| // SPDX-License-Identifier: (GPL-2.0 OR MIT) |
| /* Microsemi Ocelot Switch driver |
| * Copyright (c) 2019 Microsemi Corporation |
| */ |
| |
| #include <linux/iopoll.h> |
| #include <linux/proc_fs.h> |
| |
| #include <soc/mscc/ocelot_vcap.h> |
| #include "ocelot_police.h" |
| #include "ocelot_vcap.h" |
| |
| #define ENTRY_WIDTH 32 |
| |
| enum vcap_sel { |
| VCAP_SEL_ENTRY = 0x1, |
| VCAP_SEL_ACTION = 0x2, |
| VCAP_SEL_COUNTER = 0x4, |
| VCAP_SEL_ALL = 0x7, |
| }; |
| |
| enum vcap_cmd { |
| VCAP_CMD_WRITE = 0, /* Copy from Cache to TCAM */ |
| VCAP_CMD_READ = 1, /* Copy from TCAM to Cache */ |
| VCAP_CMD_MOVE_UP = 2, /* Move <count> up */ |
| VCAP_CMD_MOVE_DOWN = 3, /* Move <count> down */ |
| VCAP_CMD_INITIALIZE = 4, /* Write all (from cache) */ |
| }; |
| |
| #define VCAP_ENTRY_WIDTH 12 /* Max entry width (32bit words) */ |
| #define VCAP_COUNTER_WIDTH 4 /* Max counter width (32bit words) */ |
| |
| struct vcap_data { |
| u32 entry[VCAP_ENTRY_WIDTH]; /* ENTRY_DAT */ |
| u32 mask[VCAP_ENTRY_WIDTH]; /* MASK_DAT */ |
| u32 action[VCAP_ENTRY_WIDTH]; /* ACTION_DAT */ |
| u32 counter[VCAP_COUNTER_WIDTH]; /* CNT_DAT */ |
| u32 tg; /* TG_DAT */ |
| u32 type; /* Action type */ |
| u32 tg_sw; /* Current type-group */ |
| u32 cnt; /* Current counter */ |
| u32 key_offset; /* Current entry offset */ |
| u32 action_offset; /* Current action offset */ |
| u32 counter_offset; /* Current counter offset */ |
| u32 tg_value; /* Current type-group value */ |
| u32 tg_mask; /* Current type-group mask */ |
| }; |
| |
| static u32 vcap_read_update_ctrl(struct ocelot *ocelot, |
| const struct vcap_props *vcap) |
| { |
| return ocelot_target_read(ocelot, vcap->target, VCAP_CORE_UPDATE_CTRL); |
| } |
| |
| static void vcap_cmd(struct ocelot *ocelot, const struct vcap_props *vcap, |
| u16 ix, int cmd, int sel) |
| { |
| u32 value = (VCAP_CORE_UPDATE_CTRL_UPDATE_CMD(cmd) | |
| VCAP_CORE_UPDATE_CTRL_UPDATE_ADDR(ix) | |
| VCAP_CORE_UPDATE_CTRL_UPDATE_SHOT); |
| |
| if ((sel & VCAP_SEL_ENTRY) && ix >= vcap->entry_count) |
| return; |
| |
| if (!(sel & VCAP_SEL_ENTRY)) |
| value |= VCAP_CORE_UPDATE_CTRL_UPDATE_ENTRY_DIS; |
| |
| if (!(sel & VCAP_SEL_ACTION)) |
| value |= VCAP_CORE_UPDATE_CTRL_UPDATE_ACTION_DIS; |
| |
| if (!(sel & VCAP_SEL_COUNTER)) |
| value |= VCAP_CORE_UPDATE_CTRL_UPDATE_CNT_DIS; |
| |
| ocelot_target_write(ocelot, vcap->target, value, VCAP_CORE_UPDATE_CTRL); |
| |
| read_poll_timeout(vcap_read_update_ctrl, value, |
| (value & VCAP_CORE_UPDATE_CTRL_UPDATE_SHOT) == 0, |
| 10, 100000, false, ocelot, vcap); |
| } |
| |
| /* Convert from 0-based row to VCAP entry row and run command */ |
| static void vcap_row_cmd(struct ocelot *ocelot, const struct vcap_props *vcap, |
| u32 row, int cmd, int sel) |
| { |
| vcap_cmd(ocelot, vcap, vcap->entry_count - row - 1, cmd, sel); |
| } |
| |
| static void vcap_entry2cache(struct ocelot *ocelot, |
| const struct vcap_props *vcap, |
| struct vcap_data *data) |
| { |
| u32 entry_words, i; |
| |
| entry_words = DIV_ROUND_UP(vcap->entry_width, ENTRY_WIDTH); |
| |
| for (i = 0; i < entry_words; i++) { |
| ocelot_target_write_rix(ocelot, vcap->target, data->entry[i], |
| VCAP_CACHE_ENTRY_DAT, i); |
| ocelot_target_write_rix(ocelot, vcap->target, ~data->mask[i], |
| VCAP_CACHE_MASK_DAT, i); |
| } |
| ocelot_target_write(ocelot, vcap->target, data->tg, VCAP_CACHE_TG_DAT); |
| } |
| |
| static void vcap_cache2entry(struct ocelot *ocelot, |
| const struct vcap_props *vcap, |
| struct vcap_data *data) |
| { |
| u32 entry_words, i; |
| |
| entry_words = DIV_ROUND_UP(vcap->entry_width, ENTRY_WIDTH); |
| |
| for (i = 0; i < entry_words; i++) { |
| data->entry[i] = ocelot_target_read_rix(ocelot, vcap->target, |
| VCAP_CACHE_ENTRY_DAT, i); |
| // Invert mask |
| data->mask[i] = ~ocelot_target_read_rix(ocelot, vcap->target, |
| VCAP_CACHE_MASK_DAT, i); |
| } |
| data->tg = ocelot_target_read(ocelot, vcap->target, VCAP_CACHE_TG_DAT); |
| } |
| |
| static void vcap_action2cache(struct ocelot *ocelot, |
| const struct vcap_props *vcap, |
| struct vcap_data *data) |
| { |
| u32 action_words, mask; |
| int i, width; |
| |
| /* Encode action type */ |
| width = vcap->action_type_width; |
| if (width) { |
| mask = GENMASK(width, 0); |
| data->action[0] = ((data->action[0] & ~mask) | data->type); |
| } |
| |
| action_words = DIV_ROUND_UP(vcap->action_width, ENTRY_WIDTH); |
| |
| for (i = 0; i < action_words; i++) |
| ocelot_target_write_rix(ocelot, vcap->target, data->action[i], |
| VCAP_CACHE_ACTION_DAT, i); |
| |
| for (i = 0; i < vcap->counter_words; i++) |
| ocelot_target_write_rix(ocelot, vcap->target, data->counter[i], |
| VCAP_CACHE_CNT_DAT, i); |
| } |
| |
| static void vcap_cache2action(struct ocelot *ocelot, |
| const struct vcap_props *vcap, |
| struct vcap_data *data) |
| { |
| u32 action_words; |
| int i, width; |
| |
| action_words = DIV_ROUND_UP(vcap->action_width, ENTRY_WIDTH); |
| |
| for (i = 0; i < action_words; i++) |
| data->action[i] = ocelot_target_read_rix(ocelot, vcap->target, |
| VCAP_CACHE_ACTION_DAT, |
| i); |
| |
| for (i = 0; i < vcap->counter_words; i++) |
| data->counter[i] = ocelot_target_read_rix(ocelot, vcap->target, |
| VCAP_CACHE_CNT_DAT, |
| i); |
| |
| /* Extract action type */ |
| width = vcap->action_type_width; |
| data->type = (width ? (data->action[0] & GENMASK(width, 0)) : 0); |
| } |
| |
| /* Calculate offsets for entry */ |
| static void vcap_data_offset_get(const struct vcap_props *vcap, |
| struct vcap_data *data, int ix) |
| { |
| int num_subwords_per_entry, num_subwords_per_action; |
| int i, col, offset, num_entries_per_row, base; |
| u32 width = vcap->tg_width; |
| |
| switch (data->tg_sw) { |
| case VCAP_TG_FULL: |
| num_entries_per_row = 1; |
| break; |
| case VCAP_TG_HALF: |
| num_entries_per_row = 2; |
| break; |
| case VCAP_TG_QUARTER: |
| num_entries_per_row = 4; |
| break; |
| default: |
| return; |
| } |
| |
| col = (ix % num_entries_per_row); |
| num_subwords_per_entry = (vcap->sw_count / num_entries_per_row); |
| base = (vcap->sw_count - col * num_subwords_per_entry - |
| num_subwords_per_entry); |
| data->tg_value = 0; |
| data->tg_mask = 0; |
| for (i = 0; i < num_subwords_per_entry; i++) { |
| offset = ((base + i) * width); |
| data->tg_value |= (data->tg_sw << offset); |
| data->tg_mask |= GENMASK(offset + width - 1, offset); |
| } |
| |
| /* Calculate key/action/counter offsets */ |
| col = (num_entries_per_row - col - 1); |
| data->key_offset = (base * vcap->entry_width) / vcap->sw_count; |
| data->counter_offset = (num_subwords_per_entry * col * |
| vcap->counter_width); |
| i = data->type; |
| width = vcap->action_table[i].width; |
| num_subwords_per_action = vcap->action_table[i].count; |
| data->action_offset = ((num_subwords_per_action * col * width) / |
| num_entries_per_row); |
| data->action_offset += vcap->action_type_width; |
| } |
| |
| static void vcap_data_set(u32 *data, u32 offset, u32 len, u32 value) |
| { |
| u32 i, v, m; |
| |
| for (i = 0; i < len; i++, offset++) { |
| v = data[offset / ENTRY_WIDTH]; |
| m = (1 << (offset % ENTRY_WIDTH)); |
| if (value & (1 << i)) |
| v |= m; |
| else |
| v &= ~m; |
| data[offset / ENTRY_WIDTH] = v; |
| } |
| } |
| |
| static u32 vcap_data_get(u32 *data, u32 offset, u32 len) |
| { |
| u32 i, v, m, value = 0; |
| |
| for (i = 0; i < len; i++, offset++) { |
| v = data[offset / ENTRY_WIDTH]; |
| m = (1 << (offset % ENTRY_WIDTH)); |
| if (v & m) |
| value |= (1 << i); |
| } |
| return value; |
| } |
| |
| static void vcap_key_field_set(struct vcap_data *data, u32 offset, u32 width, |
| u32 value, u32 mask) |
| { |
| vcap_data_set(data->entry, offset + data->key_offset, width, value); |
| vcap_data_set(data->mask, offset + data->key_offset, width, mask); |
| } |
| |
| static void vcap_key_set(const struct vcap_props *vcap, struct vcap_data *data, |
| int field, u32 value, u32 mask) |
| { |
| u32 offset = vcap->keys[field].offset; |
| u32 length = vcap->keys[field].length; |
| |
| vcap_key_field_set(data, offset, length, value, mask); |
| } |
| |
| static void vcap_key_bytes_set(const struct vcap_props *vcap, |
| struct vcap_data *data, int field, |
| u8 *val, u8 *msk) |
| { |
| u32 offset = vcap->keys[field].offset; |
| u32 count = vcap->keys[field].length; |
| u32 i, j, n = 0, value = 0, mask = 0; |
| |
| WARN_ON(count % 8); |
| |
| /* Data wider than 32 bits are split up in chunks of maximum 32 bits. |
| * The 32 LSB of the data are written to the 32 MSB of the TCAM. |
| */ |
| offset += count; |
| count /= 8; |
| |
| for (i = 0; i < count; i++) { |
| j = (count - i - 1); |
| value += (val[j] << n); |
| mask += (msk[j] << n); |
| n += 8; |
| if (n == ENTRY_WIDTH || (i + 1) == count) { |
| offset -= n; |
| vcap_key_field_set(data, offset, n, value, mask); |
| n = 0; |
| value = 0; |
| mask = 0; |
| } |
| } |
| } |
| |
| static void vcap_key_l4_port_set(const struct vcap_props *vcap, |
| struct vcap_data *data, int field, |
| struct ocelot_vcap_udp_tcp *port) |
| { |
| u32 offset = vcap->keys[field].offset; |
| u32 length = vcap->keys[field].length; |
| |
| WARN_ON(length != 16); |
| |
| vcap_key_field_set(data, offset, length, port->value, port->mask); |
| } |
| |
| static void vcap_key_bit_set(const struct vcap_props *vcap, |
| struct vcap_data *data, int field, |
| enum ocelot_vcap_bit val) |
| { |
| u32 value = (val == OCELOT_VCAP_BIT_1 ? 1 : 0); |
| u32 msk = (val == OCELOT_VCAP_BIT_ANY ? 0 : 1); |
| u32 offset = vcap->keys[field].offset; |
| u32 length = vcap->keys[field].length; |
| |
| WARN_ON(length != 1); |
| |
| vcap_key_field_set(data, offset, length, value, msk); |
| } |
| |
| static void vcap_action_set(const struct vcap_props *vcap, |
| struct vcap_data *data, int field, u32 value) |
| { |
| int offset = vcap->actions[field].offset; |
| int length = vcap->actions[field].length; |
| |
| vcap_data_set(data->action, offset + data->action_offset, length, |
| value); |
| } |
| |
| static void is2_action_set(struct ocelot *ocelot, struct vcap_data *data, |
| struct ocelot_vcap_filter *filter) |
| { |
| const struct vcap_props *vcap = &ocelot->vcap[VCAP_IS2]; |
| struct ocelot_vcap_action *a = &filter->action; |
| |
| vcap_action_set(vcap, data, VCAP_IS2_ACT_MASK_MODE, a->mask_mode); |
| vcap_action_set(vcap, data, VCAP_IS2_ACT_PORT_MASK, a->port_mask); |
| vcap_action_set(vcap, data, VCAP_IS2_ACT_POLICE_ENA, a->police_ena); |
| vcap_action_set(vcap, data, VCAP_IS2_ACT_POLICE_IDX, a->pol_ix); |
| vcap_action_set(vcap, data, VCAP_IS2_ACT_CPU_QU_NUM, a->cpu_qu_num); |
| vcap_action_set(vcap, data, VCAP_IS2_ACT_CPU_COPY_ENA, a->cpu_copy_ena); |
| } |
| |
| static void is2_entry_set(struct ocelot *ocelot, int ix, |
| struct ocelot_vcap_filter *filter) |
| { |
| const struct vcap_props *vcap = &ocelot->vcap[VCAP_IS2]; |
| struct ocelot_vcap_key_vlan *tag = &filter->vlan; |
| u32 val, msk, type, type_mask = 0xf, i, count; |
| struct ocelot_vcap_u64 payload; |
| struct vcap_data data; |
| int row = (ix / 2); |
| |
| memset(&payload, 0, sizeof(payload)); |
| memset(&data, 0, sizeof(data)); |
| |
| /* Read row */ |
| vcap_row_cmd(ocelot, vcap, row, VCAP_CMD_READ, VCAP_SEL_ALL); |
| vcap_cache2entry(ocelot, vcap, &data); |
| vcap_cache2action(ocelot, vcap, &data); |
| |
| data.tg_sw = VCAP_TG_HALF; |
| vcap_data_offset_get(vcap, &data, ix); |
| data.tg = (data.tg & ~data.tg_mask); |
| if (filter->prio != 0) |
| data.tg |= data.tg_value; |
| |
| data.type = IS2_ACTION_TYPE_NORMAL; |
| |
| vcap_key_set(vcap, &data, VCAP_IS2_HK_PAG, filter->pag, 0xff); |
| vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_FIRST, |
| (filter->lookup == 0) ? OCELOT_VCAP_BIT_1 : |
| OCELOT_VCAP_BIT_0); |
| vcap_key_set(vcap, &data, VCAP_IS2_HK_IGR_PORT_MASK, 0, |
| ~filter->ingress_port_mask); |
| vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_FIRST, OCELOT_VCAP_BIT_ANY); |
| vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_HOST_MATCH, |
| OCELOT_VCAP_BIT_ANY); |
| vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_L2_MC, filter->dmac_mc); |
| vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_L2_BC, filter->dmac_bc); |
| vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_VLAN_TAGGED, tag->tagged); |
| vcap_key_set(vcap, &data, VCAP_IS2_HK_VID, |
| tag->vid.value, tag->vid.mask); |
| vcap_key_set(vcap, &data, VCAP_IS2_HK_PCP, |
| tag->pcp.value[0], tag->pcp.mask[0]); |
| vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_DEI, tag->dei); |
| |
| switch (filter->key_type) { |
| case OCELOT_VCAP_KEY_ETYPE: { |
| struct ocelot_vcap_key_etype *etype = &filter->key.etype; |
| |
| type = IS2_TYPE_ETYPE; |
| vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_L2_DMAC, |
| etype->dmac.value, etype->dmac.mask); |
| vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_L2_SMAC, |
| etype->smac.value, etype->smac.mask); |
| vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_MAC_ETYPE_ETYPE, |
| etype->etype.value, etype->etype.mask); |
| /* Clear unused bits */ |
| vcap_key_set(vcap, &data, VCAP_IS2_HK_MAC_ETYPE_L2_PAYLOAD0, |
| 0, 0); |
| vcap_key_set(vcap, &data, VCAP_IS2_HK_MAC_ETYPE_L2_PAYLOAD1, |
| 0, 0); |
| vcap_key_set(vcap, &data, VCAP_IS2_HK_MAC_ETYPE_L2_PAYLOAD2, |
| 0, 0); |
| vcap_key_bytes_set(vcap, &data, |
| VCAP_IS2_HK_MAC_ETYPE_L2_PAYLOAD0, |
| etype->data.value, etype->data.mask); |
| break; |
| } |
| case OCELOT_VCAP_KEY_LLC: { |
| struct ocelot_vcap_key_llc *llc = &filter->key.llc; |
| |
| type = IS2_TYPE_LLC; |
| vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_L2_DMAC, |
| llc->dmac.value, llc->dmac.mask); |
| vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_L2_SMAC, |
| llc->smac.value, llc->smac.mask); |
| for (i = 0; i < 4; i++) { |
| payload.value[i] = llc->llc.value[i]; |
| payload.mask[i] = llc->llc.mask[i]; |
| } |
| vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_MAC_LLC_L2_LLC, |
| payload.value, payload.mask); |
| break; |
| } |
| case OCELOT_VCAP_KEY_SNAP: { |
| struct ocelot_vcap_key_snap *snap = &filter->key.snap; |
| |
| type = IS2_TYPE_SNAP; |
| vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_L2_DMAC, |
| snap->dmac.value, snap->dmac.mask); |
| vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_L2_SMAC, |
| snap->smac.value, snap->smac.mask); |
| vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_MAC_SNAP_L2_SNAP, |
| filter->key.snap.snap.value, |
| filter->key.snap.snap.mask); |
| break; |
| } |
| case OCELOT_VCAP_KEY_ARP: { |
| struct ocelot_vcap_key_arp *arp = &filter->key.arp; |
| |
| type = IS2_TYPE_ARP; |
| vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_MAC_ARP_SMAC, |
| arp->smac.value, arp->smac.mask); |
| vcap_key_bit_set(vcap, &data, |
| VCAP_IS2_HK_MAC_ARP_ADDR_SPACE_OK, |
| arp->ethernet); |
| vcap_key_bit_set(vcap, &data, |
| VCAP_IS2_HK_MAC_ARP_PROTO_SPACE_OK, |
| arp->ip); |
| vcap_key_bit_set(vcap, &data, |
| VCAP_IS2_HK_MAC_ARP_LEN_OK, |
| arp->length); |
| vcap_key_bit_set(vcap, &data, |
| VCAP_IS2_HK_MAC_ARP_TARGET_MATCH, |
| arp->dmac_match); |
| vcap_key_bit_set(vcap, &data, |
| VCAP_IS2_HK_MAC_ARP_SENDER_MATCH, |
| arp->smac_match); |
| vcap_key_bit_set(vcap, &data, |
| VCAP_IS2_HK_MAC_ARP_OPCODE_UNKNOWN, |
| arp->unknown); |
| |
| /* OPCODE is inverse, bit 0 is reply flag, bit 1 is RARP flag */ |
| val = ((arp->req == OCELOT_VCAP_BIT_0 ? 1 : 0) | |
| (arp->arp == OCELOT_VCAP_BIT_0 ? 2 : 0)); |
| msk = ((arp->req == OCELOT_VCAP_BIT_ANY ? 0 : 1) | |
| (arp->arp == OCELOT_VCAP_BIT_ANY ? 0 : 2)); |
| vcap_key_set(vcap, &data, VCAP_IS2_HK_MAC_ARP_OPCODE, |
| val, msk); |
| vcap_key_bytes_set(vcap, &data, |
| VCAP_IS2_HK_MAC_ARP_L3_IP4_DIP, |
| arp->dip.value.addr, arp->dip.mask.addr); |
| vcap_key_bytes_set(vcap, &data, |
| VCAP_IS2_HK_MAC_ARP_L3_IP4_SIP, |
| arp->sip.value.addr, arp->sip.mask.addr); |
| vcap_key_set(vcap, &data, VCAP_IS2_HK_MAC_ARP_DIP_EQ_SIP, |
| 0, 0); |
| break; |
| } |
| case OCELOT_VCAP_KEY_IPV4: |
| case OCELOT_VCAP_KEY_IPV6: { |
| enum ocelot_vcap_bit sip_eq_dip, sport_eq_dport, seq_zero, tcp; |
| enum ocelot_vcap_bit ttl, fragment, options, tcp_ack, tcp_urg; |
| enum ocelot_vcap_bit tcp_fin, tcp_syn, tcp_rst, tcp_psh; |
| struct ocelot_vcap_key_ipv4 *ipv4 = NULL; |
| struct ocelot_vcap_key_ipv6 *ipv6 = NULL; |
| struct ocelot_vcap_udp_tcp *sport, *dport; |
| struct ocelot_vcap_ipv4 sip, dip; |
| struct ocelot_vcap_u8 proto, ds; |
| struct ocelot_vcap_u48 *ip_data; |
| |
| if (filter->key_type == OCELOT_VCAP_KEY_IPV4) { |
| ipv4 = &filter->key.ipv4; |
| ttl = ipv4->ttl; |
| fragment = ipv4->fragment; |
| options = ipv4->options; |
| proto = ipv4->proto; |
| ds = ipv4->ds; |
| ip_data = &ipv4->data; |
| sip = ipv4->sip; |
| dip = ipv4->dip; |
| sport = &ipv4->sport; |
| dport = &ipv4->dport; |
| tcp_fin = ipv4->tcp_fin; |
| tcp_syn = ipv4->tcp_syn; |
| tcp_rst = ipv4->tcp_rst; |
| tcp_psh = ipv4->tcp_psh; |
| tcp_ack = ipv4->tcp_ack; |
| tcp_urg = ipv4->tcp_urg; |
| sip_eq_dip = ipv4->sip_eq_dip; |
| sport_eq_dport = ipv4->sport_eq_dport; |
| seq_zero = ipv4->seq_zero; |
| } else { |
| ipv6 = &filter->key.ipv6; |
| ttl = ipv6->ttl; |
| fragment = OCELOT_VCAP_BIT_ANY; |
| options = OCELOT_VCAP_BIT_ANY; |
| proto = ipv6->proto; |
| ds = ipv6->ds; |
| ip_data = &ipv6->data; |
| for (i = 0; i < 8; i++) { |
| val = ipv6->sip.value[i + 8]; |
| msk = ipv6->sip.mask[i + 8]; |
| if (i < 4) { |
| dip.value.addr[i] = val; |
| dip.mask.addr[i] = msk; |
| } else { |
| sip.value.addr[i - 4] = val; |
| sip.mask.addr[i - 4] = msk; |
| } |
| } |
| sport = &ipv6->sport; |
| dport = &ipv6->dport; |
| tcp_fin = ipv6->tcp_fin; |
| tcp_syn = ipv6->tcp_syn; |
| tcp_rst = ipv6->tcp_rst; |
| tcp_psh = ipv6->tcp_psh; |
| tcp_ack = ipv6->tcp_ack; |
| tcp_urg = ipv6->tcp_urg; |
| sip_eq_dip = ipv6->sip_eq_dip; |
| sport_eq_dport = ipv6->sport_eq_dport; |
| seq_zero = ipv6->seq_zero; |
| } |
| |
| vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_IP4, |
| ipv4 ? OCELOT_VCAP_BIT_1 : OCELOT_VCAP_BIT_0); |
| vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_L3_FRAGMENT, |
| fragment); |
| vcap_key_set(vcap, &data, VCAP_IS2_HK_L3_FRAG_OFS_GT0, 0, 0); |
| vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_L3_OPTIONS, |
| options); |
| vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_IP4_L3_TTL_GT0, |
| ttl); |
| vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_L3_TOS, |
| ds.value, ds.mask); |
| vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_L3_IP4_DIP, |
| dip.value.addr, dip.mask.addr); |
| vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_L3_IP4_SIP, |
| sip.value.addr, sip.mask.addr); |
| vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_DIP_EQ_SIP, |
| sip_eq_dip); |
| val = proto.value[0]; |
| msk = proto.mask[0]; |
| type = IS2_TYPE_IP_UDP_TCP; |
| if (msk == 0xff && (val == 6 || val == 17)) { |
| /* UDP/TCP protocol match */ |
| tcp = (val == 6 ? |
| OCELOT_VCAP_BIT_1 : OCELOT_VCAP_BIT_0); |
| vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_TCP, tcp); |
| vcap_key_l4_port_set(vcap, &data, |
| VCAP_IS2_HK_L4_DPORT, dport); |
| vcap_key_l4_port_set(vcap, &data, |
| VCAP_IS2_HK_L4_SPORT, sport); |
| vcap_key_set(vcap, &data, VCAP_IS2_HK_L4_RNG, 0, 0); |
| vcap_key_bit_set(vcap, &data, |
| VCAP_IS2_HK_L4_SPORT_EQ_DPORT, |
| sport_eq_dport); |
| vcap_key_bit_set(vcap, &data, |
| VCAP_IS2_HK_L4_SEQUENCE_EQ0, |
| seq_zero); |
| vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_L4_FIN, |
| tcp_fin); |
| vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_L4_SYN, |
| tcp_syn); |
| vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_L4_RST, |
| tcp_rst); |
| vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_L4_PSH, |
| tcp_psh); |
| vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_L4_ACK, |
| tcp_ack); |
| vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_L4_URG, |
| tcp_urg); |
| vcap_key_set(vcap, &data, VCAP_IS2_HK_L4_1588_DOM, |
| 0, 0); |
| vcap_key_set(vcap, &data, VCAP_IS2_HK_L4_1588_VER, |
| 0, 0); |
| } else { |
| if (msk == 0) { |
| /* Any IP protocol match */ |
| type_mask = IS2_TYPE_MASK_IP_ANY; |
| } else { |
| /* Non-UDP/TCP protocol match */ |
| type = IS2_TYPE_IP_OTHER; |
| for (i = 0; i < 6; i++) { |
| payload.value[i] = ip_data->value[i]; |
| payload.mask[i] = ip_data->mask[i]; |
| } |
| } |
| vcap_key_bytes_set(vcap, &data, |
| VCAP_IS2_HK_IP4_L3_PROTO, |
| proto.value, proto.mask); |
| vcap_key_bytes_set(vcap, &data, |
| VCAP_IS2_HK_L3_PAYLOAD, |
| payload.value, payload.mask); |
| } |
| break; |
| } |
| case OCELOT_VCAP_KEY_ANY: |
| default: |
| type = 0; |
| type_mask = 0; |
| count = vcap->entry_width / 2; |
| /* Iterate over the non-common part of the key and |
| * clear entry data |
| */ |
| for (i = vcap->keys[VCAP_IS2_HK_L2_DMAC].offset; |
| i < count; i += ENTRY_WIDTH) { |
| vcap_key_field_set(&data, i, min(32u, count - i), 0, 0); |
| } |
| break; |
| } |
| |
| vcap_key_set(vcap, &data, VCAP_IS2_TYPE, type, type_mask); |
| is2_action_set(ocelot, &data, filter); |
| vcap_data_set(data.counter, data.counter_offset, |
| vcap->counter_width, filter->stats.pkts); |
| |
| /* Write row */ |
| vcap_entry2cache(ocelot, vcap, &data); |
| vcap_action2cache(ocelot, vcap, &data); |
| vcap_row_cmd(ocelot, vcap, row, VCAP_CMD_WRITE, VCAP_SEL_ALL); |
| } |
| |
| static void is1_action_set(struct ocelot *ocelot, struct vcap_data *data, |
| const struct ocelot_vcap_filter *filter) |
| { |
| const struct vcap_props *vcap = &ocelot->vcap[VCAP_IS1]; |
| const struct ocelot_vcap_action *a = &filter->action; |
| |
| vcap_action_set(vcap, data, VCAP_IS1_ACT_VID_REPLACE_ENA, |
| a->vid_replace_ena); |
| vcap_action_set(vcap, data, VCAP_IS1_ACT_VID_ADD_VAL, a->vid); |
| vcap_action_set(vcap, data, VCAP_IS1_ACT_VLAN_POP_CNT_ENA, |
| a->vlan_pop_cnt_ena); |
| vcap_action_set(vcap, data, VCAP_IS1_ACT_VLAN_POP_CNT, |
| a->vlan_pop_cnt); |
| vcap_action_set(vcap, data, VCAP_IS1_ACT_PCP_DEI_ENA, a->pcp_dei_ena); |
| vcap_action_set(vcap, data, VCAP_IS1_ACT_PCP_VAL, a->pcp); |
| vcap_action_set(vcap, data, VCAP_IS1_ACT_DEI_VAL, a->dei); |
| vcap_action_set(vcap, data, VCAP_IS1_ACT_QOS_ENA, a->qos_ena); |
| vcap_action_set(vcap, data, VCAP_IS1_ACT_QOS_VAL, a->qos_val); |
| vcap_action_set(vcap, data, VCAP_IS1_ACT_PAG_OVERRIDE_MASK, |
| a->pag_override_mask); |
| vcap_action_set(vcap, data, VCAP_IS1_ACT_PAG_VAL, a->pag_val); |
| } |
| |
| static void is1_entry_set(struct ocelot *ocelot, int ix, |
| struct ocelot_vcap_filter *filter) |
| { |
| const struct vcap_props *vcap = &ocelot->vcap[VCAP_IS1]; |
| struct ocelot_vcap_key_vlan *tag = &filter->vlan; |
| struct ocelot_vcap_u64 payload; |
| struct vcap_data data; |
| int row = ix / 2; |
| u32 type; |
| |
| memset(&payload, 0, sizeof(payload)); |
| memset(&data, 0, sizeof(data)); |
| |
| /* Read row */ |
| vcap_row_cmd(ocelot, vcap, row, VCAP_CMD_READ, VCAP_SEL_ALL); |
| vcap_cache2entry(ocelot, vcap, &data); |
| vcap_cache2action(ocelot, vcap, &data); |
| |
| data.tg_sw = VCAP_TG_HALF; |
| data.type = IS1_ACTION_TYPE_NORMAL; |
| vcap_data_offset_get(vcap, &data, ix); |
| data.tg = (data.tg & ~data.tg_mask); |
| if (filter->prio != 0) |
| data.tg |= data.tg_value; |
| |
| vcap_key_set(vcap, &data, VCAP_IS1_HK_LOOKUP, filter->lookup, 0x3); |
| vcap_key_set(vcap, &data, VCAP_IS1_HK_IGR_PORT_MASK, 0, |
| ~filter->ingress_port_mask); |
| vcap_key_bit_set(vcap, &data, VCAP_IS1_HK_L2_MC, filter->dmac_mc); |
| vcap_key_bit_set(vcap, &data, VCAP_IS1_HK_L2_BC, filter->dmac_bc); |
| vcap_key_bit_set(vcap, &data, VCAP_IS1_HK_VLAN_TAGGED, tag->tagged); |
| vcap_key_set(vcap, &data, VCAP_IS1_HK_VID, |
| tag->vid.value, tag->vid.mask); |
| vcap_key_set(vcap, &data, VCAP_IS1_HK_PCP, |
| tag->pcp.value[0], tag->pcp.mask[0]); |
| type = IS1_TYPE_S1_NORMAL; |
| |
| switch (filter->key_type) { |
| case OCELOT_VCAP_KEY_ETYPE: { |
| struct ocelot_vcap_key_etype *etype = &filter->key.etype; |
| |
| vcap_key_bytes_set(vcap, &data, VCAP_IS1_HK_L2_SMAC, |
| etype->smac.value, etype->smac.mask); |
| vcap_key_bytes_set(vcap, &data, VCAP_IS1_HK_ETYPE, |
| etype->etype.value, etype->etype.mask); |
| break; |
| } |
| case OCELOT_VCAP_KEY_IPV4: { |
| struct ocelot_vcap_key_ipv4 *ipv4 = &filter->key.ipv4; |
| struct ocelot_vcap_udp_tcp *sport = &ipv4->sport; |
| struct ocelot_vcap_udp_tcp *dport = &ipv4->dport; |
| enum ocelot_vcap_bit tcp_udp = OCELOT_VCAP_BIT_0; |
| struct ocelot_vcap_u8 proto = ipv4->proto; |
| struct ocelot_vcap_ipv4 sip = ipv4->sip; |
| u32 val, msk; |
| |
| vcap_key_bit_set(vcap, &data, VCAP_IS1_HK_IP_SNAP, |
| OCELOT_VCAP_BIT_1); |
| vcap_key_bit_set(vcap, &data, VCAP_IS1_HK_IP4, |
| OCELOT_VCAP_BIT_1); |
| vcap_key_bit_set(vcap, &data, VCAP_IS1_HK_ETYPE_LEN, |
| OCELOT_VCAP_BIT_1); |
| vcap_key_bytes_set(vcap, &data, VCAP_IS1_HK_L3_IP4_SIP, |
| sip.value.addr, sip.mask.addr); |
| |
| val = proto.value[0]; |
| msk = proto.mask[0]; |
| |
| if ((val == NEXTHDR_TCP || val == NEXTHDR_UDP) && msk == 0xff) |
| tcp_udp = OCELOT_VCAP_BIT_1; |
| vcap_key_bit_set(vcap, &data, VCAP_IS1_HK_TCP_UDP, tcp_udp); |
| |
| if (tcp_udp) { |
| enum ocelot_vcap_bit tcp = OCELOT_VCAP_BIT_0; |
| |
| if (val == NEXTHDR_TCP) |
| tcp = OCELOT_VCAP_BIT_1; |
| |
| vcap_key_bit_set(vcap, &data, VCAP_IS1_HK_TCP, tcp); |
| vcap_key_l4_port_set(vcap, &data, VCAP_IS1_HK_L4_SPORT, |
| sport); |
| /* Overloaded field */ |
| vcap_key_l4_port_set(vcap, &data, VCAP_IS1_HK_ETYPE, |
| dport); |
| } else { |
| /* IPv4 "other" frame */ |
| struct ocelot_vcap_u16 etype = {0}; |
| |
| /* Overloaded field */ |
| etype.value[0] = proto.value[0]; |
| etype.mask[0] = proto.mask[0]; |
| |
| vcap_key_bytes_set(vcap, &data, VCAP_IS1_HK_ETYPE, |
| etype.value, etype.mask); |
| } |
| } |
| default: |
| break; |
| } |
| vcap_key_bit_set(vcap, &data, VCAP_IS1_HK_TYPE, |
| type ? OCELOT_VCAP_BIT_1 : OCELOT_VCAP_BIT_0); |
| |
| is1_action_set(ocelot, &data, filter); |
| vcap_data_set(data.counter, data.counter_offset, |
| vcap->counter_width, filter->stats.pkts); |
| |
| /* Write row */ |
| vcap_entry2cache(ocelot, vcap, &data); |
| vcap_action2cache(ocelot, vcap, &data); |
| vcap_row_cmd(ocelot, vcap, row, VCAP_CMD_WRITE, VCAP_SEL_ALL); |
| } |
| |
| static void es0_action_set(struct ocelot *ocelot, struct vcap_data *data, |
| const struct ocelot_vcap_filter *filter) |
| { |
| const struct vcap_props *vcap = &ocelot->vcap[VCAP_ES0]; |
| const struct ocelot_vcap_action *a = &filter->action; |
| |
| vcap_action_set(vcap, data, VCAP_ES0_ACT_PUSH_OUTER_TAG, |
| a->push_outer_tag); |
| vcap_action_set(vcap, data, VCAP_ES0_ACT_PUSH_INNER_TAG, |
| a->push_inner_tag); |
| vcap_action_set(vcap, data, VCAP_ES0_ACT_TAG_A_TPID_SEL, |
| a->tag_a_tpid_sel); |
| vcap_action_set(vcap, data, VCAP_ES0_ACT_TAG_A_VID_SEL, |
| a->tag_a_vid_sel); |
| vcap_action_set(vcap, data, VCAP_ES0_ACT_TAG_A_PCP_SEL, |
| a->tag_a_pcp_sel); |
| vcap_action_set(vcap, data, VCAP_ES0_ACT_VID_A_VAL, a->vid_a_val); |
| vcap_action_set(vcap, data, VCAP_ES0_ACT_PCP_A_VAL, a->pcp_a_val); |
| vcap_action_set(vcap, data, VCAP_ES0_ACT_TAG_B_TPID_SEL, |
| a->tag_b_tpid_sel); |
| vcap_action_set(vcap, data, VCAP_ES0_ACT_TAG_B_VID_SEL, |
| a->tag_b_vid_sel); |
| vcap_action_set(vcap, data, VCAP_ES0_ACT_TAG_B_PCP_SEL, |
| a->tag_b_pcp_sel); |
| vcap_action_set(vcap, data, VCAP_ES0_ACT_VID_B_VAL, a->vid_b_val); |
| vcap_action_set(vcap, data, VCAP_ES0_ACT_PCP_B_VAL, a->pcp_b_val); |
| } |
| |
| static void es0_entry_set(struct ocelot *ocelot, int ix, |
| struct ocelot_vcap_filter *filter) |
| { |
| const struct vcap_props *vcap = &ocelot->vcap[VCAP_ES0]; |
| struct ocelot_vcap_key_vlan *tag = &filter->vlan; |
| struct ocelot_vcap_u64 payload; |
| struct vcap_data data; |
| int row = ix; |
| |
| memset(&payload, 0, sizeof(payload)); |
| memset(&data, 0, sizeof(data)); |
| |
| /* Read row */ |
| vcap_row_cmd(ocelot, vcap, row, VCAP_CMD_READ, VCAP_SEL_ALL); |
| vcap_cache2entry(ocelot, vcap, &data); |
| vcap_cache2action(ocelot, vcap, &data); |
| |
| data.tg_sw = VCAP_TG_FULL; |
| data.type = ES0_ACTION_TYPE_NORMAL; |
| vcap_data_offset_get(vcap, &data, ix); |
| data.tg = (data.tg & ~data.tg_mask); |
| if (filter->prio != 0) |
| data.tg |= data.tg_value; |
| |
| vcap_key_set(vcap, &data, VCAP_ES0_IGR_PORT, filter->ingress_port.value, |
| filter->ingress_port.mask); |
| vcap_key_set(vcap, &data, VCAP_ES0_EGR_PORT, filter->egress_port.value, |
| filter->egress_port.mask); |
| vcap_key_bit_set(vcap, &data, VCAP_ES0_L2_MC, filter->dmac_mc); |
| vcap_key_bit_set(vcap, &data, VCAP_ES0_L2_BC, filter->dmac_bc); |
| vcap_key_set(vcap, &data, VCAP_ES0_VID, |
| tag->vid.value, tag->vid.mask); |
| vcap_key_set(vcap, &data, VCAP_ES0_PCP, |
| tag->pcp.value[0], tag->pcp.mask[0]); |
| |
| es0_action_set(ocelot, &data, filter); |
| vcap_data_set(data.counter, data.counter_offset, |
| vcap->counter_width, filter->stats.pkts); |
| |
| /* Write row */ |
| vcap_entry2cache(ocelot, vcap, &data); |
| vcap_action2cache(ocelot, vcap, &data); |
| vcap_row_cmd(ocelot, vcap, row, VCAP_CMD_WRITE, VCAP_SEL_ALL); |
| } |
| |
| static void vcap_entry_get(struct ocelot *ocelot, int ix, |
| struct ocelot_vcap_filter *filter) |
| { |
| const struct vcap_props *vcap = &ocelot->vcap[filter->block_id]; |
| struct vcap_data data; |
| int row, count; |
| u32 cnt; |
| |
| if (filter->block_id == VCAP_ES0) |
| data.tg_sw = VCAP_TG_FULL; |
| else |
| data.tg_sw = VCAP_TG_HALF; |
| |
| count = (1 << (data.tg_sw - 1)); |
| row = (ix / count); |
| vcap_row_cmd(ocelot, vcap, row, VCAP_CMD_READ, VCAP_SEL_COUNTER); |
| vcap_cache2action(ocelot, vcap, &data); |
| vcap_data_offset_get(vcap, &data, ix); |
| cnt = vcap_data_get(data.counter, data.counter_offset, |
| vcap->counter_width); |
| |
| filter->stats.pkts = cnt; |
| } |
| |
| static void vcap_entry_set(struct ocelot *ocelot, int ix, |
| struct ocelot_vcap_filter *filter) |
| { |
| if (filter->block_id == VCAP_IS1) |
| return is1_entry_set(ocelot, ix, filter); |
| if (filter->block_id == VCAP_IS2) |
| return is2_entry_set(ocelot, ix, filter); |
| if (filter->block_id == VCAP_ES0) |
| return es0_entry_set(ocelot, ix, filter); |
| } |
| |
| static int ocelot_vcap_policer_add(struct ocelot *ocelot, u32 pol_ix, |
| struct ocelot_policer *pol) |
| { |
| struct qos_policer_conf pp = { 0 }; |
| |
| if (!pol) |
| return -EINVAL; |
| |
| pp.mode = MSCC_QOS_RATE_MODE_DATA; |
| pp.pir = pol->rate; |
| pp.pbs = pol->burst; |
| |
| return qos_policer_conf_set(ocelot, 0, pol_ix, &pp); |
| } |
| |
| static void ocelot_vcap_policer_del(struct ocelot *ocelot, |
| struct ocelot_vcap_block *block, |
| u32 pol_ix) |
| { |
| struct ocelot_vcap_filter *filter; |
| struct qos_policer_conf pp = {0}; |
| int index = -1; |
| |
| if (pol_ix < block->pol_lpr) |
| return; |
| |
| list_for_each_entry(filter, &block->rules, list) { |
| index++; |
| if (filter->block_id == VCAP_IS2 && |
| filter->action.police_ena && |
| filter->action.pol_ix < pol_ix) { |
| filter->action.pol_ix += 1; |
| ocelot_vcap_policer_add(ocelot, filter->action.pol_ix, |
| &filter->action.pol); |
| is2_entry_set(ocelot, index, filter); |
| } |
| } |
| |
| pp.mode = MSCC_QOS_RATE_MODE_DISABLED; |
| qos_policer_conf_set(ocelot, 0, pol_ix, &pp); |
| |
| block->pol_lpr++; |
| } |
| |
| static void ocelot_vcap_filter_add_to_block(struct ocelot *ocelot, |
| struct ocelot_vcap_block *block, |
| struct ocelot_vcap_filter *filter) |
| { |
| struct ocelot_vcap_filter *tmp; |
| struct list_head *pos, *n; |
| |
| if (filter->block_id == VCAP_IS2 && filter->action.police_ena) { |
| block->pol_lpr--; |
| filter->action.pol_ix = block->pol_lpr; |
| ocelot_vcap_policer_add(ocelot, filter->action.pol_ix, |
| &filter->action.pol); |
| } |
| |
| block->count++; |
| |
| if (list_empty(&block->rules)) { |
| list_add(&filter->list, &block->rules); |
| return; |
| } |
| |
| list_for_each_safe(pos, n, &block->rules) { |
| tmp = list_entry(pos, struct ocelot_vcap_filter, list); |
| if (filter->prio < tmp->prio) |
| break; |
| } |
| list_add(&filter->list, pos->prev); |
| } |
| |
| static int ocelot_vcap_block_get_filter_index(struct ocelot_vcap_block *block, |
| struct ocelot_vcap_filter *filter) |
| { |
| struct ocelot_vcap_filter *tmp; |
| int index = 0; |
| |
| list_for_each_entry(tmp, &block->rules, list) { |
| if (filter->id == tmp->id) |
| return index; |
| index++; |
| } |
| |
| return -ENOENT; |
| } |
| |
| static struct ocelot_vcap_filter* |
| ocelot_vcap_block_find_filter_by_index(struct ocelot_vcap_block *block, |
| int index) |
| { |
| struct ocelot_vcap_filter *tmp; |
| int i = 0; |
| |
| list_for_each_entry(tmp, &block->rules, list) { |
| if (i == index) |
| return tmp; |
| ++i; |
| } |
| |
| return NULL; |
| } |
| |
| struct ocelot_vcap_filter * |
| ocelot_vcap_block_find_filter_by_id(struct ocelot_vcap_block *block, int id) |
| { |
| struct ocelot_vcap_filter *filter; |
| |
| list_for_each_entry(filter, &block->rules, list) |
| if (filter->id == id) |
| return filter; |
| |
| return NULL; |
| } |
| |
| /* If @on=false, then SNAP, ARP, IP and OAM frames will not match on keys based |
| * on destination and source MAC addresses, but only on higher-level protocol |
| * information. The only frame types to match on keys containing MAC addresses |
| * in this case are non-SNAP, non-ARP, non-IP and non-OAM frames. |
| * |
| * If @on=true, then the above frame types (SNAP, ARP, IP and OAM) will match |
| * on MAC_ETYPE keys such as destination and source MAC on this ingress port. |
| * However the setting has the side effect of making these frames not matching |
| * on any _other_ keys than MAC_ETYPE ones. |
| */ |
| static void ocelot_match_all_as_mac_etype(struct ocelot *ocelot, int port, |
| int lookup, bool on) |
| { |
| u32 val = 0; |
| |
| if (on) |
| val = ANA_PORT_VCAP_S2_CFG_S2_SNAP_DIS(BIT(lookup)) | |
| ANA_PORT_VCAP_S2_CFG_S2_ARP_DIS(BIT(lookup)) | |
| ANA_PORT_VCAP_S2_CFG_S2_IP_TCPUDP_DIS(BIT(lookup)) | |
| ANA_PORT_VCAP_S2_CFG_S2_IP_OTHER_DIS(BIT(lookup)) | |
| ANA_PORT_VCAP_S2_CFG_S2_OAM_DIS(BIT(lookup)); |
| |
| ocelot_rmw_gix(ocelot, val, |
| ANA_PORT_VCAP_S2_CFG_S2_SNAP_DIS(BIT(lookup)) | |
| ANA_PORT_VCAP_S2_CFG_S2_ARP_DIS(BIT(lookup)) | |
| ANA_PORT_VCAP_S2_CFG_S2_IP_TCPUDP_DIS(BIT(lookup)) | |
| ANA_PORT_VCAP_S2_CFG_S2_IP_OTHER_DIS(BIT(lookup)) | |
| ANA_PORT_VCAP_S2_CFG_S2_OAM_DIS(BIT(lookup)), |
| ANA_PORT_VCAP_S2_CFG, port); |
| } |
| |
| static bool |
| ocelot_vcap_is_problematic_mac_etype(struct ocelot_vcap_filter *filter) |
| { |
| u16 proto, mask; |
| |
| if (filter->key_type != OCELOT_VCAP_KEY_ETYPE) |
| return false; |
| |
| proto = ntohs(*(__be16 *)filter->key.etype.etype.value); |
| mask = ntohs(*(__be16 *)filter->key.etype.etype.mask); |
| |
| /* ETH_P_ALL match, so all protocols below are included */ |
| if (mask == 0) |
| return true; |
| if (proto == ETH_P_ARP) |
| return true; |
| if (proto == ETH_P_IP) |
| return true; |
| if (proto == ETH_P_IPV6) |
| return true; |
| |
| return false; |
| } |
| |
| static bool |
| ocelot_vcap_is_problematic_non_mac_etype(struct ocelot_vcap_filter *filter) |
| { |
| if (filter->key_type == OCELOT_VCAP_KEY_SNAP) |
| return true; |
| if (filter->key_type == OCELOT_VCAP_KEY_ARP) |
| return true; |
| if (filter->key_type == OCELOT_VCAP_KEY_IPV4) |
| return true; |
| if (filter->key_type == OCELOT_VCAP_KEY_IPV6) |
| return true; |
| return false; |
| } |
| |
| static bool |
| ocelot_exclusive_mac_etype_filter_rules(struct ocelot *ocelot, |
| struct ocelot_vcap_filter *filter) |
| { |
| struct ocelot_vcap_block *block = &ocelot->block[filter->block_id]; |
| struct ocelot_vcap_filter *tmp; |
| unsigned long port; |
| int i; |
| |
| /* We only have the S2_IP_TCPUDP_DIS set of knobs for VCAP IS2 */ |
| if (filter->block_id != VCAP_IS2) |
| return true; |
| |
| if (ocelot_vcap_is_problematic_mac_etype(filter)) { |
| /* Search for any non-MAC_ETYPE rules on the port */ |
| for (i = 0; i < block->count; i++) { |
| tmp = ocelot_vcap_block_find_filter_by_index(block, i); |
| if (tmp->ingress_port_mask & filter->ingress_port_mask && |
| tmp->lookup == filter->lookup && |
| ocelot_vcap_is_problematic_non_mac_etype(tmp)) |
| return false; |
| } |
| |
| for_each_set_bit(port, &filter->ingress_port_mask, |
| ocelot->num_phys_ports) |
| ocelot_match_all_as_mac_etype(ocelot, port, |
| filter->lookup, true); |
| } else if (ocelot_vcap_is_problematic_non_mac_etype(filter)) { |
| /* Search for any MAC_ETYPE rules on the port */ |
| for (i = 0; i < block->count; i++) { |
| tmp = ocelot_vcap_block_find_filter_by_index(block, i); |
| if (tmp->ingress_port_mask & filter->ingress_port_mask && |
| tmp->lookup == filter->lookup && |
| ocelot_vcap_is_problematic_mac_etype(tmp)) |
| return false; |
| } |
| |
| for_each_set_bit(port, &filter->ingress_port_mask, |
| ocelot->num_phys_ports) |
| ocelot_match_all_as_mac_etype(ocelot, port, |
| filter->lookup, false); |
| } |
| |
| return true; |
| } |
| |
| int ocelot_vcap_filter_add(struct ocelot *ocelot, |
| struct ocelot_vcap_filter *filter, |
| struct netlink_ext_ack *extack) |
| { |
| struct ocelot_vcap_block *block = &ocelot->block[filter->block_id]; |
| int i, index; |
| |
| if (!ocelot_exclusive_mac_etype_filter_rules(ocelot, filter)) { |
| NL_SET_ERR_MSG_MOD(extack, |
| "Cannot mix MAC_ETYPE with non-MAC_ETYPE rules, use the other IS2 lookup"); |
| return -EBUSY; |
| } |
| |
| /* Add filter to the linked list */ |
| ocelot_vcap_filter_add_to_block(ocelot, block, filter); |
| |
| /* Get the index of the inserted filter */ |
| index = ocelot_vcap_block_get_filter_index(block, filter); |
| if (index < 0) |
| return index; |
| |
| /* Move down the rules to make place for the new filter */ |
| for (i = block->count - 1; i > index; i--) { |
| struct ocelot_vcap_filter *tmp; |
| |
| tmp = ocelot_vcap_block_find_filter_by_index(block, i); |
| vcap_entry_set(ocelot, i, tmp); |
| } |
| |
| /* Now insert the new filter */ |
| vcap_entry_set(ocelot, index, filter); |
| return 0; |
| } |
| |
| static void ocelot_vcap_block_remove_filter(struct ocelot *ocelot, |
| struct ocelot_vcap_block *block, |
| struct ocelot_vcap_filter *filter) |
| { |
| struct ocelot_vcap_filter *tmp; |
| struct list_head *pos, *q; |
| |
| list_for_each_safe(pos, q, &block->rules) { |
| tmp = list_entry(pos, struct ocelot_vcap_filter, list); |
| if (tmp->id == filter->id) { |
| if (tmp->block_id == VCAP_IS2 && |
| tmp->action.police_ena) |
| ocelot_vcap_policer_del(ocelot, block, |
| tmp->action.pol_ix); |
| |
| list_del(pos); |
| kfree(tmp); |
| } |
| } |
| |
| block->count--; |
| } |
| |
| int ocelot_vcap_filter_del(struct ocelot *ocelot, |
| struct ocelot_vcap_filter *filter) |
| { |
| struct ocelot_vcap_block *block = &ocelot->block[filter->block_id]; |
| struct ocelot_vcap_filter del_filter; |
| int i, index; |
| |
| memset(&del_filter, 0, sizeof(del_filter)); |
| |
| /* Gets index of the filter */ |
| index = ocelot_vcap_block_get_filter_index(block, filter); |
| if (index < 0) |
| return index; |
| |
| /* Delete filter */ |
| ocelot_vcap_block_remove_filter(ocelot, block, filter); |
| |
| /* Move up all the blocks over the deleted filter */ |
| for (i = index; i < block->count; i++) { |
| struct ocelot_vcap_filter *tmp; |
| |
| tmp = ocelot_vcap_block_find_filter_by_index(block, i); |
| vcap_entry_set(ocelot, i, tmp); |
| } |
| |
| /* Now delete the last filter, because it is duplicated */ |
| vcap_entry_set(ocelot, block->count, &del_filter); |
| |
| return 0; |
| } |
| |
| int ocelot_vcap_filter_stats_update(struct ocelot *ocelot, |
| struct ocelot_vcap_filter *filter) |
| { |
| struct ocelot_vcap_block *block = &ocelot->block[filter->block_id]; |
| struct ocelot_vcap_filter tmp; |
| int index; |
| |
| index = ocelot_vcap_block_get_filter_index(block, filter); |
| if (index < 0) |
| return index; |
| |
| vcap_entry_get(ocelot, index, filter); |
| |
| /* After we get the result we need to clear the counters */ |
| tmp = *filter; |
| tmp.stats.pkts = 0; |
| vcap_entry_set(ocelot, index, &tmp); |
| |
| return 0; |
| } |
| |
| static void ocelot_vcap_init_one(struct ocelot *ocelot, |
| const struct vcap_props *vcap) |
| { |
| struct vcap_data data; |
| |
| memset(&data, 0, sizeof(data)); |
| |
| vcap_entry2cache(ocelot, vcap, &data); |
| ocelot_target_write(ocelot, vcap->target, vcap->entry_count, |
| VCAP_CORE_MV_CFG); |
| vcap_cmd(ocelot, vcap, 0, VCAP_CMD_INITIALIZE, VCAP_SEL_ENTRY); |
| |
| vcap_action2cache(ocelot, vcap, &data); |
| ocelot_target_write(ocelot, vcap->target, vcap->action_count, |
| VCAP_CORE_MV_CFG); |
| vcap_cmd(ocelot, vcap, 0, VCAP_CMD_INITIALIZE, |
| VCAP_SEL_ACTION | VCAP_SEL_COUNTER); |
| } |
| |
| static void ocelot_vcap_detect_constants(struct ocelot *ocelot, |
| struct vcap_props *vcap) |
| { |
| int counter_memory_width; |
| int num_default_actions; |
| int version; |
| |
| version = ocelot_target_read(ocelot, vcap->target, |
| VCAP_CONST_VCAP_VER); |
| /* Only version 0 VCAP supported for now */ |
| if (WARN_ON(version != 0)) |
| return; |
| |
| /* Width in bits of type-group field */ |
| vcap->tg_width = ocelot_target_read(ocelot, vcap->target, |
| VCAP_CONST_ENTRY_TG_WIDTH); |
| /* Number of subwords per TCAM row */ |
| vcap->sw_count = ocelot_target_read(ocelot, vcap->target, |
| VCAP_CONST_ENTRY_SWCNT); |
| /* Number of rows in TCAM. There can be this many full keys, or double |
| * this number half keys, or 4 times this number quarter keys. |
| */ |
| vcap->entry_count = ocelot_target_read(ocelot, vcap->target, |
| VCAP_CONST_ENTRY_CNT); |
| /* Assuming there are 4 subwords per TCAM row, their layout in the |
| * actual TCAM (not in the cache) would be: |
| * |
| * | SW 3 | TG 3 | SW 2 | TG 2 | SW 1 | TG 1 | SW 0 | TG 0 | |
| * |
| * (where SW=subword and TG=Type-Group). |
| * |
| * What VCAP_CONST_ENTRY_CNT is giving us is the width of one full TCAM |
| * row. But when software accesses the TCAM through the cache |
| * registers, the Type-Group values are written through another set of |
| * registers VCAP_TG_DAT, and therefore, it appears as though the 4 |
| * subwords are contiguous in the cache memory. |
| * Important mention: regardless of the number of key entries per row |
| * (and therefore of key size: 1 full key or 2 half keys or 4 quarter |
| * keys), software always has to configure 4 Type-Group values. For |
| * example, in the case of 1 full key, the driver needs to set all 4 |
| * Type-Group to be full key. |
| * |
| * For this reason, we need to fix up the value that the hardware is |
| * giving us. We don't actually care about the width of the entry in |
| * the TCAM. What we care about is the width of the entry in the cache |
| * registers, which is how we get to interact with it. And since the |
| * VCAP_ENTRY_DAT cache registers access only the subwords and not the |
| * Type-Groups, this means we need to subtract the width of the |
| * Type-Groups when packing and unpacking key entry data in a TCAM row. |
| */ |
| vcap->entry_width = ocelot_target_read(ocelot, vcap->target, |
| VCAP_CONST_ENTRY_WIDTH); |
| vcap->entry_width -= vcap->tg_width * vcap->sw_count; |
| num_default_actions = ocelot_target_read(ocelot, vcap->target, |
| VCAP_CONST_ACTION_DEF_CNT); |
| vcap->action_count = vcap->entry_count + num_default_actions; |
| vcap->action_width = ocelot_target_read(ocelot, vcap->target, |
| VCAP_CONST_ACTION_WIDTH); |
| /* The width of the counter memory, this is the complete width of all |
| * counter-fields associated with one full-word entry. There is one |
| * counter per entry sub-word (see CAP_CORE::ENTRY_SWCNT for number of |
| * subwords.) |
| */ |
| vcap->counter_words = vcap->sw_count; |
| counter_memory_width = ocelot_target_read(ocelot, vcap->target, |
| VCAP_CONST_CNT_WIDTH); |
| vcap->counter_width = counter_memory_width / vcap->counter_words; |
| } |
| |
| int ocelot_vcap_init(struct ocelot *ocelot) |
| { |
| int i; |
| |
| /* Create a policer that will drop the frames for the cpu. |
| * This policer will be used as action in the acl rules to drop |
| * frames. |
| */ |
| ocelot_write_gix(ocelot, 0x299, ANA_POL_MODE_CFG, |
| OCELOT_POLICER_DISCARD); |
| ocelot_write_gix(ocelot, 0x1, ANA_POL_PIR_CFG, |
| OCELOT_POLICER_DISCARD); |
| ocelot_write_gix(ocelot, 0x3fffff, ANA_POL_PIR_STATE, |
| OCELOT_POLICER_DISCARD); |
| ocelot_write_gix(ocelot, 0x0, ANA_POL_CIR_CFG, |
| OCELOT_POLICER_DISCARD); |
| ocelot_write_gix(ocelot, 0x3fffff, ANA_POL_CIR_STATE, |
| OCELOT_POLICER_DISCARD); |
| |
| for (i = 0; i < OCELOT_NUM_VCAP_BLOCKS; i++) { |
| struct ocelot_vcap_block *block = &ocelot->block[i]; |
| struct vcap_props *vcap = &ocelot->vcap[i]; |
| |
| INIT_LIST_HEAD(&block->rules); |
| block->pol_lpr = OCELOT_POLICER_DISCARD - 1; |
| |
| ocelot_vcap_detect_constants(ocelot, vcap); |
| ocelot_vcap_init_one(ocelot, vcap); |
| } |
| |
| INIT_LIST_HEAD(&ocelot->dummy_rules); |
| |
| return 0; |
| } |