum sci_status scic_controller_start(struct scic_sds_controller *scic, |
| u32 timeout) |
| { |
| struct isci_host *ihost = scic_to_ihost(scic); |
| enum sci_status result; |
| u16 index; |
| |
| if (scic->state_machine.current_state_id != |
| SCI_BASE_CONTROLLER_STATE_INITIALIZED) { |
| dev_warn(scic_to_dev(scic), |
| "SCIC Controller start operation requested in " |
| "invalid state\n"); |
| return SCI_FAILURE_INVALID_STATE; |
| } |
| |
| /* Build the TCi free pool */ |
| sci_pool_initialize(scic->tci_pool); |
| for (index = 0; index < scic->task_context_entries; index++) |
| sci_pool_put(scic->tci_pool, index); |
| |
| /* Build the RNi free pool */ |
| scic_sds_remote_node_table_initialize( |
| &scic->available_remote_nodes, |
| scic->remote_node_entries); |
| |
| /* |
| * Before anything else lets make sure we will not be |
| * interrupted by the hardware. |
| */ |
| scic_controller_disable_interrupts(scic); |
| |
| /* Enable the port task scheduler */ |
| scic_sds_controller_enable_port_task_scheduler(scic); |
| |
| /* Assign all the task entries to scic physical function */ |
| scic_sds_controller_assign_task_entries(scic); |
| |
| /* Now initialize the completion queue */ |
| scic_sds_controller_initialize_completion_queue(scic); |
| |
| /* Initialize the unsolicited frame queue for use */ |
| scic_sds_controller_initialize_unsolicited_frame_queue(scic); |
| |
| /* Start all of the ports on this controller */ |
| for (index = 0; index < scic->logical_port_entries; index++) { |
| struct scic_sds_port *sci_port = &ihost->ports[index].sci; |
| |
| result = sci_port->state_handlers->start_handler(sci_port); |
| if (result) |
| return result; |
| } |
| |
| scic_sds_controller_start_next_phy(scic); |
| |
| isci_timer_start(scic->timeout_timer, timeout); |
| |
| sci_base_state_machine_change_state(&scic->state_machine, |
| SCI_BASE_CONTROLLER_STATE_STARTING); |
| |
| return SCI_SUCCESS; |
| } |
| |
| /** |
| * |
| * @object: This is the object which is cast to a struct scic_sds_controller |
| * object. |
| * |
| * This method implements the actions taken by the struct scic_sds_controller on entry |
| * to the SCI_BASE_CONTROLLER_STATE_INITIAL. - Set the state handlers to the |
| * controllers initial state. none This function should initialize the |
| * controller object. |
| */ |
| static void scic_sds_controller_initial_state_enter(void *object) |
| { |
| struct scic_sds_controller *scic = object; |
| |
| sci_base_state_machine_change_state(&scic->state_machine, |
| SCI_BASE_CONTROLLER_STATE_RESET); |
| } |
| |
| /** |
| * |
| * @object: This is the object which is cast to a struct scic_sds_controller |
| * object. |
| * |
| * This method implements the actions taken by the struct scic_sds_controller on exit |
| * from the SCI_BASE_CONTROLLER_STATE_STARTING. - This function stops the |
| * controller starting timeout timer. none |
| */ |
| static inline void scic_sds_controller_starting_state_exit(void *object) |
| { |
| struct scic_sds_controller *scic = object; |
| |
| isci_timer_stop(scic->timeout_timer); |
| } |
| |
| /** |
| * |
| * @object: This is the object which is cast to a struct scic_sds_controller |
| * object. |
| * |
| * This method implements the actions taken by the struct scic_sds_controller on entry |
| * to the SCI_BASE_CONTROLLER_STATE_READY. - Set the state handlers to the |
| * controllers ready state. none |
| */ |
| static void scic_sds_controller_ready_state_enter(void *object) |
| { |
| struct scic_sds_controller *scic = object; |
| |
| /* set the default interrupt coalescence number and timeout value. */ |
| scic_controller_set_interrupt_coalescence( |
| scic, 0x10, 250); |
| } |
| |
| /** |
| * |
| * @object: This is the object which is cast to a struct scic_sds_controller |
| * object. |
| * |
| * This method implements the actions taken by the struct scic_sds_controller on exit |
| * from the SCI_BASE_CONTROLLER_STATE_READY. - This function does nothing. none |
| */ |
| static void scic_sds_controller_ready_state_exit(void *object) |
| { |
| struct scic_sds_controller *scic = object; |
| |
| /* disable interrupt coalescence. */ |
| scic_controller_set_interrupt_coalescence(scic, 0, 0); |
| } |
| |
| /** |
| * |
| * @object: This is the object which is cast to a struct scic_sds_controller |
| * object. |
| * |
| * This method implements the actions taken by the struct scic_sds_controller on entry |
| * to the SCI_BASE_CONTROLLER_STATE_READY. - Set the state handlers to the |
| * controllers ready state. - Stop the phys on this controller - Stop the ports |
| * on this controller - Stop all of the remote devices on this controller none |
| */ |
| static void scic_sds_controller_stopping_state_enter(void *object) |
| { |
| struct scic_sds_controller *scic = object; |
| |
| /* Stop all of the components for this controller */ |
| scic_sds_controller_stop_phys(scic); |
| scic_sds_controller_stop_ports(scic); |
| scic_sds_controller_stop_devices(scic); |
| } |
| |
| /** |
| * |
| * @object: This is the object which is cast to a struct |
| * scic_sds_controller object. |
| * |
| * This function implements the actions taken by the struct scic_sds_controller |
| * on exit from the SCI_BASE_CONTROLLER_STATE_STOPPING. - |
| * This function stops the controller stopping timeout timer. |
| */ |
| static inline void scic_sds_controller_stopping_state_exit(void *object) |
| { |
| struct scic_sds_controller *scic = object; |
| |
| isci_timer_stop(scic->timeout_timer); |
| } |
| |
| static void scic_sds_controller_resetting_state_enter(void *object) |
| { |
| struct scic_sds_controller *scic = object; |
| |
| scic_sds_controller_reset_hardware(scic); |
| sci_base_state_machine_change_state(&scic->state_machine, |
| SCI_BASE_CONTROLLER_STATE_RESET); |
| } |
| |
| static const struct sci_base_state scic_sds_controller_state_table[] = { |
| [SCI_BASE_CONTROLLER_STATE_INITIAL] = { |
| .enter_state = scic_sds_controller_initial_state_enter, |
| }, |
| [SCI_BASE_CONTROLLER_STATE_RESET] = {}, |
| [SCI_BASE_CONTROLLER_STATE_INITIALIZING] = {}, |
| [SCI_BASE_CONTROLLER_STATE_INITIALIZED] = {}, |
| [SCI_BASE_CONTROLLER_STATE_STARTING] = { |
| .exit_state = scic_sds_controller_starting_state_exit, |
| }, |
| [SCI_BASE_CONTROLLER_STATE_READY] = { |
| .enter_state = scic_sds_controller_ready_state_enter, |
| .exit_state = scic_sds_controller_ready_state_exit, |
| }, |
| [SCI_BASE_CONTROLLER_STATE_RESETTING] = { |
| .enter_state = scic_sds_controller_resetting_state_enter, |
| }, |
| [SCI_BASE_CONTROLLER_STATE_STOPPING] = { |
| .enter_state = scic_sds_controller_stopping_state_enter, |
| .exit_state = scic_sds_controller_stopping_state_exit, |
| }, |
| [SCI_BASE_CONTROLLER_STATE_STOPPED] = {}, |
| [SCI_BASE_CONTROLLER_STATE_FAILED] = {} |
| }; |
| |
| /** |
| * scic_controller_construct() - This method will attempt to construct a |
| * controller object utilizing the supplied parameter information. |
| * @c: This parameter specifies the controller to be constructed. |
| * @scu_base: mapped base address of the scu registers |
| * @smu_base: mapped base address of the smu registers |
| * |
| * Indicate if the controller was successfully constructed or if it failed in |
| * some way. SCI_SUCCESS This value is returned if the controller was |
| * successfully constructed. SCI_WARNING_TIMER_CONFLICT This value is returned |
| * if the interrupt coalescence timer may cause SAS compliance issues for SMP |
| * Target mode response processing. SCI_FAILURE_UNSUPPORTED_CONTROLLER_TYPE |
| * This value is returned if the controller does not support the supplied type. |
| * SCI_FAILURE_UNSUPPORTED_INIT_DATA_VERSION This value is returned if the |
| * controller does not support the supplied initialization data version. |
| */ |
| enum sci_status scic_controller_construct(struct scic_sds_controller *scic, |
| void __iomem *scu_base, |
| void __iomem *smu_base) |
| { |
| struct isci_host *ihost = scic_to_ihost(scic); |
| u8 i; |
| |
| sci_base_state_machine_construct(&scic->state_machine, |
| scic, scic_sds_controller_state_table, |
| SCI_BASE_CONTROLLER_STATE_INITIAL); |
| |
| sci_base_state_machine_start(&scic->state_machine); |
| |
| scic->scu_registers = scu_base; |
| scic->smu_registers = smu_base; |
| |
| scic_sds_port_configuration_agent_construct(&scic->port_agent); |
| |
| /* Construct the ports for this controller */ |
| for (i = 0; i < SCI_MAX_PORTS; i++) |
| scic_sds_port_construct(&ihost->ports[i].sci, i, scic); |
| scic_sds_port_construct(&ihost->ports[i].sci, SCIC_SDS_DUMMY_PORT, scic); |
| |
| /* Construct the phys for this controller */ |
| for (i = 0; i < SCI_MAX_PHYS; i++) { |
| /* Add all the PHYs to the dummy port */ |
| scic_sds_phy_construct(&ihost->phys[i].sci, |
| &ihost->ports[SCI_MAX_PORTS].sci, i); |
| } |
| |
| scic->invalid_phy_mask = 0; |
| |
| /* Set the default maximum values */ |
| scic->completion_event_entries = SCU_EVENT_COUNT; |
| scic->completion_queue_entries = SCU_COMPLETION_QUEUE_COUNT; |
| scic->remote_node_entries = SCI_MAX_REMOTE_DEVICES; |
| scic->logical_port_entries = SCI_MAX_PORTS; |
| scic->task_context_entries = SCU_IO_REQUEST_COUNT; |
| scic->uf_control.buffers.count = SCU_UNSOLICITED_FRAME_COUNT; |
| scic->uf_control.address_table.count = SCU_UNSOLICITED_FRAME_COUNT; |
| |
| /* Initialize the User and OEM parameters to default values. */ |
| scic_sds_controller_set_default_config_parameters(scic); |
| |
| return scic_controller_reset(scic); |
| } |