| /* |
| * linux/arch/arm/kernel/signal.c |
| * |
| * Copyright (C) 1995-2009 Russell King |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| #include <linux/errno.h> |
| #include <linux/random.h> |
| #include <linux/signal.h> |
| #include <linux/personality.h> |
| #include <linux/uaccess.h> |
| #include <linux/tracehook.h> |
| #include <linux/uprobes.h> |
| #include <linux/syscalls.h> |
| |
| #include <asm/elf.h> |
| #include <asm/cacheflush.h> |
| #include <asm/traps.h> |
| #include <asm/unistd.h> |
| #include <asm/vfp.h> |
| |
| #include "signal.h" |
| |
| extern const unsigned long sigreturn_codes[17]; |
| |
| static unsigned long signal_return_offset; |
| |
| #ifdef CONFIG_CRUNCH |
| static int preserve_crunch_context(struct crunch_sigframe __user *frame) |
| { |
| char kbuf[sizeof(*frame) + 8]; |
| struct crunch_sigframe *kframe; |
| |
| /* the crunch context must be 64 bit aligned */ |
| kframe = (struct crunch_sigframe *)((unsigned long)(kbuf + 8) & ~7); |
| kframe->magic = CRUNCH_MAGIC; |
| kframe->size = CRUNCH_STORAGE_SIZE; |
| crunch_task_copy(current_thread_info(), &kframe->storage); |
| return __copy_to_user(frame, kframe, sizeof(*frame)); |
| } |
| |
| static int restore_crunch_context(char __user **auxp) |
| { |
| struct crunch_sigframe __user *frame = |
| (struct crunch_sigframe __user *)*auxp; |
| char kbuf[sizeof(*frame) + 8]; |
| struct crunch_sigframe *kframe; |
| |
| /* the crunch context must be 64 bit aligned */ |
| kframe = (struct crunch_sigframe *)((unsigned long)(kbuf + 8) & ~7); |
| if (__copy_from_user(kframe, frame, sizeof(*frame))) |
| return -1; |
| if (kframe->magic != CRUNCH_MAGIC || |
| kframe->size != CRUNCH_STORAGE_SIZE) |
| return -1; |
| *auxp += CRUNCH_STORAGE_SIZE; |
| crunch_task_restore(current_thread_info(), &kframe->storage); |
| return 0; |
| } |
| #endif |
| |
| #ifdef CONFIG_IWMMXT |
| |
| static int preserve_iwmmxt_context(struct iwmmxt_sigframe __user *frame) |
| { |
| char kbuf[sizeof(*frame) + 8]; |
| struct iwmmxt_sigframe *kframe; |
| int err = 0; |
| |
| /* the iWMMXt context must be 64 bit aligned */ |
| kframe = (struct iwmmxt_sigframe *)((unsigned long)(kbuf + 8) & ~7); |
| |
| if (test_thread_flag(TIF_USING_IWMMXT)) { |
| kframe->magic = IWMMXT_MAGIC; |
| kframe->size = IWMMXT_STORAGE_SIZE; |
| iwmmxt_task_copy(current_thread_info(), &kframe->storage); |
| } else { |
| /* |
| * For bug-compatibility with older kernels, some space |
| * has to be reserved for iWMMXt even if it's not used. |
| * Set the magic and size appropriately so that properly |
| * written userspace can skip it reliably: |
| */ |
| *kframe = (struct iwmmxt_sigframe) { |
| .magic = DUMMY_MAGIC, |
| .size = IWMMXT_STORAGE_SIZE, |
| }; |
| } |
| |
| err = __copy_to_user(frame, kframe, sizeof(*kframe)); |
| |
| return err; |
| } |
| |
| static int restore_iwmmxt_context(char __user **auxp) |
| { |
| struct iwmmxt_sigframe __user *frame = |
| (struct iwmmxt_sigframe __user *)*auxp; |
| char kbuf[sizeof(*frame) + 8]; |
| struct iwmmxt_sigframe *kframe; |
| |
| /* the iWMMXt context must be 64 bit aligned */ |
| kframe = (struct iwmmxt_sigframe *)((unsigned long)(kbuf + 8) & ~7); |
| if (__copy_from_user(kframe, frame, sizeof(*frame))) |
| return -1; |
| |
| /* |
| * For non-iWMMXt threads: a single iwmmxt_sigframe-sized dummy |
| * block is discarded for compatibility with setup_sigframe() if |
| * present, but we don't mandate its presence. If some other |
| * magic is here, it's not for us: |
| */ |
| if (!test_thread_flag(TIF_USING_IWMMXT) && |
| kframe->magic != DUMMY_MAGIC) |
| return 0; |
| |
| if (kframe->size != IWMMXT_STORAGE_SIZE) |
| return -1; |
| |
| if (test_thread_flag(TIF_USING_IWMMXT)) { |
| if (kframe->magic != IWMMXT_MAGIC) |
| return -1; |
| |
| iwmmxt_task_restore(current_thread_info(), &kframe->storage); |
| } |
| |
| *auxp += IWMMXT_STORAGE_SIZE; |
| return 0; |
| } |
| |
| #endif |
| |
| #ifdef CONFIG_VFP |
| |
| static int preserve_vfp_context(struct vfp_sigframe __user *frame) |
| { |
| struct vfp_sigframe kframe; |
| int err = 0; |
| |
| memset(&kframe, 0, sizeof(kframe)); |
| kframe.magic = VFP_MAGIC; |
| kframe.size = VFP_STORAGE_SIZE; |
| |
| err = vfp_preserve_user_clear_hwstate(&kframe.ufp, &kframe.ufp_exc); |
| if (err) |
| return err; |
| |
| return __copy_to_user(frame, &kframe, sizeof(kframe)); |
| } |
| |
| static int restore_vfp_context(char __user **auxp) |
| { |
| struct vfp_sigframe frame; |
| int err; |
| |
| err = __copy_from_user(&frame, *auxp, sizeof(frame)); |
| if (err) |
| return err; |
| |
| if (frame.magic != VFP_MAGIC || frame.size != VFP_STORAGE_SIZE) |
| return -EINVAL; |
| |
| *auxp += sizeof(frame); |
| return vfp_restore_user_hwstate(&frame.ufp, &frame.ufp_exc); |
| } |
| |
| #endif |
| |
| /* |
| * Do a signal return; undo the signal stack. These are aligned to 64-bit. |
| */ |
| |
| static int restore_sigframe(struct pt_regs *regs, struct sigframe __user *sf) |
| { |
| struct sigcontext context; |
| char __user *aux; |
| sigset_t set; |
| int err; |
| |
| err = __copy_from_user(&set, &sf->uc.uc_sigmask, sizeof(set)); |
| if (err == 0) |
| set_current_blocked(&set); |
| |
| err |= __copy_from_user(&context, &sf->uc.uc_mcontext, sizeof(context)); |
| if (err == 0) { |
| regs->ARM_r0 = context.arm_r0; |
| regs->ARM_r1 = context.arm_r1; |
| regs->ARM_r2 = context.arm_r2; |
| regs->ARM_r3 = context.arm_r3; |
| regs->ARM_r4 = context.arm_r4; |
| regs->ARM_r5 = context.arm_r5; |
| regs->ARM_r6 = context.arm_r6; |
| regs->ARM_r7 = context.arm_r7; |
| regs->ARM_r8 = context.arm_r8; |
| regs->ARM_r9 = context.arm_r9; |
| regs->ARM_r10 = context.arm_r10; |
| regs->ARM_fp = context.arm_fp; |
| regs->ARM_ip = context.arm_ip; |
| regs->ARM_sp = context.arm_sp; |
| regs->ARM_lr = context.arm_lr; |
| regs->ARM_pc = context.arm_pc; |
| regs->ARM_cpsr = context.arm_cpsr; |
| } |
| |
| err |= !valid_user_regs(regs); |
| |
| aux = (char __user *) sf->uc.uc_regspace; |
| #ifdef CONFIG_CRUNCH |
| if (err == 0) |
| err |= restore_crunch_context(&aux); |
| #endif |
| #ifdef CONFIG_IWMMXT |
| if (err == 0) |
| err |= restore_iwmmxt_context(&aux); |
| #endif |
| #ifdef CONFIG_VFP |
| if (err == 0) |
| err |= restore_vfp_context(&aux); |
| #endif |
| |
| return err; |
| } |
| |
| asmlinkage int sys_sigreturn(struct pt_regs *regs) |
| { |
| struct sigframe __user *frame; |
| |
| /* Always make any pending restarted system calls return -EINTR */ |
| current->restart_block.fn = do_no_restart_syscall; |
| |
| /* |
| * Since we stacked the signal on a 64-bit boundary, |
| * then 'sp' should be word aligned here. If it's |
| * not, then the user is trying to mess with us. |
| */ |
| if (regs->ARM_sp & 7) |
| goto badframe; |
| |
| frame = (struct sigframe __user *)regs->ARM_sp; |
| |
| if (!access_ok(frame, sizeof (*frame))) |
| goto badframe; |
| |
| if (restore_sigframe(regs, frame)) |
| goto badframe; |
| |
| return regs->ARM_r0; |
| |
| badframe: |
| force_sig(SIGSEGV, current); |
| return 0; |
| } |
| |
| asmlinkage int sys_rt_sigreturn(struct pt_regs *regs) |
| { |
| struct rt_sigframe __user *frame; |
| |
| /* Always make any pending restarted system calls return -EINTR */ |
| current->restart_block.fn = do_no_restart_syscall; |
| |
| /* |
| * Since we stacked the signal on a 64-bit boundary, |
| * then 'sp' should be word aligned here. If it's |
| * not, then the user is trying to mess with us. |
| */ |
| if (regs->ARM_sp & 7) |
| goto badframe; |
| |
| frame = (struct rt_sigframe __user *)regs->ARM_sp; |
| |
| if (!access_ok(frame, sizeof (*frame))) |
| goto badframe; |
| |
| if (restore_sigframe(regs, &frame->sig)) |
| goto badframe; |
| |
| if (restore_altstack(&frame->sig.uc.uc_stack)) |
| goto badframe; |
| |
| return regs->ARM_r0; |
| |
| badframe: |
| force_sig(SIGSEGV, current); |
| return 0; |
| } |
| |
| static int |
| setup_sigframe(struct sigframe __user *sf, struct pt_regs *regs, sigset_t *set) |
| { |
| struct aux_sigframe __user *aux; |
| struct sigcontext context; |
| int err = 0; |
| |
| context = (struct sigcontext) { |
| .arm_r0 = regs->ARM_r0, |
| .arm_r1 = regs->ARM_r1, |
| .arm_r2 = regs->ARM_r2, |
| .arm_r3 = regs->ARM_r3, |
| .arm_r4 = regs->ARM_r4, |
| .arm_r5 = regs->ARM_r5, |
| .arm_r6 = regs->ARM_r6, |
| .arm_r7 = regs->ARM_r7, |
| .arm_r8 = regs->ARM_r8, |
| .arm_r9 = regs->ARM_r9, |
| .arm_r10 = regs->ARM_r10, |
| .arm_fp = regs->ARM_fp, |
| .arm_ip = regs->ARM_ip, |
| .arm_sp = regs->ARM_sp, |
| .arm_lr = regs->ARM_lr, |
| .arm_pc = regs->ARM_pc, |
| .arm_cpsr = regs->ARM_cpsr, |
| |
| .trap_no = current->thread.trap_no, |
| .error_code = current->thread.error_code, |
| .fault_address = current->thread.address, |
| .oldmask = set->sig[0], |
| }; |
| |
| err |= __copy_to_user(&sf->uc.uc_mcontext, &context, sizeof(context)); |
| |
| err |= __copy_to_user(&sf->uc.uc_sigmask, set, sizeof(*set)); |
| |
| aux = (struct aux_sigframe __user *) sf->uc.uc_regspace; |
| #ifdef CONFIG_CRUNCH |
| if (err == 0) |
| err |= preserve_crunch_context(&aux->crunch); |
| #endif |
| #ifdef CONFIG_IWMMXT |
| if (err == 0) |
| err |= preserve_iwmmxt_context(&aux->iwmmxt); |
| #endif |
| #ifdef CONFIG_VFP |
| if (err == 0) |
| err |= preserve_vfp_context(&aux->vfp); |
| #endif |
| err |= __put_user(0, &aux->end_magic); |
| |
| return err; |
| } |
| |
| static inline void __user * |
| get_sigframe(struct ksignal *ksig, struct pt_regs *regs, int framesize) |
| { |
| unsigned long sp = sigsp(regs->ARM_sp, ksig); |
| void __user *frame; |
| |
| /* |
| * ATPCS B01 mandates 8-byte alignment |
| */ |
| frame = (void __user *)((sp - framesize) & ~7); |
| |
| /* |
| * Check that we can actually write to the signal frame. |
| */ |
| if (!access_ok(frame, framesize)) |
| frame = NULL; |
| |
| return frame; |
| } |
| |
| static int |
| setup_return(struct pt_regs *regs, struct ksignal *ksig, |
| unsigned long __user *rc, void __user *frame) |
| { |
| unsigned long handler = (unsigned long)ksig->ka.sa.sa_handler; |
| unsigned long handler_fdpic_GOT = 0; |
| unsigned long retcode; |
| unsigned int idx, thumb = 0; |
| unsigned long cpsr = regs->ARM_cpsr & ~(PSR_f | PSR_E_BIT); |
| bool fdpic = IS_ENABLED(CONFIG_BINFMT_ELF_FDPIC) && |
| (current->personality & FDPIC_FUNCPTRS); |
| |
| if (fdpic) { |
| unsigned long __user *fdpic_func_desc = |
| (unsigned long __user *)handler; |
| if (__get_user(handler, &fdpic_func_desc[0]) || |
| __get_user(handler_fdpic_GOT, &fdpic_func_desc[1])) |
| return 1; |
| } |
| |
| cpsr |= PSR_ENDSTATE; |
| |
| /* |
| * Maybe we need to deliver a 32-bit signal to a 26-bit task. |
| */ |
| if (ksig->ka.sa.sa_flags & SA_THIRTYTWO) |
| cpsr = (cpsr & ~MODE_MASK) | USR_MODE; |
| |
| #ifdef CONFIG_ARM_THUMB |
| if (elf_hwcap & HWCAP_THUMB) { |
| /* |
| * The LSB of the handler determines if we're going to |
| * be using THUMB or ARM mode for this signal handler. |
| */ |
| thumb = handler & 1; |
| |
| /* |
| * Clear the If-Then Thumb-2 execution state. ARM spec |
| * requires this to be all 000s in ARM mode. Snapdragon |
| * S4/Krait misbehaves on a Thumb=>ARM signal transition |
| * without this. |
| * |
| * We must do this whenever we are running on a Thumb-2 |
| * capable CPU, which includes ARMv6T2. However, we elect |
| * to always do this to simplify the code; this field is |
| * marked UNK/SBZP for older architectures. |
| */ |
| cpsr &= ~PSR_IT_MASK; |
| |
| if (thumb) { |
| cpsr |= PSR_T_BIT; |
| } else |
| cpsr &= ~PSR_T_BIT; |
| } |
| #endif |
| |
| if (ksig->ka.sa.sa_flags & SA_RESTORER) { |
| retcode = (unsigned long)ksig->ka.sa.sa_restorer; |
| if (fdpic) { |
| /* |
| * We need code to load the function descriptor. |
| * That code follows the standard sigreturn code |
| * (6 words), and is made of 3 + 2 words for each |
| * variant. The 4th copied word is the actual FD |
| * address that the assembly code expects. |
| */ |
| idx = 6 + thumb * 3; |
| if (ksig->ka.sa.sa_flags & SA_SIGINFO) |
| idx += 5; |
| if (__put_user(sigreturn_codes[idx], rc ) || |
| __put_user(sigreturn_codes[idx+1], rc+1) || |
| __put_user(sigreturn_codes[idx+2], rc+2) || |
| __put_user(retcode, rc+3)) |
| return 1; |
| goto rc_finish; |
| } |
| } else { |
| idx = thumb << 1; |
| if (ksig->ka.sa.sa_flags & SA_SIGINFO) |
| idx += 3; |
| |
| /* |
| * Put the sigreturn code on the stack no matter which return |
| * mechanism we use in order to remain ABI compliant |
| */ |
| if (__put_user(sigreturn_codes[idx], rc) || |
| __put_user(sigreturn_codes[idx+1], rc+1)) |
| return 1; |
| |
| rc_finish: |
| #ifdef CONFIG_MMU |
| if (cpsr & MODE32_BIT) { |
| struct mm_struct *mm = current->mm; |
| |
| /* |
| * 32-bit code can use the signal return page |
| * except when the MPU has protected the vectors |
| * page from PL0 |
| */ |
| retcode = mm->context.sigpage + signal_return_offset + |
| (idx << 2) + thumb; |
| } else |
| #endif |
| { |
| /* |
| * Ensure that the instruction cache sees |
| * the return code written onto the stack. |
| */ |
| flush_icache_range((unsigned long)rc, |
| (unsigned long)(rc + 3)); |
| |
| retcode = ((unsigned long)rc) + thumb; |
| } |
| } |
| |
| regs->ARM_r0 = ksig->sig; |
| regs->ARM_sp = (unsigned long)frame; |
| regs->ARM_lr = retcode; |
| regs->ARM_pc = handler; |
| if (fdpic) |
| regs->ARM_r9 = handler_fdpic_GOT; |
| regs->ARM_cpsr = cpsr; |
| |
| return 0; |
| } |
| |
| static int |
| setup_frame(struct ksignal *ksig, sigset_t *set, struct pt_regs *regs) |
| { |
| struct sigframe __user *frame = get_sigframe(ksig, regs, sizeof(*frame)); |
| int err = 0; |
| |
| if (!frame) |
| return 1; |
| |
| /* |
| * Set uc.uc_flags to a value which sc.trap_no would never have. |
| */ |
| err = __put_user(0x5ac3c35a, &frame->uc.uc_flags); |
| |
| err |= setup_sigframe(frame, regs, set); |
| if (err == 0) |
| err = setup_return(regs, ksig, frame->retcode, frame); |
| |
| return err; |
| } |
| |
| static int |
| setup_rt_frame(struct ksignal *ksig, sigset_t *set, struct pt_regs *regs) |
| { |
| struct rt_sigframe __user *frame = get_sigframe(ksig, regs, sizeof(*frame)); |
| int err = 0; |
| |
| if (!frame) |
| return 1; |
| |
| err |= copy_siginfo_to_user(&frame->info, &ksig->info); |
| |
| err |= __put_user(0, &frame->sig.uc.uc_flags); |
| err |= __put_user(NULL, &frame->sig.uc.uc_link); |
| |
| err |= __save_altstack(&frame->sig.uc.uc_stack, regs->ARM_sp); |
| err |= setup_sigframe(&frame->sig, regs, set); |
| if (err == 0) |
| err = setup_return(regs, ksig, frame->sig.retcode, frame); |
| |
| if (err == 0) { |
| /* |
| * For realtime signals we must also set the second and third |
| * arguments for the signal handler. |
| * -- Peter Maydell <pmaydell@chiark.greenend.org.uk> 2000-12-06 |
| */ |
| regs->ARM_r1 = (unsigned long)&frame->info; |
| regs->ARM_r2 = (unsigned long)&frame->sig.uc; |
| } |
| |
| return err; |
| } |
| |
| /* |
| * OK, we're invoking a handler |
| */ |
| static void handle_signal(struct ksignal *ksig, struct pt_regs *regs) |
| { |
| sigset_t *oldset = sigmask_to_save(); |
| int ret; |
| |
| /* |
| * Increment event counter and perform fixup for the pre-signal |
| * frame. |
| */ |
| rseq_signal_deliver(ksig, regs); |
| |
| /* |
| * Set up the stack frame |
| */ |
| if (ksig->ka.sa.sa_flags & SA_SIGINFO) |
| ret = setup_rt_frame(ksig, oldset, regs); |
| else |
| ret = setup_frame(ksig, oldset, regs); |
| |
| /* |
| * Check that the resulting registers are actually sane. |
| */ |
| ret |= !valid_user_regs(regs); |
| |
| signal_setup_done(ret, ksig, 0); |
| } |
| |
| /* |
| * Note that 'init' is a special process: it doesn't get signals it doesn't |
| * want to handle. Thus you cannot kill init even with a SIGKILL even by |
| * mistake. |
| * |
| * Note that we go through the signals twice: once to check the signals that |
| * the kernel can handle, and then we build all the user-level signal handling |
| * stack-frames in one go after that. |
| */ |
| static int do_signal(struct pt_regs *regs, int syscall) |
| { |
| unsigned int retval = 0, continue_addr = 0, restart_addr = 0; |
| struct ksignal ksig; |
| int restart = 0; |
| |
| /* |
| * If we were from a system call, check for system call restarting... |
| */ |
| if (syscall) { |
| continue_addr = regs->ARM_pc; |
| restart_addr = continue_addr - (thumb_mode(regs) ? 2 : 4); |
| retval = regs->ARM_r0; |
| |
| /* |
| * Prepare for system call restart. We do this here so that a |
| * debugger will see the already changed PSW. |
| */ |
| switch (retval) { |
| case -ERESTART_RESTARTBLOCK: |
| restart -= 2; |
| case -ERESTARTNOHAND: |
| case -ERESTARTSYS: |
| case -ERESTARTNOINTR: |
| restart++; |
| regs->ARM_r0 = regs->ARM_ORIG_r0; |
| regs->ARM_pc = restart_addr; |
| break; |
| } |
| } |
| |
| /* |
| * Get the signal to deliver. When running under ptrace, at this |
| * point the debugger may change all our registers ... |
| */ |
| /* |
| * Depending on the signal settings we may need to revert the |
| * decision to restart the system call. But skip this if a |
| * debugger has chosen to restart at a different PC. |
| */ |
| if (get_signal(&ksig)) { |
| /* handler */ |
| if (unlikely(restart) && regs->ARM_pc == restart_addr) { |
| if (retval == -ERESTARTNOHAND || |
| retval == -ERESTART_RESTARTBLOCK |
| || (retval == -ERESTARTSYS |
| && !(ksig.ka.sa.sa_flags & SA_RESTART))) { |
| regs->ARM_r0 = -EINTR; |
| regs->ARM_pc = continue_addr; |
| } |
| } |
| handle_signal(&ksig, regs); |
| } else { |
| /* no handler */ |
| restore_saved_sigmask(); |
| if (unlikely(restart) && regs->ARM_pc == restart_addr) { |
| regs->ARM_pc = continue_addr; |
| return restart; |
| } |
| } |
| return 0; |
| } |
| |
| asmlinkage int |
| do_work_pending(struct pt_regs *regs, unsigned int thread_flags, int syscall) |
| { |
| /* |
| * The assembly code enters us with IRQs off, but it hasn't |
| * informed the tracing code of that for efficiency reasons. |
| * Update the trace code with the current status. |
| */ |
| trace_hardirqs_off(); |
| do { |
| if (likely(thread_flags & _TIF_NEED_RESCHED)) { |
| schedule(); |
| } else { |
| if (unlikely(!user_mode(regs))) |
| return 0; |
| local_irq_enable(); |
| if (thread_flags & _TIF_SIGPENDING) { |
| int restart = do_signal(regs, syscall); |
| if (unlikely(restart)) { |
| /* |
| * Restart without handlers. |
| * Deal with it without leaving |
| * the kernel space. |
| */ |
| return restart; |
| } |
| syscall = 0; |
| } else if (thread_flags & _TIF_UPROBE) { |
| uprobe_notify_resume(regs); |
| } else { |
| clear_thread_flag(TIF_NOTIFY_RESUME); |
| tracehook_notify_resume(regs); |
| rseq_handle_notify_resume(NULL, regs); |
| } |
| } |
| local_irq_disable(); |
| thread_flags = current_thread_info()->flags; |
| } while (thread_flags & _TIF_WORK_MASK); |
| return 0; |
| } |
| |
| struct page *get_signal_page(void) |
| { |
| unsigned long ptr; |
| unsigned offset; |
| struct page *page; |
| void *addr; |
| |
| page = alloc_pages(GFP_KERNEL, 0); |
| |
| if (!page) |
| return NULL; |
| |
| addr = page_address(page); |
| |
| /* Give the signal return code some randomness */ |
| offset = 0x200 + (get_random_int() & 0x7fc); |
| signal_return_offset = offset; |
| |
| /* |
| * Copy signal return handlers into the vector page, and |
| * set sigreturn to be a pointer to these. |
| */ |
| memcpy(addr + offset, sigreturn_codes, sizeof(sigreturn_codes)); |
| |
| ptr = (unsigned long)addr + offset; |
| flush_icache_range(ptr, ptr + sizeof(sigreturn_codes)); |
| |
| return page; |
| } |
| |
| /* Defer to generic check */ |
| asmlinkage void addr_limit_check_failed(void) |
| { |
| addr_limit_user_check(); |
| } |
| |
| #ifdef CONFIG_DEBUG_RSEQ |
| asmlinkage void do_rseq_syscall(struct pt_regs *regs) |
| { |
| rseq_syscall(regs); |
| } |
| #endif |