| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2014-2015 Broadcom Corporation |
| * Copyright 2014 Linaro Limited |
| */ |
| |
| #include <linux/cpumask.h> |
| #include <linux/delay.h> |
| #include <linux/errno.h> |
| #include <linux/init.h> |
| #include <linux/io.h> |
| #include <linux/irqchip/irq-bcm2836.h> |
| #include <linux/jiffies.h> |
| #include <linux/of.h> |
| #include <linux/of_address.h> |
| #include <linux/sched.h> |
| #include <linux/sched/clock.h> |
| #include <linux/smp.h> |
| |
| #include <asm/cacheflush.h> |
| #include <asm/smp.h> |
| #include <asm/smp_plat.h> |
| #include <asm/smp_scu.h> |
| |
| /* Size of mapped Cortex A9 SCU address space */ |
| #define CORTEX_A9_SCU_SIZE 0x58 |
| |
| #define SECONDARY_TIMEOUT_NS NSEC_PER_MSEC /* 1 msec (in nanoseconds) */ |
| #define BOOT_ADDR_CPUID_MASK 0x3 |
| |
| /* Name of device node property defining secondary boot register location */ |
| #define OF_SECONDARY_BOOT "secondary-boot-reg" |
| #define MPIDR_CPUID_BITMASK 0x3 |
| |
| /* |
| * Enable the Cortex A9 Snoop Control Unit |
| * |
| * By the time this is called we already know there are multiple |
| * cores present. We assume we're running on a Cortex A9 processor, |
| * so any trouble getting the base address register or getting the |
| * SCU base is a problem. |
| * |
| * Return 0 if successful or an error code otherwise. |
| */ |
| static int __init scu_a9_enable(void) |
| { |
| unsigned long config_base; |
| void __iomem *scu_base; |
| |
| if (!scu_a9_has_base()) { |
| pr_err("no configuration base address register!\n"); |
| return -ENXIO; |
| } |
| |
| /* Config base address register value is zero for uniprocessor */ |
| config_base = scu_a9_get_base(); |
| if (!config_base) { |
| pr_err("hardware reports only one core\n"); |
| return -ENOENT; |
| } |
| |
| scu_base = ioremap((phys_addr_t)config_base, CORTEX_A9_SCU_SIZE); |
| if (!scu_base) { |
| pr_err("failed to remap config base (%lu/%u) for SCU\n", |
| config_base, CORTEX_A9_SCU_SIZE); |
| return -ENOMEM; |
| } |
| |
| scu_enable(scu_base); |
| |
| iounmap(scu_base); /* That's the last we'll need of this */ |
| |
| return 0; |
| } |
| |
| static u32 secondary_boot_addr_for(unsigned int cpu) |
| { |
| u32 secondary_boot_addr = 0; |
| struct device_node *cpu_node = of_get_cpu_node(cpu, NULL); |
| |
| if (!cpu_node) { |
| pr_err("Failed to find device tree node for CPU%u\n", cpu); |
| return 0; |
| } |
| |
| if (of_property_read_u32(cpu_node, |
| OF_SECONDARY_BOOT, |
| &secondary_boot_addr)) |
| pr_err("required secondary boot register not specified for CPU%u\n", |
| cpu); |
| |
| of_node_put(cpu_node); |
| |
| return secondary_boot_addr; |
| } |
| |
| static int nsp_write_lut(unsigned int cpu) |
| { |
| void __iomem *sku_rom_lut; |
| phys_addr_t secondary_startup_phy; |
| const u32 secondary_boot_addr = secondary_boot_addr_for(cpu); |
| |
| if (!secondary_boot_addr) |
| return -EINVAL; |
| |
| sku_rom_lut = ioremap_nocache((phys_addr_t)secondary_boot_addr, |
| sizeof(phys_addr_t)); |
| if (!sku_rom_lut) { |
| pr_warn("unable to ioremap SKU-ROM LUT register for cpu %u\n", cpu); |
| return -ENOMEM; |
| } |
| |
| secondary_startup_phy = __pa_symbol(secondary_startup); |
| BUG_ON(secondary_startup_phy > (phys_addr_t)U32_MAX); |
| |
| writel_relaxed(secondary_startup_phy, sku_rom_lut); |
| |
| /* Ensure the write is visible to the secondary core */ |
| smp_wmb(); |
| |
| iounmap(sku_rom_lut); |
| |
| return 0; |
| } |
| |
| static void __init bcm_smp_prepare_cpus(unsigned int max_cpus) |
| { |
| const cpumask_t only_cpu_0 = { CPU_BITS_CPU0 }; |
| |
| /* Enable the SCU on Cortex A9 based SoCs */ |
| if (scu_a9_enable()) { |
| /* Update the CPU present map to reflect uniprocessor mode */ |
| pr_warn("failed to enable A9 SCU - disabling SMP\n"); |
| init_cpu_present(&only_cpu_0); |
| } |
| } |
| |
| /* |
| * The ROM code has the secondary cores looping, waiting for an event. |
| * When an event occurs each core examines the bottom two bits of the |
| * secondary boot register. When a core finds those bits contain its |
| * own core id, it performs initialization, including computing its boot |
| * address by clearing the boot register value's bottom two bits. The |
| * core signals that it is beginning its execution by writing its boot |
| * address back to the secondary boot register, and finally jumps to |
| * that address. |
| * |
| * So to start a core executing we need to: |
| * - Encode the (hardware) CPU id with the bottom bits of the secondary |
| * start address. |
| * - Write that value into the secondary boot register. |
| * - Generate an event to wake up the secondary CPU(s). |
| * - Wait for the secondary boot register to be re-written, which |
| * indicates the secondary core has started. |
| */ |
| static int kona_boot_secondary(unsigned int cpu, struct task_struct *idle) |
| { |
| void __iomem *boot_reg; |
| phys_addr_t boot_func; |
| u64 start_clock; |
| u32 cpu_id; |
| u32 boot_val; |
| bool timeout = false; |
| const u32 secondary_boot_addr = secondary_boot_addr_for(cpu); |
| |
| cpu_id = cpu_logical_map(cpu); |
| if (cpu_id & ~BOOT_ADDR_CPUID_MASK) { |
| pr_err("bad cpu id (%u > %u)\n", cpu_id, BOOT_ADDR_CPUID_MASK); |
| return -EINVAL; |
| } |
| |
| if (!secondary_boot_addr) |
| return -EINVAL; |
| |
| boot_reg = ioremap_nocache((phys_addr_t)secondary_boot_addr, |
| sizeof(phys_addr_t)); |
| if (!boot_reg) { |
| pr_err("unable to map boot register for cpu %u\n", cpu_id); |
| return -ENOMEM; |
| } |
| |
| /* |
| * Secondary cores will start in secondary_startup(), |
| * defined in "arch/arm/kernel/head.S" |
| */ |
| boot_func = __pa_symbol(secondary_startup); |
| BUG_ON(boot_func & BOOT_ADDR_CPUID_MASK); |
| BUG_ON(boot_func > (phys_addr_t)U32_MAX); |
| |
| /* The core to start is encoded in the low bits */ |
| boot_val = (u32)boot_func | cpu_id; |
| writel_relaxed(boot_val, boot_reg); |
| |
| sev(); |
| |
| /* The low bits will be cleared once the core has started */ |
| start_clock = local_clock(); |
| while (!timeout && readl_relaxed(boot_reg) == boot_val) |
| timeout = local_clock() - start_clock > SECONDARY_TIMEOUT_NS; |
| |
| iounmap(boot_reg); |
| |
| if (!timeout) |
| return 0; |
| |
| pr_err("timeout waiting for cpu %u to start\n", cpu_id); |
| |
| return -ENXIO; |
| } |
| |
| /* Cluster Dormant Control command to bring CPU into a running state */ |
| #define CDC_CMD 6 |
| #define CDC_CMD_OFFSET 0 |
| #define CDC_CMD_REG(cpu) (CDC_CMD_OFFSET + 4*(cpu)) |
| |
| /* |
| * BCM23550 has a Cluster Dormant Control block that keeps the core in |
| * idle state. A command needs to be sent to the block to bring the CPU |
| * into running state. |
| */ |
| static int bcm23550_boot_secondary(unsigned int cpu, struct task_struct *idle) |
| { |
| void __iomem *cdc_base; |
| struct device_node *dn; |
| char *name; |
| int ret; |
| |
| /* Make sure a CDC node exists before booting the |
| * secondary core. |
| */ |
| name = "brcm,bcm23550-cdc"; |
| dn = of_find_compatible_node(NULL, NULL, name); |
| if (!dn) { |
| pr_err("unable to find cdc node\n"); |
| return -ENODEV; |
| } |
| |
| cdc_base = of_iomap(dn, 0); |
| of_node_put(dn); |
| |
| if (!cdc_base) { |
| pr_err("unable to remap cdc base register\n"); |
| return -ENOMEM; |
| } |
| |
| /* Boot the secondary core */ |
| ret = kona_boot_secondary(cpu, idle); |
| if (ret) |
| goto out; |
| |
| /* Bring this CPU to RUN state so that nIRQ nFIQ |
| * signals are unblocked. |
| */ |
| writel_relaxed(CDC_CMD, cdc_base + CDC_CMD_REG(cpu)); |
| |
| out: |
| iounmap(cdc_base); |
| |
| return ret; |
| } |
| |
| static int nsp_boot_secondary(unsigned int cpu, struct task_struct *idle) |
| { |
| int ret; |
| |
| /* |
| * After wake up, secondary core branches to the startup |
| * address programmed at SKU ROM LUT location. |
| */ |
| ret = nsp_write_lut(cpu); |
| if (ret) { |
| pr_err("unable to write startup addr to SKU ROM LUT\n"); |
| goto out; |
| } |
| |
| /* Send a CPU wakeup interrupt to the secondary core */ |
| arch_send_wakeup_ipi_mask(cpumask_of(cpu)); |
| |
| out: |
| return ret; |
| } |
| |
| static int bcm2836_boot_secondary(unsigned int cpu, struct task_struct *idle) |
| { |
| void __iomem *intc_base; |
| struct device_node *dn; |
| char *name; |
| |
| name = "brcm,bcm2836-l1-intc"; |
| dn = of_find_compatible_node(NULL, NULL, name); |
| if (!dn) { |
| pr_err("unable to find intc node\n"); |
| return -ENODEV; |
| } |
| |
| intc_base = of_iomap(dn, 0); |
| of_node_put(dn); |
| |
| if (!intc_base) { |
| pr_err("unable to remap intc base register\n"); |
| return -ENOMEM; |
| } |
| |
| writel(virt_to_phys(secondary_startup), |
| intc_base + LOCAL_MAILBOX3_SET0 + 16 * cpu); |
| |
| dsb(sy); |
| sev(); |
| |
| iounmap(intc_base); |
| |
| return 0; |
| } |
| |
| static const struct smp_operations kona_smp_ops __initconst = { |
| .smp_prepare_cpus = bcm_smp_prepare_cpus, |
| .smp_boot_secondary = kona_boot_secondary, |
| }; |
| CPU_METHOD_OF_DECLARE(bcm_smp_bcm281xx, "brcm,bcm11351-cpu-method", |
| &kona_smp_ops); |
| |
| static const struct smp_operations bcm23550_smp_ops __initconst = { |
| .smp_boot_secondary = bcm23550_boot_secondary, |
| }; |
| CPU_METHOD_OF_DECLARE(bcm_smp_bcm23550, "brcm,bcm23550", |
| &bcm23550_smp_ops); |
| |
| static const struct smp_operations nsp_smp_ops __initconst = { |
| .smp_prepare_cpus = bcm_smp_prepare_cpus, |
| .smp_boot_secondary = nsp_boot_secondary, |
| }; |
| CPU_METHOD_OF_DECLARE(bcm_smp_nsp, "brcm,bcm-nsp-smp", &nsp_smp_ops); |
| |
| const struct smp_operations bcm2836_smp_ops __initconst = { |
| .smp_boot_secondary = bcm2836_boot_secondary, |
| }; |
| CPU_METHOD_OF_DECLARE(bcm_smp_bcm2836, "brcm,bcm2836-smp", &bcm2836_smp_ops); |