blob: b0c5521c1e278cd42fb700d4a5223b46e78a4604 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2005, Intec Automation Inc.
* Copyright (C) 2014, Freescale Semiconductor, Inc.
*/
#include <linux/mtd/spi-nor.h>
#include "core.h"
#define SPINOR_OP_RD_ANY_REG 0x65 /* Read any register */
#define SPINOR_OP_WR_ANY_REG 0x71 /* Write any register */
#define SPINOR_REG_CYPRESS_CFR2V 0x00800003
#define SPINOR_REG_CYPRESS_CFR2V_MEMLAT_11_24 0xb
#define SPINOR_REG_CYPRESS_CFR3V 0x00800004
#define SPINOR_REG_CYPRESS_CFR3V_PGSZ BIT(4) /* Page size. */
#define SPINOR_REG_CYPRESS_CFR5V 0x00800006
#define SPINOR_REG_CYPRESS_CFR5V_OCT_DTR_EN 0x3
#define SPINOR_REG_CYPRESS_CFR5V_OCT_DTR_DS 0
#define SPINOR_OP_CYPRESS_RD_FAST 0xee
/**
* spi_nor_cypress_octal_dtr_enable() - Enable octal DTR on Cypress flashes.
* @nor: pointer to a 'struct spi_nor'
* @enable: whether to enable or disable Octal DTR
*
* This also sets the memory access latency cycles to 24 to allow the flash to
* run at up to 200MHz.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_cypress_octal_dtr_enable(struct spi_nor *nor, bool enable)
{
struct spi_mem_op op;
u8 *buf = nor->bouncebuf;
int ret;
if (enable) {
/* Use 24 dummy cycles for memory array reads. */
ret = spi_nor_write_enable(nor);
if (ret)
return ret;
*buf = SPINOR_REG_CYPRESS_CFR2V_MEMLAT_11_24;
op = (struct spi_mem_op)
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WR_ANY_REG, 1),
SPI_MEM_OP_ADDR(3, SPINOR_REG_CYPRESS_CFR2V,
1),
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_OUT(1, buf, 1));
ret = spi_mem_exec_op(nor->spimem, &op);
if (ret)
return ret;
ret = spi_nor_wait_till_ready(nor);
if (ret)
return ret;
nor->read_dummy = 24;
}
/* Set/unset the octal and DTR enable bits. */
ret = spi_nor_write_enable(nor);
if (ret)
return ret;
if (enable)
*buf = SPINOR_REG_CYPRESS_CFR5V_OCT_DTR_EN;
else
*buf = SPINOR_REG_CYPRESS_CFR5V_OCT_DTR_DS;
op = (struct spi_mem_op)
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WR_ANY_REG, 1),
SPI_MEM_OP_ADDR(enable ? 3 : 4,
SPINOR_REG_CYPRESS_CFR5V,
1),
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_OUT(1, buf, 1));
if (!enable)
spi_nor_spimem_setup_op(nor, &op, SNOR_PROTO_8_8_8_DTR);
ret = spi_mem_exec_op(nor->spimem, &op);
if (ret)
return ret;
/* Read flash ID to make sure the switch was successful. */
op = (struct spi_mem_op)
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1),
SPI_MEM_OP_ADDR(enable ? 4 : 0, 0, 1),
SPI_MEM_OP_DUMMY(enable ? 3 : 0, 1),
SPI_MEM_OP_DATA_IN(round_up(nor->info->id_len, 2),
buf, 1));
if (enable)
spi_nor_spimem_setup_op(nor, &op, SNOR_PROTO_8_8_8_DTR);
ret = spi_mem_exec_op(nor->spimem, &op);
if (ret)
return ret;
if (memcmp(buf, nor->info->id, nor->info->id_len))
return -EINVAL;
return 0;
}
static void s28hs512t_default_init(struct spi_nor *nor)
{
nor->params->octal_dtr_enable = spi_nor_cypress_octal_dtr_enable;
nor->params->writesize = 16;
}
static void s28hs512t_post_sfdp_fixup(struct spi_nor *nor)
{
/*
* On older versions of the flash the xSPI Profile 1.0 table has the
* 8D-8D-8D Fast Read opcode as 0x00. But it actually should be 0xEE.
*/
if (nor->params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode == 0)
nor->params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode =
SPINOR_OP_CYPRESS_RD_FAST;
/* This flash is also missing the 4-byte Page Program opcode bit. */
spi_nor_set_pp_settings(&nor->params->page_programs[SNOR_CMD_PP],
SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1);
/*
* Since xSPI Page Program opcode is backward compatible with
* Legacy SPI, use Legacy SPI opcode there as well.
*/
spi_nor_set_pp_settings(&nor->params->page_programs[SNOR_CMD_PP_8_8_8_DTR],
SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR);
/*
* The xSPI Profile 1.0 table advertises the number of additional
* address bytes needed for Read Status Register command as 0 but the
* actual value for that is 4.
*/
nor->params->rdsr_addr_nbytes = 4;
}
static int s28hs512t_post_bfpt_fixup(struct spi_nor *nor,
const struct sfdp_parameter_header *bfpt_header,
const struct sfdp_bfpt *bfpt,
struct spi_nor_flash_parameter *params)
{
/*
* The BFPT table advertises a 512B page size but the page size is
* actually configurable (with the default being 256B). Read from
* CFR3V[4] and set the correct size.
*/
struct spi_mem_op op =
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RD_ANY_REG, 1),
SPI_MEM_OP_ADDR(3, SPINOR_REG_CYPRESS_CFR3V, 1),
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_IN(1, nor->bouncebuf, 1));
int ret;
ret = spi_mem_exec_op(nor->spimem, &op);
if (ret)
return ret;
if (nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR3V_PGSZ)
params->page_size = 512;
else
params->page_size = 256;
return 0;
}
static struct spi_nor_fixups s28hs512t_fixups = {
.default_init = s28hs512t_default_init,
.post_sfdp = s28hs512t_post_sfdp_fixup,
.post_bfpt = s28hs512t_post_bfpt_fixup,
};
static int
s25fs_s_post_bfpt_fixups(struct spi_nor *nor,
const struct sfdp_parameter_header *bfpt_header,
const struct sfdp_bfpt *bfpt,
struct spi_nor_flash_parameter *params)
{
/*
* The S25FS-S chip family reports 512-byte pages in BFPT but
* in reality the write buffer still wraps at the safe default
* of 256 bytes. Overwrite the page size advertised by BFPT
* to get the writes working.
*/
params->page_size = 256;
return 0;
}
static struct spi_nor_fixups s25fs_s_fixups = {
.post_bfpt = s25fs_s_post_bfpt_fixups,
};
static const struct flash_info spansion_parts[] = {
/* Spansion/Cypress -- single (large) sector size only, at least
* for the chips listed here (without boot sectors).
*/
{ "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64,
SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128,
SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "s25fl128s0", INFO6(0x012018, 0x4d0080, 256 * 1024, 64,
SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
USE_CLSR) },
{ "s25fl128s1", INFO6(0x012018, 0x4d0180, 64 * 1024, 256,
SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
USE_CLSR) },
{ "s25fl256s0", INFO6(0x010219, 0x4d0080, 256 * 1024, 128,
SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
USE_CLSR) },
{ "s25fl256s1", INFO6(0x010219, 0x4d0180, 64 * 1024, 512,
SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
USE_CLSR) },
{ "s25fl512s", INFO6(0x010220, 0x4d0080, 256 * 1024, 256,
SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | USE_CLSR) },
{ "s25fs128s1", INFO6(0x012018, 0x4d0181, 64 * 1024, 256,
SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR)
.fixups = &s25fs_s_fixups, },
{ "s25fs256s0", INFO6(0x010219, 0x4d0081, 256 * 1024, 128,
SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
USE_CLSR) },
{ "s25fs256s1", INFO6(0x010219, 0x4d0181, 64 * 1024, 512,
SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
USE_CLSR) },
{ "s25fs512s", INFO6(0x010220, 0x4d0081, 256 * 1024, 256,
SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR)
.fixups = &s25fs_s_fixups, },
{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
{ "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64,
SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
USE_CLSR) },
{ "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256,
SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
USE_CLSR) },
{ "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
{ "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
{ "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
{ "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
{ "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
{ "s25fl004k", INFO(0xef4013, 0, 64 * 1024, 8,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "s25fl116k", INFO(0x014015, 0, 64 * 1024, 32,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "s25fl132k", INFO(0x014016, 0, 64 * 1024, 64, SECT_4K) },
{ "s25fl164k", INFO(0x014017, 0, 64 * 1024, 128, SECT_4K) },
{ "s25fl204k", INFO(0x014013, 0, 64 * 1024, 8,
SECT_4K | SPI_NOR_DUAL_READ) },
{ "s25fl208k", INFO(0x014014, 0, 64 * 1024, 16,
SECT_4K | SPI_NOR_DUAL_READ) },
{ "s25fl064l", INFO(0x016017, 0, 64 * 1024, 128,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_4B_OPCODES) },
{ "s25fl128l", INFO(0x016018, 0, 64 * 1024, 256,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_4B_OPCODES) },
{ "s25fl256l", INFO(0x016019, 0, 64 * 1024, 512,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_4B_OPCODES) },
{ "cy15x104q", INFO6(0x042cc2, 0x7f7f7f, 512 * 1024, 1,
SPI_NOR_NO_ERASE) },
{ "s28hs512t", INFO(0x345b1a, 0, 256 * 1024, 256,
SECT_4K | SPI_NOR_OCTAL_DTR_READ |
SPI_NOR_OCTAL_DTR_PP)
.fixups = &s28hs512t_fixups,
},
};
static void spansion_post_sfdp_fixups(struct spi_nor *nor)
{
if (nor->params->size <= SZ_16M)
return;
nor->flags |= SNOR_F_4B_OPCODES;
/* No small sector erase for 4-byte command set */
nor->erase_opcode = SPINOR_OP_SE;
nor->mtd.erasesize = nor->info->sector_size;
}
static const struct spi_nor_fixups spansion_fixups = {
.post_sfdp = spansion_post_sfdp_fixups,
};
const struct spi_nor_manufacturer spi_nor_spansion = {
.name = "spansion",
.parts = spansion_parts,
.nparts = ARRAY_SIZE(spansion_parts),
.fixups = &spansion_fixups,
};