| /* | 
 |  * kexec.c - kexec system call core code. | 
 |  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com> | 
 |  * | 
 |  * This source code is licensed under the GNU General Public License, | 
 |  * Version 2.  See the file COPYING for more details. | 
 |  */ | 
 |  | 
 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
 |  | 
 | #include <linux/capability.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/file.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/kexec.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/list.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/syscalls.h> | 
 | #include <linux/reboot.h> | 
 | #include <linux/ioport.h> | 
 | #include <linux/hardirq.h> | 
 | #include <linux/elf.h> | 
 | #include <linux/elfcore.h> | 
 | #include <linux/utsname.h> | 
 | #include <linux/numa.h> | 
 | #include <linux/suspend.h> | 
 | #include <linux/device.h> | 
 | #include <linux/freezer.h> | 
 | #include <linux/pm.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/uaccess.h> | 
 | #include <linux/io.h> | 
 | #include <linux/console.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/syscore_ops.h> | 
 | #include <linux/compiler.h> | 
 | #include <linux/hugetlb.h> | 
 | #include <linux/frame.h> | 
 |  | 
 | #include <asm/page.h> | 
 | #include <asm/sections.h> | 
 |  | 
 | #include <crypto/hash.h> | 
 | #include <crypto/sha.h> | 
 | #include "kexec_internal.h" | 
 |  | 
 | DEFINE_MUTEX(kexec_mutex); | 
 |  | 
 | /* Per cpu memory for storing cpu states in case of system crash. */ | 
 | note_buf_t __percpu *crash_notes; | 
 |  | 
 | /* Flag to indicate we are going to kexec a new kernel */ | 
 | bool kexec_in_progress = false; | 
 |  | 
 |  | 
 | /* Location of the reserved area for the crash kernel */ | 
 | struct resource crashk_res = { | 
 | 	.name  = "Crash kernel", | 
 | 	.start = 0, | 
 | 	.end   = 0, | 
 | 	.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, | 
 | 	.desc  = IORES_DESC_CRASH_KERNEL | 
 | }; | 
 | struct resource crashk_low_res = { | 
 | 	.name  = "Crash kernel", | 
 | 	.start = 0, | 
 | 	.end   = 0, | 
 | 	.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, | 
 | 	.desc  = IORES_DESC_CRASH_KERNEL | 
 | }; | 
 |  | 
 | int kexec_should_crash(struct task_struct *p) | 
 | { | 
 | 	/* | 
 | 	 * If crash_kexec_post_notifiers is enabled, don't run | 
 | 	 * crash_kexec() here yet, which must be run after panic | 
 | 	 * notifiers in panic(). | 
 | 	 */ | 
 | 	if (crash_kexec_post_notifiers) | 
 | 		return 0; | 
 | 	/* | 
 | 	 * There are 4 panic() calls in do_exit() path, each of which | 
 | 	 * corresponds to each of these 4 conditions. | 
 | 	 */ | 
 | 	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kexec_crash_loaded(void) | 
 | { | 
 | 	return !!kexec_crash_image; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kexec_crash_loaded); | 
 |  | 
 | /* | 
 |  * When kexec transitions to the new kernel there is a one-to-one | 
 |  * mapping between physical and virtual addresses.  On processors | 
 |  * where you can disable the MMU this is trivial, and easy.  For | 
 |  * others it is still a simple predictable page table to setup. | 
 |  * | 
 |  * In that environment kexec copies the new kernel to its final | 
 |  * resting place.  This means I can only support memory whose | 
 |  * physical address can fit in an unsigned long.  In particular | 
 |  * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. | 
 |  * If the assembly stub has more restrictive requirements | 
 |  * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be | 
 |  * defined more restrictively in <asm/kexec.h>. | 
 |  * | 
 |  * The code for the transition from the current kernel to the | 
 |  * the new kernel is placed in the control_code_buffer, whose size | 
 |  * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single | 
 |  * page of memory is necessary, but some architectures require more. | 
 |  * Because this memory must be identity mapped in the transition from | 
 |  * virtual to physical addresses it must live in the range | 
 |  * 0 - TASK_SIZE, as only the user space mappings are arbitrarily | 
 |  * modifiable. | 
 |  * | 
 |  * The assembly stub in the control code buffer is passed a linked list | 
 |  * of descriptor pages detailing the source pages of the new kernel, | 
 |  * and the destination addresses of those source pages.  As this data | 
 |  * structure is not used in the context of the current OS, it must | 
 |  * be self-contained. | 
 |  * | 
 |  * The code has been made to work with highmem pages and will use a | 
 |  * destination page in its final resting place (if it happens | 
 |  * to allocate it).  The end product of this is that most of the | 
 |  * physical address space, and most of RAM can be used. | 
 |  * | 
 |  * Future directions include: | 
 |  *  - allocating a page table with the control code buffer identity | 
 |  *    mapped, to simplify machine_kexec and make kexec_on_panic more | 
 |  *    reliable. | 
 |  */ | 
 |  | 
 | /* | 
 |  * KIMAGE_NO_DEST is an impossible destination address..., for | 
 |  * allocating pages whose destination address we do not care about. | 
 |  */ | 
 | #define KIMAGE_NO_DEST (-1UL) | 
 | #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT) | 
 |  | 
 | static struct page *kimage_alloc_page(struct kimage *image, | 
 | 				       gfp_t gfp_mask, | 
 | 				       unsigned long dest); | 
 |  | 
 | int sanity_check_segment_list(struct kimage *image) | 
 | { | 
 | 	int i; | 
 | 	unsigned long nr_segments = image->nr_segments; | 
 | 	unsigned long total_pages = 0; | 
 |  | 
 | 	/* | 
 | 	 * Verify we have good destination addresses.  The caller is | 
 | 	 * responsible for making certain we don't attempt to load | 
 | 	 * the new image into invalid or reserved areas of RAM.  This | 
 | 	 * just verifies it is an address we can use. | 
 | 	 * | 
 | 	 * Since the kernel does everything in page size chunks ensure | 
 | 	 * the destination addresses are page aligned.  Too many | 
 | 	 * special cases crop of when we don't do this.  The most | 
 | 	 * insidious is getting overlapping destination addresses | 
 | 	 * simply because addresses are changed to page size | 
 | 	 * granularity. | 
 | 	 */ | 
 | 	for (i = 0; i < nr_segments; i++) { | 
 | 		unsigned long mstart, mend; | 
 |  | 
 | 		mstart = image->segment[i].mem; | 
 | 		mend   = mstart + image->segment[i].memsz; | 
 | 		if (mstart > mend) | 
 | 			return -EADDRNOTAVAIL; | 
 | 		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) | 
 | 			return -EADDRNOTAVAIL; | 
 | 		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) | 
 | 			return -EADDRNOTAVAIL; | 
 | 	} | 
 |  | 
 | 	/* Verify our destination addresses do not overlap. | 
 | 	 * If we alloed overlapping destination addresses | 
 | 	 * through very weird things can happen with no | 
 | 	 * easy explanation as one segment stops on another. | 
 | 	 */ | 
 | 	for (i = 0; i < nr_segments; i++) { | 
 | 		unsigned long mstart, mend; | 
 | 		unsigned long j; | 
 |  | 
 | 		mstart = image->segment[i].mem; | 
 | 		mend   = mstart + image->segment[i].memsz; | 
 | 		for (j = 0; j < i; j++) { | 
 | 			unsigned long pstart, pend; | 
 |  | 
 | 			pstart = image->segment[j].mem; | 
 | 			pend   = pstart + image->segment[j].memsz; | 
 | 			/* Do the segments overlap ? */ | 
 | 			if ((mend > pstart) && (mstart < pend)) | 
 | 				return -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Ensure our buffer sizes are strictly less than | 
 | 	 * our memory sizes.  This should always be the case, | 
 | 	 * and it is easier to check up front than to be surprised | 
 | 	 * later on. | 
 | 	 */ | 
 | 	for (i = 0; i < nr_segments; i++) { | 
 | 		if (image->segment[i].bufsz > image->segment[i].memsz) | 
 | 			return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Verify that no more than half of memory will be consumed. If the | 
 | 	 * request from userspace is too large, a large amount of time will be | 
 | 	 * wasted allocating pages, which can cause a soft lockup. | 
 | 	 */ | 
 | 	for (i = 0; i < nr_segments; i++) { | 
 | 		if (PAGE_COUNT(image->segment[i].memsz) > totalram_pages / 2) | 
 | 			return -EINVAL; | 
 |  | 
 | 		total_pages += PAGE_COUNT(image->segment[i].memsz); | 
 | 	} | 
 |  | 
 | 	if (total_pages > totalram_pages / 2) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * Verify we have good destination addresses.  Normally | 
 | 	 * the caller is responsible for making certain we don't | 
 | 	 * attempt to load the new image into invalid or reserved | 
 | 	 * areas of RAM.  But crash kernels are preloaded into a | 
 | 	 * reserved area of ram.  We must ensure the addresses | 
 | 	 * are in the reserved area otherwise preloading the | 
 | 	 * kernel could corrupt things. | 
 | 	 */ | 
 |  | 
 | 	if (image->type == KEXEC_TYPE_CRASH) { | 
 | 		for (i = 0; i < nr_segments; i++) { | 
 | 			unsigned long mstart, mend; | 
 |  | 
 | 			mstart = image->segment[i].mem; | 
 | 			mend = mstart + image->segment[i].memsz - 1; | 
 | 			/* Ensure we are within the crash kernel limits */ | 
 | 			if ((mstart < phys_to_boot_phys(crashk_res.start)) || | 
 | 			    (mend > phys_to_boot_phys(crashk_res.end))) | 
 | 				return -EADDRNOTAVAIL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | struct kimage *do_kimage_alloc_init(void) | 
 | { | 
 | 	struct kimage *image; | 
 |  | 
 | 	/* Allocate a controlling structure */ | 
 | 	image = kzalloc(sizeof(*image), GFP_KERNEL); | 
 | 	if (!image) | 
 | 		return NULL; | 
 |  | 
 | 	image->head = 0; | 
 | 	image->entry = &image->head; | 
 | 	image->last_entry = &image->head; | 
 | 	image->control_page = ~0; /* By default this does not apply */ | 
 | 	image->type = KEXEC_TYPE_DEFAULT; | 
 |  | 
 | 	/* Initialize the list of control pages */ | 
 | 	INIT_LIST_HEAD(&image->control_pages); | 
 |  | 
 | 	/* Initialize the list of destination pages */ | 
 | 	INIT_LIST_HEAD(&image->dest_pages); | 
 |  | 
 | 	/* Initialize the list of unusable pages */ | 
 | 	INIT_LIST_HEAD(&image->unusable_pages); | 
 |  | 
 | 	return image; | 
 | } | 
 |  | 
 | int kimage_is_destination_range(struct kimage *image, | 
 | 					unsigned long start, | 
 | 					unsigned long end) | 
 | { | 
 | 	unsigned long i; | 
 |  | 
 | 	for (i = 0; i < image->nr_segments; i++) { | 
 | 		unsigned long mstart, mend; | 
 |  | 
 | 		mstart = image->segment[i].mem; | 
 | 		mend = mstart + image->segment[i].memsz; | 
 | 		if ((end > mstart) && (start < mend)) | 
 | 			return 1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) | 
 | { | 
 | 	struct page *pages; | 
 |  | 
 | 	pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order); | 
 | 	if (pages) { | 
 | 		unsigned int count, i; | 
 |  | 
 | 		pages->mapping = NULL; | 
 | 		set_page_private(pages, order); | 
 | 		count = 1 << order; | 
 | 		for (i = 0; i < count; i++) | 
 | 			SetPageReserved(pages + i); | 
 |  | 
 | 		arch_kexec_post_alloc_pages(page_address(pages), count, | 
 | 					    gfp_mask); | 
 |  | 
 | 		if (gfp_mask & __GFP_ZERO) | 
 | 			for (i = 0; i < count; i++) | 
 | 				clear_highpage(pages + i); | 
 | 	} | 
 |  | 
 | 	return pages; | 
 | } | 
 |  | 
 | static void kimage_free_pages(struct page *page) | 
 | { | 
 | 	unsigned int order, count, i; | 
 |  | 
 | 	order = page_private(page); | 
 | 	count = 1 << order; | 
 |  | 
 | 	arch_kexec_pre_free_pages(page_address(page), count); | 
 |  | 
 | 	for (i = 0; i < count; i++) | 
 | 		ClearPageReserved(page + i); | 
 | 	__free_pages(page, order); | 
 | } | 
 |  | 
 | void kimage_free_page_list(struct list_head *list) | 
 | { | 
 | 	struct page *page, *next; | 
 |  | 
 | 	list_for_each_entry_safe(page, next, list, lru) { | 
 | 		list_del(&page->lru); | 
 | 		kimage_free_pages(page); | 
 | 	} | 
 | } | 
 |  | 
 | static struct page *kimage_alloc_normal_control_pages(struct kimage *image, | 
 | 							unsigned int order) | 
 | { | 
 | 	/* Control pages are special, they are the intermediaries | 
 | 	 * that are needed while we copy the rest of the pages | 
 | 	 * to their final resting place.  As such they must | 
 | 	 * not conflict with either the destination addresses | 
 | 	 * or memory the kernel is already using. | 
 | 	 * | 
 | 	 * The only case where we really need more than one of | 
 | 	 * these are for architectures where we cannot disable | 
 | 	 * the MMU and must instead generate an identity mapped | 
 | 	 * page table for all of the memory. | 
 | 	 * | 
 | 	 * At worst this runs in O(N) of the image size. | 
 | 	 */ | 
 | 	struct list_head extra_pages; | 
 | 	struct page *pages; | 
 | 	unsigned int count; | 
 |  | 
 | 	count = 1 << order; | 
 | 	INIT_LIST_HEAD(&extra_pages); | 
 |  | 
 | 	/* Loop while I can allocate a page and the page allocated | 
 | 	 * is a destination page. | 
 | 	 */ | 
 | 	do { | 
 | 		unsigned long pfn, epfn, addr, eaddr; | 
 |  | 
 | 		pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order); | 
 | 		if (!pages) | 
 | 			break; | 
 | 		pfn   = page_to_boot_pfn(pages); | 
 | 		epfn  = pfn + count; | 
 | 		addr  = pfn << PAGE_SHIFT; | 
 | 		eaddr = epfn << PAGE_SHIFT; | 
 | 		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || | 
 | 			      kimage_is_destination_range(image, addr, eaddr)) { | 
 | 			list_add(&pages->lru, &extra_pages); | 
 | 			pages = NULL; | 
 | 		} | 
 | 	} while (!pages); | 
 |  | 
 | 	if (pages) { | 
 | 		/* Remember the allocated page... */ | 
 | 		list_add(&pages->lru, &image->control_pages); | 
 |  | 
 | 		/* Because the page is already in it's destination | 
 | 		 * location we will never allocate another page at | 
 | 		 * that address.  Therefore kimage_alloc_pages | 
 | 		 * will not return it (again) and we don't need | 
 | 		 * to give it an entry in image->segment[]. | 
 | 		 */ | 
 | 	} | 
 | 	/* Deal with the destination pages I have inadvertently allocated. | 
 | 	 * | 
 | 	 * Ideally I would convert multi-page allocations into single | 
 | 	 * page allocations, and add everything to image->dest_pages. | 
 | 	 * | 
 | 	 * For now it is simpler to just free the pages. | 
 | 	 */ | 
 | 	kimage_free_page_list(&extra_pages); | 
 |  | 
 | 	return pages; | 
 | } | 
 |  | 
 | static struct page *kimage_alloc_crash_control_pages(struct kimage *image, | 
 | 						      unsigned int order) | 
 | { | 
 | 	/* Control pages are special, they are the intermediaries | 
 | 	 * that are needed while we copy the rest of the pages | 
 | 	 * to their final resting place.  As such they must | 
 | 	 * not conflict with either the destination addresses | 
 | 	 * or memory the kernel is already using. | 
 | 	 * | 
 | 	 * Control pages are also the only pags we must allocate | 
 | 	 * when loading a crash kernel.  All of the other pages | 
 | 	 * are specified by the segments and we just memcpy | 
 | 	 * into them directly. | 
 | 	 * | 
 | 	 * The only case where we really need more than one of | 
 | 	 * these are for architectures where we cannot disable | 
 | 	 * the MMU and must instead generate an identity mapped | 
 | 	 * page table for all of the memory. | 
 | 	 * | 
 | 	 * Given the low demand this implements a very simple | 
 | 	 * allocator that finds the first hole of the appropriate | 
 | 	 * size in the reserved memory region, and allocates all | 
 | 	 * of the memory up to and including the hole. | 
 | 	 */ | 
 | 	unsigned long hole_start, hole_end, size; | 
 | 	struct page *pages; | 
 |  | 
 | 	pages = NULL; | 
 | 	size = (1 << order) << PAGE_SHIFT; | 
 | 	hole_start = (image->control_page + (size - 1)) & ~(size - 1); | 
 | 	hole_end   = hole_start + size - 1; | 
 | 	while (hole_end <= crashk_res.end) { | 
 | 		unsigned long i; | 
 |  | 
 | 		cond_resched(); | 
 |  | 
 | 		if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT) | 
 | 			break; | 
 | 		/* See if I overlap any of the segments */ | 
 | 		for (i = 0; i < image->nr_segments; i++) { | 
 | 			unsigned long mstart, mend; | 
 |  | 
 | 			mstart = image->segment[i].mem; | 
 | 			mend   = mstart + image->segment[i].memsz - 1; | 
 | 			if ((hole_end >= mstart) && (hole_start <= mend)) { | 
 | 				/* Advance the hole to the end of the segment */ | 
 | 				hole_start = (mend + (size - 1)) & ~(size - 1); | 
 | 				hole_end   = hole_start + size - 1; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 		/* If I don't overlap any segments I have found my hole! */ | 
 | 		if (i == image->nr_segments) { | 
 | 			pages = pfn_to_page(hole_start >> PAGE_SHIFT); | 
 | 			image->control_page = hole_end; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Ensure that these pages are decrypted if SME is enabled. */ | 
 | 	if (pages) | 
 | 		arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0); | 
 |  | 
 | 	return pages; | 
 | } | 
 |  | 
 |  | 
 | struct page *kimage_alloc_control_pages(struct kimage *image, | 
 | 					 unsigned int order) | 
 | { | 
 | 	struct page *pages = NULL; | 
 |  | 
 | 	switch (image->type) { | 
 | 	case KEXEC_TYPE_DEFAULT: | 
 | 		pages = kimage_alloc_normal_control_pages(image, order); | 
 | 		break; | 
 | 	case KEXEC_TYPE_CRASH: | 
 | 		pages = kimage_alloc_crash_control_pages(image, order); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return pages; | 
 | } | 
 |  | 
 | int kimage_crash_copy_vmcoreinfo(struct kimage *image) | 
 | { | 
 | 	struct page *vmcoreinfo_page; | 
 | 	void *safecopy; | 
 |  | 
 | 	if (image->type != KEXEC_TYPE_CRASH) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * For kdump, allocate one vmcoreinfo safe copy from the | 
 | 	 * crash memory. as we have arch_kexec_protect_crashkres() | 
 | 	 * after kexec syscall, we naturally protect it from write | 
 | 	 * (even read) access under kernel direct mapping. But on | 
 | 	 * the other hand, we still need to operate it when crash | 
 | 	 * happens to generate vmcoreinfo note, hereby we rely on | 
 | 	 * vmap for this purpose. | 
 | 	 */ | 
 | 	vmcoreinfo_page = kimage_alloc_control_pages(image, 0); | 
 | 	if (!vmcoreinfo_page) { | 
 | 		pr_warn("Could not allocate vmcoreinfo buffer\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL); | 
 | 	if (!safecopy) { | 
 | 		pr_warn("Could not vmap vmcoreinfo buffer\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	image->vmcoreinfo_data_copy = safecopy; | 
 | 	crash_update_vmcoreinfo_safecopy(safecopy); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) | 
 | { | 
 | 	if (*image->entry != 0) | 
 | 		image->entry++; | 
 |  | 
 | 	if (image->entry == image->last_entry) { | 
 | 		kimage_entry_t *ind_page; | 
 | 		struct page *page; | 
 |  | 
 | 		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); | 
 | 		if (!page) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		ind_page = page_address(page); | 
 | 		*image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION; | 
 | 		image->entry = ind_page; | 
 | 		image->last_entry = ind_page + | 
 | 				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); | 
 | 	} | 
 | 	*image->entry = entry; | 
 | 	image->entry++; | 
 | 	*image->entry = 0; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kimage_set_destination(struct kimage *image, | 
 | 				   unsigned long destination) | 
 | { | 
 | 	int result; | 
 |  | 
 | 	destination &= PAGE_MASK; | 
 | 	result = kimage_add_entry(image, destination | IND_DESTINATION); | 
 |  | 
 | 	return result; | 
 | } | 
 |  | 
 |  | 
 | static int kimage_add_page(struct kimage *image, unsigned long page) | 
 | { | 
 | 	int result; | 
 |  | 
 | 	page &= PAGE_MASK; | 
 | 	result = kimage_add_entry(image, page | IND_SOURCE); | 
 |  | 
 | 	return result; | 
 | } | 
 |  | 
 |  | 
 | static void kimage_free_extra_pages(struct kimage *image) | 
 | { | 
 | 	/* Walk through and free any extra destination pages I may have */ | 
 | 	kimage_free_page_list(&image->dest_pages); | 
 |  | 
 | 	/* Walk through and free any unusable pages I have cached */ | 
 | 	kimage_free_page_list(&image->unusable_pages); | 
 |  | 
 | } | 
 | void kimage_terminate(struct kimage *image) | 
 | { | 
 | 	if (*image->entry != 0) | 
 | 		image->entry++; | 
 |  | 
 | 	*image->entry = IND_DONE; | 
 | } | 
 |  | 
 | #define for_each_kimage_entry(image, ptr, entry) \ | 
 | 	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ | 
 | 		ptr = (entry & IND_INDIRECTION) ? \ | 
 | 			boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1) | 
 |  | 
 | static void kimage_free_entry(kimage_entry_t entry) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	page = boot_pfn_to_page(entry >> PAGE_SHIFT); | 
 | 	kimage_free_pages(page); | 
 | } | 
 |  | 
 | void kimage_free(struct kimage *image) | 
 | { | 
 | 	kimage_entry_t *ptr, entry; | 
 | 	kimage_entry_t ind = 0; | 
 |  | 
 | 	if (!image) | 
 | 		return; | 
 |  | 
 | 	if (image->vmcoreinfo_data_copy) { | 
 | 		crash_update_vmcoreinfo_safecopy(NULL); | 
 | 		vunmap(image->vmcoreinfo_data_copy); | 
 | 	} | 
 |  | 
 | 	kimage_free_extra_pages(image); | 
 | 	for_each_kimage_entry(image, ptr, entry) { | 
 | 		if (entry & IND_INDIRECTION) { | 
 | 			/* Free the previous indirection page */ | 
 | 			if (ind & IND_INDIRECTION) | 
 | 				kimage_free_entry(ind); | 
 | 			/* Save this indirection page until we are | 
 | 			 * done with it. | 
 | 			 */ | 
 | 			ind = entry; | 
 | 		} else if (entry & IND_SOURCE) | 
 | 			kimage_free_entry(entry); | 
 | 	} | 
 | 	/* Free the final indirection page */ | 
 | 	if (ind & IND_INDIRECTION) | 
 | 		kimage_free_entry(ind); | 
 |  | 
 | 	/* Handle any machine specific cleanup */ | 
 | 	machine_kexec_cleanup(image); | 
 |  | 
 | 	/* Free the kexec control pages... */ | 
 | 	kimage_free_page_list(&image->control_pages); | 
 |  | 
 | 	/* | 
 | 	 * Free up any temporary buffers allocated. This might hit if | 
 | 	 * error occurred much later after buffer allocation. | 
 | 	 */ | 
 | 	if (image->file_mode) | 
 | 		kimage_file_post_load_cleanup(image); | 
 |  | 
 | 	kfree(image); | 
 | } | 
 |  | 
 | static kimage_entry_t *kimage_dst_used(struct kimage *image, | 
 | 					unsigned long page) | 
 | { | 
 | 	kimage_entry_t *ptr, entry; | 
 | 	unsigned long destination = 0; | 
 |  | 
 | 	for_each_kimage_entry(image, ptr, entry) { | 
 | 		if (entry & IND_DESTINATION) | 
 | 			destination = entry & PAGE_MASK; | 
 | 		else if (entry & IND_SOURCE) { | 
 | 			if (page == destination) | 
 | 				return ptr; | 
 | 			destination += PAGE_SIZE; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static struct page *kimage_alloc_page(struct kimage *image, | 
 | 					gfp_t gfp_mask, | 
 | 					unsigned long destination) | 
 | { | 
 | 	/* | 
 | 	 * Here we implement safeguards to ensure that a source page | 
 | 	 * is not copied to its destination page before the data on | 
 | 	 * the destination page is no longer useful. | 
 | 	 * | 
 | 	 * To do this we maintain the invariant that a source page is | 
 | 	 * either its own destination page, or it is not a | 
 | 	 * destination page at all. | 
 | 	 * | 
 | 	 * That is slightly stronger than required, but the proof | 
 | 	 * that no problems will not occur is trivial, and the | 
 | 	 * implementation is simply to verify. | 
 | 	 * | 
 | 	 * When allocating all pages normally this algorithm will run | 
 | 	 * in O(N) time, but in the worst case it will run in O(N^2) | 
 | 	 * time.   If the runtime is a problem the data structures can | 
 | 	 * be fixed. | 
 | 	 */ | 
 | 	struct page *page; | 
 | 	unsigned long addr; | 
 |  | 
 | 	/* | 
 | 	 * Walk through the list of destination pages, and see if I | 
 | 	 * have a match. | 
 | 	 */ | 
 | 	list_for_each_entry(page, &image->dest_pages, lru) { | 
 | 		addr = page_to_boot_pfn(page) << PAGE_SHIFT; | 
 | 		if (addr == destination) { | 
 | 			list_del(&page->lru); | 
 | 			return page; | 
 | 		} | 
 | 	} | 
 | 	page = NULL; | 
 | 	while (1) { | 
 | 		kimage_entry_t *old; | 
 |  | 
 | 		/* Allocate a page, if we run out of memory give up */ | 
 | 		page = kimage_alloc_pages(gfp_mask, 0); | 
 | 		if (!page) | 
 | 			return NULL; | 
 | 		/* If the page cannot be used file it away */ | 
 | 		if (page_to_boot_pfn(page) > | 
 | 				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { | 
 | 			list_add(&page->lru, &image->unusable_pages); | 
 | 			continue; | 
 | 		} | 
 | 		addr = page_to_boot_pfn(page) << PAGE_SHIFT; | 
 |  | 
 | 		/* If it is the destination page we want use it */ | 
 | 		if (addr == destination) | 
 | 			break; | 
 |  | 
 | 		/* If the page is not a destination page use it */ | 
 | 		if (!kimage_is_destination_range(image, addr, | 
 | 						  addr + PAGE_SIZE)) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * I know that the page is someones destination page. | 
 | 		 * See if there is already a source page for this | 
 | 		 * destination page.  And if so swap the source pages. | 
 | 		 */ | 
 | 		old = kimage_dst_used(image, addr); | 
 | 		if (old) { | 
 | 			/* If so move it */ | 
 | 			unsigned long old_addr; | 
 | 			struct page *old_page; | 
 |  | 
 | 			old_addr = *old & PAGE_MASK; | 
 | 			old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT); | 
 | 			copy_highpage(page, old_page); | 
 | 			*old = addr | (*old & ~PAGE_MASK); | 
 |  | 
 | 			/* The old page I have found cannot be a | 
 | 			 * destination page, so return it if it's | 
 | 			 * gfp_flags honor the ones passed in. | 
 | 			 */ | 
 | 			if (!(gfp_mask & __GFP_HIGHMEM) && | 
 | 			    PageHighMem(old_page)) { | 
 | 				kimage_free_pages(old_page); | 
 | 				continue; | 
 | 			} | 
 | 			addr = old_addr; | 
 | 			page = old_page; | 
 | 			break; | 
 | 		} | 
 | 		/* Place the page on the destination list, to be used later */ | 
 | 		list_add(&page->lru, &image->dest_pages); | 
 | 	} | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | static int kimage_load_normal_segment(struct kimage *image, | 
 | 					 struct kexec_segment *segment) | 
 | { | 
 | 	unsigned long maddr; | 
 | 	size_t ubytes, mbytes; | 
 | 	int result; | 
 | 	unsigned char __user *buf = NULL; | 
 | 	unsigned char *kbuf = NULL; | 
 |  | 
 | 	result = 0; | 
 | 	if (image->file_mode) | 
 | 		kbuf = segment->kbuf; | 
 | 	else | 
 | 		buf = segment->buf; | 
 | 	ubytes = segment->bufsz; | 
 | 	mbytes = segment->memsz; | 
 | 	maddr = segment->mem; | 
 |  | 
 | 	result = kimage_set_destination(image, maddr); | 
 | 	if (result < 0) | 
 | 		goto out; | 
 |  | 
 | 	while (mbytes) { | 
 | 		struct page *page; | 
 | 		char *ptr; | 
 | 		size_t uchunk, mchunk; | 
 |  | 
 | 		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); | 
 | 		if (!page) { | 
 | 			result  = -ENOMEM; | 
 | 			goto out; | 
 | 		} | 
 | 		result = kimage_add_page(image, page_to_boot_pfn(page) | 
 | 								<< PAGE_SHIFT); | 
 | 		if (result < 0) | 
 | 			goto out; | 
 |  | 
 | 		ptr = kmap(page); | 
 | 		/* Start with a clear page */ | 
 | 		clear_page(ptr); | 
 | 		ptr += maddr & ~PAGE_MASK; | 
 | 		mchunk = min_t(size_t, mbytes, | 
 | 				PAGE_SIZE - (maddr & ~PAGE_MASK)); | 
 | 		uchunk = min(ubytes, mchunk); | 
 |  | 
 | 		/* For file based kexec, source pages are in kernel memory */ | 
 | 		if (image->file_mode) | 
 | 			memcpy(ptr, kbuf, uchunk); | 
 | 		else | 
 | 			result = copy_from_user(ptr, buf, uchunk); | 
 | 		kunmap(page); | 
 | 		if (result) { | 
 | 			result = -EFAULT; | 
 | 			goto out; | 
 | 		} | 
 | 		ubytes -= uchunk; | 
 | 		maddr  += mchunk; | 
 | 		if (image->file_mode) | 
 | 			kbuf += mchunk; | 
 | 		else | 
 | 			buf += mchunk; | 
 | 		mbytes -= mchunk; | 
 |  | 
 | 		cond_resched(); | 
 | 	} | 
 | out: | 
 | 	return result; | 
 | } | 
 |  | 
 | static int kimage_load_crash_segment(struct kimage *image, | 
 | 					struct kexec_segment *segment) | 
 | { | 
 | 	/* For crash dumps kernels we simply copy the data from | 
 | 	 * user space to it's destination. | 
 | 	 * We do things a page at a time for the sake of kmap. | 
 | 	 */ | 
 | 	unsigned long maddr; | 
 | 	size_t ubytes, mbytes; | 
 | 	int result; | 
 | 	unsigned char __user *buf = NULL; | 
 | 	unsigned char *kbuf = NULL; | 
 |  | 
 | 	result = 0; | 
 | 	if (image->file_mode) | 
 | 		kbuf = segment->kbuf; | 
 | 	else | 
 | 		buf = segment->buf; | 
 | 	ubytes = segment->bufsz; | 
 | 	mbytes = segment->memsz; | 
 | 	maddr = segment->mem; | 
 | 	while (mbytes) { | 
 | 		struct page *page; | 
 | 		char *ptr; | 
 | 		size_t uchunk, mchunk; | 
 |  | 
 | 		page = boot_pfn_to_page(maddr >> PAGE_SHIFT); | 
 | 		if (!page) { | 
 | 			result  = -ENOMEM; | 
 | 			goto out; | 
 | 		} | 
 | 		arch_kexec_post_alloc_pages(page_address(page), 1, 0); | 
 | 		ptr = kmap(page); | 
 | 		ptr += maddr & ~PAGE_MASK; | 
 | 		mchunk = min_t(size_t, mbytes, | 
 | 				PAGE_SIZE - (maddr & ~PAGE_MASK)); | 
 | 		uchunk = min(ubytes, mchunk); | 
 | 		if (mchunk > uchunk) { | 
 | 			/* Zero the trailing part of the page */ | 
 | 			memset(ptr + uchunk, 0, mchunk - uchunk); | 
 | 		} | 
 |  | 
 | 		/* For file based kexec, source pages are in kernel memory */ | 
 | 		if (image->file_mode) | 
 | 			memcpy(ptr, kbuf, uchunk); | 
 | 		else | 
 | 			result = copy_from_user(ptr, buf, uchunk); | 
 | 		kexec_flush_icache_page(page); | 
 | 		kunmap(page); | 
 | 		arch_kexec_pre_free_pages(page_address(page), 1); | 
 | 		if (result) { | 
 | 			result = -EFAULT; | 
 | 			goto out; | 
 | 		} | 
 | 		ubytes -= uchunk; | 
 | 		maddr  += mchunk; | 
 | 		if (image->file_mode) | 
 | 			kbuf += mchunk; | 
 | 		else | 
 | 			buf += mchunk; | 
 | 		mbytes -= mchunk; | 
 |  | 
 | 		cond_resched(); | 
 | 	} | 
 | out: | 
 | 	return result; | 
 | } | 
 |  | 
 | int kimage_load_segment(struct kimage *image, | 
 | 				struct kexec_segment *segment) | 
 | { | 
 | 	int result = -ENOMEM; | 
 |  | 
 | 	switch (image->type) { | 
 | 	case KEXEC_TYPE_DEFAULT: | 
 | 		result = kimage_load_normal_segment(image, segment); | 
 | 		break; | 
 | 	case KEXEC_TYPE_CRASH: | 
 | 		result = kimage_load_crash_segment(image, segment); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return result; | 
 | } | 
 |  | 
 | struct kimage *kexec_image; | 
 | struct kimage *kexec_crash_image; | 
 | int kexec_load_disabled; | 
 |  | 
 | /* | 
 |  * No panic_cpu check version of crash_kexec().  This function is called | 
 |  * only when panic_cpu holds the current CPU number; this is the only CPU | 
 |  * which processes crash_kexec routines. | 
 |  */ | 
 | void __noclone __crash_kexec(struct pt_regs *regs) | 
 | { | 
 | 	/* Take the kexec_mutex here to prevent sys_kexec_load | 
 | 	 * running on one cpu from replacing the crash kernel | 
 | 	 * we are using after a panic on a different cpu. | 
 | 	 * | 
 | 	 * If the crash kernel was not located in a fixed area | 
 | 	 * of memory the xchg(&kexec_crash_image) would be | 
 | 	 * sufficient.  But since I reuse the memory... | 
 | 	 */ | 
 | 	if (mutex_trylock(&kexec_mutex)) { | 
 | 		if (kexec_crash_image) { | 
 | 			struct pt_regs fixed_regs; | 
 |  | 
 | 			crash_setup_regs(&fixed_regs, regs); | 
 | 			crash_save_vmcoreinfo(); | 
 | 			machine_crash_shutdown(&fixed_regs); | 
 | 			machine_kexec(kexec_crash_image); | 
 | 		} | 
 | 		mutex_unlock(&kexec_mutex); | 
 | 	} | 
 | } | 
 | STACK_FRAME_NON_STANDARD(__crash_kexec); | 
 |  | 
 | void crash_kexec(struct pt_regs *regs) | 
 | { | 
 | 	int old_cpu, this_cpu; | 
 |  | 
 | 	/* | 
 | 	 * Only one CPU is allowed to execute the crash_kexec() code as with | 
 | 	 * panic().  Otherwise parallel calls of panic() and crash_kexec() | 
 | 	 * may stop each other.  To exclude them, we use panic_cpu here too. | 
 | 	 */ | 
 | 	this_cpu = raw_smp_processor_id(); | 
 | 	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu); | 
 | 	if (old_cpu == PANIC_CPU_INVALID) { | 
 | 		/* This is the 1st CPU which comes here, so go ahead. */ | 
 | 		printk_safe_flush_on_panic(); | 
 | 		__crash_kexec(regs); | 
 |  | 
 | 		/* | 
 | 		 * Reset panic_cpu to allow another panic()/crash_kexec() | 
 | 		 * call. | 
 | 		 */ | 
 | 		atomic_set(&panic_cpu, PANIC_CPU_INVALID); | 
 | 	} | 
 | } | 
 |  | 
 | size_t crash_get_memory_size(void) | 
 | { | 
 | 	size_t size = 0; | 
 |  | 
 | 	mutex_lock(&kexec_mutex); | 
 | 	if (crashk_res.end != crashk_res.start) | 
 | 		size = resource_size(&crashk_res); | 
 | 	mutex_unlock(&kexec_mutex); | 
 | 	return size; | 
 | } | 
 |  | 
 | void __weak crash_free_reserved_phys_range(unsigned long begin, | 
 | 					   unsigned long end) | 
 | { | 
 | 	unsigned long addr; | 
 |  | 
 | 	for (addr = begin; addr < end; addr += PAGE_SIZE) | 
 | 		free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT)); | 
 | } | 
 |  | 
 | int crash_shrink_memory(unsigned long new_size) | 
 | { | 
 | 	int ret = 0; | 
 | 	unsigned long start, end; | 
 | 	unsigned long old_size; | 
 | 	struct resource *ram_res; | 
 |  | 
 | 	mutex_lock(&kexec_mutex); | 
 |  | 
 | 	if (kexec_crash_image) { | 
 | 		ret = -ENOENT; | 
 | 		goto unlock; | 
 | 	} | 
 | 	start = crashk_res.start; | 
 | 	end = crashk_res.end; | 
 | 	old_size = (end == 0) ? 0 : end - start + 1; | 
 | 	if (new_size >= old_size) { | 
 | 		ret = (new_size == old_size) ? 0 : -EINVAL; | 
 | 		goto unlock; | 
 | 	} | 
 |  | 
 | 	ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL); | 
 | 	if (!ram_res) { | 
 | 		ret = -ENOMEM; | 
 | 		goto unlock; | 
 | 	} | 
 |  | 
 | 	start = roundup(start, KEXEC_CRASH_MEM_ALIGN); | 
 | 	end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN); | 
 |  | 
 | 	crash_free_reserved_phys_range(end, crashk_res.end); | 
 |  | 
 | 	if ((start == end) && (crashk_res.parent != NULL)) | 
 | 		release_resource(&crashk_res); | 
 |  | 
 | 	ram_res->start = end; | 
 | 	ram_res->end = crashk_res.end; | 
 | 	ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM; | 
 | 	ram_res->name = "System RAM"; | 
 |  | 
 | 	crashk_res.end = end - 1; | 
 |  | 
 | 	insert_resource(&iomem_resource, ram_res); | 
 |  | 
 | unlock: | 
 | 	mutex_unlock(&kexec_mutex); | 
 | 	return ret; | 
 | } | 
 |  | 
 | void crash_save_cpu(struct pt_regs *regs, int cpu) | 
 | { | 
 | 	struct elf_prstatus prstatus; | 
 | 	u32 *buf; | 
 |  | 
 | 	if ((cpu < 0) || (cpu >= nr_cpu_ids)) | 
 | 		return; | 
 |  | 
 | 	/* Using ELF notes here is opportunistic. | 
 | 	 * I need a well defined structure format | 
 | 	 * for the data I pass, and I need tags | 
 | 	 * on the data to indicate what information I have | 
 | 	 * squirrelled away.  ELF notes happen to provide | 
 | 	 * all of that, so there is no need to invent something new. | 
 | 	 */ | 
 | 	buf = (u32 *)per_cpu_ptr(crash_notes, cpu); | 
 | 	if (!buf) | 
 | 		return; | 
 | 	memset(&prstatus, 0, sizeof(prstatus)); | 
 | 	prstatus.pr_pid = current->pid; | 
 | 	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs); | 
 | 	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, | 
 | 			      &prstatus, sizeof(prstatus)); | 
 | 	final_note(buf); | 
 | } | 
 |  | 
 | static int __init crash_notes_memory_init(void) | 
 | { | 
 | 	/* Allocate memory for saving cpu registers. */ | 
 | 	size_t size, align; | 
 |  | 
 | 	/* | 
 | 	 * crash_notes could be allocated across 2 vmalloc pages when percpu | 
 | 	 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc | 
 | 	 * pages are also on 2 continuous physical pages. In this case the | 
 | 	 * 2nd part of crash_notes in 2nd page could be lost since only the | 
 | 	 * starting address and size of crash_notes are exported through sysfs. | 
 | 	 * Here round up the size of crash_notes to the nearest power of two | 
 | 	 * and pass it to __alloc_percpu as align value. This can make sure | 
 | 	 * crash_notes is allocated inside one physical page. | 
 | 	 */ | 
 | 	size = sizeof(note_buf_t); | 
 | 	align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE); | 
 |  | 
 | 	/* | 
 | 	 * Break compile if size is bigger than PAGE_SIZE since crash_notes | 
 | 	 * definitely will be in 2 pages with that. | 
 | 	 */ | 
 | 	BUILD_BUG_ON(size > PAGE_SIZE); | 
 |  | 
 | 	crash_notes = __alloc_percpu(size, align); | 
 | 	if (!crash_notes) { | 
 | 		pr_warn("Memory allocation for saving cpu register states failed\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | subsys_initcall(crash_notes_memory_init); | 
 |  | 
 |  | 
 | /* | 
 |  * Move into place and start executing a preloaded standalone | 
 |  * executable.  If nothing was preloaded return an error. | 
 |  */ | 
 | int kernel_kexec(void) | 
 | { | 
 | 	int error = 0; | 
 |  | 
 | 	if (!mutex_trylock(&kexec_mutex)) | 
 | 		return -EBUSY; | 
 | 	if (!kexec_image) { | 
 | 		error = -EINVAL; | 
 | 		goto Unlock; | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_KEXEC_JUMP | 
 | 	if (kexec_image->preserve_context) { | 
 | 		lock_system_sleep(); | 
 | 		pm_prepare_console(); | 
 | 		error = freeze_processes(); | 
 | 		if (error) { | 
 | 			error = -EBUSY; | 
 | 			goto Restore_console; | 
 | 		} | 
 | 		suspend_console(); | 
 | 		error = dpm_suspend_start(PMSG_FREEZE); | 
 | 		if (error) | 
 | 			goto Resume_console; | 
 | 		/* At this point, dpm_suspend_start() has been called, | 
 | 		 * but *not* dpm_suspend_end(). We *must* call | 
 | 		 * dpm_suspend_end() now.  Otherwise, drivers for | 
 | 		 * some devices (e.g. interrupt controllers) become | 
 | 		 * desynchronized with the actual state of the | 
 | 		 * hardware at resume time, and evil weirdness ensues. | 
 | 		 */ | 
 | 		error = dpm_suspend_end(PMSG_FREEZE); | 
 | 		if (error) | 
 | 			goto Resume_devices; | 
 | 		error = disable_nonboot_cpus(); | 
 | 		if (error) | 
 | 			goto Enable_cpus; | 
 | 		local_irq_disable(); | 
 | 		error = syscore_suspend(); | 
 | 		if (error) | 
 | 			goto Enable_irqs; | 
 | 	} else | 
 | #endif | 
 | 	{ | 
 | 		kexec_in_progress = true; | 
 | 		kernel_restart_prepare(NULL); | 
 | 		migrate_to_reboot_cpu(); | 
 |  | 
 | 		/* | 
 | 		 * migrate_to_reboot_cpu() disables CPU hotplug assuming that | 
 | 		 * no further code needs to use CPU hotplug (which is true in | 
 | 		 * the reboot case). However, the kexec path depends on using | 
 | 		 * CPU hotplug again; so re-enable it here. | 
 | 		 */ | 
 | 		cpu_hotplug_enable(); | 
 | 		pr_emerg("Starting new kernel\n"); | 
 | 		machine_shutdown(); | 
 | 	} | 
 |  | 
 | 	machine_kexec(kexec_image); | 
 |  | 
 | #ifdef CONFIG_KEXEC_JUMP | 
 | 	if (kexec_image->preserve_context) { | 
 | 		syscore_resume(); | 
 |  Enable_irqs: | 
 | 		local_irq_enable(); | 
 |  Enable_cpus: | 
 | 		enable_nonboot_cpus(); | 
 | 		dpm_resume_start(PMSG_RESTORE); | 
 |  Resume_devices: | 
 | 		dpm_resume_end(PMSG_RESTORE); | 
 |  Resume_console: | 
 | 		resume_console(); | 
 | 		thaw_processes(); | 
 |  Restore_console: | 
 | 		pm_restore_console(); | 
 | 		unlock_system_sleep(); | 
 | 	} | 
 | #endif | 
 |  | 
 |  Unlock: | 
 | 	mutex_unlock(&kexec_mutex); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Protection mechanism for crashkernel reserved memory after | 
 |  * the kdump kernel is loaded. | 
 |  * | 
 |  * Provide an empty default implementation here -- architecture | 
 |  * code may override this | 
 |  */ | 
 | void __weak arch_kexec_protect_crashkres(void) | 
 | {} | 
 |  | 
 | void __weak arch_kexec_unprotect_crashkres(void) | 
 | {} |