| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * RTC driver for the Armada 38x Marvell SoCs |
| * |
| * Copyright (C) 2015 Marvell |
| * |
| * Gregory Clement <gregory.clement@free-electrons.com> |
| */ |
| |
| #include <linux/delay.h> |
| #include <linux/io.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| #include <linux/platform_device.h> |
| #include <linux/rtc.h> |
| |
| #define RTC_STATUS 0x0 |
| #define RTC_STATUS_ALARM1 BIT(0) |
| #define RTC_STATUS_ALARM2 BIT(1) |
| #define RTC_IRQ1_CONF 0x4 |
| #define RTC_IRQ2_CONF 0x8 |
| #define RTC_IRQ_AL_EN BIT(0) |
| #define RTC_IRQ_FREQ_EN BIT(1) |
| #define RTC_IRQ_FREQ_1HZ BIT(2) |
| #define RTC_CCR 0x18 |
| #define RTC_CCR_MODE BIT(15) |
| #define RTC_CONF_TEST 0x1C |
| #define RTC_NOMINAL_TIMING BIT(13) |
| |
| #define RTC_TIME 0xC |
| #define RTC_ALARM1 0x10 |
| #define RTC_ALARM2 0x14 |
| |
| /* Armada38x SoC registers */ |
| #define RTC_38X_BRIDGE_TIMING_CTL 0x0 |
| #define RTC_38X_PERIOD_OFFS 0 |
| #define RTC_38X_PERIOD_MASK (0x3FF << RTC_38X_PERIOD_OFFS) |
| #define RTC_38X_READ_DELAY_OFFS 26 |
| #define RTC_38X_READ_DELAY_MASK (0x1F << RTC_38X_READ_DELAY_OFFS) |
| |
| /* Armada 7K/8K registers */ |
| #define RTC_8K_BRIDGE_TIMING_CTL0 0x0 |
| #define RTC_8K_WRCLK_PERIOD_OFFS 0 |
| #define RTC_8K_WRCLK_PERIOD_MASK (0xFFFF << RTC_8K_WRCLK_PERIOD_OFFS) |
| #define RTC_8K_WRCLK_SETUP_OFFS 16 |
| #define RTC_8K_WRCLK_SETUP_MASK (0xFFFF << RTC_8K_WRCLK_SETUP_OFFS) |
| #define RTC_8K_BRIDGE_TIMING_CTL1 0x4 |
| #define RTC_8K_READ_DELAY_OFFS 0 |
| #define RTC_8K_READ_DELAY_MASK (0xFFFF << RTC_8K_READ_DELAY_OFFS) |
| |
| #define RTC_8K_ISR 0x10 |
| #define RTC_8K_IMR 0x14 |
| #define RTC_8K_ALARM2 BIT(0) |
| |
| #define SOC_RTC_INTERRUPT 0x8 |
| #define SOC_RTC_ALARM1 BIT(0) |
| #define SOC_RTC_ALARM2 BIT(1) |
| #define SOC_RTC_ALARM1_MASK BIT(2) |
| #define SOC_RTC_ALARM2_MASK BIT(3) |
| |
| #define SAMPLE_NR 100 |
| |
| struct value_to_freq { |
| u32 value; |
| u8 freq; |
| }; |
| |
| struct armada38x_rtc { |
| struct rtc_device *rtc_dev; |
| void __iomem *regs; |
| void __iomem *regs_soc; |
| spinlock_t lock; |
| int irq; |
| bool initialized; |
| struct value_to_freq *val_to_freq; |
| const struct armada38x_rtc_data *data; |
| }; |
| |
| #define ALARM1 0 |
| #define ALARM2 1 |
| |
| #define ALARM_REG(base, alarm) ((base) + (alarm) * sizeof(u32)) |
| |
| struct armada38x_rtc_data { |
| /* Initialize the RTC-MBUS bridge timing */ |
| void (*update_mbus_timing)(struct armada38x_rtc *rtc); |
| u32 (*read_rtc_reg)(struct armada38x_rtc *rtc, u8 rtc_reg); |
| void (*clear_isr)(struct armada38x_rtc *rtc); |
| void (*unmask_interrupt)(struct armada38x_rtc *rtc); |
| u32 alarm; |
| }; |
| |
| /* |
| * According to the datasheet, the OS should wait 5us after every |
| * register write to the RTC hard macro so that the required update |
| * can occur without holding off the system bus |
| * According to errata RES-3124064, Write to any RTC register |
| * may fail. As a workaround, before writing to RTC |
| * register, issue a dummy write of 0x0 twice to RTC Status |
| * register. |
| */ |
| |
| static void rtc_delayed_write(u32 val, struct armada38x_rtc *rtc, int offset) |
| { |
| writel(0, rtc->regs + RTC_STATUS); |
| writel(0, rtc->regs + RTC_STATUS); |
| writel(val, rtc->regs + offset); |
| udelay(5); |
| } |
| |
| /* Update RTC-MBUS bridge timing parameters */ |
| static void rtc_update_38x_mbus_timing_params(struct armada38x_rtc *rtc) |
| { |
| u32 reg; |
| |
| reg = readl(rtc->regs_soc + RTC_38X_BRIDGE_TIMING_CTL); |
| reg &= ~RTC_38X_PERIOD_MASK; |
| reg |= 0x3FF << RTC_38X_PERIOD_OFFS; /* Maximum value */ |
| reg &= ~RTC_38X_READ_DELAY_MASK; |
| reg |= 0x1F << RTC_38X_READ_DELAY_OFFS; /* Maximum value */ |
| writel(reg, rtc->regs_soc + RTC_38X_BRIDGE_TIMING_CTL); |
| } |
| |
| static void rtc_update_8k_mbus_timing_params(struct armada38x_rtc *rtc) |
| { |
| u32 reg; |
| |
| reg = readl(rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL0); |
| reg &= ~RTC_8K_WRCLK_PERIOD_MASK; |
| reg |= 0x3FF << RTC_8K_WRCLK_PERIOD_OFFS; |
| reg &= ~RTC_8K_WRCLK_SETUP_MASK; |
| reg |= 0x29 << RTC_8K_WRCLK_SETUP_OFFS; |
| writel(reg, rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL0); |
| |
| reg = readl(rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL1); |
| reg &= ~RTC_8K_READ_DELAY_MASK; |
| reg |= 0x3F << RTC_8K_READ_DELAY_OFFS; |
| writel(reg, rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL1); |
| } |
| |
| static u32 read_rtc_register(struct armada38x_rtc *rtc, u8 rtc_reg) |
| { |
| return readl(rtc->regs + rtc_reg); |
| } |
| |
| static u32 read_rtc_register_38x_wa(struct armada38x_rtc *rtc, u8 rtc_reg) |
| { |
| int i, index_max = 0, max = 0; |
| |
| for (i = 0; i < SAMPLE_NR; i++) { |
| rtc->val_to_freq[i].value = readl(rtc->regs + rtc_reg); |
| rtc->val_to_freq[i].freq = 0; |
| } |
| |
| for (i = 0; i < SAMPLE_NR; i++) { |
| int j = 0; |
| u32 value = rtc->val_to_freq[i].value; |
| |
| while (rtc->val_to_freq[j].freq) { |
| if (rtc->val_to_freq[j].value == value) { |
| rtc->val_to_freq[j].freq++; |
| break; |
| } |
| j++; |
| } |
| |
| if (!rtc->val_to_freq[j].freq) { |
| rtc->val_to_freq[j].value = value; |
| rtc->val_to_freq[j].freq = 1; |
| } |
| |
| if (rtc->val_to_freq[j].freq > max) { |
| index_max = j; |
| max = rtc->val_to_freq[j].freq; |
| } |
| |
| /* |
| * If a value already has half of the sample this is the most |
| * frequent one and we can stop the research right now |
| */ |
| if (max > SAMPLE_NR / 2) |
| break; |
| } |
| |
| return rtc->val_to_freq[index_max].value; |
| } |
| |
| static void armada38x_clear_isr(struct armada38x_rtc *rtc) |
| { |
| u32 val = readl(rtc->regs_soc + SOC_RTC_INTERRUPT); |
| |
| writel(val & ~SOC_RTC_ALARM1, rtc->regs_soc + SOC_RTC_INTERRUPT); |
| } |
| |
| static void armada38x_unmask_interrupt(struct armada38x_rtc *rtc) |
| { |
| u32 val = readl(rtc->regs_soc + SOC_RTC_INTERRUPT); |
| |
| writel(val | SOC_RTC_ALARM1_MASK, rtc->regs_soc + SOC_RTC_INTERRUPT); |
| } |
| |
| static void armada8k_clear_isr(struct armada38x_rtc *rtc) |
| { |
| writel(RTC_8K_ALARM2, rtc->regs_soc + RTC_8K_ISR); |
| } |
| |
| static void armada8k_unmask_interrupt(struct armada38x_rtc *rtc) |
| { |
| writel(RTC_8K_ALARM2, rtc->regs_soc + RTC_8K_IMR); |
| } |
| |
| static int armada38x_rtc_read_time(struct device *dev, struct rtc_time *tm) |
| { |
| struct armada38x_rtc *rtc = dev_get_drvdata(dev); |
| unsigned long time, flags; |
| |
| spin_lock_irqsave(&rtc->lock, flags); |
| time = rtc->data->read_rtc_reg(rtc, RTC_TIME); |
| spin_unlock_irqrestore(&rtc->lock, flags); |
| |
| rtc_time64_to_tm(time, tm); |
| |
| return 0; |
| } |
| |
| static void armada38x_rtc_reset(struct armada38x_rtc *rtc) |
| { |
| u32 reg; |
| |
| reg = rtc->data->read_rtc_reg(rtc, RTC_CONF_TEST); |
| /* If bits [7:0] are non-zero, assume RTC was uninitialized */ |
| if (reg & 0xff) { |
| rtc_delayed_write(0, rtc, RTC_CONF_TEST); |
| msleep(500); /* Oscillator startup time */ |
| rtc_delayed_write(0, rtc, RTC_TIME); |
| rtc_delayed_write(SOC_RTC_ALARM1 | SOC_RTC_ALARM2, rtc, |
| RTC_STATUS); |
| rtc_delayed_write(RTC_NOMINAL_TIMING, rtc, RTC_CCR); |
| } |
| rtc->initialized = true; |
| } |
| |
| static int armada38x_rtc_set_time(struct device *dev, struct rtc_time *tm) |
| { |
| struct armada38x_rtc *rtc = dev_get_drvdata(dev); |
| unsigned long time, flags; |
| |
| time = rtc_tm_to_time64(tm); |
| |
| if (!rtc->initialized) |
| armada38x_rtc_reset(rtc); |
| |
| spin_lock_irqsave(&rtc->lock, flags); |
| rtc_delayed_write(time, rtc, RTC_TIME); |
| spin_unlock_irqrestore(&rtc->lock, flags); |
| |
| return 0; |
| } |
| |
| static int armada38x_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) |
| { |
| struct armada38x_rtc *rtc = dev_get_drvdata(dev); |
| unsigned long time, flags; |
| u32 reg = ALARM_REG(RTC_ALARM1, rtc->data->alarm); |
| u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm); |
| u32 val; |
| |
| spin_lock_irqsave(&rtc->lock, flags); |
| |
| time = rtc->data->read_rtc_reg(rtc, reg); |
| val = rtc->data->read_rtc_reg(rtc, reg_irq) & RTC_IRQ_AL_EN; |
| |
| spin_unlock_irqrestore(&rtc->lock, flags); |
| |
| alrm->enabled = val ? 1 : 0; |
| rtc_time64_to_tm(time, &alrm->time); |
| |
| return 0; |
| } |
| |
| static int armada38x_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) |
| { |
| struct armada38x_rtc *rtc = dev_get_drvdata(dev); |
| u32 reg = ALARM_REG(RTC_ALARM1, rtc->data->alarm); |
| u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm); |
| unsigned long time, flags; |
| |
| time = rtc_tm_to_time64(&alrm->time); |
| |
| spin_lock_irqsave(&rtc->lock, flags); |
| |
| rtc_delayed_write(time, rtc, reg); |
| |
| if (alrm->enabled) { |
| rtc_delayed_write(RTC_IRQ_AL_EN, rtc, reg_irq); |
| rtc->data->unmask_interrupt(rtc); |
| } |
| |
| spin_unlock_irqrestore(&rtc->lock, flags); |
| |
| return 0; |
| } |
| |
| static int armada38x_rtc_alarm_irq_enable(struct device *dev, |
| unsigned int enabled) |
| { |
| struct armada38x_rtc *rtc = dev_get_drvdata(dev); |
| u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&rtc->lock, flags); |
| |
| if (enabled) |
| rtc_delayed_write(RTC_IRQ_AL_EN, rtc, reg_irq); |
| else |
| rtc_delayed_write(0, rtc, reg_irq); |
| |
| spin_unlock_irqrestore(&rtc->lock, flags); |
| |
| return 0; |
| } |
| |
| static irqreturn_t armada38x_rtc_alarm_irq(int irq, void *data) |
| { |
| struct armada38x_rtc *rtc = data; |
| u32 val; |
| int event = RTC_IRQF | RTC_AF; |
| u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm); |
| |
| dev_dbg(&rtc->rtc_dev->dev, "%s:irq(%d)\n", __func__, irq); |
| |
| spin_lock(&rtc->lock); |
| |
| rtc->data->clear_isr(rtc); |
| val = rtc->data->read_rtc_reg(rtc, reg_irq); |
| /* disable all the interrupts for alarm*/ |
| rtc_delayed_write(0, rtc, reg_irq); |
| /* Ack the event */ |
| rtc_delayed_write(1 << rtc->data->alarm, rtc, RTC_STATUS); |
| |
| spin_unlock(&rtc->lock); |
| |
| if (val & RTC_IRQ_FREQ_EN) { |
| if (val & RTC_IRQ_FREQ_1HZ) |
| event |= RTC_UF; |
| else |
| event |= RTC_PF; |
| } |
| |
| rtc_update_irq(rtc->rtc_dev, 1, event); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * The information given in the Armada 388 functional spec is complex. |
| * They give two different formulas for calculating the offset value, |
| * but when considering "Offset" as an 8-bit signed integer, they both |
| * reduce down to (we shall rename "Offset" as "val" here): |
| * |
| * val = (f_ideal / f_measured - 1) / resolution where f_ideal = 32768 |
| * |
| * Converting to time, f = 1/t: |
| * val = (t_measured / t_ideal - 1) / resolution where t_ideal = 1/32768 |
| * |
| * => t_measured / t_ideal = val * resolution + 1 |
| * |
| * "offset" in the RTC interface is defined as: |
| * t = t0 * (1 + offset * 1e-9) |
| * where t is the desired period, t0 is the measured period with a zero |
| * offset, which is t_measured above. With t0 = t_measured and t = t_ideal, |
| * offset = (t_ideal / t_measured - 1) / 1e-9 |
| * |
| * => t_ideal / t_measured = offset * 1e-9 + 1 |
| * |
| * so: |
| * |
| * offset * 1e-9 + 1 = 1 / (val * resolution + 1) |
| * |
| * We want "resolution" to be an integer, so resolution = R * 1e-9, giving |
| * offset = 1e18 / (val * R + 1e9) - 1e9 |
| * val = (1e18 / (offset + 1e9) - 1e9) / R |
| * with a common transformation: |
| * f(x) = 1e18 / (x + 1e9) - 1e9 |
| * offset = f(val * R) |
| * val = f(offset) / R |
| * |
| * Armada 38x supports two modes, fine mode (954ppb) and coarse mode (3815ppb). |
| */ |
| static long armada38x_ppb_convert(long ppb) |
| { |
| long div = ppb + 1000000000L; |
| |
| return div_s64(1000000000000000000LL + div / 2, div) - 1000000000L; |
| } |
| |
| static int armada38x_rtc_read_offset(struct device *dev, long *offset) |
| { |
| struct armada38x_rtc *rtc = dev_get_drvdata(dev); |
| unsigned long ccr, flags; |
| long ppb_cor; |
| |
| spin_lock_irqsave(&rtc->lock, flags); |
| ccr = rtc->data->read_rtc_reg(rtc, RTC_CCR); |
| spin_unlock_irqrestore(&rtc->lock, flags); |
| |
| ppb_cor = (ccr & RTC_CCR_MODE ? 3815 : 954) * (s8)ccr; |
| /* ppb_cor + 1000000000L can never be zero */ |
| *offset = armada38x_ppb_convert(ppb_cor); |
| |
| return 0; |
| } |
| |
| static int armada38x_rtc_set_offset(struct device *dev, long offset) |
| { |
| struct armada38x_rtc *rtc = dev_get_drvdata(dev); |
| unsigned long ccr = 0; |
| long ppb_cor, off; |
| |
| /* |
| * The maximum ppb_cor is -128 * 3815 .. 127 * 3815, but we |
| * need to clamp the input. This equates to -484270 .. 488558. |
| * Not only is this to stop out of range "off" but also to |
| * avoid the division by zero in armada38x_ppb_convert(). |
| */ |
| offset = clamp(offset, -484270L, 488558L); |
| |
| ppb_cor = armada38x_ppb_convert(offset); |
| |
| /* |
| * Use low update mode where possible, which gives a better |
| * resolution of correction. |
| */ |
| off = DIV_ROUND_CLOSEST(ppb_cor, 954); |
| if (off > 127 || off < -128) { |
| ccr = RTC_CCR_MODE; |
| off = DIV_ROUND_CLOSEST(ppb_cor, 3815); |
| } |
| |
| /* |
| * Armada 388 requires a bit pattern in bits 14..8 depending on |
| * the sign bit: { 0, ~S, S, S, S, S, S } |
| */ |
| ccr |= (off & 0x3fff) ^ 0x2000; |
| rtc_delayed_write(ccr, rtc, RTC_CCR); |
| |
| return 0; |
| } |
| |
| static const struct rtc_class_ops armada38x_rtc_ops = { |
| .read_time = armada38x_rtc_read_time, |
| .set_time = armada38x_rtc_set_time, |
| .read_alarm = armada38x_rtc_read_alarm, |
| .set_alarm = armada38x_rtc_set_alarm, |
| .alarm_irq_enable = armada38x_rtc_alarm_irq_enable, |
| .read_offset = armada38x_rtc_read_offset, |
| .set_offset = armada38x_rtc_set_offset, |
| }; |
| |
| static const struct rtc_class_ops armada38x_rtc_ops_noirq = { |
| .read_time = armada38x_rtc_read_time, |
| .set_time = armada38x_rtc_set_time, |
| .read_alarm = armada38x_rtc_read_alarm, |
| .read_offset = armada38x_rtc_read_offset, |
| .set_offset = armada38x_rtc_set_offset, |
| }; |
| |
| static const struct armada38x_rtc_data armada38x_data = { |
| .update_mbus_timing = rtc_update_38x_mbus_timing_params, |
| .read_rtc_reg = read_rtc_register_38x_wa, |
| .clear_isr = armada38x_clear_isr, |
| .unmask_interrupt = armada38x_unmask_interrupt, |
| .alarm = ALARM1, |
| }; |
| |
| static const struct armada38x_rtc_data armada8k_data = { |
| .update_mbus_timing = rtc_update_8k_mbus_timing_params, |
| .read_rtc_reg = read_rtc_register, |
| .clear_isr = armada8k_clear_isr, |
| .unmask_interrupt = armada8k_unmask_interrupt, |
| .alarm = ALARM2, |
| }; |
| |
| #ifdef CONFIG_OF |
| static const struct of_device_id armada38x_rtc_of_match_table[] = { |
| { |
| .compatible = "marvell,armada-380-rtc", |
| .data = &armada38x_data, |
| }, |
| { |
| .compatible = "marvell,armada-8k-rtc", |
| .data = &armada8k_data, |
| }, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(of, armada38x_rtc_of_match_table); |
| #endif |
| |
| static __init int armada38x_rtc_probe(struct platform_device *pdev) |
| { |
| struct resource *res; |
| struct armada38x_rtc *rtc; |
| |
| rtc = devm_kzalloc(&pdev->dev, sizeof(struct armada38x_rtc), |
| GFP_KERNEL); |
| if (!rtc) |
| return -ENOMEM; |
| |
| rtc->data = of_device_get_match_data(&pdev->dev); |
| |
| rtc->val_to_freq = devm_kcalloc(&pdev->dev, SAMPLE_NR, |
| sizeof(struct value_to_freq), GFP_KERNEL); |
| if (!rtc->val_to_freq) |
| return -ENOMEM; |
| |
| spin_lock_init(&rtc->lock); |
| |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "rtc"); |
| rtc->regs = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(rtc->regs)) |
| return PTR_ERR(rtc->regs); |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "rtc-soc"); |
| rtc->regs_soc = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(rtc->regs_soc)) |
| return PTR_ERR(rtc->regs_soc); |
| |
| rtc->irq = platform_get_irq(pdev, 0); |
| if (rtc->irq < 0) |
| return rtc->irq; |
| |
| rtc->rtc_dev = devm_rtc_allocate_device(&pdev->dev); |
| if (IS_ERR(rtc->rtc_dev)) |
| return PTR_ERR(rtc->rtc_dev); |
| |
| if (devm_request_irq(&pdev->dev, rtc->irq, armada38x_rtc_alarm_irq, |
| 0, pdev->name, rtc) < 0) { |
| dev_warn(&pdev->dev, "Interrupt not available.\n"); |
| rtc->irq = -1; |
| } |
| platform_set_drvdata(pdev, rtc); |
| |
| if (rtc->irq != -1) { |
| device_init_wakeup(&pdev->dev, 1); |
| rtc->rtc_dev->ops = &armada38x_rtc_ops; |
| } else { |
| /* |
| * If there is no interrupt available then we can't |
| * use the alarm |
| */ |
| rtc->rtc_dev->ops = &armada38x_rtc_ops_noirq; |
| } |
| |
| /* Update RTC-MBUS bridge timing parameters */ |
| rtc->data->update_mbus_timing(rtc); |
| |
| rtc->rtc_dev->range_max = U32_MAX; |
| |
| return devm_rtc_register_device(rtc->rtc_dev); |
| } |
| |
| #ifdef CONFIG_PM_SLEEP |
| static int armada38x_rtc_suspend(struct device *dev) |
| { |
| if (device_may_wakeup(dev)) { |
| struct armada38x_rtc *rtc = dev_get_drvdata(dev); |
| |
| return enable_irq_wake(rtc->irq); |
| } |
| |
| return 0; |
| } |
| |
| static int armada38x_rtc_resume(struct device *dev) |
| { |
| if (device_may_wakeup(dev)) { |
| struct armada38x_rtc *rtc = dev_get_drvdata(dev); |
| |
| /* Update RTC-MBUS bridge timing parameters */ |
| rtc->data->update_mbus_timing(rtc); |
| |
| return disable_irq_wake(rtc->irq); |
| } |
| |
| return 0; |
| } |
| #endif |
| |
| static SIMPLE_DEV_PM_OPS(armada38x_rtc_pm_ops, |
| armada38x_rtc_suspend, armada38x_rtc_resume); |
| |
| static struct platform_driver armada38x_rtc_driver = { |
| .driver = { |
| .name = "armada38x-rtc", |
| .pm = &armada38x_rtc_pm_ops, |
| .of_match_table = of_match_ptr(armada38x_rtc_of_match_table), |
| }, |
| }; |
| |
| module_platform_driver_probe(armada38x_rtc_driver, armada38x_rtc_probe); |
| |
| MODULE_DESCRIPTION("Marvell Armada 38x RTC driver"); |
| MODULE_AUTHOR("Gregory CLEMENT <gregory.clement@free-electrons.com>"); |
| MODULE_LICENSE("GPL"); |