blob: 5359c1021f428b04bc13ad2de9cc437fc47596cb [file] [log] [blame]
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2009-2012 Cavium, Inc
*/
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/capability.h>
#include <linux/net_tstamp.h>
#include <linux/interrupt.h>
#include <linux/netdevice.h>
#include <linux/spinlock.h>
#include <linux/if_vlan.h>
#include <linux/of_mdio.h>
#include <linux/module.h>
#include <linux/of_net.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/phy.h>
#include <linux/io.h>
#include <asm/octeon/octeon.h>
#include <asm/octeon/cvmx-mixx-defs.h>
#include <asm/octeon/cvmx-agl-defs.h>
#define DRV_NAME "octeon_mgmt"
#define DRV_VERSION "2.0"
#define DRV_DESCRIPTION \
"Cavium Networks Octeon MII (management) port Network Driver"
#define OCTEON_MGMT_NAPI_WEIGHT 16
/* Ring sizes that are powers of two allow for more efficient modulo
* opertions.
*/
#define OCTEON_MGMT_RX_RING_SIZE 512
#define OCTEON_MGMT_TX_RING_SIZE 128
/* Allow 8 bytes for vlan and FCS. */
#define OCTEON_MGMT_RX_HEADROOM (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN)
union mgmt_port_ring_entry {
u64 d64;
struct {
#define RING_ENTRY_CODE_DONE 0xf
#define RING_ENTRY_CODE_MORE 0x10
#ifdef __BIG_ENDIAN_BITFIELD
u64 reserved_62_63:2;
/* Length of the buffer/packet in bytes */
u64 len:14;
/* For TX, signals that the packet should be timestamped */
u64 tstamp:1;
/* The RX error code */
u64 code:7;
/* Physical address of the buffer */
u64 addr:40;
#else
u64 addr:40;
u64 code:7;
u64 tstamp:1;
u64 len:14;
u64 reserved_62_63:2;
#endif
} s;
};
#define MIX_ORING1 0x0
#define MIX_ORING2 0x8
#define MIX_IRING1 0x10
#define MIX_IRING2 0x18
#define MIX_CTL 0x20
#define MIX_IRHWM 0x28
#define MIX_IRCNT 0x30
#define MIX_ORHWM 0x38
#define MIX_ORCNT 0x40
#define MIX_ISR 0x48
#define MIX_INTENA 0x50
#define MIX_REMCNT 0x58
#define MIX_BIST 0x78
#define AGL_GMX_PRT_CFG 0x10
#define AGL_GMX_RX_FRM_CTL 0x18
#define AGL_GMX_RX_FRM_MAX 0x30
#define AGL_GMX_RX_JABBER 0x38
#define AGL_GMX_RX_STATS_CTL 0x50
#define AGL_GMX_RX_STATS_PKTS_DRP 0xb0
#define AGL_GMX_RX_STATS_OCTS_DRP 0xb8
#define AGL_GMX_RX_STATS_PKTS_BAD 0xc0
#define AGL_GMX_RX_ADR_CTL 0x100
#define AGL_GMX_RX_ADR_CAM_EN 0x108
#define AGL_GMX_RX_ADR_CAM0 0x180
#define AGL_GMX_RX_ADR_CAM1 0x188
#define AGL_GMX_RX_ADR_CAM2 0x190
#define AGL_GMX_RX_ADR_CAM3 0x198
#define AGL_GMX_RX_ADR_CAM4 0x1a0
#define AGL_GMX_RX_ADR_CAM5 0x1a8
#define AGL_GMX_TX_CLK 0x208
#define AGL_GMX_TX_STATS_CTL 0x268
#define AGL_GMX_TX_CTL 0x270
#define AGL_GMX_TX_STAT0 0x280
#define AGL_GMX_TX_STAT1 0x288
#define AGL_GMX_TX_STAT2 0x290
#define AGL_GMX_TX_STAT3 0x298
#define AGL_GMX_TX_STAT4 0x2a0
#define AGL_GMX_TX_STAT5 0x2a8
#define AGL_GMX_TX_STAT6 0x2b0
#define AGL_GMX_TX_STAT7 0x2b8
#define AGL_GMX_TX_STAT8 0x2c0
#define AGL_GMX_TX_STAT9 0x2c8
struct octeon_mgmt {
struct net_device *netdev;
u64 mix;
u64 agl;
u64 agl_prt_ctl;
int port;
int irq;
bool has_rx_tstamp;
u64 *tx_ring;
dma_addr_t tx_ring_handle;
unsigned int tx_next;
unsigned int tx_next_clean;
unsigned int tx_current_fill;
/* The tx_list lock also protects the ring related variables */
struct sk_buff_head tx_list;
/* RX variables only touched in napi_poll. No locking necessary. */
u64 *rx_ring;
dma_addr_t rx_ring_handle;
unsigned int rx_next;
unsigned int rx_next_fill;
unsigned int rx_current_fill;
struct sk_buff_head rx_list;
spinlock_t lock;
unsigned int last_duplex;
unsigned int last_link;
unsigned int last_speed;
struct device *dev;
struct napi_struct napi;
struct tasklet_struct tx_clean_tasklet;
struct device_node *phy_np;
resource_size_t mix_phys;
resource_size_t mix_size;
resource_size_t agl_phys;
resource_size_t agl_size;
resource_size_t agl_prt_ctl_phys;
resource_size_t agl_prt_ctl_size;
};
static void octeon_mgmt_set_rx_irq(struct octeon_mgmt *p, int enable)
{
union cvmx_mixx_intena mix_intena;
unsigned long flags;
spin_lock_irqsave(&p->lock, flags);
mix_intena.u64 = cvmx_read_csr(p->mix + MIX_INTENA);
mix_intena.s.ithena = enable ? 1 : 0;
cvmx_write_csr(p->mix + MIX_INTENA, mix_intena.u64);
spin_unlock_irqrestore(&p->lock, flags);
}
static void octeon_mgmt_set_tx_irq(struct octeon_mgmt *p, int enable)
{
union cvmx_mixx_intena mix_intena;
unsigned long flags;
spin_lock_irqsave(&p->lock, flags);
mix_intena.u64 = cvmx_read_csr(p->mix + MIX_INTENA);
mix_intena.s.othena = enable ? 1 : 0;
cvmx_write_csr(p->mix + MIX_INTENA, mix_intena.u64);
spin_unlock_irqrestore(&p->lock, flags);
}
static void octeon_mgmt_enable_rx_irq(struct octeon_mgmt *p)
{
octeon_mgmt_set_rx_irq(p, 1);
}
static void octeon_mgmt_disable_rx_irq(struct octeon_mgmt *p)
{
octeon_mgmt_set_rx_irq(p, 0);
}
static void octeon_mgmt_enable_tx_irq(struct octeon_mgmt *p)
{
octeon_mgmt_set_tx_irq(p, 1);
}
static void octeon_mgmt_disable_tx_irq(struct octeon_mgmt *p)
{
octeon_mgmt_set_tx_irq(p, 0);
}
static unsigned int ring_max_fill(unsigned int ring_size)
{
return ring_size - 8;
}
static unsigned int ring_size_to_bytes(unsigned int ring_size)
{
return ring_size * sizeof(union mgmt_port_ring_entry);
}
static void octeon_mgmt_rx_fill_ring(struct net_device *netdev)
{
struct octeon_mgmt *p = netdev_priv(netdev);
while (p->rx_current_fill < ring_max_fill(OCTEON_MGMT_RX_RING_SIZE)) {
unsigned int size;
union mgmt_port_ring_entry re;
struct sk_buff *skb;
/* CN56XX pass 1 needs 8 bytes of padding. */
size = netdev->mtu + OCTEON_MGMT_RX_HEADROOM + 8 + NET_IP_ALIGN;
skb = netdev_alloc_skb(netdev, size);
if (!skb)
break;
skb_reserve(skb, NET_IP_ALIGN);
__skb_queue_tail(&p->rx_list, skb);
re.d64 = 0;
re.s.len = size;
re.s.addr = dma_map_single(p->dev, skb->data,
size,
DMA_FROM_DEVICE);
/* Put it in the ring. */
p->rx_ring[p->rx_next_fill] = re.d64;
dma_sync_single_for_device(p->dev, p->rx_ring_handle,
ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE),
DMA_BIDIRECTIONAL);
p->rx_next_fill =
(p->rx_next_fill + 1) % OCTEON_MGMT_RX_RING_SIZE;
p->rx_current_fill++;
/* Ring the bell. */
cvmx_write_csr(p->mix + MIX_IRING2, 1);
}
}
static void octeon_mgmt_clean_tx_buffers(struct octeon_mgmt *p)
{
union cvmx_mixx_orcnt mix_orcnt;
union mgmt_port_ring_entry re;
struct sk_buff *skb;
int cleaned = 0;
unsigned long flags;
mix_orcnt.u64 = cvmx_read_csr(p->mix + MIX_ORCNT);
while (mix_orcnt.s.orcnt) {
spin_lock_irqsave(&p->tx_list.lock, flags);
mix_orcnt.u64 = cvmx_read_csr(p->mix + MIX_ORCNT);
if (mix_orcnt.s.orcnt == 0) {
spin_unlock_irqrestore(&p->tx_list.lock, flags);
break;
}
dma_sync_single_for_cpu(p->dev, p->tx_ring_handle,
ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE),
DMA_BIDIRECTIONAL);
re.d64 = p->tx_ring[p->tx_next_clean];
p->tx_next_clean =
(p->tx_next_clean + 1) % OCTEON_MGMT_TX_RING_SIZE;
skb = __skb_dequeue(&p->tx_list);
mix_orcnt.u64 = 0;
mix_orcnt.s.orcnt = 1;
/* Acknowledge to hardware that we have the buffer. */
cvmx_write_csr(p->mix + MIX_ORCNT, mix_orcnt.u64);
p->tx_current_fill--;
spin_unlock_irqrestore(&p->tx_list.lock, flags);
dma_unmap_single(p->dev, re.s.addr, re.s.len,
DMA_TO_DEVICE);
/* Read the hardware TX timestamp if one was recorded */
if (unlikely(re.s.tstamp)) {
struct skb_shared_hwtstamps ts;
u64 ns;
memset(&ts, 0, sizeof(ts));
/* Read the timestamp */
ns = cvmx_read_csr(CVMX_MIXX_TSTAMP(p->port));
/* Remove the timestamp from the FIFO */
cvmx_write_csr(CVMX_MIXX_TSCTL(p->port), 0);
/* Tell the kernel about the timestamp */
ts.hwtstamp = ns_to_ktime(ns);
skb_tstamp_tx(skb, &ts);
}
dev_kfree_skb_any(skb);
cleaned++;
mix_orcnt.u64 = cvmx_read_csr(p->mix + MIX_ORCNT);
}
if (cleaned && netif_queue_stopped(p->netdev))
netif_wake_queue(p->netdev);
}
static void octeon_mgmt_clean_tx_tasklet(unsigned long arg)
{
struct octeon_mgmt *p = (struct octeon_mgmt *)arg;
octeon_mgmt_clean_tx_buffers(p);
octeon_mgmt_enable_tx_irq(p);
}
static void octeon_mgmt_update_rx_stats(struct net_device *netdev)
{
struct octeon_mgmt *p = netdev_priv(netdev);
unsigned long flags;
u64 drop, bad;
/* These reads also clear the count registers. */
drop = cvmx_read_csr(p->agl + AGL_GMX_RX_STATS_PKTS_DRP);
bad = cvmx_read_csr(p->agl + AGL_GMX_RX_STATS_PKTS_BAD);
if (drop || bad) {
/* Do an atomic update. */
spin_lock_irqsave(&p->lock, flags);
netdev->stats.rx_errors += bad;
netdev->stats.rx_dropped += drop;
spin_unlock_irqrestore(&p->lock, flags);
}
}
static void octeon_mgmt_update_tx_stats(struct net_device *netdev)
{
struct octeon_mgmt *p = netdev_priv(netdev);
unsigned long flags;
union cvmx_agl_gmx_txx_stat0 s0;
union cvmx_agl_gmx_txx_stat1 s1;
/* These reads also clear the count registers. */
s0.u64 = cvmx_read_csr(p->agl + AGL_GMX_TX_STAT0);
s1.u64 = cvmx_read_csr(p->agl + AGL_GMX_TX_STAT1);
if (s0.s.xsdef || s0.s.xscol || s1.s.scol || s1.s.mcol) {
/* Do an atomic update. */
spin_lock_irqsave(&p->lock, flags);
netdev->stats.tx_errors += s0.s.xsdef + s0.s.xscol;
netdev->stats.collisions += s1.s.scol + s1.s.mcol;
spin_unlock_irqrestore(&p->lock, flags);
}
}
/*
* Dequeue a receive skb and its corresponding ring entry. The ring
* entry is returned, *pskb is updated to point to the skb.
*/
static u64 octeon_mgmt_dequeue_rx_buffer(struct octeon_mgmt *p,
struct sk_buff **pskb)
{
union mgmt_port_ring_entry re;
dma_sync_single_for_cpu(p->dev, p->rx_ring_handle,
ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE),
DMA_BIDIRECTIONAL);
re.d64 = p->rx_ring[p->rx_next];
p->rx_next = (p->rx_next + 1) % OCTEON_MGMT_RX_RING_SIZE;
p->rx_current_fill--;
*pskb = __skb_dequeue(&p->rx_list);
dma_unmap_single(p->dev, re.s.addr,
ETH_FRAME_LEN + OCTEON_MGMT_RX_HEADROOM,
DMA_FROM_DEVICE);
return re.d64;
}
static int octeon_mgmt_receive_one(struct octeon_mgmt *p)
{
struct net_device *netdev = p->netdev;
union cvmx_mixx_ircnt mix_ircnt;
union mgmt_port_ring_entry re;
struct sk_buff *skb;
struct sk_buff *skb2;
struct sk_buff *skb_new;
union mgmt_port_ring_entry re2;
int rc = 1;
re.d64 = octeon_mgmt_dequeue_rx_buffer(p, &skb);
if (likely(re.s.code == RING_ENTRY_CODE_DONE)) {
/* A good packet, send it up. */
skb_put(skb, re.s.len);
good:
/* Process the RX timestamp if it was recorded */
if (p->has_rx_tstamp) {
/* The first 8 bytes are the timestamp */
u64 ns = *(u64 *)skb->data;
struct skb_shared_hwtstamps *ts;
ts = skb_hwtstamps(skb);
ts->hwtstamp = ns_to_ktime(ns);
__skb_pull(skb, 8);
}
skb->protocol = eth_type_trans(skb, netdev);
netdev->stats.rx_packets++;
netdev->stats.rx_bytes += skb->len;
netif_receive_skb(skb);
rc = 0;
} else if (re.s.code == RING_ENTRY_CODE_MORE) {
/* Packet split across skbs. This can happen if we
* increase the MTU. Buffers that are already in the
* rx ring can then end up being too small. As the rx
* ring is refilled, buffers sized for the new MTU
* will be used and we should go back to the normal
* non-split case.
*/
skb_put(skb, re.s.len);
do {
re2.d64 = octeon_mgmt_dequeue_rx_buffer(p, &skb2);
if (re2.s.code != RING_ENTRY_CODE_MORE
&& re2.s.code != RING_ENTRY_CODE_DONE)
goto split_error;
skb_put(skb2, re2.s.len);
skb_new = skb_copy_expand(skb, 0, skb2->len,
GFP_ATOMIC);
if (!skb_new)
goto split_error;
if (skb_copy_bits(skb2, 0, skb_tail_pointer(skb_new),
skb2->len))
goto split_error;
skb_put(skb_new, skb2->len);
dev_kfree_skb_any(skb);
dev_kfree_skb_any(skb2);
skb = skb_new;
} while (re2.s.code == RING_ENTRY_CODE_MORE);
goto good;
} else {
/* Some other error, discard it. */
dev_kfree_skb_any(skb);
/* Error statistics are accumulated in
* octeon_mgmt_update_rx_stats.
*/
}
goto done;
split_error:
/* Discard the whole mess. */
dev_kfree_skb_any(skb);
dev_kfree_skb_any(skb2);
while (re2.s.code == RING_ENTRY_CODE_MORE) {
re2.d64 = octeon_mgmt_dequeue_rx_buffer(p, &skb2);
dev_kfree_skb_any(skb2);
}
netdev->stats.rx_errors++;
done:
/* Tell the hardware we processed a packet. */
mix_ircnt.u64 = 0;
mix_ircnt.s.ircnt = 1;
cvmx_write_csr(p->mix + MIX_IRCNT, mix_ircnt.u64);
return rc;
}
static int octeon_mgmt_receive_packets(struct octeon_mgmt *p, int budget)
{
unsigned int work_done = 0;
union cvmx_mixx_ircnt mix_ircnt;
int rc;
mix_ircnt.u64 = cvmx_read_csr(p->mix + MIX_IRCNT);
while (work_done < budget && mix_ircnt.s.ircnt) {
rc = octeon_mgmt_receive_one(p);
if (!rc)
work_done++;
/* Check for more packets. */
mix_ircnt.u64 = cvmx_read_csr(p->mix + MIX_IRCNT);
}
octeon_mgmt_rx_fill_ring(p->netdev);
return work_done;
}
static int octeon_mgmt_napi_poll(struct napi_struct *napi, int budget)
{
struct octeon_mgmt *p = container_of(napi, struct octeon_mgmt, napi);
struct net_device *netdev = p->netdev;
unsigned int work_done = 0;
work_done = octeon_mgmt_receive_packets(p, budget);
if (work_done < budget) {
/* We stopped because no more packets were available. */
napi_complete_done(napi, work_done);
octeon_mgmt_enable_rx_irq(p);
}
octeon_mgmt_update_rx_stats(netdev);
return work_done;
}
/* Reset the hardware to clean state. */
static void octeon_mgmt_reset_hw(struct octeon_mgmt *p)
{
union cvmx_mixx_ctl mix_ctl;
union cvmx_mixx_bist mix_bist;
union cvmx_agl_gmx_bist agl_gmx_bist;
mix_ctl.u64 = 0;
cvmx_write_csr(p->mix + MIX_CTL, mix_ctl.u64);
do {
mix_ctl.u64 = cvmx_read_csr(p->mix + MIX_CTL);
} while (mix_ctl.s.busy);
mix_ctl.s.reset = 1;
cvmx_write_csr(p->mix + MIX_CTL, mix_ctl.u64);
cvmx_read_csr(p->mix + MIX_CTL);
octeon_io_clk_delay(64);
mix_bist.u64 = cvmx_read_csr(p->mix + MIX_BIST);
if (mix_bist.u64)
dev_warn(p->dev, "MIX failed BIST (0x%016llx)\n",
(unsigned long long)mix_bist.u64);
agl_gmx_bist.u64 = cvmx_read_csr(CVMX_AGL_GMX_BIST);
if (agl_gmx_bist.u64)
dev_warn(p->dev, "AGL failed BIST (0x%016llx)\n",
(unsigned long long)agl_gmx_bist.u64);
}
struct octeon_mgmt_cam_state {
u64 cam[6];
u64 cam_mask;
int cam_index;
};
static void octeon_mgmt_cam_state_add(struct octeon_mgmt_cam_state *cs,
unsigned char *addr)
{
int i;
for (i = 0; i < 6; i++)
cs->cam[i] |= (u64)addr[i] << (8 * (cs->cam_index));
cs->cam_mask |= (1ULL << cs->cam_index);
cs->cam_index++;
}
static void octeon_mgmt_set_rx_filtering(struct net_device *netdev)
{
struct octeon_mgmt *p = netdev_priv(netdev);
union cvmx_agl_gmx_rxx_adr_ctl adr_ctl;
union cvmx_agl_gmx_prtx_cfg agl_gmx_prtx;
unsigned long flags;
unsigned int prev_packet_enable;
unsigned int cam_mode = 1; /* 1 - Accept on CAM match */
unsigned int multicast_mode = 1; /* 1 - Reject all multicast. */
struct octeon_mgmt_cam_state cam_state;
struct netdev_hw_addr *ha;
int available_cam_entries;
memset(&cam_state, 0, sizeof(cam_state));
if ((netdev->flags & IFF_PROMISC) || netdev->uc.count > 7) {
cam_mode = 0;
available_cam_entries = 8;
} else {
/* One CAM entry for the primary address, leaves seven
* for the secondary addresses.
*/
available_cam_entries = 7 - netdev->uc.count;
}
if (netdev->flags & IFF_MULTICAST) {
if (cam_mode == 0 || (netdev->flags & IFF_ALLMULTI) ||
netdev_mc_count(netdev) > available_cam_entries)
multicast_mode = 2; /* 2 - Accept all multicast. */
else
multicast_mode = 0; /* 0 - Use CAM. */
}
if (cam_mode == 1) {
/* Add primary address. */
octeon_mgmt_cam_state_add(&cam_state, netdev->dev_addr);
netdev_for_each_uc_addr(ha, netdev)
octeon_mgmt_cam_state_add(&cam_state, ha->addr);
}
if (multicast_mode == 0) {
netdev_for_each_mc_addr(ha, netdev)
octeon_mgmt_cam_state_add(&cam_state, ha->addr);
}
spin_lock_irqsave(&p->lock, flags);
/* Disable packet I/O. */
agl_gmx_prtx.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG);
prev_packet_enable = agl_gmx_prtx.s.en;
agl_gmx_prtx.s.en = 0;
cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, agl_gmx_prtx.u64);
adr_ctl.u64 = 0;
adr_ctl.s.cam_mode = cam_mode;
adr_ctl.s.mcst = multicast_mode;
adr_ctl.s.bcst = 1; /* Allow broadcast */
cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CTL, adr_ctl.u64);
cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM0, cam_state.cam[0]);
cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM1, cam_state.cam[1]);
cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM2, cam_state.cam[2]);
cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM3, cam_state.cam[3]);
cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM4, cam_state.cam[4]);
cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM5, cam_state.cam[5]);
cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM_EN, cam_state.cam_mask);
/* Restore packet I/O. */
agl_gmx_prtx.s.en = prev_packet_enable;
cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, agl_gmx_prtx.u64);
spin_unlock_irqrestore(&p->lock, flags);
}
static int octeon_mgmt_set_mac_address(struct net_device *netdev, void *addr)
{
int r = eth_mac_addr(netdev, addr);
if (r)
return r;
octeon_mgmt_set_rx_filtering(netdev);
return 0;
}
static int octeon_mgmt_change_mtu(struct net_device *netdev, int new_mtu)
{
struct octeon_mgmt *p = netdev_priv(netdev);
int max_packet = new_mtu + ETH_HLEN + ETH_FCS_LEN;
netdev->mtu = new_mtu;
/* HW lifts the limit if the frame is VLAN tagged
* (+4 bytes per each tag, up to two tags)
*/
cvmx_write_csr(p->agl + AGL_GMX_RX_FRM_MAX, max_packet);
/* Set the hardware to truncate packets larger than the MTU. The jabber
* register must be set to a multiple of 8 bytes, so round up. JABBER is
* an unconditional limit, so we need to account for two possible VLAN
* tags.
*/
cvmx_write_csr(p->agl + AGL_GMX_RX_JABBER,
(max_packet + 7 + VLAN_HLEN * 2) & 0xfff8);
return 0;
}
static irqreturn_t octeon_mgmt_interrupt(int cpl, void *dev_id)
{
struct net_device *netdev = dev_id;
struct octeon_mgmt *p = netdev_priv(netdev);
union cvmx_mixx_isr mixx_isr;
mixx_isr.u64 = cvmx_read_csr(p->mix + MIX_ISR);
/* Clear any pending interrupts */
cvmx_write_csr(p->mix + MIX_ISR, mixx_isr.u64);
cvmx_read_csr(p->mix + MIX_ISR);
if (mixx_isr.s.irthresh) {
octeon_mgmt_disable_rx_irq(p);
napi_schedule(&p->napi);
}
if (mixx_isr.s.orthresh) {
octeon_mgmt_disable_tx_irq(p);
tasklet_schedule(&p->tx_clean_tasklet);
}
return IRQ_HANDLED;
}
static int octeon_mgmt_ioctl_hwtstamp(struct net_device *netdev,
struct ifreq *rq, int cmd)
{
struct octeon_mgmt *p = netdev_priv(netdev);
struct hwtstamp_config config;
union cvmx_mio_ptp_clock_cfg ptp;
union cvmx_agl_gmx_rxx_frm_ctl rxx_frm_ctl;
bool have_hw_timestamps = false;
if (copy_from_user(&config, rq->ifr_data, sizeof(config)))
return -EFAULT;
if (config.flags) /* reserved for future extensions */
return -EINVAL;
/* Check the status of hardware for tiemstamps */
if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) {
/* Get the current state of the PTP clock */
ptp.u64 = cvmx_read_csr(CVMX_MIO_PTP_CLOCK_CFG);
if (!ptp.s.ext_clk_en) {
/* The clock has not been configured to use an
* external source. Program it to use the main clock
* reference.
*/
u64 clock_comp = (NSEC_PER_SEC << 32) / octeon_get_io_clock_rate();
if (!ptp.s.ptp_en)
cvmx_write_csr(CVMX_MIO_PTP_CLOCK_COMP, clock_comp);
netdev_info(netdev,
"PTP Clock using sclk reference @ %lldHz\n",
(NSEC_PER_SEC << 32) / clock_comp);
} else {
/* The clock is already programmed to use a GPIO */
u64 clock_comp = cvmx_read_csr(CVMX_MIO_PTP_CLOCK_COMP);
netdev_info(netdev,
"PTP Clock using GPIO%d @ %lld Hz\n",
ptp.s.ext_clk_in, (NSEC_PER_SEC << 32) / clock_comp);
}
/* Enable the clock if it wasn't done already */
if (!ptp.s.ptp_en) {
ptp.s.ptp_en = 1;
cvmx_write_csr(CVMX_MIO_PTP_CLOCK_CFG, ptp.u64);
}
have_hw_timestamps = true;
}
if (!have_hw_timestamps)
return -EINVAL;
switch (config.tx_type) {
case HWTSTAMP_TX_OFF:
case HWTSTAMP_TX_ON:
break;
default:
return -ERANGE;
}
switch (config.rx_filter) {
case HWTSTAMP_FILTER_NONE:
p->has_rx_tstamp = false;
rxx_frm_ctl.u64 = cvmx_read_csr(p->agl + AGL_GMX_RX_FRM_CTL);
rxx_frm_ctl.s.ptp_mode = 0;
cvmx_write_csr(p->agl + AGL_GMX_RX_FRM_CTL, rxx_frm_ctl.u64);
break;
case HWTSTAMP_FILTER_ALL:
case HWTSTAMP_FILTER_SOME:
case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
case HWTSTAMP_FILTER_NTP_ALL:
p->has_rx_tstamp = have_hw_timestamps;
config.rx_filter = HWTSTAMP_FILTER_ALL;
if (p->has_rx_tstamp) {
rxx_frm_ctl.u64 = cvmx_read_csr(p->agl + AGL_GMX_RX_FRM_CTL);
rxx_frm_ctl.s.ptp_mode = 1;
cvmx_write_csr(p->agl + AGL_GMX_RX_FRM_CTL, rxx_frm_ctl.u64);
}
break;
default:
return -ERANGE;
}
if (copy_to_user(rq->ifr_data, &config, sizeof(config)))
return -EFAULT;
return 0;
}
static int octeon_mgmt_ioctl(struct net_device *netdev,
struct ifreq *rq, int cmd)
{
switch (cmd) {
case SIOCSHWTSTAMP:
return octeon_mgmt_ioctl_hwtstamp(netdev, rq, cmd);
default:
if (netdev->phydev)
return phy_mii_ioctl(netdev->phydev, rq, cmd);
return -EINVAL;
}
}
static void octeon_mgmt_disable_link(struct octeon_mgmt *p)
{
union cvmx_agl_gmx_prtx_cfg prtx_cfg;
/* Disable GMX before we make any changes. */
prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG);
prtx_cfg.s.en = 0;
prtx_cfg.s.tx_en = 0;
prtx_cfg.s.rx_en = 0;
cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, prtx_cfg.u64);
if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) {
int i;
for (i = 0; i < 10; i++) {
prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG);
if (prtx_cfg.s.tx_idle == 1 || prtx_cfg.s.rx_idle == 1)
break;
mdelay(1);
i++;
}
}
}
static void octeon_mgmt_enable_link(struct octeon_mgmt *p)
{
union cvmx_agl_gmx_prtx_cfg prtx_cfg;
/* Restore the GMX enable state only if link is set */
prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG);
prtx_cfg.s.tx_en = 1;
prtx_cfg.s.rx_en = 1;
prtx_cfg.s.en = 1;
cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, prtx_cfg.u64);
}
static void octeon_mgmt_update_link(struct octeon_mgmt *p)
{
struct net_device *ndev = p->netdev;
struct phy_device *phydev = ndev->phydev;
union cvmx_agl_gmx_prtx_cfg prtx_cfg;
prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG);
if (!phydev->link)
prtx_cfg.s.duplex = 1;
else
prtx_cfg.s.duplex = phydev->duplex;
switch (phydev->speed) {
case 10:
prtx_cfg.s.speed = 0;
prtx_cfg.s.slottime = 0;
if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) {
prtx_cfg.s.burst = 1;
prtx_cfg.s.speed_msb = 1;
}
break;
case 100:
prtx_cfg.s.speed = 0;
prtx_cfg.s.slottime = 0;
if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) {
prtx_cfg.s.burst = 1;
prtx_cfg.s.speed_msb = 0;
}
break;
case 1000:
/* 1000 MBits is only supported on 6XXX chips */
if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) {
prtx_cfg.s.speed = 1;
prtx_cfg.s.speed_msb = 0;
/* Only matters for half-duplex */
prtx_cfg.s.slottime = 1;
prtx_cfg.s.burst = phydev->duplex;
}
break;
case 0: /* No link */
default:
break;
}
/* Write the new GMX setting with the port still disabled. */
cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, prtx_cfg.u64);
/* Read GMX CFG again to make sure the config is completed. */
prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG);
if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) {
union cvmx_agl_gmx_txx_clk agl_clk;
union cvmx_agl_prtx_ctl prtx_ctl;
prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl);
agl_clk.u64 = cvmx_read_csr(p->agl + AGL_GMX_TX_CLK);
/* MII (both speeds) and RGMII 1000 speed. */
agl_clk.s.clk_cnt = 1;
if (prtx_ctl.s.mode == 0) { /* RGMII mode */
if (phydev->speed == 10)
agl_clk.s.clk_cnt = 50;
else if (phydev->speed == 100)
agl_clk.s.clk_cnt = 5;
}
cvmx_write_csr(p->agl + AGL_GMX_TX_CLK, agl_clk.u64);
}
}
static void octeon_mgmt_adjust_link(struct net_device *netdev)
{
struct octeon_mgmt *p = netdev_priv(netdev);
struct phy_device *phydev = netdev->phydev;
unsigned long flags;
int link_changed = 0;
if (!phydev)
return;
spin_lock_irqsave(&p->lock, flags);
if (!phydev->link && p->last_link)
link_changed = -1;
if (phydev->link &&
(p->last_duplex != phydev->duplex ||
p->last_link != phydev->link ||
p->last_speed != phydev->speed)) {
octeon_mgmt_disable_link(p);
link_changed = 1;
octeon_mgmt_update_link(p);
octeon_mgmt_enable_link(p);
}
p->last_link = phydev->link;
p->last_speed = phydev->speed;
p->last_duplex = phydev->duplex;
spin_unlock_irqrestore(&p->lock, flags);
if (link_changed != 0) {
if (link_changed > 0)
netdev_info(netdev, "Link is up - %d/%s\n",
phydev->speed, phydev->duplex == DUPLEX_FULL ? "Full" : "Half");
else
netdev_info(netdev, "Link is down\n");
}
}
static int octeon_mgmt_init_phy(struct net_device *netdev)
{
struct octeon_mgmt *p = netdev_priv(netdev);
struct phy_device *phydev = NULL;
if (octeon_is_simulation() || p->phy_np == NULL) {
/* No PHYs in the simulator. */
netif_carrier_on(netdev);
return 0;
}
phydev = of_phy_connect(netdev, p->phy_np,
octeon_mgmt_adjust_link, 0,
PHY_INTERFACE_MODE_MII);
if (!phydev)
return -ENODEV;
return 0;
}
static int octeon_mgmt_open(struct net_device *netdev)
{
struct octeon_mgmt *p = netdev_priv(netdev);
union cvmx_mixx_ctl mix_ctl;
union cvmx_agl_gmx_inf_mode agl_gmx_inf_mode;
union cvmx_mixx_oring1 oring1;
union cvmx_mixx_iring1 iring1;
union cvmx_agl_gmx_rxx_frm_ctl rxx_frm_ctl;
union cvmx_mixx_irhwm mix_irhwm;
union cvmx_mixx_orhwm mix_orhwm;
union cvmx_mixx_intena mix_intena;
struct sockaddr sa;
/* Allocate ring buffers. */
p->tx_ring = kzalloc(ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE),
GFP_KERNEL);
if (!p->tx_ring)
return -ENOMEM;
p->tx_ring_handle =
dma_map_single(p->dev, p->tx_ring,
ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE),
DMA_BIDIRECTIONAL);
p->tx_next = 0;
p->tx_next_clean = 0;
p->tx_current_fill = 0;
p->rx_ring = kzalloc(ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE),
GFP_KERNEL);
if (!p->rx_ring)
goto err_nomem;
p->rx_ring_handle =
dma_map_single(p->dev, p->rx_ring,
ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE),
DMA_BIDIRECTIONAL);
p->rx_next = 0;
p->rx_next_fill = 0;
p->rx_current_fill = 0;
octeon_mgmt_reset_hw(p);
mix_ctl.u64 = cvmx_read_csr(p->mix + MIX_CTL);
/* Bring it out of reset if needed. */
if (mix_ctl.s.reset) {
mix_ctl.s.reset = 0;
cvmx_write_csr(p->mix + MIX_CTL, mix_ctl.u64);
do {
mix_ctl.u64 = cvmx_read_csr(p->mix + MIX_CTL);
} while (mix_ctl.s.reset);
}
if (OCTEON_IS_MODEL(OCTEON_CN5XXX)) {
agl_gmx_inf_mode.u64 = 0;
agl_gmx_inf_mode.s.en = 1;
cvmx_write_csr(CVMX_AGL_GMX_INF_MODE, agl_gmx_inf_mode.u64);
}
if (OCTEON_IS_MODEL(OCTEON_CN56XX_PASS1_X)
|| OCTEON_IS_MODEL(OCTEON_CN52XX_PASS1_X)) {
/* Force compensation values, as they are not
* determined properly by HW
*/
union cvmx_agl_gmx_drv_ctl drv_ctl;
drv_ctl.u64 = cvmx_read_csr(CVMX_AGL_GMX_DRV_CTL);
if (p->port) {
drv_ctl.s.byp_en1 = 1;
drv_ctl.s.nctl1 = 6;
drv_ctl.s.pctl1 = 6;
} else {
drv_ctl.s.byp_en = 1;
drv_ctl.s.nctl = 6;
drv_ctl.s.pctl = 6;
}
cvmx_write_csr(CVMX_AGL_GMX_DRV_CTL, drv_ctl.u64);
}
oring1.u64 = 0;
oring1.s.obase = p->tx_ring_handle >> 3;
oring1.s.osize = OCTEON_MGMT_TX_RING_SIZE;
cvmx_write_csr(p->mix + MIX_ORING1, oring1.u64);
iring1.u64 = 0;
iring1.s.ibase = p->rx_ring_handle >> 3;
iring1.s.isize = OCTEON_MGMT_RX_RING_SIZE;
cvmx_write_csr(p->mix + MIX_IRING1, iring1.u64);
memcpy(sa.sa_data, netdev->dev_addr, ETH_ALEN);
octeon_mgmt_set_mac_address(netdev, &sa);
octeon_mgmt_change_mtu(netdev, netdev->mtu);
/* Enable the port HW. Packets are not allowed until
* cvmx_mgmt_port_enable() is called.
*/
mix_ctl.u64 = 0;
mix_ctl.s.crc_strip = 1; /* Strip the ending CRC */
mix_ctl.s.en = 1; /* Enable the port */
mix_ctl.s.nbtarb = 0; /* Arbitration mode */
/* MII CB-request FIFO programmable high watermark */
mix_ctl.s.mrq_hwm = 1;
#ifdef __LITTLE_ENDIAN
mix_ctl.s.lendian = 1;
#endif
cvmx_write_csr(p->mix + MIX_CTL, mix_ctl.u64);
/* Read the PHY to find the mode of the interface. */
if (octeon_mgmt_init_phy(netdev)) {
dev_err(p->dev, "Cannot initialize PHY on MIX%d.\n", p->port);
goto err_noirq;
}
/* Set the mode of the interface, RGMII/MII. */
if (OCTEON_IS_MODEL(OCTEON_CN6XXX) && netdev->phydev) {
union cvmx_agl_prtx_ctl agl_prtx_ctl;
int rgmii_mode =
(linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
netdev->phydev->supported) |
linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
netdev->phydev->supported)) != 0;
agl_prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl);
agl_prtx_ctl.s.mode = rgmii_mode ? 0 : 1;
cvmx_write_csr(p->agl_prt_ctl, agl_prtx_ctl.u64);
/* MII clocks counts are based on the 125Mhz
* reference, which has an 8nS period. So our delays
* need to be multiplied by this factor.
*/
#define NS_PER_PHY_CLK 8
/* Take the DLL and clock tree out of reset */
agl_prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl);
agl_prtx_ctl.s.clkrst = 0;
if (rgmii_mode) {
agl_prtx_ctl.s.dllrst = 0;
agl_prtx_ctl.s.clktx_byp = 0;
}
cvmx_write_csr(p->agl_prt_ctl, agl_prtx_ctl.u64);
cvmx_read_csr(p->agl_prt_ctl); /* Force write out before wait */
/* Wait for the DLL to lock. External 125 MHz
* reference clock must be stable at this point.
*/
ndelay(256 * NS_PER_PHY_CLK);
/* Enable the interface */
agl_prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl);
agl_prtx_ctl.s.enable = 1;
cvmx_write_csr(p->agl_prt_ctl, agl_prtx_ctl.u64);
/* Read the value back to force the previous write */
agl_prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl);
/* Enable the compensation controller */
agl_prtx_ctl.s.comp = 1;
agl_prtx_ctl.s.drv_byp = 0;
cvmx_write_csr(p->agl_prt_ctl, agl_prtx_ctl.u64);
/* Force write out before wait. */
cvmx_read_csr(p->agl_prt_ctl);
/* For compensation state to lock. */
ndelay(1040 * NS_PER_PHY_CLK);
/* Default Interframe Gaps are too small. Recommended
* workaround is.
*
* AGL_GMX_TX_IFG[IFG1]=14
* AGL_GMX_TX_IFG[IFG2]=10
*/
cvmx_write_csr(CVMX_AGL_GMX_TX_IFG, 0xae);
}
octeon_mgmt_rx_fill_ring(netdev);
/* Clear statistics. */
/* Clear on read. */
cvmx_write_csr(p->agl + AGL_GMX_RX_STATS_CTL, 1);
cvmx_write_csr(p->agl + AGL_GMX_RX_STATS_PKTS_DRP, 0);
cvmx_write_csr(p->agl + AGL_GMX_RX_STATS_PKTS_BAD, 0);
cvmx_write_csr(p->agl + AGL_GMX_TX_STATS_CTL, 1);
cvmx_write_csr(p->agl + AGL_GMX_TX_STAT0, 0);
cvmx_write_csr(p->agl + AGL_GMX_TX_STAT1, 0);
/* Clear any pending interrupts */
cvmx_write_csr(p->mix + MIX_ISR, cvmx_read_csr(p->mix + MIX_ISR));
if (request_irq(p->irq, octeon_mgmt_interrupt, 0, netdev->name,
netdev)) {
dev_err(p->dev, "request_irq(%d) failed.\n", p->irq);
goto err_noirq;
}
/* Interrupt every single RX packet */
mix_irhwm.u64 = 0;
mix_irhwm.s.irhwm = 0;
cvmx_write_csr(p->mix + MIX_IRHWM, mix_irhwm.u64);
/* Interrupt when we have 1 or more packets to clean. */
mix_orhwm.u64 = 0;
mix_orhwm.s.orhwm = 0;
cvmx_write_csr(p->mix + MIX_ORHWM, mix_orhwm.u64);
/* Enable receive and transmit interrupts */
mix_intena.u64 = 0;
mix_intena.s.ithena = 1;
mix_intena.s.othena = 1;
cvmx_write_csr(p->mix + MIX_INTENA, mix_intena.u64);
/* Enable packet I/O. */
rxx_frm_ctl.u64 = 0;
rxx_frm_ctl.s.ptp_mode = p->has_rx_tstamp ? 1 : 0;
rxx_frm_ctl.s.pre_align = 1;
/* When set, disables the length check for non-min sized pkts
* with padding in the client data.
*/
rxx_frm_ctl.s.pad_len = 1;
/* When set, disables the length check for VLAN pkts */
rxx_frm_ctl.s.vlan_len = 1;
/* When set, PREAMBLE checking is less strict */
rxx_frm_ctl.s.pre_free = 1;
/* Control Pause Frames can match station SMAC */
rxx_frm_ctl.s.ctl_smac = 0;
/* Control Pause Frames can match globally assign Multicast address */
rxx_frm_ctl.s.ctl_mcst = 1;
/* Forward pause information to TX block */
rxx_frm_ctl.s.ctl_bck = 1;
/* Drop Control Pause Frames */
rxx_frm_ctl.s.ctl_drp = 1;
/* Strip off the preamble */
rxx_frm_ctl.s.pre_strp = 1;
/* This port is configured to send PREAMBLE+SFD to begin every
* frame. GMX checks that the PREAMBLE is sent correctly.
*/
rxx_frm_ctl.s.pre_chk = 1;
cvmx_write_csr(p->agl + AGL_GMX_RX_FRM_CTL, rxx_frm_ctl.u64);
/* Configure the port duplex, speed and enables */
octeon_mgmt_disable_link(p);
if (netdev->phydev)
octeon_mgmt_update_link(p);
octeon_mgmt_enable_link(p);
p->last_link = 0;
p->last_speed = 0;
/* PHY is not present in simulator. The carrier is enabled
* while initializing the phy for simulator, leave it enabled.
*/
if (netdev->phydev) {
netif_carrier_off(netdev);
phy_start_aneg(netdev->phydev);
}
netif_wake_queue(netdev);
napi_enable(&p->napi);
return 0;
err_noirq:
octeon_mgmt_reset_hw(p);
dma_unmap_single(p->dev, p->rx_ring_handle,
ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE),
DMA_BIDIRECTIONAL);
kfree(p->rx_ring);
err_nomem:
dma_unmap_single(p->dev, p->tx_ring_handle,
ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE),
DMA_BIDIRECTIONAL);
kfree(p->tx_ring);
return -ENOMEM;
}
static int octeon_mgmt_stop(struct net_device *netdev)
{
struct octeon_mgmt *p = netdev_priv(netdev);
napi_disable(&p->napi);
netif_stop_queue(netdev);
if (netdev->phydev)
phy_disconnect(netdev->phydev);
netif_carrier_off(netdev);
octeon_mgmt_reset_hw(p);
free_irq(p->irq, netdev);
/* dma_unmap is a nop on Octeon, so just free everything. */
skb_queue_purge(&p->tx_list);
skb_queue_purge(&p->rx_list);
dma_unmap_single(p->dev, p->rx_ring_handle,
ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE),
DMA_BIDIRECTIONAL);
kfree(p->rx_ring);
dma_unmap_single(p->dev, p->tx_ring_handle,
ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE),
DMA_BIDIRECTIONAL);
kfree(p->tx_ring);
return 0;
}
static netdev_tx_t
octeon_mgmt_xmit(struct sk_buff *skb, struct net_device *netdev)
{
struct octeon_mgmt *p = netdev_priv(netdev);
union mgmt_port_ring_entry re;
unsigned long flags;
netdev_tx_t rv = NETDEV_TX_BUSY;
re.d64 = 0;
re.s.tstamp = ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) != 0);
re.s.len = skb->len;
re.s.addr = dma_map_single(p->dev, skb->data,
skb->len,
DMA_TO_DEVICE);
spin_lock_irqsave(&p->tx_list.lock, flags);
if (unlikely(p->tx_current_fill >= ring_max_fill(OCTEON_MGMT_TX_RING_SIZE) - 1)) {
spin_unlock_irqrestore(&p->tx_list.lock, flags);
netif_stop_queue(netdev);
spin_lock_irqsave(&p->tx_list.lock, flags);
}
if (unlikely(p->tx_current_fill >=
ring_max_fill(OCTEON_MGMT_TX_RING_SIZE))) {
spin_unlock_irqrestore(&p->tx_list.lock, flags);
dma_unmap_single(p->dev, re.s.addr, re.s.len,
DMA_TO_DEVICE);
goto out;
}
__skb_queue_tail(&p->tx_list, skb);
/* Put it in the ring. */
p->tx_ring[p->tx_next] = re.d64;
p->tx_next = (p->tx_next + 1) % OCTEON_MGMT_TX_RING_SIZE;
p->tx_current_fill++;
spin_unlock_irqrestore(&p->tx_list.lock, flags);
dma_sync_single_for_device(p->dev, p->tx_ring_handle,
ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE),
DMA_BIDIRECTIONAL);
netdev->stats.tx_packets++;
netdev->stats.tx_bytes += skb->len;
/* Ring the bell. */
cvmx_write_csr(p->mix + MIX_ORING2, 1);
netif_trans_update(netdev);
rv = NETDEV_TX_OK;
out:
octeon_mgmt_update_tx_stats(netdev);
return rv;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void octeon_mgmt_poll_controller(struct net_device *netdev)
{
struct octeon_mgmt *p = netdev_priv(netdev);
octeon_mgmt_receive_packets(p, 16);
octeon_mgmt_update_rx_stats(netdev);
}
#endif
static void octeon_mgmt_get_drvinfo(struct net_device *netdev,
struct ethtool_drvinfo *info)
{
strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
strlcpy(info->version, DRV_VERSION, sizeof(info->version));
strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
strlcpy(info->bus_info, "N/A", sizeof(info->bus_info));
}
static int octeon_mgmt_nway_reset(struct net_device *dev)
{
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (dev->phydev)
return phy_start_aneg(dev->phydev);
return -EOPNOTSUPP;
}
static const struct ethtool_ops octeon_mgmt_ethtool_ops = {
.get_drvinfo = octeon_mgmt_get_drvinfo,
.nway_reset = octeon_mgmt_nway_reset,
.get_link = ethtool_op_get_link,
.get_link_ksettings = phy_ethtool_get_link_ksettings,
.set_link_ksettings = phy_ethtool_set_link_ksettings,
};
static const struct net_device_ops octeon_mgmt_ops = {
.ndo_open = octeon_mgmt_open,
.ndo_stop = octeon_mgmt_stop,
.ndo_start_xmit = octeon_mgmt_xmit,
.ndo_set_rx_mode = octeon_mgmt_set_rx_filtering,
.ndo_set_mac_address = octeon_mgmt_set_mac_address,
.ndo_do_ioctl = octeon_mgmt_ioctl,
.ndo_change_mtu = octeon_mgmt_change_mtu,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = octeon_mgmt_poll_controller,
#endif
};
static int octeon_mgmt_probe(struct platform_device *pdev)
{
struct net_device *netdev;
struct octeon_mgmt *p;
const __be32 *data;
const u8 *mac;
struct resource *res_mix;
struct resource *res_agl;
struct resource *res_agl_prt_ctl;
int len;
int result;
netdev = alloc_etherdev(sizeof(struct octeon_mgmt));
if (netdev == NULL)
return -ENOMEM;
SET_NETDEV_DEV(netdev, &pdev->dev);
platform_set_drvdata(pdev, netdev);
p = netdev_priv(netdev);
netif_napi_add(netdev, &p->napi, octeon_mgmt_napi_poll,
OCTEON_MGMT_NAPI_WEIGHT);
p->netdev = netdev;
p->dev = &pdev->dev;
p->has_rx_tstamp = false;
data = of_get_property(pdev->dev.of_node, "cell-index", &len);
if (data && len == sizeof(*data)) {
p->port = be32_to_cpup(data);
} else {
dev_err(&pdev->dev, "no 'cell-index' property\n");
result = -ENXIO;
goto err;
}
snprintf(netdev->name, IFNAMSIZ, "mgmt%d", p->port);
result = platform_get_irq(pdev, 0);
if (result < 0)
goto err;
p->irq = result;
res_mix = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (res_mix == NULL) {
dev_err(&pdev->dev, "no 'reg' resource\n");
result = -ENXIO;
goto err;
}
res_agl = platform_get_resource(pdev, IORESOURCE_MEM, 1);
if (res_agl == NULL) {
dev_err(&pdev->dev, "no 'reg' resource\n");
result = -ENXIO;
goto err;
}
res_agl_prt_ctl = platform_get_resource(pdev, IORESOURCE_MEM, 3);
if (res_agl_prt_ctl == NULL) {
dev_err(&pdev->dev, "no 'reg' resource\n");
result = -ENXIO;
goto err;
}
p->mix_phys = res_mix->start;
p->mix_size = resource_size(res_mix);
p->agl_phys = res_agl->start;
p->agl_size = resource_size(res_agl);
p->agl_prt_ctl_phys = res_agl_prt_ctl->start;
p->agl_prt_ctl_size = resource_size(res_agl_prt_ctl);
if (!devm_request_mem_region(&pdev->dev, p->mix_phys, p->mix_size,
res_mix->name)) {
dev_err(&pdev->dev, "request_mem_region (%s) failed\n",
res_mix->name);
result = -ENXIO;
goto err;
}
if (!devm_request_mem_region(&pdev->dev, p->agl_phys, p->agl_size,
res_agl->name)) {
result = -ENXIO;
dev_err(&pdev->dev, "request_mem_region (%s) failed\n",
res_agl->name);
goto err;
}
if (!devm_request_mem_region(&pdev->dev, p->agl_prt_ctl_phys,
p->agl_prt_ctl_size, res_agl_prt_ctl->name)) {
result = -ENXIO;
dev_err(&pdev->dev, "request_mem_region (%s) failed\n",
res_agl_prt_ctl->name);
goto err;
}
p->mix = (u64)devm_ioremap(&pdev->dev, p->mix_phys, p->mix_size);
p->agl = (u64)devm_ioremap(&pdev->dev, p->agl_phys, p->agl_size);
p->agl_prt_ctl = (u64)devm_ioremap(&pdev->dev, p->agl_prt_ctl_phys,
p->agl_prt_ctl_size);
if (!p->mix || !p->agl || !p->agl_prt_ctl) {
dev_err(&pdev->dev, "failed to map I/O memory\n");
result = -ENOMEM;
goto err;
}
spin_lock_init(&p->lock);
skb_queue_head_init(&p->tx_list);
skb_queue_head_init(&p->rx_list);
tasklet_init(&p->tx_clean_tasklet,
octeon_mgmt_clean_tx_tasklet, (unsigned long)p);
netdev->priv_flags |= IFF_UNICAST_FLT;
netdev->netdev_ops = &octeon_mgmt_ops;
netdev->ethtool_ops = &octeon_mgmt_ethtool_ops;
netdev->min_mtu = 64 - OCTEON_MGMT_RX_HEADROOM;
netdev->max_mtu = 16383 - OCTEON_MGMT_RX_HEADROOM;
mac = of_get_mac_address(pdev->dev.of_node);
if (mac)
memcpy(netdev->dev_addr, mac, ETH_ALEN);
else
eth_hw_addr_random(netdev);
p->phy_np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
result = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
if (result)
goto err;
netif_carrier_off(netdev);
result = register_netdev(netdev);
if (result)
goto err;
dev_info(&pdev->dev, "Version " DRV_VERSION "\n");
return 0;
err:
of_node_put(p->phy_np);
free_netdev(netdev);
return result;
}
static int octeon_mgmt_remove(struct platform_device *pdev)
{
struct net_device *netdev = platform_get_drvdata(pdev);
struct octeon_mgmt *p = netdev_priv(netdev);
unregister_netdev(netdev);
of_node_put(p->phy_np);
free_netdev(netdev);
return 0;
}
static const struct of_device_id octeon_mgmt_match[] = {
{
.compatible = "cavium,octeon-5750-mix",
},
{},
};
MODULE_DEVICE_TABLE(of, octeon_mgmt_match);
static struct platform_driver octeon_mgmt_driver = {
.driver = {
.name = "octeon_mgmt",
.of_match_table = octeon_mgmt_match,
},
.probe = octeon_mgmt_probe,
.remove = octeon_mgmt_remove,
};
extern void octeon_mdiobus_force_mod_depencency(void);
static int __init octeon_mgmt_mod_init(void)
{
/* Force our mdiobus driver module to be loaded first. */
octeon_mdiobus_force_mod_depencency();
return platform_driver_register(&octeon_mgmt_driver);
}
static void __exit octeon_mgmt_mod_exit(void)
{
platform_driver_unregister(&octeon_mgmt_driver);
}
module_init(octeon_mgmt_mod_init);
module_exit(octeon_mgmt_mod_exit);
MODULE_DESCRIPTION(DRV_DESCRIPTION);
MODULE_AUTHOR("David Daney");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);