| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * |
| * Copyright (C) 2017 Zihao Yu |
| */ |
| |
| #include <linux/elf.h> |
| #include <linux/err.h> |
| #include <linux/errno.h> |
| #include <linux/hashtable.h> |
| #include <linux/kernel.h> |
| #include <linux/log2.h> |
| #include <linux/moduleloader.h> |
| #include <linux/vmalloc.h> |
| #include <linux/sizes.h> |
| #include <linux/pgtable.h> |
| #include <asm/alternative.h> |
| #include <asm/sections.h> |
| |
| struct used_bucket { |
| struct list_head head; |
| struct hlist_head *bucket; |
| }; |
| |
| struct relocation_head { |
| struct hlist_node node; |
| struct list_head *rel_entry; |
| void *location; |
| }; |
| |
| struct relocation_entry { |
| struct list_head head; |
| Elf_Addr value; |
| unsigned int type; |
| }; |
| |
| struct relocation_handlers { |
| int (*reloc_handler)(struct module *me, void *location, Elf_Addr v); |
| int (*accumulate_handler)(struct module *me, void *location, |
| long buffer); |
| }; |
| |
| /* |
| * The auipc+jalr instruction pair can reach any PC-relative offset |
| * in the range [-2^31 - 2^11, 2^31 - 2^11) |
| */ |
| static bool riscv_insn_valid_32bit_offset(ptrdiff_t val) |
| { |
| #ifdef CONFIG_32BIT |
| return true; |
| #else |
| return (-(1L << 31) - (1L << 11)) <= val && val < ((1L << 31) - (1L << 11)); |
| #endif |
| } |
| |
| static int riscv_insn_rmw(void *location, u32 keep, u32 set) |
| { |
| __le16 *parcel = location; |
| u32 insn = (u32)le16_to_cpu(parcel[0]) | (u32)le16_to_cpu(parcel[1]) << 16; |
| |
| insn &= keep; |
| insn |= set; |
| |
| parcel[0] = cpu_to_le16(insn); |
| parcel[1] = cpu_to_le16(insn >> 16); |
| return 0; |
| } |
| |
| static int riscv_insn_rvc_rmw(void *location, u16 keep, u16 set) |
| { |
| __le16 *parcel = location; |
| u16 insn = le16_to_cpu(*parcel); |
| |
| insn &= keep; |
| insn |= set; |
| |
| *parcel = cpu_to_le16(insn); |
| return 0; |
| } |
| |
| static int apply_r_riscv_32_rela(struct module *me, void *location, Elf_Addr v) |
| { |
| if (v != (u32)v) { |
| pr_err("%s: value %016llx out of range for 32-bit field\n", |
| me->name, (long long)v); |
| return -EINVAL; |
| } |
| *(u32 *)location = v; |
| return 0; |
| } |
| |
| static int apply_r_riscv_64_rela(struct module *me, void *location, Elf_Addr v) |
| { |
| *(u64 *)location = v; |
| return 0; |
| } |
| |
| static int apply_r_riscv_branch_rela(struct module *me, void *location, |
| Elf_Addr v) |
| { |
| ptrdiff_t offset = (void *)v - location; |
| u32 imm12 = (offset & 0x1000) << (31 - 12); |
| u32 imm11 = (offset & 0x800) >> (11 - 7); |
| u32 imm10_5 = (offset & 0x7e0) << (30 - 10); |
| u32 imm4_1 = (offset & 0x1e) << (11 - 4); |
| |
| return riscv_insn_rmw(location, 0x1fff07f, imm12 | imm11 | imm10_5 | imm4_1); |
| } |
| |
| static int apply_r_riscv_jal_rela(struct module *me, void *location, |
| Elf_Addr v) |
| { |
| ptrdiff_t offset = (void *)v - location; |
| u32 imm20 = (offset & 0x100000) << (31 - 20); |
| u32 imm19_12 = (offset & 0xff000); |
| u32 imm11 = (offset & 0x800) << (20 - 11); |
| u32 imm10_1 = (offset & 0x7fe) << (30 - 10); |
| |
| return riscv_insn_rmw(location, 0xfff, imm20 | imm19_12 | imm11 | imm10_1); |
| } |
| |
| static int apply_r_riscv_rvc_branch_rela(struct module *me, void *location, |
| Elf_Addr v) |
| { |
| ptrdiff_t offset = (void *)v - location; |
| u16 imm8 = (offset & 0x100) << (12 - 8); |
| u16 imm7_6 = (offset & 0xc0) >> (6 - 5); |
| u16 imm5 = (offset & 0x20) >> (5 - 2); |
| u16 imm4_3 = (offset & 0x18) << (12 - 5); |
| u16 imm2_1 = (offset & 0x6) << (12 - 10); |
| |
| return riscv_insn_rvc_rmw(location, 0xe383, |
| imm8 | imm7_6 | imm5 | imm4_3 | imm2_1); |
| } |
| |
| static int apply_r_riscv_rvc_jump_rela(struct module *me, void *location, |
| Elf_Addr v) |
| { |
| ptrdiff_t offset = (void *)v - location; |
| u16 imm11 = (offset & 0x800) << (12 - 11); |
| u16 imm10 = (offset & 0x400) >> (10 - 8); |
| u16 imm9_8 = (offset & 0x300) << (12 - 11); |
| u16 imm7 = (offset & 0x80) >> (7 - 6); |
| u16 imm6 = (offset & 0x40) << (12 - 11); |
| u16 imm5 = (offset & 0x20) >> (5 - 2); |
| u16 imm4 = (offset & 0x10) << (12 - 5); |
| u16 imm3_1 = (offset & 0xe) << (12 - 10); |
| |
| return riscv_insn_rvc_rmw(location, 0xe003, |
| imm11 | imm10 | imm9_8 | imm7 | imm6 | imm5 | imm4 | imm3_1); |
| } |
| |
| static int apply_r_riscv_pcrel_hi20_rela(struct module *me, void *location, |
| Elf_Addr v) |
| { |
| ptrdiff_t offset = (void *)v - location; |
| |
| if (!riscv_insn_valid_32bit_offset(offset)) { |
| pr_err( |
| "%s: target %016llx can not be addressed by the 32-bit offset from PC = %p\n", |
| me->name, (long long)v, location); |
| return -EINVAL; |
| } |
| |
| return riscv_insn_rmw(location, 0xfff, (offset + 0x800) & 0xfffff000); |
| } |
| |
| static int apply_r_riscv_pcrel_lo12_i_rela(struct module *me, void *location, |
| Elf_Addr v) |
| { |
| /* |
| * v is the lo12 value to fill. It is calculated before calling this |
| * handler. |
| */ |
| return riscv_insn_rmw(location, 0xfffff, (v & 0xfff) << 20); |
| } |
| |
| static int apply_r_riscv_pcrel_lo12_s_rela(struct module *me, void *location, |
| Elf_Addr v) |
| { |
| /* |
| * v is the lo12 value to fill. It is calculated before calling this |
| * handler. |
| */ |
| u32 imm11_5 = (v & 0xfe0) << (31 - 11); |
| u32 imm4_0 = (v & 0x1f) << (11 - 4); |
| |
| return riscv_insn_rmw(location, 0x1fff07f, imm11_5 | imm4_0); |
| } |
| |
| static int apply_r_riscv_hi20_rela(struct module *me, void *location, |
| Elf_Addr v) |
| { |
| if (IS_ENABLED(CONFIG_CMODEL_MEDLOW)) { |
| pr_err( |
| "%s: target %016llx can not be addressed by the 32-bit offset from PC = %p\n", |
| me->name, (long long)v, location); |
| return -EINVAL; |
| } |
| |
| return riscv_insn_rmw(location, 0xfff, ((s32)v + 0x800) & 0xfffff000); |
| } |
| |
| static int apply_r_riscv_lo12_i_rela(struct module *me, void *location, |
| Elf_Addr v) |
| { |
| /* Skip medlow checking because of filtering by HI20 already */ |
| s32 hi20 = ((s32)v + 0x800) & 0xfffff000; |
| s32 lo12 = ((s32)v - hi20); |
| |
| return riscv_insn_rmw(location, 0xfffff, (lo12 & 0xfff) << 20); |
| } |
| |
| static int apply_r_riscv_lo12_s_rela(struct module *me, void *location, |
| Elf_Addr v) |
| { |
| /* Skip medlow checking because of filtering by HI20 already */ |
| s32 hi20 = ((s32)v + 0x800) & 0xfffff000; |
| s32 lo12 = ((s32)v - hi20); |
| u32 imm11_5 = (lo12 & 0xfe0) << (31 - 11); |
| u32 imm4_0 = (lo12 & 0x1f) << (11 - 4); |
| |
| return riscv_insn_rmw(location, 0x1fff07f, imm11_5 | imm4_0); |
| } |
| |
| static int apply_r_riscv_got_hi20_rela(struct module *me, void *location, |
| Elf_Addr v) |
| { |
| ptrdiff_t offset = (void *)v - location; |
| |
| /* Always emit the got entry */ |
| if (IS_ENABLED(CONFIG_MODULE_SECTIONS)) { |
| offset = (void *)module_emit_got_entry(me, v) - location; |
| } else { |
| pr_err( |
| "%s: can not generate the GOT entry for symbol = %016llx from PC = %p\n", |
| me->name, (long long)v, location); |
| return -EINVAL; |
| } |
| |
| return riscv_insn_rmw(location, 0xfff, (offset + 0x800) & 0xfffff000); |
| } |
| |
| static int apply_r_riscv_call_plt_rela(struct module *me, void *location, |
| Elf_Addr v) |
| { |
| ptrdiff_t offset = (void *)v - location; |
| u32 hi20, lo12; |
| |
| if (!riscv_insn_valid_32bit_offset(offset)) { |
| /* Only emit the plt entry if offset over 32-bit range */ |
| if (IS_ENABLED(CONFIG_MODULE_SECTIONS)) { |
| offset = (void *)module_emit_plt_entry(me, v) - location; |
| } else { |
| pr_err( |
| "%s: target %016llx can not be addressed by the 32-bit offset from PC = %p\n", |
| me->name, (long long)v, location); |
| return -EINVAL; |
| } |
| } |
| |
| hi20 = (offset + 0x800) & 0xfffff000; |
| lo12 = (offset - hi20) & 0xfff; |
| riscv_insn_rmw(location, 0xfff, hi20); |
| return riscv_insn_rmw(location + 4, 0xfffff, lo12 << 20); |
| } |
| |
| static int apply_r_riscv_call_rela(struct module *me, void *location, |
| Elf_Addr v) |
| { |
| ptrdiff_t offset = (void *)v - location; |
| u32 hi20, lo12; |
| |
| if (!riscv_insn_valid_32bit_offset(offset)) { |
| pr_err( |
| "%s: target %016llx can not be addressed by the 32-bit offset from PC = %p\n", |
| me->name, (long long)v, location); |
| return -EINVAL; |
| } |
| |
| hi20 = (offset + 0x800) & 0xfffff000; |
| lo12 = (offset - hi20) & 0xfff; |
| riscv_insn_rmw(location, 0xfff, hi20); |
| return riscv_insn_rmw(location + 4, 0xfffff, lo12 << 20); |
| } |
| |
| static int apply_r_riscv_relax_rela(struct module *me, void *location, |
| Elf_Addr v) |
| { |
| return 0; |
| } |
| |
| static int apply_r_riscv_align_rela(struct module *me, void *location, |
| Elf_Addr v) |
| { |
| pr_err( |
| "%s: The unexpected relocation type 'R_RISCV_ALIGN' from PC = %p\n", |
| me->name, location); |
| return -EINVAL; |
| } |
| |
| static int apply_r_riscv_add8_rela(struct module *me, void *location, Elf_Addr v) |
| { |
| *(u8 *)location += (u8)v; |
| return 0; |
| } |
| |
| static int apply_r_riscv_add16_rela(struct module *me, void *location, |
| Elf_Addr v) |
| { |
| *(u16 *)location += (u16)v; |
| return 0; |
| } |
| |
| static int apply_r_riscv_add32_rela(struct module *me, void *location, |
| Elf_Addr v) |
| { |
| *(u32 *)location += (u32)v; |
| return 0; |
| } |
| |
| static int apply_r_riscv_add64_rela(struct module *me, void *location, |
| Elf_Addr v) |
| { |
| *(u64 *)location += (u64)v; |
| return 0; |
| } |
| |
| static int apply_r_riscv_sub8_rela(struct module *me, void *location, Elf_Addr v) |
| { |
| *(u8 *)location -= (u8)v; |
| return 0; |
| } |
| |
| static int apply_r_riscv_sub16_rela(struct module *me, void *location, |
| Elf_Addr v) |
| { |
| *(u16 *)location -= (u16)v; |
| return 0; |
| } |
| |
| static int apply_r_riscv_sub32_rela(struct module *me, void *location, |
| Elf_Addr v) |
| { |
| *(u32 *)location -= (u32)v; |
| return 0; |
| } |
| |
| static int apply_r_riscv_sub64_rela(struct module *me, void *location, |
| Elf_Addr v) |
| { |
| *(u64 *)location -= (u64)v; |
| return 0; |
| } |
| |
| static int dynamic_linking_not_supported(struct module *me, void *location, |
| Elf_Addr v) |
| { |
| pr_err("%s: Dynamic linking not supported in kernel modules PC = %p\n", |
| me->name, location); |
| return -EINVAL; |
| } |
| |
| static int tls_not_supported(struct module *me, void *location, Elf_Addr v) |
| { |
| pr_err("%s: Thread local storage not supported in kernel modules PC = %p\n", |
| me->name, location); |
| return -EINVAL; |
| } |
| |
| static int apply_r_riscv_sub6_rela(struct module *me, void *location, Elf_Addr v) |
| { |
| u8 *byte = location; |
| u8 value = v; |
| |
| *byte = (*byte - (value & 0x3f)) & 0x3f; |
| return 0; |
| } |
| |
| static int apply_r_riscv_set6_rela(struct module *me, void *location, Elf_Addr v) |
| { |
| u8 *byte = location; |
| u8 value = v; |
| |
| *byte = (*byte & 0xc0) | (value & 0x3f); |
| return 0; |
| } |
| |
| static int apply_r_riscv_set8_rela(struct module *me, void *location, Elf_Addr v) |
| { |
| *(u8 *)location = (u8)v; |
| return 0; |
| } |
| |
| static int apply_r_riscv_set16_rela(struct module *me, void *location, |
| Elf_Addr v) |
| { |
| *(u16 *)location = (u16)v; |
| return 0; |
| } |
| |
| static int apply_r_riscv_set32_rela(struct module *me, void *location, |
| Elf_Addr v) |
| { |
| *(u32 *)location = (u32)v; |
| return 0; |
| } |
| |
| static int apply_r_riscv_32_pcrel_rela(struct module *me, void *location, |
| Elf_Addr v) |
| { |
| *(u32 *)location = v - (uintptr_t)location; |
| return 0; |
| } |
| |
| static int apply_r_riscv_plt32_rela(struct module *me, void *location, |
| Elf_Addr v) |
| { |
| ptrdiff_t offset = (void *)v - location; |
| |
| if (!riscv_insn_valid_32bit_offset(offset)) { |
| /* Only emit the plt entry if offset over 32-bit range */ |
| if (IS_ENABLED(CONFIG_MODULE_SECTIONS)) { |
| offset = (void *)module_emit_plt_entry(me, v) - location; |
| } else { |
| pr_err("%s: target %016llx can not be addressed by the 32-bit offset from PC = %p\n", |
| me->name, (long long)v, location); |
| return -EINVAL; |
| } |
| } |
| |
| *(u32 *)location = (u32)offset; |
| return 0; |
| } |
| |
| static int apply_r_riscv_set_uleb128(struct module *me, void *location, Elf_Addr v) |
| { |
| *(long *)location = v; |
| return 0; |
| } |
| |
| static int apply_r_riscv_sub_uleb128(struct module *me, void *location, Elf_Addr v) |
| { |
| *(long *)location -= v; |
| return 0; |
| } |
| |
| static int apply_6_bit_accumulation(struct module *me, void *location, long buffer) |
| { |
| u8 *byte = location; |
| u8 value = buffer; |
| |
| if (buffer > 0x3f) { |
| pr_err("%s: value %ld out of range for 6-bit relocation.\n", |
| me->name, buffer); |
| return -EINVAL; |
| } |
| |
| *byte = (*byte & 0xc0) | (value & 0x3f); |
| return 0; |
| } |
| |
| static int apply_8_bit_accumulation(struct module *me, void *location, long buffer) |
| { |
| if (buffer > U8_MAX) { |
| pr_err("%s: value %ld out of range for 8-bit relocation.\n", |
| me->name, buffer); |
| return -EINVAL; |
| } |
| *(u8 *)location = (u8)buffer; |
| return 0; |
| } |
| |
| static int apply_16_bit_accumulation(struct module *me, void *location, long buffer) |
| { |
| if (buffer > U16_MAX) { |
| pr_err("%s: value %ld out of range for 16-bit relocation.\n", |
| me->name, buffer); |
| return -EINVAL; |
| } |
| *(u16 *)location = (u16)buffer; |
| return 0; |
| } |
| |
| static int apply_32_bit_accumulation(struct module *me, void *location, long buffer) |
| { |
| if (buffer > U32_MAX) { |
| pr_err("%s: value %ld out of range for 32-bit relocation.\n", |
| me->name, buffer); |
| return -EINVAL; |
| } |
| *(u32 *)location = (u32)buffer; |
| return 0; |
| } |
| |
| static int apply_64_bit_accumulation(struct module *me, void *location, long buffer) |
| { |
| *(u64 *)location = (u64)buffer; |
| return 0; |
| } |
| |
| static int apply_uleb128_accumulation(struct module *me, void *location, long buffer) |
| { |
| /* |
| * ULEB128 is a variable length encoding. Encode the buffer into |
| * the ULEB128 data format. |
| */ |
| u8 *p = location; |
| |
| while (buffer != 0) { |
| u8 value = buffer & 0x7f; |
| |
| buffer >>= 7; |
| value |= (!!buffer) << 7; |
| |
| *p++ = value; |
| } |
| return 0; |
| } |
| |
| /* |
| * Relocations defined in the riscv-elf-psabi-doc. |
| * This handles static linking only. |
| */ |
| static const struct relocation_handlers reloc_handlers[] = { |
| [R_RISCV_32] = { .reloc_handler = apply_r_riscv_32_rela }, |
| [R_RISCV_64] = { .reloc_handler = apply_r_riscv_64_rela }, |
| [R_RISCV_RELATIVE] = { .reloc_handler = dynamic_linking_not_supported }, |
| [R_RISCV_COPY] = { .reloc_handler = dynamic_linking_not_supported }, |
| [R_RISCV_JUMP_SLOT] = { .reloc_handler = dynamic_linking_not_supported }, |
| [R_RISCV_TLS_DTPMOD32] = { .reloc_handler = dynamic_linking_not_supported }, |
| [R_RISCV_TLS_DTPMOD64] = { .reloc_handler = dynamic_linking_not_supported }, |
| [R_RISCV_TLS_DTPREL32] = { .reloc_handler = dynamic_linking_not_supported }, |
| [R_RISCV_TLS_DTPREL64] = { .reloc_handler = dynamic_linking_not_supported }, |
| [R_RISCV_TLS_TPREL32] = { .reloc_handler = dynamic_linking_not_supported }, |
| [R_RISCV_TLS_TPREL64] = { .reloc_handler = dynamic_linking_not_supported }, |
| /* 12-15 undefined */ |
| [R_RISCV_BRANCH] = { .reloc_handler = apply_r_riscv_branch_rela }, |
| [R_RISCV_JAL] = { .reloc_handler = apply_r_riscv_jal_rela }, |
| [R_RISCV_CALL] = { .reloc_handler = apply_r_riscv_call_rela }, |
| [R_RISCV_CALL_PLT] = { .reloc_handler = apply_r_riscv_call_plt_rela }, |
| [R_RISCV_GOT_HI20] = { .reloc_handler = apply_r_riscv_got_hi20_rela }, |
| [R_RISCV_TLS_GOT_HI20] = { .reloc_handler = tls_not_supported }, |
| [R_RISCV_TLS_GD_HI20] = { .reloc_handler = tls_not_supported }, |
| [R_RISCV_PCREL_HI20] = { .reloc_handler = apply_r_riscv_pcrel_hi20_rela }, |
| [R_RISCV_PCREL_LO12_I] = { .reloc_handler = apply_r_riscv_pcrel_lo12_i_rela }, |
| [R_RISCV_PCREL_LO12_S] = { .reloc_handler = apply_r_riscv_pcrel_lo12_s_rela }, |
| [R_RISCV_HI20] = { .reloc_handler = apply_r_riscv_hi20_rela }, |
| [R_RISCV_LO12_I] = { .reloc_handler = apply_r_riscv_lo12_i_rela }, |
| [R_RISCV_LO12_S] = { .reloc_handler = apply_r_riscv_lo12_s_rela }, |
| [R_RISCV_TPREL_HI20] = { .reloc_handler = tls_not_supported }, |
| [R_RISCV_TPREL_LO12_I] = { .reloc_handler = tls_not_supported }, |
| [R_RISCV_TPREL_LO12_S] = { .reloc_handler = tls_not_supported }, |
| [R_RISCV_TPREL_ADD] = { .reloc_handler = tls_not_supported }, |
| [R_RISCV_ADD8] = { .reloc_handler = apply_r_riscv_add8_rela, |
| .accumulate_handler = apply_8_bit_accumulation }, |
| [R_RISCV_ADD16] = { .reloc_handler = apply_r_riscv_add16_rela, |
| .accumulate_handler = apply_16_bit_accumulation }, |
| [R_RISCV_ADD32] = { .reloc_handler = apply_r_riscv_add32_rela, |
| .accumulate_handler = apply_32_bit_accumulation }, |
| [R_RISCV_ADD64] = { .reloc_handler = apply_r_riscv_add64_rela, |
| .accumulate_handler = apply_64_bit_accumulation }, |
| [R_RISCV_SUB8] = { .reloc_handler = apply_r_riscv_sub8_rela, |
| .accumulate_handler = apply_8_bit_accumulation }, |
| [R_RISCV_SUB16] = { .reloc_handler = apply_r_riscv_sub16_rela, |
| .accumulate_handler = apply_16_bit_accumulation }, |
| [R_RISCV_SUB32] = { .reloc_handler = apply_r_riscv_sub32_rela, |
| .accumulate_handler = apply_32_bit_accumulation }, |
| [R_RISCV_SUB64] = { .reloc_handler = apply_r_riscv_sub64_rela, |
| .accumulate_handler = apply_64_bit_accumulation }, |
| /* 41-42 reserved for future standard use */ |
| [R_RISCV_ALIGN] = { .reloc_handler = apply_r_riscv_align_rela }, |
| [R_RISCV_RVC_BRANCH] = { .reloc_handler = apply_r_riscv_rvc_branch_rela }, |
| [R_RISCV_RVC_JUMP] = { .reloc_handler = apply_r_riscv_rvc_jump_rela }, |
| /* 46-50 reserved for future standard use */ |
| [R_RISCV_RELAX] = { .reloc_handler = apply_r_riscv_relax_rela }, |
| [R_RISCV_SUB6] = { .reloc_handler = apply_r_riscv_sub6_rela, |
| .accumulate_handler = apply_6_bit_accumulation }, |
| [R_RISCV_SET6] = { .reloc_handler = apply_r_riscv_set6_rela, |
| .accumulate_handler = apply_6_bit_accumulation }, |
| [R_RISCV_SET8] = { .reloc_handler = apply_r_riscv_set8_rela, |
| .accumulate_handler = apply_8_bit_accumulation }, |
| [R_RISCV_SET16] = { .reloc_handler = apply_r_riscv_set16_rela, |
| .accumulate_handler = apply_16_bit_accumulation }, |
| [R_RISCV_SET32] = { .reloc_handler = apply_r_riscv_set32_rela, |
| .accumulate_handler = apply_32_bit_accumulation }, |
| [R_RISCV_32_PCREL] = { .reloc_handler = apply_r_riscv_32_pcrel_rela }, |
| [R_RISCV_IRELATIVE] = { .reloc_handler = dynamic_linking_not_supported }, |
| [R_RISCV_PLT32] = { .reloc_handler = apply_r_riscv_plt32_rela }, |
| [R_RISCV_SET_ULEB128] = { .reloc_handler = apply_r_riscv_set_uleb128, |
| .accumulate_handler = apply_uleb128_accumulation }, |
| [R_RISCV_SUB_ULEB128] = { .reloc_handler = apply_r_riscv_sub_uleb128, |
| .accumulate_handler = apply_uleb128_accumulation }, |
| /* 62-191 reserved for future standard use */ |
| /* 192-255 nonstandard ABI extensions */ |
| }; |
| |
| static void |
| process_accumulated_relocations(struct module *me, |
| struct hlist_head **relocation_hashtable, |
| struct list_head *used_buckets_list) |
| { |
| /* |
| * Only ADD/SUB/SET/ULEB128 should end up here. |
| * |
| * Each bucket may have more than one relocation location. All |
| * relocations for a location are stored in a list in a bucket. |
| * |
| * Relocations are applied to a temp variable before being stored to the |
| * provided location to check for overflow. This also allows ULEB128 to |
| * properly decide how many entries are needed before storing to |
| * location. The final value is stored into location using the handler |
| * for the last relocation to an address. |
| * |
| * Three layers of indexing: |
| * - Each of the buckets in use |
| * - Groups of relocations in each bucket by location address |
| * - Each relocation entry for a location address |
| */ |
| struct used_bucket *bucket_iter; |
| struct used_bucket *bucket_iter_tmp; |
| struct relocation_head *rel_head_iter; |
| struct hlist_node *rel_head_iter_tmp; |
| struct relocation_entry *rel_entry_iter; |
| struct relocation_entry *rel_entry_iter_tmp; |
| int curr_type; |
| void *location; |
| long buffer; |
| |
| list_for_each_entry_safe(bucket_iter, bucket_iter_tmp, |
| used_buckets_list, head) { |
| hlist_for_each_entry_safe(rel_head_iter, rel_head_iter_tmp, |
| bucket_iter->bucket, node) { |
| buffer = 0; |
| location = rel_head_iter->location; |
| list_for_each_entry_safe(rel_entry_iter, |
| rel_entry_iter_tmp, |
| rel_head_iter->rel_entry, |
| head) { |
| curr_type = rel_entry_iter->type; |
| reloc_handlers[curr_type].reloc_handler( |
| me, &buffer, rel_entry_iter->value); |
| kfree(rel_entry_iter); |
| } |
| reloc_handlers[curr_type].accumulate_handler( |
| me, location, buffer); |
| kfree(rel_head_iter); |
| } |
| kfree(bucket_iter); |
| } |
| |
| kfree(*relocation_hashtable); |
| } |
| |
| static int add_relocation_to_accumulate(struct module *me, int type, |
| void *location, |
| unsigned int hashtable_bits, Elf_Addr v, |
| struct hlist_head *relocation_hashtable, |
| struct list_head *used_buckets_list) |
| { |
| struct relocation_entry *entry; |
| struct relocation_head *rel_head; |
| struct hlist_head *current_head; |
| struct used_bucket *bucket; |
| unsigned long hash; |
| |
| entry = kmalloc(sizeof(*entry), GFP_KERNEL); |
| |
| if (!entry) |
| return -ENOMEM; |
| |
| INIT_LIST_HEAD(&entry->head); |
| entry->type = type; |
| entry->value = v; |
| |
| hash = hash_min((uintptr_t)location, hashtable_bits); |
| |
| current_head = &relocation_hashtable[hash]; |
| |
| /* |
| * Search for the relocation_head for the relocations that happen at the |
| * provided location |
| */ |
| bool found = false; |
| struct relocation_head *rel_head_iter; |
| |
| hlist_for_each_entry(rel_head_iter, current_head, node) { |
| if (rel_head_iter->location == location) { |
| found = true; |
| rel_head = rel_head_iter; |
| break; |
| } |
| } |
| |
| /* |
| * If there has not yet been any relocations at the provided location, |
| * create a relocation_head for that location and populate it with this |
| * relocation_entry. |
| */ |
| if (!found) { |
| rel_head = kmalloc(sizeof(*rel_head), GFP_KERNEL); |
| |
| if (!rel_head) { |
| kfree(entry); |
| return -ENOMEM; |
| } |
| |
| rel_head->rel_entry = |
| kmalloc(sizeof(struct list_head), GFP_KERNEL); |
| |
| if (!rel_head->rel_entry) { |
| kfree(entry); |
| kfree(rel_head); |
| return -ENOMEM; |
| } |
| |
| INIT_LIST_HEAD(rel_head->rel_entry); |
| rel_head->location = location; |
| INIT_HLIST_NODE(&rel_head->node); |
| if (!current_head->first) { |
| bucket = |
| kmalloc(sizeof(struct used_bucket), GFP_KERNEL); |
| |
| if (!bucket) { |
| kfree(entry); |
| kfree(rel_head->rel_entry); |
| kfree(rel_head); |
| return -ENOMEM; |
| } |
| |
| INIT_LIST_HEAD(&bucket->head); |
| bucket->bucket = current_head; |
| list_add(&bucket->head, used_buckets_list); |
| } |
| hlist_add_head(&rel_head->node, current_head); |
| } |
| |
| /* Add relocation to head of discovered rel_head */ |
| list_add_tail(&entry->head, rel_head->rel_entry); |
| |
| return 0; |
| } |
| |
| static unsigned int |
| initialize_relocation_hashtable(unsigned int num_relocations, |
| struct hlist_head **relocation_hashtable) |
| { |
| /* Can safely assume that bits is not greater than sizeof(long) */ |
| unsigned long hashtable_size = roundup_pow_of_two(num_relocations); |
| /* |
| * When hashtable_size == 1, hashtable_bits == 0. |
| * This is valid because the hashing algorithm returns 0 in this case. |
| */ |
| unsigned int hashtable_bits = ilog2(hashtable_size); |
| |
| /* |
| * Double size of hashtable if num_relocations * 1.25 is greater than |
| * hashtable_size. |
| */ |
| int should_double_size = ((num_relocations + (num_relocations >> 2)) > (hashtable_size)); |
| |
| hashtable_bits += should_double_size; |
| |
| hashtable_size <<= should_double_size; |
| |
| *relocation_hashtable = kmalloc_array(hashtable_size, |
| sizeof(**relocation_hashtable), |
| GFP_KERNEL); |
| if (!*relocation_hashtable) |
| return 0; |
| |
| __hash_init(*relocation_hashtable, hashtable_size); |
| |
| return hashtable_bits; |
| } |
| |
| int apply_relocate_add(Elf_Shdr *sechdrs, const char *strtab, |
| unsigned int symindex, unsigned int relsec, |
| struct module *me) |
| { |
| Elf_Rela *rel = (void *) sechdrs[relsec].sh_addr; |
| int (*handler)(struct module *me, void *location, Elf_Addr v); |
| Elf_Sym *sym; |
| void *location; |
| unsigned int i, type; |
| unsigned int j_idx = 0; |
| Elf_Addr v; |
| int res; |
| unsigned int num_relocations = sechdrs[relsec].sh_size / sizeof(*rel); |
| struct hlist_head *relocation_hashtable; |
| struct list_head used_buckets_list; |
| unsigned int hashtable_bits; |
| |
| hashtable_bits = initialize_relocation_hashtable(num_relocations, |
| &relocation_hashtable); |
| |
| if (!relocation_hashtable) |
| return -ENOMEM; |
| |
| INIT_LIST_HEAD(&used_buckets_list); |
| |
| pr_debug("Applying relocate section %u to %u\n", relsec, |
| sechdrs[relsec].sh_info); |
| |
| for (i = 0; i < num_relocations; i++) { |
| /* This is where to make the change */ |
| location = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr |
| + rel[i].r_offset; |
| /* This is the symbol it is referring to */ |
| sym = (Elf_Sym *)sechdrs[symindex].sh_addr |
| + ELF_RISCV_R_SYM(rel[i].r_info); |
| if (IS_ERR_VALUE(sym->st_value)) { |
| /* Ignore unresolved weak symbol */ |
| if (ELF_ST_BIND(sym->st_info) == STB_WEAK) |
| continue; |
| pr_warn("%s: Unknown symbol %s\n", |
| me->name, strtab + sym->st_name); |
| return -ENOENT; |
| } |
| |
| type = ELF_RISCV_R_TYPE(rel[i].r_info); |
| |
| if (type < ARRAY_SIZE(reloc_handlers)) |
| handler = reloc_handlers[type].reloc_handler; |
| else |
| handler = NULL; |
| |
| if (!handler) { |
| pr_err("%s: Unknown relocation type %u\n", |
| me->name, type); |
| return -EINVAL; |
| } |
| |
| v = sym->st_value + rel[i].r_addend; |
| |
| if (type == R_RISCV_PCREL_LO12_I || type == R_RISCV_PCREL_LO12_S) { |
| unsigned int j = j_idx; |
| bool found = false; |
| |
| do { |
| unsigned long hi20_loc = |
| sechdrs[sechdrs[relsec].sh_info].sh_addr |
| + rel[j].r_offset; |
| u32 hi20_type = ELF_RISCV_R_TYPE(rel[j].r_info); |
| |
| /* Find the corresponding HI20 relocation entry */ |
| if (hi20_loc == sym->st_value |
| && (hi20_type == R_RISCV_PCREL_HI20 |
| || hi20_type == R_RISCV_GOT_HI20)) { |
| s32 hi20, lo12; |
| Elf_Sym *hi20_sym = |
| (Elf_Sym *)sechdrs[symindex].sh_addr |
| + ELF_RISCV_R_SYM(rel[j].r_info); |
| unsigned long hi20_sym_val = |
| hi20_sym->st_value |
| + rel[j].r_addend; |
| |
| /* Calculate lo12 */ |
| size_t offset = hi20_sym_val - hi20_loc; |
| if (IS_ENABLED(CONFIG_MODULE_SECTIONS) |
| && hi20_type == R_RISCV_GOT_HI20) { |
| offset = module_emit_got_entry( |
| me, hi20_sym_val); |
| offset = offset - hi20_loc; |
| } |
| hi20 = (offset + 0x800) & 0xfffff000; |
| lo12 = offset - hi20; |
| v = lo12; |
| found = true; |
| |
| break; |
| } |
| |
| j++; |
| if (j > sechdrs[relsec].sh_size / sizeof(*rel)) |
| j = 0; |
| |
| } while (j_idx != j); |
| |
| if (!found) { |
| pr_err( |
| "%s: Can not find HI20 relocation information\n", |
| me->name); |
| return -EINVAL; |
| } |
| |
| /* Record the previous j-loop end index */ |
| j_idx = j; |
| } |
| |
| if (reloc_handlers[type].accumulate_handler) |
| res = add_relocation_to_accumulate(me, type, location, |
| hashtable_bits, v, |
| relocation_hashtable, |
| &used_buckets_list); |
| else |
| res = handler(me, location, v); |
| if (res) |
| return res; |
| } |
| |
| process_accumulated_relocations(me, &relocation_hashtable, |
| &used_buckets_list); |
| |
| return 0; |
| } |
| |
| #if defined(CONFIG_MMU) && defined(CONFIG_64BIT) |
| void *module_alloc(unsigned long size) |
| { |
| return __vmalloc_node_range(size, 1, MODULES_VADDR, |
| MODULES_END, GFP_KERNEL, |
| PAGE_KERNEL, VM_FLUSH_RESET_PERMS, |
| NUMA_NO_NODE, |
| __builtin_return_address(0)); |
| } |
| #endif |
| |
| int module_finalize(const Elf_Ehdr *hdr, |
| const Elf_Shdr *sechdrs, |
| struct module *me) |
| { |
| const Elf_Shdr *s; |
| |
| s = find_section(hdr, sechdrs, ".alternative"); |
| if (s) |
| apply_module_alternatives((void *)s->sh_addr, s->sh_size); |
| |
| return 0; |
| } |