| /* |
| * Kernel-based Virtual Machine driver for Linux |
| * |
| * This module enables machines with Intel VT-x extensions to run virtual |
| * machines without emulation or binary translation. |
| * |
| * MMU support |
| * |
| * Copyright (C) 2006 Qumranet, Inc. |
| * Copyright 2010 Red Hat, Inc. and/or its affilates. |
| * |
| * Authors: |
| * Yaniv Kamay <yaniv@qumranet.com> |
| * Avi Kivity <avi@qumranet.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2. See |
| * the COPYING file in the top-level directory. |
| * |
| */ |
| |
| #include "mmu.h" |
| #include "x86.h" |
| #include "kvm_cache_regs.h" |
| |
| #include <linux/kvm_host.h> |
| #include <linux/types.h> |
| #include <linux/string.h> |
| #include <linux/mm.h> |
| #include <linux/highmem.h> |
| #include <linux/module.h> |
| #include <linux/swap.h> |
| #include <linux/hugetlb.h> |
| #include <linux/compiler.h> |
| #include <linux/srcu.h> |
| #include <linux/slab.h> |
| #include <linux/uaccess.h> |
| |
| #include <asm/page.h> |
| #include <asm/cmpxchg.h> |
| #include <asm/io.h> |
| #include <asm/vmx.h> |
| |
| /* |
| * When setting this variable to true it enables Two-Dimensional-Paging |
| * where the hardware walks 2 page tables: |
| * 1. the guest-virtual to guest-physical |
| * 2. while doing 1. it walks guest-physical to host-physical |
| * If the hardware supports that we don't need to do shadow paging. |
| */ |
| bool tdp_enabled = false; |
| |
| enum { |
| AUDIT_PRE_PAGE_FAULT, |
| AUDIT_POST_PAGE_FAULT, |
| AUDIT_PRE_PTE_WRITE, |
| AUDIT_POST_PTE_WRITE, |
| AUDIT_PRE_SYNC, |
| AUDIT_POST_SYNC |
| }; |
| |
| char *audit_point_name[] = { |
| "pre page fault", |
| "post page fault", |
| "pre pte write", |
| "post pte write", |
| "pre sync", |
| "post sync" |
| }; |
| |
| #undef MMU_DEBUG |
| |
| #ifdef MMU_DEBUG |
| |
| #define pgprintk(x...) do { if (dbg) printk(x); } while (0) |
| #define rmap_printk(x...) do { if (dbg) printk(x); } while (0) |
| |
| #else |
| |
| #define pgprintk(x...) do { } while (0) |
| #define rmap_printk(x...) do { } while (0) |
| |
| #endif |
| |
| #ifdef MMU_DEBUG |
| static int dbg = 0; |
| module_param(dbg, bool, 0644); |
| #endif |
| |
| static int oos_shadow = 1; |
| module_param(oos_shadow, bool, 0644); |
| |
| #ifndef MMU_DEBUG |
| #define ASSERT(x) do { } while (0) |
| #else |
| #define ASSERT(x) \ |
| if (!(x)) { \ |
| printk(KERN_WARNING "assertion failed %s:%d: %s\n", \ |
| __FILE__, __LINE__, #x); \ |
| } |
| #endif |
| |
| #define PTE_PREFETCH_NUM 8 |
| |
| #define PT_FIRST_AVAIL_BITS_SHIFT 9 |
| #define PT64_SECOND_AVAIL_BITS_SHIFT 52 |
| |
| #define PT64_LEVEL_BITS 9 |
| |
| #define PT64_LEVEL_SHIFT(level) \ |
| (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS) |
| |
| #define PT64_LEVEL_MASK(level) \ |
| (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level)) |
| |
| #define PT64_INDEX(address, level)\ |
| (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1)) |
| |
| |
| #define PT32_LEVEL_BITS 10 |
| |
| #define PT32_LEVEL_SHIFT(level) \ |
| (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS) |
| |
| #define PT32_LEVEL_MASK(level) \ |
| (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level)) |
| #define PT32_LVL_OFFSET_MASK(level) \ |
| (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ |
| * PT32_LEVEL_BITS))) - 1)) |
| |
| #define PT32_INDEX(address, level)\ |
| (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1)) |
| |
| |
| #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)) |
| #define PT64_DIR_BASE_ADDR_MASK \ |
| (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1)) |
| #define PT64_LVL_ADDR_MASK(level) \ |
| (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ |
| * PT64_LEVEL_BITS))) - 1)) |
| #define PT64_LVL_OFFSET_MASK(level) \ |
| (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ |
| * PT64_LEVEL_BITS))) - 1)) |
| |
| #define PT32_BASE_ADDR_MASK PAGE_MASK |
| #define PT32_DIR_BASE_ADDR_MASK \ |
| (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1)) |
| #define PT32_LVL_ADDR_MASK(level) \ |
| (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ |
| * PT32_LEVEL_BITS))) - 1)) |
| |
| #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \ |
| | PT64_NX_MASK) |
| |
| #define RMAP_EXT 4 |
| |
| #define ACC_EXEC_MASK 1 |
| #define ACC_WRITE_MASK PT_WRITABLE_MASK |
| #define ACC_USER_MASK PT_USER_MASK |
| #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK) |
| |
| #include <trace/events/kvm.h> |
| |
| #define CREATE_TRACE_POINTS |
| #include "mmutrace.h" |
| |
| #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT) |
| |
| #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level) |
| |
| struct kvm_rmap_desc { |
| u64 *sptes[RMAP_EXT]; |
| struct kvm_rmap_desc *more; |
| }; |
| |
| struct kvm_shadow_walk_iterator { |
| u64 addr; |
| hpa_t shadow_addr; |
| int level; |
| u64 *sptep; |
| unsigned index; |
| }; |
| |
| #define for_each_shadow_entry(_vcpu, _addr, _walker) \ |
| for (shadow_walk_init(&(_walker), _vcpu, _addr); \ |
| shadow_walk_okay(&(_walker)); \ |
| shadow_walk_next(&(_walker))) |
| |
| typedef void (*mmu_parent_walk_fn) (struct kvm_mmu_page *sp, u64 *spte); |
| |
| static struct kmem_cache *pte_chain_cache; |
| static struct kmem_cache *rmap_desc_cache; |
| static struct kmem_cache *mmu_page_header_cache; |
| static struct percpu_counter kvm_total_used_mmu_pages; |
| |
| static u64 __read_mostly shadow_trap_nonpresent_pte; |
| static u64 __read_mostly shadow_notrap_nonpresent_pte; |
| static u64 __read_mostly shadow_base_present_pte; |
| static u64 __read_mostly shadow_nx_mask; |
| static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */ |
| static u64 __read_mostly shadow_user_mask; |
| static u64 __read_mostly shadow_accessed_mask; |
| static u64 __read_mostly shadow_dirty_mask; |
| |
| static inline u64 rsvd_bits(int s, int e) |
| { |
| return ((1ULL << (e - s + 1)) - 1) << s; |
| } |
| |
| void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte) |
| { |
| shadow_trap_nonpresent_pte = trap_pte; |
| shadow_notrap_nonpresent_pte = notrap_pte; |
| } |
| EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes); |
| |
| void kvm_mmu_set_base_ptes(u64 base_pte) |
| { |
| shadow_base_present_pte = base_pte; |
| } |
| EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes); |
| |
| void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask, |
| u64 dirty_mask, u64 nx_mask, u64 x_mask) |
| { |
| shadow_user_mask = user_mask; |
| shadow_accessed_mask = accessed_mask; |
| shadow_dirty_mask = dirty_mask; |
| shadow_nx_mask = nx_mask; |
| shadow_x_mask = x_mask; |
| } |
| EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes); |
| |
| static bool is_write_protection(struct kvm_vcpu *vcpu) |
| { |
| return kvm_read_cr0_bits(vcpu, X86_CR0_WP); |
| } |
| |
| static int is_cpuid_PSE36(void) |
| { |
| return 1; |
| } |
| |
| static int is_nx(struct kvm_vcpu *vcpu) |
| { |
| return vcpu->arch.efer & EFER_NX; |
| } |
| |
| static int is_shadow_present_pte(u64 pte) |
| { |
| return pte != shadow_trap_nonpresent_pte |
| && pte != shadow_notrap_nonpresent_pte; |
| } |
| |
| static int is_large_pte(u64 pte) |
| { |
| return pte & PT_PAGE_SIZE_MASK; |
| } |
| |
| static int is_writable_pte(unsigned long pte) |
| { |
| return pte & PT_WRITABLE_MASK; |
| } |
| |
| static int is_dirty_gpte(unsigned long pte) |
| { |
| return pte & PT_DIRTY_MASK; |
| } |
| |
| static int is_rmap_spte(u64 pte) |
| { |
| return is_shadow_present_pte(pte); |
| } |
| |
| static int is_last_spte(u64 pte, int level) |
| { |
| if (level == PT_PAGE_TABLE_LEVEL) |
| return 1; |
| if (is_large_pte(pte)) |
| return 1; |
| return 0; |
| } |
| |
| static pfn_t spte_to_pfn(u64 pte) |
| { |
| return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT; |
| } |
| |
| static gfn_t pse36_gfn_delta(u32 gpte) |
| { |
| int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT; |
| |
| return (gpte & PT32_DIR_PSE36_MASK) << shift; |
| } |
| |
| static void __set_spte(u64 *sptep, u64 spte) |
| { |
| set_64bit(sptep, spte); |
| } |
| |
| static u64 __xchg_spte(u64 *sptep, u64 new_spte) |
| { |
| #ifdef CONFIG_X86_64 |
| return xchg(sptep, new_spte); |
| #else |
| u64 old_spte; |
| |
| do { |
| old_spte = *sptep; |
| } while (cmpxchg64(sptep, old_spte, new_spte) != old_spte); |
| |
| return old_spte; |
| #endif |
| } |
| |
| static bool spte_has_volatile_bits(u64 spte) |
| { |
| if (!shadow_accessed_mask) |
| return false; |
| |
| if (!is_shadow_present_pte(spte)) |
| return false; |
| |
| if ((spte & shadow_accessed_mask) && |
| (!is_writable_pte(spte) || (spte & shadow_dirty_mask))) |
| return false; |
| |
| return true; |
| } |
| |
| static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask) |
| { |
| return (old_spte & bit_mask) && !(new_spte & bit_mask); |
| } |
| |
| static void update_spte(u64 *sptep, u64 new_spte) |
| { |
| u64 mask, old_spte = *sptep; |
| |
| WARN_ON(!is_rmap_spte(new_spte)); |
| |
| new_spte |= old_spte & shadow_dirty_mask; |
| |
| mask = shadow_accessed_mask; |
| if (is_writable_pte(old_spte)) |
| mask |= shadow_dirty_mask; |
| |
| if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask) |
| __set_spte(sptep, new_spte); |
| else |
| old_spte = __xchg_spte(sptep, new_spte); |
| |
| if (!shadow_accessed_mask) |
| return; |
| |
| if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask)) |
| kvm_set_pfn_accessed(spte_to_pfn(old_spte)); |
| if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask)) |
| kvm_set_pfn_dirty(spte_to_pfn(old_spte)); |
| } |
| |
| static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache, |
| struct kmem_cache *base_cache, int min) |
| { |
| void *obj; |
| |
| if (cache->nobjs >= min) |
| return 0; |
| while (cache->nobjs < ARRAY_SIZE(cache->objects)) { |
| obj = kmem_cache_zalloc(base_cache, GFP_KERNEL); |
| if (!obj) |
| return -ENOMEM; |
| cache->objects[cache->nobjs++] = obj; |
| } |
| return 0; |
| } |
| |
| static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc, |
| struct kmem_cache *cache) |
| { |
| while (mc->nobjs) |
| kmem_cache_free(cache, mc->objects[--mc->nobjs]); |
| } |
| |
| static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache, |
| int min) |
| { |
| struct page *page; |
| |
| if (cache->nobjs >= min) |
| return 0; |
| while (cache->nobjs < ARRAY_SIZE(cache->objects)) { |
| page = alloc_page(GFP_KERNEL); |
| if (!page) |
| return -ENOMEM; |
| cache->objects[cache->nobjs++] = page_address(page); |
| } |
| return 0; |
| } |
| |
| static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc) |
| { |
| while (mc->nobjs) |
| free_page((unsigned long)mc->objects[--mc->nobjs]); |
| } |
| |
| static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu) |
| { |
| int r; |
| |
| r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache, |
| pte_chain_cache, 4); |
| if (r) |
| goto out; |
| r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache, |
| rmap_desc_cache, 4 + PTE_PREFETCH_NUM); |
| if (r) |
| goto out; |
| r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8); |
| if (r) |
| goto out; |
| r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, |
| mmu_page_header_cache, 4); |
| out: |
| return r; |
| } |
| |
| static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) |
| { |
| mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache, pte_chain_cache); |
| mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache, rmap_desc_cache); |
| mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache); |
| mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache, |
| mmu_page_header_cache); |
| } |
| |
| static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc, |
| size_t size) |
| { |
| void *p; |
| |
| BUG_ON(!mc->nobjs); |
| p = mc->objects[--mc->nobjs]; |
| return p; |
| } |
| |
| static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu) |
| { |
| return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache, |
| sizeof(struct kvm_pte_chain)); |
| } |
| |
| static void mmu_free_pte_chain(struct kvm_pte_chain *pc) |
| { |
| kmem_cache_free(pte_chain_cache, pc); |
| } |
| |
| static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu) |
| { |
| return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache, |
| sizeof(struct kvm_rmap_desc)); |
| } |
| |
| static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd) |
| { |
| kmem_cache_free(rmap_desc_cache, rd); |
| } |
| |
| static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) |
| { |
| if (!sp->role.direct) |
| return sp->gfns[index]; |
| |
| return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS)); |
| } |
| |
| static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn) |
| { |
| if (sp->role.direct) |
| BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index)); |
| else |
| sp->gfns[index] = gfn; |
| } |
| |
| /* |
| * Return the pointer to the largepage write count for a given |
| * gfn, handling slots that are not large page aligned. |
| */ |
| static int *slot_largepage_idx(gfn_t gfn, |
| struct kvm_memory_slot *slot, |
| int level) |
| { |
| unsigned long idx; |
| |
| idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) - |
| (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level)); |
| return &slot->lpage_info[level - 2][idx].write_count; |
| } |
| |
| static void account_shadowed(struct kvm *kvm, gfn_t gfn) |
| { |
| struct kvm_memory_slot *slot; |
| int *write_count; |
| int i; |
| |
| slot = gfn_to_memslot(kvm, gfn); |
| for (i = PT_DIRECTORY_LEVEL; |
| i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) { |
| write_count = slot_largepage_idx(gfn, slot, i); |
| *write_count += 1; |
| } |
| } |
| |
| static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn) |
| { |
| struct kvm_memory_slot *slot; |
| int *write_count; |
| int i; |
| |
| slot = gfn_to_memslot(kvm, gfn); |
| for (i = PT_DIRECTORY_LEVEL; |
| i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) { |
| write_count = slot_largepage_idx(gfn, slot, i); |
| *write_count -= 1; |
| WARN_ON(*write_count < 0); |
| } |
| } |
| |
| static int has_wrprotected_page(struct kvm *kvm, |
| gfn_t gfn, |
| int level) |
| { |
| struct kvm_memory_slot *slot; |
| int *largepage_idx; |
| |
| slot = gfn_to_memslot(kvm, gfn); |
| if (slot) { |
| largepage_idx = slot_largepage_idx(gfn, slot, level); |
| return *largepage_idx; |
| } |
| |
| return 1; |
| } |
| |
| static int host_mapping_level(struct kvm *kvm, gfn_t gfn) |
| { |
| unsigned long page_size; |
| int i, ret = 0; |
| |
| page_size = kvm_host_page_size(kvm, gfn); |
| |
| for (i = PT_PAGE_TABLE_LEVEL; |
| i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) { |
| if (page_size >= KVM_HPAGE_SIZE(i)) |
| ret = i; |
| else |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn) |
| { |
| struct kvm_memory_slot *slot; |
| int host_level, level, max_level; |
| |
| slot = gfn_to_memslot(vcpu->kvm, large_gfn); |
| if (slot && slot->dirty_bitmap) |
| return PT_PAGE_TABLE_LEVEL; |
| |
| host_level = host_mapping_level(vcpu->kvm, large_gfn); |
| |
| if (host_level == PT_PAGE_TABLE_LEVEL) |
| return host_level; |
| |
| max_level = kvm_x86_ops->get_lpage_level() < host_level ? |
| kvm_x86_ops->get_lpage_level() : host_level; |
| |
| for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level) |
| if (has_wrprotected_page(vcpu->kvm, large_gfn, level)) |
| break; |
| |
| return level - 1; |
| } |
| |
| /* |
| * Take gfn and return the reverse mapping to it. |
| */ |
| |
| static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level) |
| { |
| struct kvm_memory_slot *slot; |
| unsigned long idx; |
| |
| slot = gfn_to_memslot(kvm, gfn); |
| if (likely(level == PT_PAGE_TABLE_LEVEL)) |
| return &slot->rmap[gfn - slot->base_gfn]; |
| |
| idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) - |
| (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level)); |
| |
| return &slot->lpage_info[level - 2][idx].rmap_pde; |
| } |
| |
| /* |
| * Reverse mapping data structures: |
| * |
| * If rmapp bit zero is zero, then rmapp point to the shadw page table entry |
| * that points to page_address(page). |
| * |
| * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc |
| * containing more mappings. |
| * |
| * Returns the number of rmap entries before the spte was added or zero if |
| * the spte was not added. |
| * |
| */ |
| static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) |
| { |
| struct kvm_mmu_page *sp; |
| struct kvm_rmap_desc *desc; |
| unsigned long *rmapp; |
| int i, count = 0; |
| |
| if (!is_rmap_spte(*spte)) |
| return count; |
| sp = page_header(__pa(spte)); |
| kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn); |
| rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level); |
| if (!*rmapp) { |
| rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte); |
| *rmapp = (unsigned long)spte; |
| } else if (!(*rmapp & 1)) { |
| rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte); |
| desc = mmu_alloc_rmap_desc(vcpu); |
| desc->sptes[0] = (u64 *)*rmapp; |
| desc->sptes[1] = spte; |
| *rmapp = (unsigned long)desc | 1; |
| ++count; |
| } else { |
| rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte); |
| desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul); |
| while (desc->sptes[RMAP_EXT-1] && desc->more) { |
| desc = desc->more; |
| count += RMAP_EXT; |
| } |
| if (desc->sptes[RMAP_EXT-1]) { |
| desc->more = mmu_alloc_rmap_desc(vcpu); |
| desc = desc->more; |
| } |
| for (i = 0; desc->sptes[i]; ++i) |
| ++count; |
| desc->sptes[i] = spte; |
| } |
| return count; |
| } |
| |
| static void rmap_desc_remove_entry(unsigned long *rmapp, |
| struct kvm_rmap_desc *desc, |
| int i, |
| struct kvm_rmap_desc *prev_desc) |
| { |
| int j; |
| |
| for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j) |
| ; |
| desc->sptes[i] = desc->sptes[j]; |
| desc->sptes[j] = NULL; |
| if (j != 0) |
| return; |
| if (!prev_desc && !desc->more) |
| *rmapp = (unsigned long)desc->sptes[0]; |
| else |
| if (prev_desc) |
| prev_desc->more = desc->more; |
| else |
| *rmapp = (unsigned long)desc->more | 1; |
| mmu_free_rmap_desc(desc); |
| } |
| |
| static void rmap_remove(struct kvm *kvm, u64 *spte) |
| { |
| struct kvm_rmap_desc *desc; |
| struct kvm_rmap_desc *prev_desc; |
| struct kvm_mmu_page *sp; |
| gfn_t gfn; |
| unsigned long *rmapp; |
| int i; |
| |
| sp = page_header(__pa(spte)); |
| gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt); |
| rmapp = gfn_to_rmap(kvm, gfn, sp->role.level); |
| if (!*rmapp) { |
| printk(KERN_ERR "rmap_remove: %p 0->BUG\n", spte); |
| BUG(); |
| } else if (!(*rmapp & 1)) { |
| rmap_printk("rmap_remove: %p 1->0\n", spte); |
| if ((u64 *)*rmapp != spte) { |
| printk(KERN_ERR "rmap_remove: %p 1->BUG\n", spte); |
| BUG(); |
| } |
| *rmapp = 0; |
| } else { |
| rmap_printk("rmap_remove: %p many->many\n", spte); |
| desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul); |
| prev_desc = NULL; |
| while (desc) { |
| for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) |
| if (desc->sptes[i] == spte) { |
| rmap_desc_remove_entry(rmapp, |
| desc, i, |
| prev_desc); |
| return; |
| } |
| prev_desc = desc; |
| desc = desc->more; |
| } |
| pr_err("rmap_remove: %p many->many\n", spte); |
| BUG(); |
| } |
| } |
| |
| static void set_spte_track_bits(u64 *sptep, u64 new_spte) |
| { |
| pfn_t pfn; |
| u64 old_spte = *sptep; |
| |
| if (!spte_has_volatile_bits(old_spte)) |
| __set_spte(sptep, new_spte); |
| else |
| old_spte = __xchg_spte(sptep, new_spte); |
| |
| if (!is_rmap_spte(old_spte)) |
| return; |
| |
| pfn = spte_to_pfn(old_spte); |
| if (!shadow_accessed_mask || old_spte & shadow_accessed_mask) |
| kvm_set_pfn_accessed(pfn); |
| if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask)) |
| kvm_set_pfn_dirty(pfn); |
| } |
| |
| static void drop_spte(struct kvm *kvm, u64 *sptep, u64 new_spte) |
| { |
| set_spte_track_bits(sptep, new_spte); |
| rmap_remove(kvm, sptep); |
| } |
| |
| static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte) |
| { |
| struct kvm_rmap_desc *desc; |
| u64 *prev_spte; |
| int i; |
| |
| if (!*rmapp) |
| return NULL; |
| else if (!(*rmapp & 1)) { |
| if (!spte) |
| return (u64 *)*rmapp; |
| return NULL; |
| } |
| desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul); |
| prev_spte = NULL; |
| while (desc) { |
| for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) { |
| if (prev_spte == spte) |
| return desc->sptes[i]; |
| prev_spte = desc->sptes[i]; |
| } |
| desc = desc->more; |
| } |
| return NULL; |
| } |
| |
| static int rmap_write_protect(struct kvm *kvm, u64 gfn) |
| { |
| unsigned long *rmapp; |
| u64 *spte; |
| int i, write_protected = 0; |
| |
| rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL); |
| |
| spte = rmap_next(kvm, rmapp, NULL); |
| while (spte) { |
| BUG_ON(!spte); |
| BUG_ON(!(*spte & PT_PRESENT_MASK)); |
| rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte); |
| if (is_writable_pte(*spte)) { |
| update_spte(spte, *spte & ~PT_WRITABLE_MASK); |
| write_protected = 1; |
| } |
| spte = rmap_next(kvm, rmapp, spte); |
| } |
| |
| /* check for huge page mappings */ |
| for (i = PT_DIRECTORY_LEVEL; |
| i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) { |
| rmapp = gfn_to_rmap(kvm, gfn, i); |
| spte = rmap_next(kvm, rmapp, NULL); |
| while (spte) { |
| BUG_ON(!spte); |
| BUG_ON(!(*spte & PT_PRESENT_MASK)); |
| BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)); |
| pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn); |
| if (is_writable_pte(*spte)) { |
| drop_spte(kvm, spte, |
| shadow_trap_nonpresent_pte); |
| --kvm->stat.lpages; |
| spte = NULL; |
| write_protected = 1; |
| } |
| spte = rmap_next(kvm, rmapp, spte); |
| } |
| } |
| |
| return write_protected; |
| } |
| |
| static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp, |
| unsigned long data) |
| { |
| u64 *spte; |
| int need_tlb_flush = 0; |
| |
| while ((spte = rmap_next(kvm, rmapp, NULL))) { |
| BUG_ON(!(*spte & PT_PRESENT_MASK)); |
| rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte); |
| drop_spte(kvm, spte, shadow_trap_nonpresent_pte); |
| need_tlb_flush = 1; |
| } |
| return need_tlb_flush; |
| } |
| |
| static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp, |
| unsigned long data) |
| { |
| int need_flush = 0; |
| u64 *spte, new_spte; |
| pte_t *ptep = (pte_t *)data; |
| pfn_t new_pfn; |
| |
| WARN_ON(pte_huge(*ptep)); |
| new_pfn = pte_pfn(*ptep); |
| spte = rmap_next(kvm, rmapp, NULL); |
| while (spte) { |
| BUG_ON(!is_shadow_present_pte(*spte)); |
| rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte); |
| need_flush = 1; |
| if (pte_write(*ptep)) { |
| drop_spte(kvm, spte, shadow_trap_nonpresent_pte); |
| spte = rmap_next(kvm, rmapp, NULL); |
| } else { |
| new_spte = *spte &~ (PT64_BASE_ADDR_MASK); |
| new_spte |= (u64)new_pfn << PAGE_SHIFT; |
| |
| new_spte &= ~PT_WRITABLE_MASK; |
| new_spte &= ~SPTE_HOST_WRITEABLE; |
| new_spte &= ~shadow_accessed_mask; |
| set_spte_track_bits(spte, new_spte); |
| spte = rmap_next(kvm, rmapp, spte); |
| } |
| } |
| if (need_flush) |
| kvm_flush_remote_tlbs(kvm); |
| |
| return 0; |
| } |
| |
| static int kvm_handle_hva(struct kvm *kvm, unsigned long hva, |
| unsigned long data, |
| int (*handler)(struct kvm *kvm, unsigned long *rmapp, |
| unsigned long data)) |
| { |
| int i, j; |
| int ret; |
| int retval = 0; |
| struct kvm_memslots *slots; |
| |
| slots = kvm_memslots(kvm); |
| |
| for (i = 0; i < slots->nmemslots; i++) { |
| struct kvm_memory_slot *memslot = &slots->memslots[i]; |
| unsigned long start = memslot->userspace_addr; |
| unsigned long end; |
| |
| end = start + (memslot->npages << PAGE_SHIFT); |
| if (hva >= start && hva < end) { |
| gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT; |
| |
| ret = handler(kvm, &memslot->rmap[gfn_offset], data); |
| |
| for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) { |
| unsigned long idx; |
| int sh; |
| |
| sh = KVM_HPAGE_GFN_SHIFT(PT_DIRECTORY_LEVEL+j); |
| idx = ((memslot->base_gfn+gfn_offset) >> sh) - |
| (memslot->base_gfn >> sh); |
| ret |= handler(kvm, |
| &memslot->lpage_info[j][idx].rmap_pde, |
| data); |
| } |
| trace_kvm_age_page(hva, memslot, ret); |
| retval |= ret; |
| } |
| } |
| |
| return retval; |
| } |
| |
| int kvm_unmap_hva(struct kvm *kvm, unsigned long hva) |
| { |
| return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp); |
| } |
| |
| void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) |
| { |
| kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp); |
| } |
| |
| static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp, |
| unsigned long data) |
| { |
| u64 *spte; |
| int young = 0; |
| |
| /* |
| * Emulate the accessed bit for EPT, by checking if this page has |
| * an EPT mapping, and clearing it if it does. On the next access, |
| * a new EPT mapping will be established. |
| * This has some overhead, but not as much as the cost of swapping |
| * out actively used pages or breaking up actively used hugepages. |
| */ |
| if (!shadow_accessed_mask) |
| return kvm_unmap_rmapp(kvm, rmapp, data); |
| |
| spte = rmap_next(kvm, rmapp, NULL); |
| while (spte) { |
| int _young; |
| u64 _spte = *spte; |
| BUG_ON(!(_spte & PT_PRESENT_MASK)); |
| _young = _spte & PT_ACCESSED_MASK; |
| if (_young) { |
| young = 1; |
| clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte); |
| } |
| spte = rmap_next(kvm, rmapp, spte); |
| } |
| return young; |
| } |
| |
| #define RMAP_RECYCLE_THRESHOLD 1000 |
| |
| static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) |
| { |
| unsigned long *rmapp; |
| struct kvm_mmu_page *sp; |
| |
| sp = page_header(__pa(spte)); |
| |
| rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level); |
| |
| kvm_unmap_rmapp(vcpu->kvm, rmapp, 0); |
| kvm_flush_remote_tlbs(vcpu->kvm); |
| } |
| |
| int kvm_age_hva(struct kvm *kvm, unsigned long hva) |
| { |
| return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp); |
| } |
| |
| #ifdef MMU_DEBUG |
| static int is_empty_shadow_page(u64 *spt) |
| { |
| u64 *pos; |
| u64 *end; |
| |
| for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++) |
| if (is_shadow_present_pte(*pos)) { |
| printk(KERN_ERR "%s: %p %llx\n", __func__, |
| pos, *pos); |
| return 0; |
| } |
| return 1; |
| } |
| #endif |
| |
| /* |
| * This value is the sum of all of the kvm instances's |
| * kvm->arch.n_used_mmu_pages values. We need a global, |
| * aggregate version in order to make the slab shrinker |
| * faster |
| */ |
| static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr) |
| { |
| kvm->arch.n_used_mmu_pages += nr; |
| percpu_counter_add(&kvm_total_used_mmu_pages, nr); |
| } |
| |
| static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp) |
| { |
| ASSERT(is_empty_shadow_page(sp->spt)); |
| hlist_del(&sp->hash_link); |
| list_del(&sp->link); |
| __free_page(virt_to_page(sp->spt)); |
| if (!sp->role.direct) |
| __free_page(virt_to_page(sp->gfns)); |
| kmem_cache_free(mmu_page_header_cache, sp); |
| kvm_mod_used_mmu_pages(kvm, -1); |
| } |
| |
| static unsigned kvm_page_table_hashfn(gfn_t gfn) |
| { |
| return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1); |
| } |
| |
| static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, |
| u64 *parent_pte, int direct) |
| { |
| struct kvm_mmu_page *sp; |
| |
| sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp); |
| sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE); |
| if (!direct) |
| sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, |
| PAGE_SIZE); |
| set_page_private(virt_to_page(sp->spt), (unsigned long)sp); |
| list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages); |
| bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS); |
| sp->multimapped = 0; |
| sp->parent_pte = parent_pte; |
| kvm_mod_used_mmu_pages(vcpu->kvm, +1); |
| return sp; |
| } |
| |
| static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu, |
| struct kvm_mmu_page *sp, u64 *parent_pte) |
| { |
| struct kvm_pte_chain *pte_chain; |
| struct hlist_node *node; |
| int i; |
| |
| if (!parent_pte) |
| return; |
| if (!sp->multimapped) { |
| u64 *old = sp->parent_pte; |
| |
| if (!old) { |
| sp->parent_pte = parent_pte; |
| return; |
| } |
| sp->multimapped = 1; |
| pte_chain = mmu_alloc_pte_chain(vcpu); |
| INIT_HLIST_HEAD(&sp->parent_ptes); |
| hlist_add_head(&pte_chain->link, &sp->parent_ptes); |
| pte_chain->parent_ptes[0] = old; |
| } |
| hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) { |
| if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1]) |
| continue; |
| for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) |
| if (!pte_chain->parent_ptes[i]) { |
| pte_chain->parent_ptes[i] = parent_pte; |
| return; |
| } |
| } |
| pte_chain = mmu_alloc_pte_chain(vcpu); |
| BUG_ON(!pte_chain); |
| hlist_add_head(&pte_chain->link, &sp->parent_ptes); |
| pte_chain->parent_ptes[0] = parent_pte; |
| } |
| |
| static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp, |
| u64 *parent_pte) |
| { |
| struct kvm_pte_chain *pte_chain; |
| struct hlist_node *node; |
| int i; |
| |
| if (!sp->multimapped) { |
| BUG_ON(sp->parent_pte != parent_pte); |
| sp->parent_pte = NULL; |
| return; |
| } |
| hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) |
| for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) { |
| if (!pte_chain->parent_ptes[i]) |
| break; |
| if (pte_chain->parent_ptes[i] != parent_pte) |
| continue; |
| while (i + 1 < NR_PTE_CHAIN_ENTRIES |
| && pte_chain->parent_ptes[i + 1]) { |
| pte_chain->parent_ptes[i] |
| = pte_chain->parent_ptes[i + 1]; |
| ++i; |
| } |
| pte_chain->parent_ptes[i] = NULL; |
| if (i == 0) { |
| hlist_del(&pte_chain->link); |
| mmu_free_pte_chain(pte_chain); |
| if (hlist_empty(&sp->parent_ptes)) { |
| sp->multimapped = 0; |
| sp->parent_pte = NULL; |
| } |
| } |
| return; |
| } |
| BUG(); |
| } |
| |
| static void mmu_parent_walk(struct kvm_mmu_page *sp, mmu_parent_walk_fn fn) |
| { |
| struct kvm_pte_chain *pte_chain; |
| struct hlist_node *node; |
| struct kvm_mmu_page *parent_sp; |
| int i; |
| |
| if (!sp->multimapped && sp->parent_pte) { |
| parent_sp = page_header(__pa(sp->parent_pte)); |
| fn(parent_sp, sp->parent_pte); |
| return; |
| } |
| |
| hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) |
| for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) { |
| u64 *spte = pte_chain->parent_ptes[i]; |
| |
| if (!spte) |
| break; |
| parent_sp = page_header(__pa(spte)); |
| fn(parent_sp, spte); |
| } |
| } |
| |
| static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte); |
| static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) |
| { |
| mmu_parent_walk(sp, mark_unsync); |
| } |
| |
| static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte) |
| { |
| unsigned int index; |
| |
| index = spte - sp->spt; |
| if (__test_and_set_bit(index, sp->unsync_child_bitmap)) |
| return; |
| if (sp->unsync_children++) |
| return; |
| kvm_mmu_mark_parents_unsync(sp); |
| } |
| |
| static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu, |
| struct kvm_mmu_page *sp) |
| { |
| int i; |
| |
| for (i = 0; i < PT64_ENT_PER_PAGE; ++i) |
| sp->spt[i] = shadow_trap_nonpresent_pte; |
| } |
| |
| static int nonpaging_sync_page(struct kvm_vcpu *vcpu, |
| struct kvm_mmu_page *sp, bool clear_unsync) |
| { |
| return 1; |
| } |
| |
| static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva) |
| { |
| } |
| |
| #define KVM_PAGE_ARRAY_NR 16 |
| |
| struct kvm_mmu_pages { |
| struct mmu_page_and_offset { |
| struct kvm_mmu_page *sp; |
| unsigned int idx; |
| } page[KVM_PAGE_ARRAY_NR]; |
| unsigned int nr; |
| }; |
| |
| #define for_each_unsync_children(bitmap, idx) \ |
| for (idx = find_first_bit(bitmap, 512); \ |
| idx < 512; \ |
| idx = find_next_bit(bitmap, 512, idx+1)) |
| |
| static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, |
| int idx) |
| { |
| int i; |
| |
| if (sp->unsync) |
| for (i=0; i < pvec->nr; i++) |
| if (pvec->page[i].sp == sp) |
| return 0; |
| |
| pvec->page[pvec->nr].sp = sp; |
| pvec->page[pvec->nr].idx = idx; |
| pvec->nr++; |
| return (pvec->nr == KVM_PAGE_ARRAY_NR); |
| } |
| |
| static int __mmu_unsync_walk(struct kvm_mmu_page *sp, |
| struct kvm_mmu_pages *pvec) |
| { |
| int i, ret, nr_unsync_leaf = 0; |
| |
| for_each_unsync_children(sp->unsync_child_bitmap, i) { |
| struct kvm_mmu_page *child; |
| u64 ent = sp->spt[i]; |
| |
| if (!is_shadow_present_pte(ent) || is_large_pte(ent)) |
| goto clear_child_bitmap; |
| |
| child = page_header(ent & PT64_BASE_ADDR_MASK); |
| |
| if (child->unsync_children) { |
| if (mmu_pages_add(pvec, child, i)) |
| return -ENOSPC; |
| |
| ret = __mmu_unsync_walk(child, pvec); |
| if (!ret) |
| goto clear_child_bitmap; |
| else if (ret > 0) |
| nr_unsync_leaf += ret; |
| else |
| return ret; |
| } else if (child->unsync) { |
| nr_unsync_leaf++; |
| if (mmu_pages_add(pvec, child, i)) |
| return -ENOSPC; |
| } else |
| goto clear_child_bitmap; |
| |
| continue; |
| |
| clear_child_bitmap: |
| __clear_bit(i, sp->unsync_child_bitmap); |
| sp->unsync_children--; |
| WARN_ON((int)sp->unsync_children < 0); |
| } |
| |
| |
| return nr_unsync_leaf; |
| } |
| |
| static int mmu_unsync_walk(struct kvm_mmu_page *sp, |
| struct kvm_mmu_pages *pvec) |
| { |
| if (!sp->unsync_children) |
| return 0; |
| |
| mmu_pages_add(pvec, sp, 0); |
| return __mmu_unsync_walk(sp, pvec); |
| } |
| |
| static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) |
| { |
| WARN_ON(!sp->unsync); |
| trace_kvm_mmu_sync_page(sp); |
| sp->unsync = 0; |
| --kvm->stat.mmu_unsync; |
| } |
| |
| static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, |
| struct list_head *invalid_list); |
| static void kvm_mmu_commit_zap_page(struct kvm *kvm, |
| struct list_head *invalid_list); |
| |
| #define for_each_gfn_sp(kvm, sp, gfn, pos) \ |
| hlist_for_each_entry(sp, pos, \ |
| &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \ |
| if ((sp)->gfn != (gfn)) {} else |
| |
| #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \ |
| hlist_for_each_entry(sp, pos, \ |
| &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \ |
| if ((sp)->gfn != (gfn) || (sp)->role.direct || \ |
| (sp)->role.invalid) {} else |
| |
| /* @sp->gfn should be write-protected at the call site */ |
| static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, |
| struct list_head *invalid_list, bool clear_unsync) |
| { |
| if (sp->role.cr4_pae != !!is_pae(vcpu)) { |
| kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); |
| return 1; |
| } |
| |
| if (clear_unsync) |
| kvm_unlink_unsync_page(vcpu->kvm, sp); |
| |
| if (vcpu->arch.mmu.sync_page(vcpu, sp, clear_unsync)) { |
| kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); |
| return 1; |
| } |
| |
| kvm_mmu_flush_tlb(vcpu); |
| return 0; |
| } |
| |
| static int kvm_sync_page_transient(struct kvm_vcpu *vcpu, |
| struct kvm_mmu_page *sp) |
| { |
| LIST_HEAD(invalid_list); |
| int ret; |
| |
| ret = __kvm_sync_page(vcpu, sp, &invalid_list, false); |
| if (ret) |
| kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); |
| |
| return ret; |
| } |
| |
| static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, |
| struct list_head *invalid_list) |
| { |
| return __kvm_sync_page(vcpu, sp, invalid_list, true); |
| } |
| |
| /* @gfn should be write-protected at the call site */ |
| static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn) |
| { |
| struct kvm_mmu_page *s; |
| struct hlist_node *node; |
| LIST_HEAD(invalid_list); |
| bool flush = false; |
| |
| for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) { |
| if (!s->unsync) |
| continue; |
| |
| WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL); |
| if ((s->role.cr4_pae != !!is_pae(vcpu)) || |
| (vcpu->arch.mmu.sync_page(vcpu, s, true))) { |
| kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list); |
| continue; |
| } |
| kvm_unlink_unsync_page(vcpu->kvm, s); |
| flush = true; |
| } |
| |
| kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); |
| if (flush) |
| kvm_mmu_flush_tlb(vcpu); |
| } |
| |
| struct mmu_page_path { |
| struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1]; |
| unsigned int idx[PT64_ROOT_LEVEL-1]; |
| }; |
| |
| #define for_each_sp(pvec, sp, parents, i) \ |
| for (i = mmu_pages_next(&pvec, &parents, -1), \ |
| sp = pvec.page[i].sp; \ |
| i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ |
| i = mmu_pages_next(&pvec, &parents, i)) |
| |
| static int mmu_pages_next(struct kvm_mmu_pages *pvec, |
| struct mmu_page_path *parents, |
| int i) |
| { |
| int n; |
| |
| for (n = i+1; n < pvec->nr; n++) { |
| struct kvm_mmu_page *sp = pvec->page[n].sp; |
| |
| if (sp->role.level == PT_PAGE_TABLE_LEVEL) { |
| parents->idx[0] = pvec->page[n].idx; |
| return n; |
| } |
| |
| parents->parent[sp->role.level-2] = sp; |
| parents->idx[sp->role.level-1] = pvec->page[n].idx; |
| } |
| |
| return n; |
| } |
| |
| static void mmu_pages_clear_parents(struct mmu_page_path *parents) |
| { |
| struct kvm_mmu_page *sp; |
| unsigned int level = 0; |
| |
| do { |
| unsigned int idx = parents->idx[level]; |
| |
| sp = parents->parent[level]; |
| if (!sp) |
| return; |
| |
| --sp->unsync_children; |
| WARN_ON((int)sp->unsync_children < 0); |
| __clear_bit(idx, sp->unsync_child_bitmap); |
| level++; |
| } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children); |
| } |
| |
| static void kvm_mmu_pages_init(struct kvm_mmu_page *parent, |
| struct mmu_page_path *parents, |
| struct kvm_mmu_pages *pvec) |
| { |
| parents->parent[parent->role.level-1] = NULL; |
| pvec->nr = 0; |
| } |
| |
| static void mmu_sync_children(struct kvm_vcpu *vcpu, |
| struct kvm_mmu_page *parent) |
| { |
| int i; |
| struct kvm_mmu_page *sp; |
| struct mmu_page_path parents; |
| struct kvm_mmu_pages pages; |
| LIST_HEAD(invalid_list); |
| |
| kvm_mmu_pages_init(parent, &parents, &pages); |
| while (mmu_unsync_walk(parent, &pages)) { |
| int protected = 0; |
| |
| for_each_sp(pages, sp, parents, i) |
| protected |= rmap_write_protect(vcpu->kvm, sp->gfn); |
| |
| if (protected) |
| kvm_flush_remote_tlbs(vcpu->kvm); |
| |
| for_each_sp(pages, sp, parents, i) { |
| kvm_sync_page(vcpu, sp, &invalid_list); |
| mmu_pages_clear_parents(&parents); |
| } |
| kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); |
| cond_resched_lock(&vcpu->kvm->mmu_lock); |
| kvm_mmu_pages_init(parent, &parents, &pages); |
| } |
| } |
| |
| static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu, |
| gfn_t gfn, |
| gva_t gaddr, |
| unsigned level, |
| int direct, |
| unsigned access, |
| u64 *parent_pte) |
| { |
| union kvm_mmu_page_role role; |
| unsigned quadrant; |
| struct kvm_mmu_page *sp; |
| struct hlist_node *node; |
| bool need_sync = false; |
| |
| role = vcpu->arch.mmu.base_role; |
| role.level = level; |
| role.direct = direct; |
| if (role.direct) |
| role.cr4_pae = 0; |
| role.access = access; |
| if (!vcpu->arch.mmu.direct_map |
| && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) { |
| quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level)); |
| quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1; |
| role.quadrant = quadrant; |
| } |
| for_each_gfn_sp(vcpu->kvm, sp, gfn, node) { |
| if (!need_sync && sp->unsync) |
| need_sync = true; |
| |
| if (sp->role.word != role.word) |
| continue; |
| |
| if (sp->unsync && kvm_sync_page_transient(vcpu, sp)) |
| break; |
| |
| mmu_page_add_parent_pte(vcpu, sp, parent_pte); |
| if (sp->unsync_children) { |
| kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); |
| kvm_mmu_mark_parents_unsync(sp); |
| } else if (sp->unsync) |
| kvm_mmu_mark_parents_unsync(sp); |
| |
| trace_kvm_mmu_get_page(sp, false); |
| return sp; |
| } |
| ++vcpu->kvm->stat.mmu_cache_miss; |
| sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct); |
| if (!sp) |
| return sp; |
| sp->gfn = gfn; |
| sp->role = role; |
| hlist_add_head(&sp->hash_link, |
| &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]); |
| if (!direct) { |
| if (rmap_write_protect(vcpu->kvm, gfn)) |
| kvm_flush_remote_tlbs(vcpu->kvm); |
| if (level > PT_PAGE_TABLE_LEVEL && need_sync) |
| kvm_sync_pages(vcpu, gfn); |
| |
| account_shadowed(vcpu->kvm, gfn); |
| } |
| if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte) |
| vcpu->arch.mmu.prefetch_page(vcpu, sp); |
| else |
| nonpaging_prefetch_page(vcpu, sp); |
| trace_kvm_mmu_get_page(sp, true); |
| return sp; |
| } |
| |
| static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, |
| struct kvm_vcpu *vcpu, u64 addr) |
| { |
| iterator->addr = addr; |
| iterator->shadow_addr = vcpu->arch.mmu.root_hpa; |
| iterator->level = vcpu->arch.mmu.shadow_root_level; |
| |
| if (iterator->level == PT64_ROOT_LEVEL && |
| vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL && |
| !vcpu->arch.mmu.direct_map) |
| --iterator->level; |
| |
| if (iterator->level == PT32E_ROOT_LEVEL) { |
| iterator->shadow_addr |
| = vcpu->arch.mmu.pae_root[(addr >> 30) & 3]; |
| iterator->shadow_addr &= PT64_BASE_ADDR_MASK; |
| --iterator->level; |
| if (!iterator->shadow_addr) |
| iterator->level = 0; |
| } |
| } |
| |
| static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) |
| { |
| if (iterator->level < PT_PAGE_TABLE_LEVEL) |
| return false; |
| |
| if (iterator->level == PT_PAGE_TABLE_LEVEL) |
| if (is_large_pte(*iterator->sptep)) |
| return false; |
| |
| iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level); |
| iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; |
| return true; |
| } |
| |
| static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) |
| { |
| iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK; |
| --iterator->level; |
| } |
| |
| static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp) |
| { |
| u64 spte; |
| |
| spte = __pa(sp->spt) |
| | PT_PRESENT_MASK | PT_ACCESSED_MASK |
| | PT_WRITABLE_MASK | PT_USER_MASK; |
| __set_spte(sptep, spte); |
| } |
| |
| static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep) |
| { |
| if (is_large_pte(*sptep)) { |
| drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte); |
| kvm_flush_remote_tlbs(vcpu->kvm); |
| } |
| } |
| |
| static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, |
| unsigned direct_access) |
| { |
| if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { |
| struct kvm_mmu_page *child; |
| |
| /* |
| * For the direct sp, if the guest pte's dirty bit |
| * changed form clean to dirty, it will corrupt the |
| * sp's access: allow writable in the read-only sp, |
| * so we should update the spte at this point to get |
| * a new sp with the correct access. |
| */ |
| child = page_header(*sptep & PT64_BASE_ADDR_MASK); |
| if (child->role.access == direct_access) |
| return; |
| |
| mmu_page_remove_parent_pte(child, sptep); |
| __set_spte(sptep, shadow_trap_nonpresent_pte); |
| kvm_flush_remote_tlbs(vcpu->kvm); |
| } |
| } |
| |
| static void kvm_mmu_page_unlink_children(struct kvm *kvm, |
| struct kvm_mmu_page *sp) |
| { |
| unsigned i; |
| u64 *pt; |
| u64 ent; |
| |
| pt = sp->spt; |
| |
| for (i = 0; i < PT64_ENT_PER_PAGE; ++i) { |
| ent = pt[i]; |
| |
| if (is_shadow_present_pte(ent)) { |
| if (!is_last_spte(ent, sp->role.level)) { |
| ent &= PT64_BASE_ADDR_MASK; |
| mmu_page_remove_parent_pte(page_header(ent), |
| &pt[i]); |
| } else { |
| if (is_large_pte(ent)) |
| --kvm->stat.lpages; |
| drop_spte(kvm, &pt[i], |
| shadow_trap_nonpresent_pte); |
| } |
| } |
| pt[i] = shadow_trap_nonpresent_pte; |
| } |
| } |
| |
| static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte) |
| { |
| mmu_page_remove_parent_pte(sp, parent_pte); |
| } |
| |
| static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm) |
| { |
| int i; |
| struct kvm_vcpu *vcpu; |
| |
| kvm_for_each_vcpu(i, vcpu, kvm) |
| vcpu->arch.last_pte_updated = NULL; |
| } |
| |
| static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp) |
| { |
| u64 *parent_pte; |
| |
| while (sp->multimapped || sp->parent_pte) { |
| if (!sp->multimapped) |
| parent_pte = sp->parent_pte; |
| else { |
| struct kvm_pte_chain *chain; |
| |
| chain = container_of(sp->parent_ptes.first, |
| struct kvm_pte_chain, link); |
| parent_pte = chain->parent_ptes[0]; |
| } |
| BUG_ON(!parent_pte); |
| kvm_mmu_put_page(sp, parent_pte); |
| __set_spte(parent_pte, shadow_trap_nonpresent_pte); |
| } |
| } |
| |
| static int mmu_zap_unsync_children(struct kvm *kvm, |
| struct kvm_mmu_page *parent, |
| struct list_head *invalid_list) |
| { |
| int i, zapped = 0; |
| struct mmu_page_path parents; |
| struct kvm_mmu_pages pages; |
| |
| if (parent->role.level == PT_PAGE_TABLE_LEVEL) |
| return 0; |
| |
| kvm_mmu_pages_init(parent, &parents, &pages); |
| while (mmu_unsync_walk(parent, &pages)) { |
| struct kvm_mmu_page *sp; |
| |
| for_each_sp(pages, sp, parents, i) { |
| kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); |
| mmu_pages_clear_parents(&parents); |
| zapped++; |
| } |
| kvm_mmu_pages_init(parent, &parents, &pages); |
| } |
| |
| return zapped; |
| } |
| |
| static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, |
| struct list_head *invalid_list) |
| { |
| int ret; |
| |
| trace_kvm_mmu_prepare_zap_page(sp); |
| ++kvm->stat.mmu_shadow_zapped; |
| ret = mmu_zap_unsync_children(kvm, sp, invalid_list); |
| kvm_mmu_page_unlink_children(kvm, sp); |
| kvm_mmu_unlink_parents(kvm, sp); |
| if (!sp->role.invalid && !sp->role.direct) |
| unaccount_shadowed(kvm, sp->gfn); |
| if (sp->unsync) |
| kvm_unlink_unsync_page(kvm, sp); |
| if (!sp->root_count) { |
| /* Count self */ |
| ret++; |
| list_move(&sp->link, invalid_list); |
| } else { |
| list_move(&sp->link, &kvm->arch.active_mmu_pages); |
| kvm_reload_remote_mmus(kvm); |
| } |
| |
| sp->role.invalid = 1; |
| kvm_mmu_reset_last_pte_updated(kvm); |
| return ret; |
| } |
| |
| static void kvm_mmu_commit_zap_page(struct kvm *kvm, |
| struct list_head *invalid_list) |
| { |
| struct kvm_mmu_page *sp; |
| |
| if (list_empty(invalid_list)) |
| return; |
| |
| kvm_flush_remote_tlbs(kvm); |
| |
| do { |
| sp = list_first_entry(invalid_list, struct kvm_mmu_page, link); |
| WARN_ON(!sp->role.invalid || sp->root_count); |
| kvm_mmu_free_page(kvm, sp); |
| } while (!list_empty(invalid_list)); |
| |
| } |
| |
| /* |
| * Changing the number of mmu pages allocated to the vm |
| * Note: if goal_nr_mmu_pages is too small, you will get dead lock |
| */ |
| void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages) |
| { |
| LIST_HEAD(invalid_list); |
| /* |
| * If we set the number of mmu pages to be smaller be than the |
| * number of actived pages , we must to free some mmu pages before we |
| * change the value |
| */ |
| |
| if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { |
| while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages && |
| !list_empty(&kvm->arch.active_mmu_pages)) { |
| struct kvm_mmu_page *page; |
| |
| page = container_of(kvm->arch.active_mmu_pages.prev, |
| struct kvm_mmu_page, link); |
| kvm_mmu_prepare_zap_page(kvm, page, &invalid_list); |
| kvm_mmu_commit_zap_page(kvm, &invalid_list); |
| } |
| goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; |
| } |
| |
| kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; |
| } |
| |
| static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) |
| { |
| struct kvm_mmu_page *sp; |
| struct hlist_node *node; |
| LIST_HEAD(invalid_list); |
| int r; |
| |
| pgprintk("%s: looking for gfn %llx\n", __func__, gfn); |
| r = 0; |
| |
| for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) { |
| pgprintk("%s: gfn %llx role %x\n", __func__, gfn, |
| sp->role.word); |
| r = 1; |
| kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); |
| } |
| kvm_mmu_commit_zap_page(kvm, &invalid_list); |
| return r; |
| } |
| |
| static void mmu_unshadow(struct kvm *kvm, gfn_t gfn) |
| { |
| struct kvm_mmu_page *sp; |
| struct hlist_node *node; |
| LIST_HEAD(invalid_list); |
| |
| for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) { |
| pgprintk("%s: zap %llx %x\n", |
| __func__, gfn, sp->role.word); |
| kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); |
| } |
| kvm_mmu_commit_zap_page(kvm, &invalid_list); |
| } |
| |
| static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn) |
| { |
| int slot = memslot_id(kvm, gfn); |
| struct kvm_mmu_page *sp = page_header(__pa(pte)); |
| |
| __set_bit(slot, sp->slot_bitmap); |
| } |
| |
| static void mmu_convert_notrap(struct kvm_mmu_page *sp) |
| { |
| int i; |
| u64 *pt = sp->spt; |
| |
| if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte) |
| return; |
| |
| for (i = 0; i < PT64_ENT_PER_PAGE; ++i) { |
| if (pt[i] == shadow_notrap_nonpresent_pte) |
| __set_spte(&pt[i], shadow_trap_nonpresent_pte); |
| } |
| } |
| |
| /* |
| * The function is based on mtrr_type_lookup() in |
| * arch/x86/kernel/cpu/mtrr/generic.c |
| */ |
| static int get_mtrr_type(struct mtrr_state_type *mtrr_state, |
| u64 start, u64 end) |
| { |
| int i; |
| u64 base, mask; |
| u8 prev_match, curr_match; |
| int num_var_ranges = KVM_NR_VAR_MTRR; |
| |
| if (!mtrr_state->enabled) |
| return 0xFF; |
| |
| /* Make end inclusive end, instead of exclusive */ |
| end--; |
| |
| /* Look in fixed ranges. Just return the type as per start */ |
| if (mtrr_state->have_fixed && (start < 0x100000)) { |
| int idx; |
| |
| if (start < 0x80000) { |
| idx = 0; |
| idx += (start >> 16); |
| return mtrr_state->fixed_ranges[idx]; |
| } else if (start < 0xC0000) { |
| idx = 1 * 8; |
| idx += ((start - 0x80000) >> 14); |
| return mtrr_state->fixed_ranges[idx]; |
| } else if (start < 0x1000000) { |
| idx = 3 * 8; |
| idx += ((start - 0xC0000) >> 12); |
| return mtrr_state->fixed_ranges[idx]; |
| } |
| } |
| |
| /* |
| * Look in variable ranges |
| * Look of multiple ranges matching this address and pick type |
| * as per MTRR precedence |
| */ |
| if (!(mtrr_state->enabled & 2)) |
| return mtrr_state->def_type; |
| |
| prev_match = 0xFF; |
| for (i = 0; i < num_var_ranges; ++i) { |
| unsigned short start_state, end_state; |
| |
| if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11))) |
| continue; |
| |
| base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) + |
| (mtrr_state->var_ranges[i].base_lo & PAGE_MASK); |
| mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) + |
| (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK); |
| |
| start_state = ((start & mask) == (base & mask)); |
| end_state = ((end & mask) == (base & mask)); |
| if (start_state != end_state) |
| return 0xFE; |
| |
| if ((start & mask) != (base & mask)) |
| continue; |
| |
| curr_match = mtrr_state->var_ranges[i].base_lo & 0xff; |
| if (prev_match == 0xFF) { |
| prev_match = curr_match; |
| continue; |
| } |
| |
| if (prev_match == MTRR_TYPE_UNCACHABLE || |
| curr_match == MTRR_TYPE_UNCACHABLE) |
| return MTRR_TYPE_UNCACHABLE; |
| |
| if ((prev_match == MTRR_TYPE_WRBACK && |
| curr_match == MTRR_TYPE_WRTHROUGH) || |
| (prev_match == MTRR_TYPE_WRTHROUGH && |
| curr_match == MTRR_TYPE_WRBACK)) { |
| prev_match = MTRR_TYPE_WRTHROUGH; |
| curr_match = MTRR_TYPE_WRTHROUGH; |
| } |
| |
| if (prev_match != curr_match) |
| return MTRR_TYPE_UNCACHABLE; |
| } |
| |
| if (prev_match != 0xFF) |
| return prev_match; |
| |
| return mtrr_state->def_type; |
| } |
| |
| u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn) |
| { |
| u8 mtrr; |
| |
| mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT, |
| (gfn << PAGE_SHIFT) + PAGE_SIZE); |
| if (mtrr == 0xfe || mtrr == 0xff) |
| mtrr = MTRR_TYPE_WRBACK; |
| return mtrr; |
| } |
| EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type); |
| |
| static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) |
| { |
| trace_kvm_mmu_unsync_page(sp); |
| ++vcpu->kvm->stat.mmu_unsync; |
| sp->unsync = 1; |
| |
| kvm_mmu_mark_parents_unsync(sp); |
| mmu_convert_notrap(sp); |
| } |
| |
| static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn) |
| { |
| struct kvm_mmu_page *s; |
| struct hlist_node *node; |
| |
| for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) { |
| if (s->unsync) |
| continue; |
| WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL); |
| __kvm_unsync_page(vcpu, s); |
| } |
| } |
| |
| static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn, |
| bool can_unsync) |
| { |
| struct kvm_mmu_page *s; |
| struct hlist_node *node; |
| bool need_unsync = false; |
| |
| for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) { |
| if (!can_unsync) |
| return 1; |
| |
| if (s->role.level != PT_PAGE_TABLE_LEVEL) |
| return 1; |
| |
| if (!need_unsync && !s->unsync) { |
| if (!oos_shadow) |
| return 1; |
| need_unsync = true; |
| } |
| } |
| if (need_unsync) |
| kvm_unsync_pages(vcpu, gfn); |
| return 0; |
| } |
| |
| static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep, |
| unsigned pte_access, int user_fault, |
| int write_fault, int dirty, int level, |
| gfn_t gfn, pfn_t pfn, bool speculative, |
| bool can_unsync, bool reset_host_protection) |
| { |
| u64 spte; |
| int ret = 0; |
| |
| /* |
| * We don't set the accessed bit, since we sometimes want to see |
| * whether the guest actually used the pte (in order to detect |
| * demand paging). |
| */ |
| spte = shadow_base_present_pte; |
| if (!speculative) |
| spte |= shadow_accessed_mask; |
| if (!dirty) |
| pte_access &= ~ACC_WRITE_MASK; |
| if (pte_access & ACC_EXEC_MASK) |
| spte |= shadow_x_mask; |
| else |
| spte |= shadow_nx_mask; |
| if (pte_access & ACC_USER_MASK) |
| spte |= shadow_user_mask; |
| if (level > PT_PAGE_TABLE_LEVEL) |
| spte |= PT_PAGE_SIZE_MASK; |
| if (tdp_enabled) |
| spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn, |
| kvm_is_mmio_pfn(pfn)); |
| |
| if (reset_host_protection) |
| spte |= SPTE_HOST_WRITEABLE; |
| |
| spte |= (u64)pfn << PAGE_SHIFT; |
| |
| if ((pte_access & ACC_WRITE_MASK) |
| || (!vcpu->arch.mmu.direct_map && write_fault |
| && !is_write_protection(vcpu) && !user_fault)) { |
| |
| if (level > PT_PAGE_TABLE_LEVEL && |
| has_wrprotected_page(vcpu->kvm, gfn, level)) { |
| ret = 1; |
| drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte); |
| goto done; |
| } |
| |
| spte |= PT_WRITABLE_MASK; |
| |
| if (!vcpu->arch.mmu.direct_map |
| && !(pte_access & ACC_WRITE_MASK)) |
| spte &= ~PT_USER_MASK; |
| |
| /* |
| * Optimization: for pte sync, if spte was writable the hash |
| * lookup is unnecessary (and expensive). Write protection |
| * is responsibility of mmu_get_page / kvm_sync_page. |
| * Same reasoning can be applied to dirty page accounting. |
| */ |
| if (!can_unsync && is_writable_pte(*sptep)) |
| goto set_pte; |
| |
| if (mmu_need_write_protect(vcpu, gfn, can_unsync)) { |
| pgprintk("%s: found shadow page for %llx, marking ro\n", |
| __func__, gfn); |
| ret = 1; |
| pte_access &= ~ACC_WRITE_MASK; |
| if (is_writable_pte(spte)) |
| spte &= ~PT_WRITABLE_MASK; |
| } |
| } |
| |
| if (pte_access & ACC_WRITE_MASK) |
| mark_page_dirty(vcpu->kvm, gfn); |
| |
| set_pte: |
| update_spte(sptep, spte); |
| done: |
| return ret; |
| } |
| |
| static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, |
| unsigned pt_access, unsigned pte_access, |
| int user_fault, int write_fault, int dirty, |
| int *ptwrite, int level, gfn_t gfn, |
| pfn_t pfn, bool speculative, |
| bool reset_host_protection) |
| { |
| int was_rmapped = 0; |
| int rmap_count; |
| |
| pgprintk("%s: spte %llx access %x write_fault %d" |
| " user_fault %d gfn %llx\n", |
| __func__, *sptep, pt_access, |
| write_fault, user_fault, gfn); |
| |
| if (is_rmap_spte(*sptep)) { |
| /* |
| * If we overwrite a PTE page pointer with a 2MB PMD, unlink |
| * the parent of the now unreachable PTE. |
| */ |
| if (level > PT_PAGE_TABLE_LEVEL && |
| !is_large_pte(*sptep)) { |
| struct kvm_mmu_page *child; |
| u64 pte = *sptep; |
| |
| child = page_header(pte & PT64_BASE_ADDR_MASK); |
| mmu_page_remove_parent_pte(child, sptep); |
| __set_spte(sptep, shadow_trap_nonpresent_pte); |
| kvm_flush_remote_tlbs(vcpu->kvm); |
| } else if (pfn != spte_to_pfn(*sptep)) { |
| pgprintk("hfn old %llx new %llx\n", |
| spte_to_pfn(*sptep), pfn); |
| drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte); |
| kvm_flush_remote_tlbs(vcpu->kvm); |
| } else |
| was_rmapped = 1; |
| } |
| |
| if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault, |
| dirty, level, gfn, pfn, speculative, true, |
| reset_host_protection)) { |
| if (write_fault) |
| *ptwrite = 1; |
| kvm_mmu_flush_tlb(vcpu); |
| } |
| |
| pgprintk("%s: setting spte %llx\n", __func__, *sptep); |
| pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n", |
| is_large_pte(*sptep)? "2MB" : "4kB", |
| *sptep & PT_PRESENT_MASK ?"RW":"R", gfn, |
| *sptep, sptep); |
| if (!was_rmapped && is_large_pte(*sptep)) |
| ++vcpu->kvm->stat.lpages; |
| |
| page_header_update_slot(vcpu->kvm, sptep, gfn); |
| if (!was_rmapped) { |
| rmap_count = rmap_add(vcpu, sptep, gfn); |
| if (rmap_count > RMAP_RECYCLE_THRESHOLD) |
| rmap_recycle(vcpu, sptep, gfn); |
| } |
| kvm_release_pfn_clean(pfn); |
| if (speculative) { |
| vcpu->arch.last_pte_updated = sptep; |
| vcpu->arch.last_pte_gfn = gfn; |
| } |
| } |
| |
| static void nonpaging_new_cr3(struct kvm_vcpu *vcpu) |
| { |
| } |
| |
| static struct kvm_memory_slot * |
| pte_prefetch_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn, bool no_dirty_log) |
| { |
| struct kvm_memory_slot *slot; |
| |
| slot = gfn_to_memslot(vcpu->kvm, gfn); |
| if (!slot || slot->flags & KVM_MEMSLOT_INVALID || |
| (no_dirty_log && slot->dirty_bitmap)) |
| slot = NULL; |
| |
| return slot; |
| } |
| |
| static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn, |
| bool no_dirty_log) |
| { |
| struct kvm_memory_slot *slot; |
| unsigned long hva; |
| |
| slot = pte_prefetch_gfn_to_memslot(vcpu, gfn, no_dirty_log); |
| if (!slot) { |
| get_page(bad_page); |
| return page_to_pfn(bad_page); |
| } |
| |
| hva = gfn_to_hva_memslot(slot, gfn); |
| |
| return hva_to_pfn_atomic(vcpu->kvm, hva); |
| } |
| |
| static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, |
| struct kvm_mmu_page *sp, |
| u64 *start, u64 *end) |
| { |
| struct page *pages[PTE_PREFETCH_NUM]; |
| unsigned access = sp->role.access; |
| int i, ret; |
| gfn_t gfn; |
| |
| gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt); |
| if (!pte_prefetch_gfn_to_memslot(vcpu, gfn, access & ACC_WRITE_MASK)) |
| return -1; |
| |
| ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start); |
| if (ret <= 0) |
| return -1; |
| |
| for (i = 0; i < ret; i++, gfn++, start++) |
| mmu_set_spte(vcpu, start, ACC_ALL, |
| access, 0, 0, 1, NULL, |
| sp->role.level, gfn, |
| page_to_pfn(pages[i]), true, true); |
| |
| return 0; |
| } |
| |
| static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, |
| struct kvm_mmu_page *sp, u64 *sptep) |
| { |
| u64 *spte, *start = NULL; |
| int i; |
| |
| WARN_ON(!sp->role.direct); |
| |
| i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); |
| spte = sp->spt + i; |
| |
| for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { |
| if (*spte != shadow_trap_nonpresent_pte || spte == sptep) { |
| if (!start) |
| continue; |
| if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) |
| break; |
| start = NULL; |
| } else if (!start) |
| start = spte; |
| } |
| } |
| |
| static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) |
| { |
| struct kvm_mmu_page *sp; |
| |
| /* |
| * Since it's no accessed bit on EPT, it's no way to |
| * distinguish between actually accessed translations |
| * and prefetched, so disable pte prefetch if EPT is |
| * enabled. |
| */ |
| if (!shadow_accessed_mask) |
| return; |
| |
| sp = page_header(__pa(sptep)); |
| if (sp->role.level > PT_PAGE_TABLE_LEVEL) |
| return; |
| |
| __direct_pte_prefetch(vcpu, sp, sptep); |
| } |
| |
| static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write, |
| int level, gfn_t gfn, pfn_t pfn) |
| { |
| struct kvm_shadow_walk_iterator iterator; |
| struct kvm_mmu_page *sp; |
| int pt_write = 0; |
| gfn_t pseudo_gfn; |
| |
| for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) { |
| if (iterator.level == level) { |
| mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL, |
| 0, write, 1, &pt_write, |
| level, gfn, pfn, false, true); |
| direct_pte_prefetch(vcpu, iterator.sptep); |
| ++vcpu->stat.pf_fixed; |
| break; |
| } |
| |
| if (*iterator.sptep == shadow_trap_nonpresent_pte) { |
| u64 base_addr = iterator.addr; |
| |
| base_addr &= PT64_LVL_ADDR_MASK(iterator.level); |
| pseudo_gfn = base_addr >> PAGE_SHIFT; |
| sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr, |
| iterator.level - 1, |
| 1, ACC_ALL, iterator.sptep); |
| if (!sp) { |
| pgprintk("nonpaging_map: ENOMEM\n"); |
| kvm_release_pfn_clean(pfn); |
| return -ENOMEM; |
| } |
| |
| __set_spte(iterator.sptep, |
| __pa(sp->spt) |
| | PT_PRESENT_MASK | PT_WRITABLE_MASK |
| | shadow_user_mask | shadow_x_mask |
| | shadow_accessed_mask); |
| } |
| } |
| return pt_write; |
| } |
| |
| static void kvm_send_hwpoison_signal(struct kvm *kvm, gfn_t gfn) |
| { |
| char buf[1]; |
| void __user *hva; |
| int r; |
| |
| /* Touch the page, so send SIGBUS */ |
| hva = (void __user *)gfn_to_hva(kvm, gfn); |
| r = copy_from_user(buf, hva, 1); |
| } |
| |
| static int kvm_handle_bad_page(struct kvm *kvm, gfn_t gfn, pfn_t pfn) |
| { |
| kvm_release_pfn_clean(pfn); |
| if (is_hwpoison_pfn(pfn)) { |
| kvm_send_hwpoison_signal(kvm, gfn); |
| return 0; |
| } else if (is_fault_pfn(pfn)) |
| return -EFAULT; |
| |
| return 1; |
| } |
| |
| static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn) |
| { |
| int r; |
| int level; |
| pfn_t pfn; |
| unsigned long mmu_seq; |
| |
| level = mapping_level(vcpu, gfn); |
| |
| /* |
| * This path builds a PAE pagetable - so we can map 2mb pages at |
| * maximum. Therefore check if the level is larger than that. |
| */ |
| if (level > PT_DIRECTORY_LEVEL) |
| level = PT_DIRECTORY_LEVEL; |
| |
| gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1); |
| |
| mmu_seq = vcpu->kvm->mmu_notifier_seq; |
| smp_rmb(); |
| pfn = gfn_to_pfn(vcpu->kvm, gfn); |
| |
| /* mmio */ |
| if (is_error_pfn(pfn)) |
| return kvm_handle_bad_page(vcpu->kvm, gfn, pfn); |
| |
| spin_lock(&vcpu->kvm->mmu_lock); |
| if (mmu_notifier_retry(vcpu, mmu_seq)) |
| goto out_unlock; |
| kvm_mmu_free_some_pages(vcpu); |
| r = __direct_map(vcpu, v, write, level, gfn, pfn); |
| spin_unlock(&vcpu->kvm->mmu_lock); |
| |
| |
| return r; |
| |
| out_unlock: |
| spin_unlock(&vcpu->kvm->mmu_lock); |
| kvm_release_pfn_clean(pfn); |
| return 0; |
| } |
| |
| |
| static void mmu_free_roots(struct kvm_vcpu *vcpu) |
| { |
| int i; |
| struct kvm_mmu_page *sp; |
| LIST_HEAD(invalid_list); |
| |
| if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) |
| return; |
| spin_lock(&vcpu->kvm->mmu_lock); |
| if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL && |
| (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL || |
| vcpu->arch.mmu.direct_map)) { |
| hpa_t root = vcpu->arch.mmu.root_hpa; |
| |
| sp = page_header(root); |
| --sp->root_count; |
| if (!sp->root_count && sp->role.invalid) { |
| kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); |
| kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); |
| } |
| vcpu->arch.mmu.root_hpa = INVALID_PAGE; |
| spin_unlock(&vcpu->kvm->mmu_lock); |
| return; |
| } |
| for (i = 0; i < 4; ++i) { |
| hpa_t root = vcpu->arch.mmu.pae_root[i]; |
| |
| if (root) { |
| root &= PT64_BASE_ADDR_MASK; |
| sp = page_header(root); |
| --sp->root_count; |
| if (!sp->root_count && sp->role.invalid) |
| kvm_mmu_prepare_zap_page(vcpu->kvm, sp, |
| &invalid_list); |
| } |
| vcpu->arch.mmu.pae_root[i] = INVALID_PAGE; |
| } |
| kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); |
| spin_unlock(&vcpu->kvm->mmu_lock); |
| vcpu->arch.mmu.root_hpa = INVALID_PAGE; |
| } |
| |
| static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn) |
| { |
| int ret = 0; |
| |
| if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) { |
| kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); |
| ret = 1; |
| } |
| |
| return ret; |
| } |
| |
| static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_mmu_page *sp; |
| int i; |
| |
| if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) { |
| spin_lock(&vcpu->kvm->mmu_lock); |
| kvm_mmu_free_some_pages(vcpu); |
| sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, |
| 1, ACC_ALL, NULL); |
| ++sp->root_count; |
| spin_unlock(&vcpu->kvm->mmu_lock); |
| vcpu->arch.mmu.root_hpa = __pa(sp->spt); |
| } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) { |
| for (i = 0; i < 4; ++i) { |
| hpa_t root = vcpu->arch.mmu.pae_root[i]; |
| |
| ASSERT(!VALID_PAGE(root)); |
| spin_lock(&vcpu->kvm->mmu_lock); |
| kvm_mmu_free_some_pages(vcpu); |
| sp = kvm_mmu_get_page(vcpu, i << 30, i << 30, |
| PT32_ROOT_LEVEL, 1, ACC_ALL, |
| NULL); |
| root = __pa(sp->spt); |
| ++sp->root_count; |
| spin_unlock(&vcpu->kvm->mmu_lock); |
| vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK; |
| } |
| vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root); |
| } else |
| BUG(); |
| |
| return 0; |
| } |
| |
| static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_mmu_page *sp; |
| u64 pdptr, pm_mask; |
| gfn_t root_gfn; |
| int i; |
| |
| root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT; |
| |
| if (mmu_check_root(vcpu, root_gfn)) |
| return 1; |
| |
| /* |
| * Do we shadow a long mode page table? If so we need to |
| * write-protect the guests page table root. |
| */ |
| if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) { |
| hpa_t root = vcpu->arch.mmu.root_hpa; |
| |
| ASSERT(!VALID_PAGE(root)); |
| |
| spin_lock(&vcpu->kvm->mmu_lock); |
| kvm_mmu_free_some_pages(vcpu); |
| sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL, |
| 0, ACC_ALL, NULL); |
| root = __pa(sp->spt); |
| ++sp->root_count; |
| spin_unlock(&vcpu->kvm->mmu_lock); |
| vcpu->arch.mmu.root_hpa = root; |
| return 0; |
| } |
| |
| /* |
| * We shadow a 32 bit page table. This may be a legacy 2-level |
| * or a PAE 3-level page table. In either case we need to be aware that |
| * the shadow page table may be a PAE or a long mode page table. |
| */ |
| pm_mask = PT_PRESENT_MASK; |
| if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) |
| pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; |
| |
| for (i = 0; i < 4; ++i) { |
| hpa_t root = vcpu->arch.mmu.pae_root[i]; |
| |
| ASSERT(!VALID_PAGE(root)); |
| if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) { |
| pdptr = kvm_pdptr_read_mmu(vcpu, &vcpu->arch.mmu, i); |
| if (!is_present_gpte(pdptr)) { |
| vcpu->arch.mmu.pae_root[i] = 0; |
| continue; |
| } |
| root_gfn = pdptr >> PAGE_SHIFT; |
| if (mmu_check_root(vcpu, root_gfn)) |
| return 1; |
| } |
| spin_lock(&vcpu->kvm->mmu_lock); |
| kvm_mmu_free_some_pages(vcpu); |
| sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, |
| PT32_ROOT_LEVEL, 0, |
| ACC_ALL, NULL); |
| root = __pa(sp->spt); |
| ++sp->root_count; |
| spin_unlock(&vcpu->kvm->mmu_lock); |
| |
| vcpu->arch.mmu.pae_root[i] = root | pm_mask; |
| } |
| vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root); |
| |
| /* |
| * If we shadow a 32 bit page table with a long mode page |
| * table we enter this path. |
| */ |
| if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) { |
| if (vcpu->arch.mmu.lm_root == NULL) { |
| /* |
| * The additional page necessary for this is only |
| * allocated on demand. |
| */ |
| |
| u64 *lm_root; |
| |
| lm_root = (void*)get_zeroed_page(GFP_KERNEL); |
| if (lm_root == NULL) |
| return 1; |
| |
| lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask; |
| |
| vcpu->arch.mmu.lm_root = lm_root; |
| } |
| |
| vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root); |
| } |
| |
| return 0; |
| } |
| |
| static int mmu_alloc_roots(struct kvm_vcpu *vcpu) |
| { |
| if (vcpu->arch.mmu.direct_map) |
| return mmu_alloc_direct_roots(vcpu); |
| else |
| return mmu_alloc_shadow_roots(vcpu); |
| } |
| |
| static void mmu_sync_roots(struct kvm_vcpu *vcpu) |
| { |
| int i; |
| struct kvm_mmu_page *sp; |
| |
| if (vcpu->arch.mmu.direct_map) |
| return; |
| |
| if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) |
| return; |
| |
| trace_kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); |
| if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) { |
| hpa_t root = vcpu->arch.mmu.root_hpa; |
| sp = page_header(root); |
| mmu_sync_children(vcpu, sp); |
| return; |
| } |
| for (i = 0; i < 4; ++i) { |
| hpa_t root = vcpu->arch.mmu.pae_root[i]; |
| |
| if (root && VALID_PAGE(root)) { |
| root &= PT64_BASE_ADDR_MASK; |
| sp = page_header(root); |
| mmu_sync_children(vcpu, sp); |
| } |
| } |
| trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); |
| } |
| |
| void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) |
| { |
| spin_lock(&vcpu->kvm->mmu_lock); |
| mmu_sync_roots(vcpu); |
| spin_unlock(&vcpu->kvm->mmu_lock); |
| } |
| |
| static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr, |
| u32 access, u32 *error) |
| { |
| if (error) |
| *error = 0; |
| return vaddr; |
| } |
| |
| static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr, |
| u32 access, u32 *error) |
| { |
| if (error) |
| *error = 0; |
| return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access); |
| } |
| |
| static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva, |
| u32 error_code) |
| { |
| gfn_t gfn; |
| int r; |
| |
| pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code); |
| r = mmu_topup_memory_caches(vcpu); |
| if (r) |
| return r; |
| |
| ASSERT(vcpu); |
| ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa)); |
| |
| gfn = gva >> PAGE_SHIFT; |
| |
| return nonpaging_map(vcpu, gva & PAGE_MASK, |
| error_code & PFERR_WRITE_MASK, gfn); |
| } |
| |
| static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, |
| u32 error_code) |
| { |
| pfn_t pfn; |
| int r; |
| int level; |
| gfn_t gfn = gpa >> PAGE_SHIFT; |
| unsigned long mmu_seq; |
| |
| ASSERT(vcpu); |
| ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa)); |
| |
| r = mmu_topup_memory_caches(vcpu); |
| if (r) |
| return r; |
| |
| level = mapping_level(vcpu, gfn); |
| |
| gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1); |
| |
| mmu_seq = vcpu->kvm->mmu_notifier_seq; |
| smp_rmb(); |
| pfn = gfn_to_pfn(vcpu->kvm, gfn); |
| if (is_error_pfn(pfn)) |
| return kvm_handle_bad_page(vcpu->kvm, gfn, pfn); |
| spin_lock(&vcpu->kvm->mmu_lock); |
| if (mmu_notifier_retry(vcpu, mmu_seq)) |
| goto out_unlock; |
| kvm_mmu_free_some_pages(vcpu); |
| r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK, |
| level, gfn, pfn); |
| spin_unlock(&vcpu->kvm->mmu_lock); |
| |
| return r; |
| |
| out_unlock: |
| spin_unlock(&vcpu->kvm->mmu_lock); |
| kvm_release_pfn_clean(pfn); |
| return 0; |
| } |
| |
| static void nonpaging_free(struct kvm_vcpu *vcpu) |
| { |
| mmu_free_roots(vcpu); |
| } |
| |
| static int nonpaging_init_context(struct kvm_vcpu *vcpu, |
| struct kvm_mmu *context) |
| { |
| context->new_cr3 = nonpaging_new_cr3; |
| context->page_fault = nonpaging_page_fault; |
| context->gva_to_gpa = nonpaging_gva_to_gpa; |
| context->free = nonpaging_free; |
| context->prefetch_page = nonpaging_prefetch_page; |
| context->sync_page = nonpaging_sync_page; |
| context->invlpg = nonpaging_invlpg; |
| context->root_level = 0; |
| context->shadow_root_level = PT32E_ROOT_LEVEL; |
| context->root_hpa = INVALID_PAGE; |
| context->direct_map = true; |
| context->nx = false; |
| return 0; |
| } |
| |
| void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu) |
| { |
| ++vcpu->stat.tlb_flush; |
| kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); |
| } |
| |
| static void paging_new_cr3(struct kvm_vcpu *vcpu) |
| { |
| pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3); |
| mmu_free_roots(vcpu); |
| } |
| |
| static unsigned long get_cr3(struct kvm_vcpu *vcpu) |
| { |
| return vcpu->arch.cr3; |
| } |
| |
| static void inject_page_fault(struct kvm_vcpu *vcpu) |
| { |
| vcpu->arch.mmu.inject_page_fault(vcpu); |
| } |
| |
| static void paging_free(struct kvm_vcpu *vcpu) |
| { |
| nonpaging_free(vcpu); |
| } |
| |
| static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level) |
| { |
| int bit7; |
| |
| bit7 = (gpte >> 7) & 1; |
| return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0; |
| } |
| |
| #define PTTYPE 64 |
| #include "paging_tmpl.h" |
| #undef PTTYPE |
| |
| #define PTTYPE 32 |
| #include "paging_tmpl.h" |
| #undef PTTYPE |
| |
| static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, |
| struct kvm_mmu *context, |
| int level) |
| { |
| int maxphyaddr = cpuid_maxphyaddr(vcpu); |
| u64 exb_bit_rsvd = 0; |
| |
| if (!context->nx) |
| exb_bit_rsvd = rsvd_bits(63, 63); |
| switch (level) { |
| case PT32_ROOT_LEVEL: |
| /* no rsvd bits for 2 level 4K page table entries */ |
| context->rsvd_bits_mask[0][1] = 0; |
| context->rsvd_bits_mask[0][0] = 0; |
| context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0]; |
| |
| if (!is_pse(vcpu)) { |
| context->rsvd_bits_mask[1][1] = 0; |
| break; |
| } |
| |
| if (is_cpuid_PSE36()) |
| /* 36bits PSE 4MB page */ |
| context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); |
| else |
| /* 32 bits PSE 4MB page */ |
| context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); |
| break; |
| case PT32E_ROOT_LEVEL: |
| context->rsvd_bits_mask[0][2] = |
| rsvd_bits(maxphyaddr, 63) | |
| rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */ |
| context->rsvd_bits_mask[0][1] = exb_bit_rsvd | |
| rsvd_bits(maxphyaddr, 62); /* PDE */ |
| context->rsvd_bits_mask[0][0] = exb_bit_rsvd | |
| rsvd_bits(maxphyaddr, 62); /* PTE */ |
| context->rsvd_bits_mask[1][1] = exb_bit_rsvd | |
| rsvd_bits(maxphyaddr, 62) | |
| rsvd_bits(13, 20); /* large page */ |
| context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0]; |
| break; |
| case PT64_ROOT_LEVEL: |
| context->rsvd_bits_mask[0][3] = exb_bit_rsvd | |
| rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8); |
| context->rsvd_bits_mask[0][2] = exb_bit_rsvd | |
| rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8); |
| context->rsvd_bits_mask[0][1] = exb_bit_rsvd | |
| rsvd_bits(maxphyaddr, 51); |
| context->rsvd_bits_mask[0][0] = exb_bit_rsvd | |
| rsvd_bits(maxphyaddr, 51); |
| context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3]; |
| context->rsvd_bits_mask[1][2] = exb_bit_rsvd | |
| rsvd_bits(maxphyaddr, 51) | |
| rsvd_bits(13, 29); |
| context->rsvd_bits_mask[1][1] = exb_bit_rsvd | |
| rsvd_bits(maxphyaddr, 51) | |
| rsvd_bits(13, 20); /* large page */ |
| context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0]; |
| break; |
| } |
| } |
| |
| static int paging64_init_context_common(struct kvm_vcpu *vcpu, |
| struct kvm_mmu *context, |
| int level) |
| { |
| context->nx = is_nx(vcpu); |
| |
| reset_rsvds_bits_mask(vcpu, context, level); |
| |
| ASSERT(is_pae(vcpu)); |
| context->new_cr3 = paging_new_cr3; |
| context->page_fault = paging64_page_fault; |
| context->gva_to_gpa = paging64_gva_to_gpa; |
| context->prefetch_page = paging64_prefetch_page; |
| context->sync_page = paging64_sync_page; |
| context->invlpg = paging64_invlpg; |
| context->free = paging_free; |
| context->root_level = level; |
| context->shadow_root_level = level; |
| context->root_hpa = INVALID_PAGE; |
| context->direct_map = false; |
| return 0; |
| } |
| |
| static int paging64_init_context(struct kvm_vcpu *vcpu, |
| struct kvm_mmu *context) |
| { |
| return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL); |
| } |
| |
| static int paging32_init_context(struct kvm_vcpu *vcpu, |
| struct kvm_mmu *context) |
| { |
| context->nx = false; |
| |
| reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL); |
| |
| context->new_cr3 = paging_new_cr3; |
| context->page_fault = paging32_page_fault; |
| context->gva_to_gpa = paging32_gva_to_gpa; |
| context->free = paging_free; |
| context->prefetch_page = paging32_prefetch_page; |
| context->sync_page = paging32_sync_page; |
| context->invlpg = paging32_invlpg; |
| context->root_level = PT32_ROOT_LEVEL; |
| context->shadow_root_level = PT32E_ROOT_LEVEL; |
| context->root_hpa = INVALID_PAGE; |
| context->direct_map = false; |
| return 0; |
| } |
| |
| static int paging32E_init_context(struct kvm_vcpu *vcpu, |
| struct kvm_mmu *context) |
| { |
| return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL); |
| } |
| |
| static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_mmu *context = vcpu->arch.walk_mmu; |
| |
| context->new_cr3 = nonpaging_new_cr3; |
| context->page_fault = tdp_page_fault; |
| context->free = nonpaging_free; |
| context->prefetch_page = nonpaging_prefetch_page; |
| context->sync_page = nonpaging_sync_page; |
| context->invlpg = nonpaging_invlpg; |
| context->shadow_root_level = kvm_x86_ops->get_tdp_level(); |
| context->root_hpa = INVALID_PAGE; |
| context->direct_map = true; |
| context->set_cr3 = kvm_x86_ops->set_tdp_cr3; |
| context->get_cr3 = get_cr3; |
| context->inject_page_fault = kvm_inject_page_fault; |
| context->nx = is_nx(vcpu); |
| |
| if (!is_paging(vcpu)) { |
| context->nx = false; |
| context->gva_to_gpa = nonpaging_gva_to_gpa; |
| context->root_level = 0; |
| } else if (is_long_mode(vcpu)) { |
| context->nx = is_nx(vcpu); |
| reset_rsvds_bits_mask(vcpu, context, PT64_ROOT_LEVEL); |
| context->gva_to_gpa = paging64_gva_to_gpa; |
| context->root_level = PT64_ROOT_LEVEL; |
| } else if (is_pae(vcpu)) { |
| context->nx = is_nx(vcpu); |
| reset_rsvds_bits_mask(vcpu, context, PT32E_ROOT_LEVEL); |
| context->gva_to_gpa = paging64_gva_to_gpa; |
| context->root_level = PT32E_ROOT_LEVEL; |
| } else { |
| context->nx = false; |
| reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL); |
| context->gva_to_gpa = paging32_gva_to_gpa; |
| context->root_level = PT32_ROOT_LEVEL; |
| } |
| |
| return 0; |
| } |
| |
| int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context) |
| { |
| int r; |
| ASSERT(vcpu); |
| ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa)); |
| |
| if (!is_paging(vcpu)) |
| r = nonpaging_init_context(vcpu, context); |
| else if (is_long_mode(vcpu)) |
| r = paging64_init_context(vcpu, context); |
| else if (is_pae(vcpu)) |
| r = paging32E_init_context(vcpu, context); |
| else |
| r = paging32_init_context(vcpu, context); |
| |
| vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu); |
| vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu); |
| |
| return r; |
| } |
| EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu); |
| |
| static int init_kvm_softmmu(struct kvm_vcpu *vcpu) |
| { |
| int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu); |
| |
| vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3; |
| vcpu->arch.walk_mmu->get_cr3 = get_cr3; |
| vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault; |
| |
| return r; |
| } |
| |
| static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; |
| |
| g_context->get_cr3 = get_cr3; |
| g_context->inject_page_fault = kvm_inject_page_fault; |
| |
| /* |
| * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The |
| * translation of l2_gpa to l1_gpa addresses is done using the |
| * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa |
| * functions between mmu and nested_mmu are swapped. |
| */ |
| if (!is_paging(vcpu)) { |
| g_context->nx = false; |
| g_context->root_level = 0; |
| g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested; |
| } else if (is_long_mode(vcpu)) { |
| g_context->nx = is_nx(vcpu); |
| reset_rsvds_bits_mask(vcpu, g_context, PT64_ROOT_LEVEL); |
| g_context->root_level = PT64_ROOT_LEVEL; |
| g_context->gva_to_gpa = paging64_gva_to_gpa_nested; |
| } else if (is_pae(vcpu)) { |
| g_context->nx = is_nx(vcpu); |
| reset_rsvds_bits_mask(vcpu, g_context, PT32E_ROOT_LEVEL); |
| g_context->root_level = PT32E_ROOT_LEVEL; |
| g_context->gva_to_gpa = paging64_gva_to_gpa_nested; |
| } else { |
| g_context->nx = false; |
| reset_rsvds_bits_mask(vcpu, g_context, PT32_ROOT_LEVEL); |
| g_context->root_level = PT32_ROOT_LEVEL; |
| g_context->gva_to_gpa = paging32_gva_to_gpa_nested; |
| } |
| |
| return 0; |
| } |
| |
| static int init_kvm_mmu(struct kvm_vcpu *vcpu) |
| { |
| vcpu->arch.update_pte.pfn = bad_pfn; |
| |
| if (mmu_is_nested(vcpu)) |
| return init_kvm_nested_mmu(vcpu); |
| else if (tdp_enabled) |
| return init_kvm_tdp_mmu(vcpu); |
| else |
| return init_kvm_softmmu(vcpu); |
| } |
| |
| static void destroy_kvm_mmu(struct kvm_vcpu *vcpu) |
| { |
| ASSERT(vcpu); |
| if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) |
| /* mmu.free() should set root_hpa = INVALID_PAGE */ |
| vcpu->arch.mmu.free(vcpu); |
| } |
| |
| int kvm_mmu_reset_context(struct kvm_vcpu *vcpu) |
| { |
| destroy_kvm_mmu(vcpu); |
| return init_kvm_mmu(vcpu); |
| } |
| EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); |
| |
| int kvm_mmu_load(struct kvm_vcpu *vcpu) |
| { |
| int r; |
| |
| r = mmu_topup_memory_caches(vcpu); |
| if (r) |
| goto out; |
| r = mmu_alloc_roots(vcpu); |
| spin_lock(&vcpu->kvm->mmu_lock); |
| mmu_sync_roots(vcpu); |
| spin_unlock(&vcpu->kvm->mmu_lock); |
| if (r) |
| goto out; |
| /* set_cr3() should ensure TLB has been flushed */ |
| vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa); |
| out: |
| return r; |
| } |
| EXPORT_SYMBOL_GPL(kvm_mmu_load); |
| |
| void kvm_mmu_unload(struct kvm_vcpu *vcpu) |
| { |
| mmu_free_roots(vcpu); |
| } |
| EXPORT_SYMBOL_GPL(kvm_mmu_unload); |
| |
| static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu, |
| struct kvm_mmu_page *sp, |
| u64 *spte) |
| { |
| u64 pte; |
| struct kvm_mmu_page *child; |
| |
| pte = *spte; |
| if (is_shadow_present_pte(pte)) { |
| if (is_last_spte(pte, sp->role.level)) |
| drop_spte(vcpu->kvm, spte, shadow_trap_nonpresent_pte); |
| else { |
| child = page_header(pte & PT64_BASE_ADDR_MASK); |
| mmu_page_remove_parent_pte(child, spte); |
| } |
| } |
| __set_spte(spte, shadow_trap_nonpresent_pte); |
| if (is_large_pte(pte)) |
| --vcpu->kvm->stat.lpages; |
| } |
| |
| static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu, |
| struct kvm_mmu_page *sp, |
| u64 *spte, |
| const void *new) |
| { |
| if (sp->role.level != PT_PAGE_TABLE_LEVEL) { |
| ++vcpu->kvm->stat.mmu_pde_zapped; |
| return; |
| } |
| |
| if (is_rsvd_bits_set(&vcpu->arch.mmu, *(u64 *)new, PT_PAGE_TABLE_LEVEL)) |
| return; |
| |
| ++vcpu->kvm->stat.mmu_pte_updated; |
| if (!sp->role.cr4_pae) |
| paging32_update_pte(vcpu, sp, spte, new); |
| else |
| paging64_update_pte(vcpu, sp, spte, new); |
| } |
| |
| static bool need_remote_flush(u64 old, u64 new) |
| { |
| if (!is_shadow_present_pte(old)) |
| return false; |
| if (!is_shadow_present_pte(new)) |
| return true; |
| if ((old ^ new) & PT64_BASE_ADDR_MASK) |
| return true; |
| old ^= PT64_NX_MASK; |
| new ^= PT64_NX_MASK; |
| return (old & ~new & PT64_PERM_MASK) != 0; |
| } |
| |
| static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page, |
| bool remote_flush, bool local_flush) |
| { |
| if (zap_page) |
| return; |
| |
| if (remote_flush) |
| kvm_flush_remote_tlbs(vcpu->kvm); |
| else if (local_flush) |
| kvm_mmu_flush_tlb(vcpu); |
| } |
| |
| static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu) |
| { |
| u64 *spte = vcpu->arch.last_pte_updated; |
| |
| return !!(spte && (*spte & shadow_accessed_mask)); |
| } |
| |
| static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, |
| u64 gpte) |
| { |
| gfn_t gfn; |
| pfn_t pfn; |
| |
| if (!is_present_gpte(gpte)) |
| return; |
| gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT; |
| |
| vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq; |
| smp_rmb(); |
| pfn = gfn_to_pfn(vcpu->kvm, gfn); |
| |
| if (is_error_pfn(pfn)) { |
| kvm_release_pfn_clean(pfn); |
| return; |
| } |
| vcpu->arch.update_pte.gfn = gfn; |
| vcpu->arch.update_pte.pfn = pfn; |
| } |
| |
| static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn) |
| { |
| u64 *spte = vcpu->arch.last_pte_updated; |
| |
| if (spte |
| && vcpu->arch.last_pte_gfn == gfn |
| && shadow_accessed_mask |
| && !(*spte & shadow_accessed_mask) |
| && is_shadow_present_pte(*spte)) |
| set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte); |
| } |
| |
| void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, |
| const u8 *new, int bytes, |
| bool guest_initiated) |
| { |
| gfn_t gfn = gpa >> PAGE_SHIFT; |
| union kvm_mmu_page_role mask = { .word = 0 }; |
| struct kvm_mmu_page *sp; |
| struct hlist_node *node; |
| LIST_HEAD(invalid_list); |
| u64 entry, gentry; |
| u64 *spte; |
| unsigned offset = offset_in_page(gpa); |
| unsigned pte_size; |
| unsigned page_offset; |
| unsigned misaligned; |
| unsigned quadrant; |
| int level; |
| int flooded = 0; |
| int npte; |
| int r; |
| int invlpg_counter; |
| bool remote_flush, local_flush, zap_page; |
| |
| zap_page = remote_flush = local_flush = false; |
| |
| pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes); |
| |
| invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter); |
| |
| /* |
| * Assume that the pte write on a page table of the same type |
| * as the current vcpu paging mode. This is nearly always true |
| * (might be false while changing modes). Note it is verified later |
| * by update_pte(). |
| */ |
| if ((is_pae(vcpu) && bytes == 4) || !new) { |
| /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ |
| if (is_pae(vcpu)) { |
| gpa &= ~(gpa_t)7; |
| bytes = 8; |
| } |
| r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8)); |
| if (r) |
| gentry = 0; |
| new = (const u8 *)&gentry; |
| } |
| |
| switch (bytes) { |
| case 4: |
| gentry = *(const u32 *)new; |
| break; |
| case 8: |
| gentry = *(const u64 *)new; |
| break; |
| default: |
| gentry = 0; |
| break; |
| } |
| |
| mmu_guess_page_from_pte_write(vcpu, gpa, gentry); |
| spin_lock(&vcpu->kvm->mmu_lock); |
| if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter) |
| gentry = 0; |
| kvm_mmu_access_page(vcpu, gfn); |
| kvm_mmu_free_some_pages(vcpu); |
| ++vcpu->kvm->stat.mmu_pte_write; |
| trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE); |
| if (guest_initiated) { |
| if (gfn == vcpu->arch.last_pt_write_gfn |
| && !last_updated_pte_accessed(vcpu)) { |
| ++vcpu->arch.last_pt_write_count; |
| if (vcpu->arch.last_pt_write_count >= 3) |
| flooded = 1; |
| } else { |
| vcpu->arch.last_pt_write_gfn = gfn; |
| vcpu->arch.last_pt_write_count = 1; |
| vcpu->arch.last_pte_updated = NULL; |
| } |
| } |
| |
| mask.cr0_wp = mask.cr4_pae = mask.nxe = 1; |
| for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) { |
| pte_size = sp->role.cr4_pae ? 8 : 4; |
| misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); |
| misaligned |= bytes < 4; |
| if (misaligned || flooded) { |
| /* |
| * Misaligned accesses are too much trouble to fix |
| * up; also, they usually indicate a page is not used |
| * as a page table. |
| * |
| * If we're seeing too many writes to a page, |
| * it may no longer be a page table, or we may be |
| * forking, in which case it is better to unmap the |
| * page. |
| */ |
| pgprintk("misaligned: gpa %llx bytes %d role %x\n", |
| gpa, bytes, sp->role.word); |
| zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp, |
| &invalid_list); |
| ++vcpu->kvm->stat.mmu_flooded; |
| continue; |
| } |
| page_offset = offset; |
| level = sp->role.level; |
| npte = 1; |
| if (!sp->role.cr4_pae) { |
| page_offset <<= 1; /* 32->64 */ |
| /* |
| * A 32-bit pde maps 4MB while the shadow pdes map |
| * only 2MB. So we need to double the offset again |
| * and zap two pdes instead of one. |
| */ |
| if (level == PT32_ROOT_LEVEL) { |
| page_offset &= ~7; /* kill rounding error */ |
| page_offset <<= 1; |
| npte = 2; |
| } |
| quadrant = page_offset >> PAGE_SHIFT; |
| page_offset &= ~PAGE_MASK; |
| if (quadrant != sp->role.quadrant) |
| continue; |
| } |
| local_flush = true; |
| spte = &sp->spt[page_offset / sizeof(*spte)]; |
| while (npte--) { |
| entry = *spte; |
| mmu_pte_write_zap_pte(vcpu, sp, spte); |
| if (gentry && |
| !((sp->role.word ^ vcpu->arch.mmu.base_role.word) |
| & mask.word)) |
| mmu_pte_write_new_pte(vcpu, sp, spte, &gentry); |
| if (!remote_flush && need_remote_flush(entry, *spte)) |
| remote_flush = true; |
| ++spte; |
| } |
| } |
| mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush); |
| kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); |
| trace_kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE); |
| spin_unlock(&vcpu->kvm->mmu_lock); |
| if (!is_error_pfn(vcpu->arch.update_pte.pfn)) { |
| kvm_release_pfn_clean(vcpu->arch.update_pte.pfn); |
| vcpu->arch.update_pte.pfn = bad_pfn; |
| } |
| } |
| |
| int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) |
| { |
| gpa_t gpa; |
| int r; |
| |
| if (vcpu->arch.mmu.direct_map) |
| return 0; |
| |
| gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); |
| |
| spin_lock(&vcpu->kvm->mmu_lock); |
| r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); |
| spin_unlock(&vcpu->kvm->mmu_lock); |
| return r; |
| } |
| EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt); |
| |
| void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu) |
| { |
| LIST_HEAD(invalid_list); |
| |
| while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES && |
| !list_empty(&vcpu->kvm->arch.active_mmu_pages)) { |
| struct kvm_mmu_page *sp; |
| |
| sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev, |
| struct kvm_mmu_page, link); |
| kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); |
| kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); |
| ++vcpu->kvm->stat.mmu_recycled; |
| } |
| } |
| |
| int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code) |
| { |
| int r; |
| enum emulation_result er; |
| |
| r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code); |
| if (r < 0) |
| goto out; |
| |
| if (!r) { |
| r = 1; |
| goto out; |
| } |
| |
| r = mmu_topup_memory_caches(vcpu); |
| if (r) |
| goto out; |
| |
| er = emulate_instruction(vcpu, cr2, error_code, 0); |
| |
| switch (er) { |
| case EMULATE_DONE: |
| return 1; |
| case EMULATE_DO_MMIO: |
| ++vcpu->stat.mmio_exits; |
| /* fall through */ |
| case EMULATE_FAIL: |
| return 0; |
| default: |
| BUG(); |
| } |
| out: |
| return r; |
| } |
| EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); |
| |
| void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) |
| { |
| vcpu->arch.mmu.invlpg(vcpu, gva); |
| kvm_mmu_flush_tlb(vcpu); |
| ++vcpu->stat.invlpg; |
| } |
| EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); |
| |
| void kvm_enable_tdp(void) |
| { |
| tdp_enabled = true; |
| } |
| EXPORT_SYMBOL_GPL(kvm_enable_tdp); |
| |
| void kvm_disable_tdp(void) |
| { |
| tdp_enabled = false; |
| } |
| EXPORT_SYMBOL_GPL(kvm_disable_tdp); |
| |
| static void free_mmu_pages(struct kvm_vcpu *vcpu) |
| { |
| free_page((unsigned long)vcpu->arch.mmu.pae_root); |
| if (vcpu->arch.mmu.lm_root != NULL) |
| free_page((unsigned long)vcpu->arch.mmu.lm_root); |
| } |
| |
| static int alloc_mmu_pages(struct kvm_vcpu *vcpu) |
| { |
| struct page *page; |
| int i; |
| |
| ASSERT(vcpu); |
| |
| /* |
| * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64. |
| * Therefore we need to allocate shadow page tables in the first |
| * 4GB of memory, which happens to fit the DMA32 zone. |
| */ |
| page = alloc_page(GFP_KERNEL | __GFP_DMA32); |
| if (!page) |
| return -ENOMEM; |
| |
| vcpu->arch.mmu.pae_root = page_address(page); |
| for (i = 0; i < 4; ++i) |
| vcpu->arch.mmu.pae_root[i] = INVALID_PAGE; |
| |
| return 0; |
| } |
| |
| int kvm_mmu_create(struct kvm_vcpu *vcpu) |
| { |
| ASSERT(vcpu); |
| ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa)); |
| |
| return alloc_mmu_pages(vcpu); |
| } |
| |
| int kvm_mmu_setup(struct kvm_vcpu *vcpu) |
| { |
| ASSERT(vcpu); |
| ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa)); |
| |
| return init_kvm_mmu(vcpu); |
| } |
| |
| void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot) |
| { |
| struct kvm_mmu_page *sp; |
| |
| list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) { |
| int i; |
| u64 *pt; |
| |
| if (!test_bit(slot, sp->slot_bitmap)) |
| continue; |
| |
| pt = sp->spt; |
| for (i = 0; i < PT64_ENT_PER_PAGE; ++i) |
| /* avoid RMW */ |
| if (is_writable_pte(pt[i])) |
| pt[i] &= ~PT_WRITABLE_MASK; |
| } |
| kvm_flush_remote_tlbs(kvm); |
| } |
| |
| void kvm_mmu_zap_all(struct kvm *kvm) |
| { |
| struct kvm_mmu_page *sp, *node; |
| LIST_HEAD(invalid_list); |
| |
| spin_lock(&kvm->mmu_lock); |
| restart: |
| list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) |
| if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list)) |
| goto restart; |
| |
| kvm_mmu_commit_zap_page(kvm, &invalid_list); |
| spin_unlock(&kvm->mmu_lock); |
| } |
| |
| static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm, |
| struct list_head *invalid_list) |
| { |
| struct kvm_mmu_page *page; |
| |
| page = container_of(kvm->arch.active_mmu_pages.prev, |
| struct kvm_mmu_page, link); |
| return kvm_mmu_prepare_zap_page(kvm, page, invalid_list); |
| } |
| |
| static int mmu_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask) |
| { |
| struct kvm *kvm; |
| struct kvm *kvm_freed = NULL; |
| |
| if (nr_to_scan == 0) |
| goto out; |
| |
| spin_lock(&kvm_lock); |
| |
| list_for_each_entry(kvm, &vm_list, vm_list) { |
| int idx, freed_pages; |
| LIST_HEAD(invalid_list); |
| |
| idx = srcu_read_lock(&kvm->srcu); |
| spin_lock(&kvm->mmu_lock); |
| if (!kvm_freed && nr_to_scan > 0 && |
| kvm->arch.n_used_mmu_pages > 0) { |
| freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm, |
| &invalid_list); |
| kvm_freed = kvm; |
| } |
| nr_to_scan--; |
| |
| kvm_mmu_commit_zap_page(kvm, &invalid_list); |
| spin_unlock(&kvm->mmu_lock); |
| srcu_read_unlock(&kvm->srcu, idx); |
| } |
| if (kvm_freed) |
| list_move_tail(&kvm_freed->vm_list, &vm_list); |
| |
| spin_unlock(&kvm_lock); |
| |
| out: |
| return percpu_counter_read_positive(&kvm_total_used_mmu_pages); |
| } |
| |
| static struct shrinker mmu_shrinker = { |
| .shrink = mmu_shrink, |
| .seeks = DEFAULT_SEEKS * 10, |
| }; |
| |
| static void mmu_destroy_caches(void) |
| { |
| if (pte_chain_cache) |
| kmem_cache_destroy(pte_chain_cache); |
| if (rmap_desc_cache) |
| kmem_cache_destroy(rmap_desc_cache); |
| if (mmu_page_header_cache) |
| kmem_cache_destroy(mmu_page_header_cache); |
| } |
| |
| void kvm_mmu_module_exit(void) |
| { |
| mmu_destroy_caches(); |
| percpu_counter_destroy(&kvm_total_used_mmu_pages); |
| unregister_shrinker(&mmu_shrinker); |
| } |
| |
| int kvm_mmu_module_init(void) |
| { |
| pte_chain_cache = kmem_cache_create("kvm_pte_chain", |
| sizeof(struct kvm_pte_chain), |
| 0, 0, NULL); |
| if (!pte_chain_cache) |
| goto nomem; |
| rmap_desc_cache = kmem_cache_create("kvm_rmap_desc", |
| sizeof(struct kvm_rmap_desc), |
| 0, 0, NULL); |
| if (!rmap_desc_cache) |
| goto nomem; |
| |
| mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", |
| sizeof(struct kvm_mmu_page), |
| 0, 0, NULL); |
| if (!mmu_page_header_cache) |
| goto nomem; |
| |
| if (percpu_counter_init(&kvm_total_used_mmu_pages, 0)) |
| goto nomem; |
| |
| register_shrinker(&mmu_shrinker); |
| |
| return 0; |
| |
| nomem: |
| mmu_destroy_caches(); |
| return -ENOMEM; |
| } |
| |
| /* |
| * Caculate mmu pages needed for kvm. |
| */ |
| unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm) |
| { |
| int i; |
| unsigned int nr_mmu_pages; |
| unsigned int nr_pages = 0; |
| struct kvm_memslots *slots; |
| |
| slots = kvm_memslots(kvm); |
| |
| for (i = 0; i < slots->nmemslots; i++) |
| nr_pages += slots->memslots[i].npages; |
| |
| nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000; |
| nr_mmu_pages = max(nr_mmu_pages, |
| (unsigned int) KVM_MIN_ALLOC_MMU_PAGES); |
| |
| return nr_mmu_pages; |
| } |
| |
| static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer, |
| unsigned len) |
| { |
| if (len > buffer->len) |
| return NULL; |
| return buffer->ptr; |
| } |
| |
| static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer, |
| unsigned len) |
| { |
| void *ret; |
| |
| ret = pv_mmu_peek_buffer(buffer, len); |
| if (!ret) |
| return ret; |
| buffer->ptr += len; |
| buffer->len -= len; |
| buffer->processed += len; |
| return ret; |
| } |
| |
| static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu, |
| gpa_t addr, gpa_t value) |
| { |
| int bytes = 8; |
| int r; |
| |
| if (!is_long_mode(vcpu) && !is_pae(vcpu)) |
| bytes = 4; |
| |
| r = mmu_topup_memory_caches(vcpu); |
| if (r) |
| return r; |
| |
| if (!emulator_write_phys(vcpu, addr, &value, bytes)) |
| return -EFAULT; |
| |
| return 1; |
| } |
| |
| static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu) |
| { |
| (void)kvm_set_cr3(vcpu, vcpu->arch.cr3); |
| return 1; |
| } |
| |
| static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr) |
| { |
| spin_lock(&vcpu->kvm->mmu_lock); |
| mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT); |
| spin_unlock(&vcpu->kvm->mmu_lock); |
| return 1; |
| } |
| |
| static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu, |
| struct kvm_pv_mmu_op_buffer *buffer) |
| { |
| struct kvm_mmu_op_header *header; |
| |
| header = pv_mmu_peek_buffer(buffer, sizeof *header); |
| if (!header) |
| return 0; |
| switch (header->op) { |
| case KVM_MMU_OP_WRITE_PTE: { |
| struct kvm_mmu_op_write_pte *wpte; |
| |
| wpte = pv_mmu_read_buffer(buffer, sizeof *wpte); |
| if (!wpte) |
| return 0; |
| return kvm_pv_mmu_write(vcpu, wpte->pte_phys, |
| wpte->pte_val); |
| } |
| case KVM_MMU_OP_FLUSH_TLB: { |
| struct kvm_mmu_op_flush_tlb *ftlb; |
| |
| ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb); |
| if (!ftlb) |
| return 0; |
| return kvm_pv_mmu_flush_tlb(vcpu); |
| } |
| case KVM_MMU_OP_RELEASE_PT: { |
| struct kvm_mmu_op_release_pt *rpt; |
| |
| rpt = pv_mmu_read_buffer(buffer, sizeof *rpt); |
| if (!rpt) |
| return 0; |
| return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys); |
| } |
| default: return 0; |
| } |
| } |
| |
| int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes, |
| gpa_t addr, unsigned long *ret) |
| { |
| int r; |
| struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer; |
| |
| buffer->ptr = buffer->buf; |
| buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf); |
| buffer->processed = 0; |
| |
| r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len); |
| if (r) |
| goto out; |
| |
| while (buffer->len) { |
| r = kvm_pv_mmu_op_one(vcpu, buffer); |
| if (r < 0) |
| goto out; |
| if (r == 0) |
| break; |
| } |
| |
| r = 1; |
| out: |
| *ret = buffer->processed; |
| return r; |
| } |
| |
| int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4]) |
| { |
| struct kvm_shadow_walk_iterator iterator; |
| int nr_sptes = 0; |
| |
| spin_lock(&vcpu->kvm->mmu_lock); |
| for_each_shadow_entry(vcpu, addr, iterator) { |
| sptes[iterator.level-1] = *iterator.sptep; |
| nr_sptes++; |
| if (!is_shadow_present_pte(*iterator.sptep)) |
| break; |
| } |
| spin_unlock(&vcpu->kvm->mmu_lock); |
| |
| return nr_sptes; |
| } |
| EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy); |
| |
| #ifdef CONFIG_KVM_MMU_AUDIT |
| #include "mmu_audit.c" |
| #else |
| static void mmu_audit_disable(void) { } |
| #endif |
| |
| void kvm_mmu_destroy(struct kvm_vcpu *vcpu) |
| { |
| ASSERT(vcpu); |
| |
| destroy_kvm_mmu(vcpu); |
| free_mmu_pages(vcpu); |
| mmu_free_memory_caches(vcpu); |
| mmu_audit_disable(); |
| } |