blob: b8e50a34bdb3a22a8fc7f06c5045a115641e14cc [file] [log] [blame]
/*
* Copyright 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/kernel.h>
#include <linux/firmware.h>
#include <drm/drmP.h>
#include "amdgpu.h"
#include "amdgpu_gfx.h"
#include "vi.h"
#include "vi_structs.h"
#include "vid.h"
#include "amdgpu_ucode.h"
#include "amdgpu_atombios.h"
#include "atombios_i2c.h"
#include "clearstate_vi.h"
#include "gmc/gmc_8_2_d.h"
#include "gmc/gmc_8_2_sh_mask.h"
#include "oss/oss_3_0_d.h"
#include "oss/oss_3_0_sh_mask.h"
#include "bif/bif_5_0_d.h"
#include "bif/bif_5_0_sh_mask.h"
#include "gca/gfx_8_0_d.h"
#include "gca/gfx_8_0_enum.h"
#include "gca/gfx_8_0_sh_mask.h"
#include "dce/dce_10_0_d.h"
#include "dce/dce_10_0_sh_mask.h"
#include "smu/smu_7_1_3_d.h"
#include "ivsrcid/ivsrcid_vislands30.h"
#define GFX8_NUM_GFX_RINGS 1
#define GFX8_MEC_HPD_SIZE 4096
#define TOPAZ_GB_ADDR_CONFIG_GOLDEN 0x22010001
#define CARRIZO_GB_ADDR_CONFIG_GOLDEN 0x22010001
#define POLARIS11_GB_ADDR_CONFIG_GOLDEN 0x22011002
#define TONGA_GB_ADDR_CONFIG_GOLDEN 0x22011003
#define ARRAY_MODE(x) ((x) << GB_TILE_MODE0__ARRAY_MODE__SHIFT)
#define PIPE_CONFIG(x) ((x) << GB_TILE_MODE0__PIPE_CONFIG__SHIFT)
#define TILE_SPLIT(x) ((x) << GB_TILE_MODE0__TILE_SPLIT__SHIFT)
#define MICRO_TILE_MODE_NEW(x) ((x) << GB_TILE_MODE0__MICRO_TILE_MODE_NEW__SHIFT)
#define SAMPLE_SPLIT(x) ((x) << GB_TILE_MODE0__SAMPLE_SPLIT__SHIFT)
#define BANK_WIDTH(x) ((x) << GB_MACROTILE_MODE0__BANK_WIDTH__SHIFT)
#define BANK_HEIGHT(x) ((x) << GB_MACROTILE_MODE0__BANK_HEIGHT__SHIFT)
#define MACRO_TILE_ASPECT(x) ((x) << GB_MACROTILE_MODE0__MACRO_TILE_ASPECT__SHIFT)
#define NUM_BANKS(x) ((x) << GB_MACROTILE_MODE0__NUM_BANKS__SHIFT)
#define RLC_CGTT_MGCG_OVERRIDE__CPF_MASK 0x00000001L
#define RLC_CGTT_MGCG_OVERRIDE__RLC_MASK 0x00000002L
#define RLC_CGTT_MGCG_OVERRIDE__MGCG_MASK 0x00000004L
#define RLC_CGTT_MGCG_OVERRIDE__CGCG_MASK 0x00000008L
#define RLC_CGTT_MGCG_OVERRIDE__CGLS_MASK 0x00000010L
#define RLC_CGTT_MGCG_OVERRIDE__GRBM_MASK 0x00000020L
/* BPM SERDES CMD */
#define SET_BPM_SERDES_CMD 1
#define CLE_BPM_SERDES_CMD 0
/* BPM Register Address*/
enum {
BPM_REG_CGLS_EN = 0, /* Enable/Disable CGLS */
BPM_REG_CGLS_ON, /* ON/OFF CGLS: shall be controlled by RLC FW */
BPM_REG_CGCG_OVERRIDE, /* Set/Clear CGCG Override */
BPM_REG_MGCG_OVERRIDE, /* Set/Clear MGCG Override */
BPM_REG_FGCG_OVERRIDE, /* Set/Clear FGCG Override */
BPM_REG_FGCG_MAX
};
#define RLC_FormatDirectRegListLength 14
MODULE_FIRMWARE("amdgpu/carrizo_ce.bin");
MODULE_FIRMWARE("amdgpu/carrizo_pfp.bin");
MODULE_FIRMWARE("amdgpu/carrizo_me.bin");
MODULE_FIRMWARE("amdgpu/carrizo_mec.bin");
MODULE_FIRMWARE("amdgpu/carrizo_mec2.bin");
MODULE_FIRMWARE("amdgpu/carrizo_rlc.bin");
MODULE_FIRMWARE("amdgpu/stoney_ce.bin");
MODULE_FIRMWARE("amdgpu/stoney_pfp.bin");
MODULE_FIRMWARE("amdgpu/stoney_me.bin");
MODULE_FIRMWARE("amdgpu/stoney_mec.bin");
MODULE_FIRMWARE("amdgpu/stoney_rlc.bin");
MODULE_FIRMWARE("amdgpu/tonga_ce.bin");
MODULE_FIRMWARE("amdgpu/tonga_pfp.bin");
MODULE_FIRMWARE("amdgpu/tonga_me.bin");
MODULE_FIRMWARE("amdgpu/tonga_mec.bin");
MODULE_FIRMWARE("amdgpu/tonga_mec2.bin");
MODULE_FIRMWARE("amdgpu/tonga_rlc.bin");
MODULE_FIRMWARE("amdgpu/topaz_ce.bin");
MODULE_FIRMWARE("amdgpu/topaz_pfp.bin");
MODULE_FIRMWARE("amdgpu/topaz_me.bin");
MODULE_FIRMWARE("amdgpu/topaz_mec.bin");
MODULE_FIRMWARE("amdgpu/topaz_rlc.bin");
MODULE_FIRMWARE("amdgpu/fiji_ce.bin");
MODULE_FIRMWARE("amdgpu/fiji_pfp.bin");
MODULE_FIRMWARE("amdgpu/fiji_me.bin");
MODULE_FIRMWARE("amdgpu/fiji_mec.bin");
MODULE_FIRMWARE("amdgpu/fiji_mec2.bin");
MODULE_FIRMWARE("amdgpu/fiji_rlc.bin");
MODULE_FIRMWARE("amdgpu/polaris10_ce.bin");
MODULE_FIRMWARE("amdgpu/polaris10_ce_2.bin");
MODULE_FIRMWARE("amdgpu/polaris10_pfp.bin");
MODULE_FIRMWARE("amdgpu/polaris10_pfp_2.bin");
MODULE_FIRMWARE("amdgpu/polaris10_me.bin");
MODULE_FIRMWARE("amdgpu/polaris10_me_2.bin");
MODULE_FIRMWARE("amdgpu/polaris10_mec.bin");
MODULE_FIRMWARE("amdgpu/polaris10_mec_2.bin");
MODULE_FIRMWARE("amdgpu/polaris10_mec2.bin");
MODULE_FIRMWARE("amdgpu/polaris10_mec2_2.bin");
MODULE_FIRMWARE("amdgpu/polaris10_rlc.bin");
MODULE_FIRMWARE("amdgpu/polaris11_ce.bin");
MODULE_FIRMWARE("amdgpu/polaris11_ce_2.bin");
MODULE_FIRMWARE("amdgpu/polaris11_pfp.bin");
MODULE_FIRMWARE("amdgpu/polaris11_pfp_2.bin");
MODULE_FIRMWARE("amdgpu/polaris11_me.bin");
MODULE_FIRMWARE("amdgpu/polaris11_me_2.bin");
MODULE_FIRMWARE("amdgpu/polaris11_mec.bin");
MODULE_FIRMWARE("amdgpu/polaris11_mec_2.bin");
MODULE_FIRMWARE("amdgpu/polaris11_mec2.bin");
MODULE_FIRMWARE("amdgpu/polaris11_mec2_2.bin");
MODULE_FIRMWARE("amdgpu/polaris11_rlc.bin");
MODULE_FIRMWARE("amdgpu/polaris12_ce.bin");
MODULE_FIRMWARE("amdgpu/polaris12_ce_2.bin");
MODULE_FIRMWARE("amdgpu/polaris12_pfp.bin");
MODULE_FIRMWARE("amdgpu/polaris12_pfp_2.bin");
MODULE_FIRMWARE("amdgpu/polaris12_me.bin");
MODULE_FIRMWARE("amdgpu/polaris12_me_2.bin");
MODULE_FIRMWARE("amdgpu/polaris12_mec.bin");
MODULE_FIRMWARE("amdgpu/polaris12_mec_2.bin");
MODULE_FIRMWARE("amdgpu/polaris12_mec2.bin");
MODULE_FIRMWARE("amdgpu/polaris12_mec2_2.bin");
MODULE_FIRMWARE("amdgpu/polaris12_rlc.bin");
MODULE_FIRMWARE("amdgpu/vegam_ce.bin");
MODULE_FIRMWARE("amdgpu/vegam_pfp.bin");
MODULE_FIRMWARE("amdgpu/vegam_me.bin");
MODULE_FIRMWARE("amdgpu/vegam_mec.bin");
MODULE_FIRMWARE("amdgpu/vegam_mec2.bin");
MODULE_FIRMWARE("amdgpu/vegam_rlc.bin");
static const struct amdgpu_gds_reg_offset amdgpu_gds_reg_offset[] =
{
{mmGDS_VMID0_BASE, mmGDS_VMID0_SIZE, mmGDS_GWS_VMID0, mmGDS_OA_VMID0},
{mmGDS_VMID1_BASE, mmGDS_VMID1_SIZE, mmGDS_GWS_VMID1, mmGDS_OA_VMID1},
{mmGDS_VMID2_BASE, mmGDS_VMID2_SIZE, mmGDS_GWS_VMID2, mmGDS_OA_VMID2},
{mmGDS_VMID3_BASE, mmGDS_VMID3_SIZE, mmGDS_GWS_VMID3, mmGDS_OA_VMID3},
{mmGDS_VMID4_BASE, mmGDS_VMID4_SIZE, mmGDS_GWS_VMID4, mmGDS_OA_VMID4},
{mmGDS_VMID5_BASE, mmGDS_VMID5_SIZE, mmGDS_GWS_VMID5, mmGDS_OA_VMID5},
{mmGDS_VMID6_BASE, mmGDS_VMID6_SIZE, mmGDS_GWS_VMID6, mmGDS_OA_VMID6},
{mmGDS_VMID7_BASE, mmGDS_VMID7_SIZE, mmGDS_GWS_VMID7, mmGDS_OA_VMID7},
{mmGDS_VMID8_BASE, mmGDS_VMID8_SIZE, mmGDS_GWS_VMID8, mmGDS_OA_VMID8},
{mmGDS_VMID9_BASE, mmGDS_VMID9_SIZE, mmGDS_GWS_VMID9, mmGDS_OA_VMID9},
{mmGDS_VMID10_BASE, mmGDS_VMID10_SIZE, mmGDS_GWS_VMID10, mmGDS_OA_VMID10},
{mmGDS_VMID11_BASE, mmGDS_VMID11_SIZE, mmGDS_GWS_VMID11, mmGDS_OA_VMID11},
{mmGDS_VMID12_BASE, mmGDS_VMID12_SIZE, mmGDS_GWS_VMID12, mmGDS_OA_VMID12},
{mmGDS_VMID13_BASE, mmGDS_VMID13_SIZE, mmGDS_GWS_VMID13, mmGDS_OA_VMID13},
{mmGDS_VMID14_BASE, mmGDS_VMID14_SIZE, mmGDS_GWS_VMID14, mmGDS_OA_VMID14},
{mmGDS_VMID15_BASE, mmGDS_VMID15_SIZE, mmGDS_GWS_VMID15, mmGDS_OA_VMID15}
};
static const u32 golden_settings_tonga_a11[] =
{
mmCB_HW_CONTROL, 0xfffdf3cf, 0x00007208,
mmCB_HW_CONTROL_3, 0x00000040, 0x00000040,
mmDB_DEBUG2, 0xf00fffff, 0x00000400,
mmGB_GPU_ID, 0x0000000f, 0x00000000,
mmPA_SC_ENHANCE, 0xffffffff, 0x20000001,
mmPA_SC_FIFO_DEPTH_CNTL, 0x000003ff, 0x000000fc,
mmPA_SC_LINE_STIPPLE_STATE, 0x0000ff0f, 0x00000000,
mmRLC_CGCG_CGLS_CTRL, 0x00000003, 0x0000003c,
mmSQ_RANDOM_WAVE_PRI, 0x001fffff, 0x000006fd,
mmTA_CNTL_AUX, 0x000f000f, 0x000b0000,
mmTCC_CTRL, 0x00100000, 0xf31fff7f,
mmTCC_EXE_DISABLE, 0x00000002, 0x00000002,
mmTCP_ADDR_CONFIG, 0x000003ff, 0x000002fb,
mmTCP_CHAN_STEER_HI, 0xffffffff, 0x0000543b,
mmTCP_CHAN_STEER_LO, 0xffffffff, 0xa9210876,
mmVGT_RESET_DEBUG, 0x00000004, 0x00000004,
};
static const u32 tonga_golden_common_all[] =
{
mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000,
mmPA_SC_RASTER_CONFIG, 0xffffffff, 0x16000012,
mmPA_SC_RASTER_CONFIG_1, 0xffffffff, 0x0000002A,
mmGB_ADDR_CONFIG, 0xffffffff, 0x22011003,
mmSPI_RESOURCE_RESERVE_CU_0, 0xffffffff, 0x00000800,
mmSPI_RESOURCE_RESERVE_CU_1, 0xffffffff, 0x00000800,
mmSPI_RESOURCE_RESERVE_EN_CU_0, 0xffffffff, 0x00FF7FBF,
mmSPI_RESOURCE_RESERVE_EN_CU_1, 0xffffffff, 0x00FF7FAF
};
static const u32 tonga_mgcg_cgcg_init[] =
{
mmRLC_CGTT_MGCG_OVERRIDE, 0xffffffff, 0xffffffff,
mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000,
mmCB_CGTT_SCLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_BCI_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_CP_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_CPC_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_CPF_CLK_CTRL, 0xffffffff, 0x40000100,
mmCGTT_GDS_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_IA_CLK_CTRL, 0xffffffff, 0x06000100,
mmCGTT_PA_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_WD_CLK_CTRL, 0xffffffff, 0x06000100,
mmCGTT_PC_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_RLC_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_SC_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_SPI_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_SQ_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_SQG_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_SX_CLK_CTRL0, 0xffffffff, 0x00000100,
mmCGTT_SX_CLK_CTRL1, 0xffffffff, 0x00000100,
mmCGTT_SX_CLK_CTRL2, 0xffffffff, 0x00000100,
mmCGTT_SX_CLK_CTRL3, 0xffffffff, 0x00000100,
mmCGTT_SX_CLK_CTRL4, 0xffffffff, 0x00000100,
mmCGTT_TCI_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_TCP_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_VGT_CLK_CTRL, 0xffffffff, 0x06000100,
mmDB_CGTT_CLK_CTRL_0, 0xffffffff, 0x00000100,
mmTA_CGTT_CTRL, 0xffffffff, 0x00000100,
mmTCA_CGTT_SCLK_CTRL, 0xffffffff, 0x00000100,
mmTCC_CGTT_SCLK_CTRL, 0xffffffff, 0x00000100,
mmTD_CGTT_CTRL, 0xffffffff, 0x00000100,
mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000,
mmCGTS_CU0_SP0_CTRL_REG, 0xffffffff, 0x00010000,
mmCGTS_CU0_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002,
mmCGTS_CU0_TA_SQC_CTRL_REG, 0xffffffff, 0x00040007,
mmCGTS_CU0_SP1_CTRL_REG, 0xffffffff, 0x00060005,
mmCGTS_CU0_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008,
mmCGTS_CU1_SP0_CTRL_REG, 0xffffffff, 0x00010000,
mmCGTS_CU1_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002,
mmCGTS_CU1_TA_CTRL_REG, 0xffffffff, 0x00040007,
mmCGTS_CU1_SP1_CTRL_REG, 0xffffffff, 0x00060005,
mmCGTS_CU1_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008,
mmCGTS_CU2_SP0_CTRL_REG, 0xffffffff, 0x00010000,
mmCGTS_CU2_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002,
mmCGTS_CU2_TA_CTRL_REG, 0xffffffff, 0x00040007,
mmCGTS_CU2_SP1_CTRL_REG, 0xffffffff, 0x00060005,
mmCGTS_CU2_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008,
mmCGTS_CU3_SP0_CTRL_REG, 0xffffffff, 0x00010000,
mmCGTS_CU3_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002,
mmCGTS_CU3_TA_CTRL_REG, 0xffffffff, 0x00040007,
mmCGTS_CU3_SP1_CTRL_REG, 0xffffffff, 0x00060005,
mmCGTS_CU3_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008,
mmCGTS_CU4_SP0_CTRL_REG, 0xffffffff, 0x00010000,
mmCGTS_CU4_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002,
mmCGTS_CU4_TA_SQC_CTRL_REG, 0xffffffff, 0x00040007,
mmCGTS_CU4_SP1_CTRL_REG, 0xffffffff, 0x00060005,
mmCGTS_CU4_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008,
mmCGTS_CU5_SP0_CTRL_REG, 0xffffffff, 0x00010000,
mmCGTS_CU5_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002,
mmCGTS_CU5_TA_CTRL_REG, 0xffffffff, 0x00040007,
mmCGTS_CU5_SP1_CTRL_REG, 0xffffffff, 0x00060005,
mmCGTS_CU5_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008,
mmCGTS_CU6_SP0_CTRL_REG, 0xffffffff, 0x00010000,
mmCGTS_CU6_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002,
mmCGTS_CU6_TA_CTRL_REG, 0xffffffff, 0x00040007,
mmCGTS_CU6_SP1_CTRL_REG, 0xffffffff, 0x00060005,
mmCGTS_CU6_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008,
mmCGTS_CU7_SP0_CTRL_REG, 0xffffffff, 0x00010000,
mmCGTS_CU7_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002,
mmCGTS_CU7_TA_CTRL_REG, 0xffffffff, 0x00040007,
mmCGTS_CU7_SP1_CTRL_REG, 0xffffffff, 0x00060005,
mmCGTS_CU7_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008,
mmCGTS_SM_CTRL_REG, 0xffffffff, 0x96e00200,
mmCP_RB_WPTR_POLL_CNTL, 0xffffffff, 0x00900100,
mmRLC_CGCG_CGLS_CTRL, 0xffffffff, 0x0020003c,
mmCP_MEM_SLP_CNTL, 0x00000001, 0x00000001,
};
static const u32 golden_settings_vegam_a11[] =
{
mmCB_HW_CONTROL, 0x0001f3cf, 0x00007208,
mmCB_HW_CONTROL_2, 0x0f000000, 0x0d000000,
mmCB_HW_CONTROL_3, 0x000001ff, 0x00000040,
mmDB_DEBUG2, 0xf00fffff, 0x00000400,
mmPA_SC_ENHANCE, 0xffffffff, 0x20000001,
mmPA_SC_LINE_STIPPLE_STATE, 0x0000ff0f, 0x00000000,
mmPA_SC_RASTER_CONFIG, 0x3f3fffff, 0x3a00161a,
mmPA_SC_RASTER_CONFIG_1, 0x0000003f, 0x0000002e,
mmRLC_CGCG_CGLS_CTRL, 0x00000003, 0x0001003c,
mmRLC_CGCG_CGLS_CTRL_3D, 0xffffffff, 0x0001003c,
mmSQ_CONFIG, 0x07f80000, 0x01180000,
mmTA_CNTL_AUX, 0x000f000f, 0x000b0000,
mmTCC_CTRL, 0x00100000, 0xf31fff7f,
mmTCP_ADDR_CONFIG, 0x000003ff, 0x000000f7,
mmTCP_CHAN_STEER_HI, 0xffffffff, 0x00000000,
mmTCP_CHAN_STEER_LO, 0xffffffff, 0x32761054,
mmVGT_RESET_DEBUG, 0x00000004, 0x00000004,
};
static const u32 vegam_golden_common_all[] =
{
mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000,
mmGB_ADDR_CONFIG, 0xffffffff, 0x22011003,
mmSPI_RESOURCE_RESERVE_CU_0, 0xffffffff, 0x00000800,
mmSPI_RESOURCE_RESERVE_CU_1, 0xffffffff, 0x00000800,
mmSPI_RESOURCE_RESERVE_EN_CU_0, 0xffffffff, 0x00FF7FBF,
mmSPI_RESOURCE_RESERVE_EN_CU_1, 0xffffffff, 0x00FF7FAF,
};
static const u32 golden_settings_polaris11_a11[] =
{
mmCB_HW_CONTROL, 0x0000f3cf, 0x00007208,
mmCB_HW_CONTROL_2, 0x0f000000, 0x0f000000,
mmCB_HW_CONTROL_3, 0x000001ff, 0x00000040,
mmDB_DEBUG2, 0xf00fffff, 0x00000400,
mmPA_SC_ENHANCE, 0xffffffff, 0x20000001,
mmPA_SC_LINE_STIPPLE_STATE, 0x0000ff0f, 0x00000000,
mmPA_SC_RASTER_CONFIG, 0x3f3fffff, 0x16000012,
mmPA_SC_RASTER_CONFIG_1, 0x0000003f, 0x00000000,
mmRLC_CGCG_CGLS_CTRL, 0x00000003, 0x0001003c,
mmRLC_CGCG_CGLS_CTRL_3D, 0xffffffff, 0x0001003c,
mmSQ_CONFIG, 0x07f80000, 0x01180000,
mmTA_CNTL_AUX, 0x000f000f, 0x000b0000,
mmTCC_CTRL, 0x00100000, 0xf31fff7f,
mmTCP_ADDR_CONFIG, 0x000003ff, 0x000000f3,
mmTCP_CHAN_STEER_HI, 0xffffffff, 0x00000000,
mmTCP_CHAN_STEER_LO, 0xffffffff, 0x00003210,
mmVGT_RESET_DEBUG, 0x00000004, 0x00000004,
};
static const u32 polaris11_golden_common_all[] =
{
mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000,
mmGB_ADDR_CONFIG, 0xffffffff, 0x22011002,
mmSPI_RESOURCE_RESERVE_CU_0, 0xffffffff, 0x00000800,
mmSPI_RESOURCE_RESERVE_CU_1, 0xffffffff, 0x00000800,
mmSPI_RESOURCE_RESERVE_EN_CU_0, 0xffffffff, 0x00FF7FBF,
mmSPI_RESOURCE_RESERVE_EN_CU_1, 0xffffffff, 0x00FF7FAF,
};
static const u32 golden_settings_polaris10_a11[] =
{
mmATC_MISC_CG, 0x000c0fc0, 0x000c0200,
mmCB_HW_CONTROL, 0x0001f3cf, 0x00007208,
mmCB_HW_CONTROL_2, 0x0f000000, 0x0f000000,
mmCB_HW_CONTROL_3, 0x000001ff, 0x00000040,
mmDB_DEBUG2, 0xf00fffff, 0x00000400,
mmPA_SC_ENHANCE, 0xffffffff, 0x20000001,
mmPA_SC_LINE_STIPPLE_STATE, 0x0000ff0f, 0x00000000,
mmPA_SC_RASTER_CONFIG, 0x3f3fffff, 0x16000012,
mmPA_SC_RASTER_CONFIG_1, 0x0000003f, 0x0000002a,
mmRLC_CGCG_CGLS_CTRL, 0x00000003, 0x0001003c,
mmRLC_CGCG_CGLS_CTRL_3D, 0xffffffff, 0x0001003c,
mmSQ_CONFIG, 0x07f80000, 0x07180000,
mmTA_CNTL_AUX, 0x000f000f, 0x000b0000,
mmTCC_CTRL, 0x00100000, 0xf31fff7f,
mmTCP_ADDR_CONFIG, 0x000003ff, 0x000000f7,
mmTCP_CHAN_STEER_HI, 0xffffffff, 0x00000000,
mmVGT_RESET_DEBUG, 0x00000004, 0x00000004,
};
static const u32 polaris10_golden_common_all[] =
{
mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000,
mmPA_SC_RASTER_CONFIG, 0xffffffff, 0x16000012,
mmPA_SC_RASTER_CONFIG_1, 0xffffffff, 0x0000002A,
mmGB_ADDR_CONFIG, 0xffffffff, 0x22011003,
mmSPI_RESOURCE_RESERVE_CU_0, 0xffffffff, 0x00000800,
mmSPI_RESOURCE_RESERVE_CU_1, 0xffffffff, 0x00000800,
mmSPI_RESOURCE_RESERVE_EN_CU_0, 0xffffffff, 0x00FF7FBF,
mmSPI_RESOURCE_RESERVE_EN_CU_1, 0xffffffff, 0x00FF7FAF,
};
static const u32 fiji_golden_common_all[] =
{
mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000,
mmPA_SC_RASTER_CONFIG, 0xffffffff, 0x3a00161a,
mmPA_SC_RASTER_CONFIG_1, 0xffffffff, 0x0000002e,
mmGB_ADDR_CONFIG, 0xffffffff, 0x22011003,
mmSPI_RESOURCE_RESERVE_CU_0, 0xffffffff, 0x00000800,
mmSPI_RESOURCE_RESERVE_CU_1, 0xffffffff, 0x00000800,
mmSPI_RESOURCE_RESERVE_EN_CU_0, 0xffffffff, 0x00FF7FBF,
mmSPI_RESOURCE_RESERVE_EN_CU_1, 0xffffffff, 0x00FF7FAF,
mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000,
mmSPI_CONFIG_CNTL_1, 0x0000000f, 0x00000009,
};
static const u32 golden_settings_fiji_a10[] =
{
mmCB_HW_CONTROL_3, 0x000001ff, 0x00000040,
mmDB_DEBUG2, 0xf00fffff, 0x00000400,
mmPA_SC_ENHANCE, 0xffffffff, 0x20000001,
mmPA_SC_LINE_STIPPLE_STATE, 0x0000ff0f, 0x00000000,
mmRLC_CGCG_CGLS_CTRL, 0x00000003, 0x0001003c,
mmSQ_RANDOM_WAVE_PRI, 0x001fffff, 0x000006fd,
mmTA_CNTL_AUX, 0x000f000f, 0x000b0000,
mmTCC_CTRL, 0x00100000, 0xf31fff7f,
mmTCC_EXE_DISABLE, 0x00000002, 0x00000002,
mmTCP_ADDR_CONFIG, 0x000003ff, 0x000000ff,
mmVGT_RESET_DEBUG, 0x00000004, 0x00000004,
};
static const u32 fiji_mgcg_cgcg_init[] =
{
mmRLC_CGTT_MGCG_OVERRIDE, 0xffffffff, 0xffffffff,
mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000,
mmCB_CGTT_SCLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_BCI_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_CP_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_CPC_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_CPF_CLK_CTRL, 0xffffffff, 0x40000100,
mmCGTT_GDS_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_IA_CLK_CTRL, 0xffffffff, 0x06000100,
mmCGTT_PA_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_WD_CLK_CTRL, 0xffffffff, 0x06000100,
mmCGTT_PC_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_RLC_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_SC_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_SPI_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_SQ_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_SQG_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_SX_CLK_CTRL0, 0xffffffff, 0x00000100,
mmCGTT_SX_CLK_CTRL1, 0xffffffff, 0x00000100,
mmCGTT_SX_CLK_CTRL2, 0xffffffff, 0x00000100,
mmCGTT_SX_CLK_CTRL3, 0xffffffff, 0x00000100,
mmCGTT_SX_CLK_CTRL4, 0xffffffff, 0x00000100,
mmCGTT_TCI_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_TCP_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_VGT_CLK_CTRL, 0xffffffff, 0x06000100,
mmDB_CGTT_CLK_CTRL_0, 0xffffffff, 0x00000100,
mmTA_CGTT_CTRL, 0xffffffff, 0x00000100,
mmTCA_CGTT_SCLK_CTRL, 0xffffffff, 0x00000100,
mmTCC_CGTT_SCLK_CTRL, 0xffffffff, 0x00000100,
mmTD_CGTT_CTRL, 0xffffffff, 0x00000100,
mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000,
mmCGTS_SM_CTRL_REG, 0xffffffff, 0x96e00200,
mmCP_RB_WPTR_POLL_CNTL, 0xffffffff, 0x00900100,
mmRLC_CGCG_CGLS_CTRL, 0xffffffff, 0x0020003c,
mmCP_MEM_SLP_CNTL, 0x00000001, 0x00000001,
};
static const u32 golden_settings_iceland_a11[] =
{
mmCB_HW_CONTROL_3, 0x00000040, 0x00000040,
mmDB_DEBUG2, 0xf00fffff, 0x00000400,
mmDB_DEBUG3, 0xc0000000, 0xc0000000,
mmGB_GPU_ID, 0x0000000f, 0x00000000,
mmPA_SC_ENHANCE, 0xffffffff, 0x20000001,
mmPA_SC_LINE_STIPPLE_STATE, 0x0000ff0f, 0x00000000,
mmPA_SC_RASTER_CONFIG, 0x3f3fffff, 0x00000002,
mmPA_SC_RASTER_CONFIG_1, 0x0000003f, 0x00000000,
mmRLC_CGCG_CGLS_CTRL, 0x00000003, 0x0000003c,
mmSQ_RANDOM_WAVE_PRI, 0x001fffff, 0x000006fd,
mmTA_CNTL_AUX, 0x000f000f, 0x000b0000,
mmTCC_CTRL, 0x00100000, 0xf31fff7f,
mmTCC_EXE_DISABLE, 0x00000002, 0x00000002,
mmTCP_ADDR_CONFIG, 0x000003ff, 0x000000f1,
mmTCP_CHAN_STEER_HI, 0xffffffff, 0x00000000,
mmTCP_CHAN_STEER_LO, 0xffffffff, 0x00000010,
};
static const u32 iceland_golden_common_all[] =
{
mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000,
mmPA_SC_RASTER_CONFIG, 0xffffffff, 0x00000002,
mmPA_SC_RASTER_CONFIG_1, 0xffffffff, 0x00000000,
mmGB_ADDR_CONFIG, 0xffffffff, 0x22010001,
mmSPI_RESOURCE_RESERVE_CU_0, 0xffffffff, 0x00000800,
mmSPI_RESOURCE_RESERVE_CU_1, 0xffffffff, 0x00000800,
mmSPI_RESOURCE_RESERVE_EN_CU_0, 0xffffffff, 0x00FF7FBF,
mmSPI_RESOURCE_RESERVE_EN_CU_1, 0xffffffff, 0x00FF7FAF
};
static const u32 iceland_mgcg_cgcg_init[] =
{
mmRLC_CGTT_MGCG_OVERRIDE, 0xffffffff, 0xffffffff,
mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000,
mmCB_CGTT_SCLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_BCI_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_CP_CLK_CTRL, 0xffffffff, 0xc0000100,
mmCGTT_CPC_CLK_CTRL, 0xffffffff, 0xc0000100,
mmCGTT_CPF_CLK_CTRL, 0xffffffff, 0xc0000100,
mmCGTT_GDS_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_IA_CLK_CTRL, 0xffffffff, 0x06000100,
mmCGTT_PA_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_WD_CLK_CTRL, 0xffffffff, 0x06000100,
mmCGTT_PC_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_RLC_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_SC_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_SPI_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_SQ_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_SQG_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_SX_CLK_CTRL0, 0xffffffff, 0x00000100,
mmCGTT_SX_CLK_CTRL1, 0xffffffff, 0x00000100,
mmCGTT_SX_CLK_CTRL2, 0xffffffff, 0x00000100,
mmCGTT_SX_CLK_CTRL3, 0xffffffff, 0x00000100,
mmCGTT_SX_CLK_CTRL4, 0xffffffff, 0x00000100,
mmCGTT_TCI_CLK_CTRL, 0xffffffff, 0xff000100,
mmCGTT_TCP_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_VGT_CLK_CTRL, 0xffffffff, 0x06000100,
mmDB_CGTT_CLK_CTRL_0, 0xffffffff, 0x00000100,
mmTA_CGTT_CTRL, 0xffffffff, 0x00000100,
mmTCA_CGTT_SCLK_CTRL, 0xffffffff, 0x00000100,
mmTCC_CGTT_SCLK_CTRL, 0xffffffff, 0x00000100,
mmTD_CGTT_CTRL, 0xffffffff, 0x00000100,
mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000,
mmCGTS_CU0_SP0_CTRL_REG, 0xffffffff, 0x00010000,
mmCGTS_CU0_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002,
mmCGTS_CU0_TA_SQC_CTRL_REG, 0xffffffff, 0x0f840f87,
mmCGTS_CU0_SP1_CTRL_REG, 0xffffffff, 0x00060005,
mmCGTS_CU0_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008,
mmCGTS_CU1_SP0_CTRL_REG, 0xffffffff, 0x00010000,
mmCGTS_CU1_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002,
mmCGTS_CU1_TA_CTRL_REG, 0xffffffff, 0x00040007,
mmCGTS_CU1_SP1_CTRL_REG, 0xffffffff, 0x00060005,
mmCGTS_CU1_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008,
mmCGTS_CU2_SP0_CTRL_REG, 0xffffffff, 0x00010000,
mmCGTS_CU2_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002,
mmCGTS_CU2_TA_CTRL_REG, 0xffffffff, 0x00040007,
mmCGTS_CU2_SP1_CTRL_REG, 0xffffffff, 0x00060005,
mmCGTS_CU2_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008,
mmCGTS_CU3_SP0_CTRL_REG, 0xffffffff, 0x00010000,
mmCGTS_CU3_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002,
mmCGTS_CU3_TA_CTRL_REG, 0xffffffff, 0x00040007,
mmCGTS_CU3_SP1_CTRL_REG, 0xffffffff, 0x00060005,
mmCGTS_CU3_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008,
mmCGTS_CU4_SP0_CTRL_REG, 0xffffffff, 0x00010000,
mmCGTS_CU4_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002,
mmCGTS_CU4_TA_SQC_CTRL_REG, 0xffffffff, 0x0f840f87,
mmCGTS_CU4_SP1_CTRL_REG, 0xffffffff, 0x00060005,
mmCGTS_CU4_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008,
mmCGTS_CU5_SP0_CTRL_REG, 0xffffffff, 0x00010000,
mmCGTS_CU5_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002,
mmCGTS_CU5_TA_CTRL_REG, 0xffffffff, 0x00040007,
mmCGTS_CU5_SP1_CTRL_REG, 0xffffffff, 0x00060005,
mmCGTS_CU5_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008,
mmCGTS_SM_CTRL_REG, 0xffffffff, 0x96e00200,
mmCP_RB_WPTR_POLL_CNTL, 0xffffffff, 0x00900100,
mmRLC_CGCG_CGLS_CTRL, 0xffffffff, 0x0020003c,
};
static const u32 cz_golden_settings_a11[] =
{
mmCB_HW_CONTROL_3, 0x00000040, 0x00000040,
mmDB_DEBUG2, 0xf00fffff, 0x00000400,
mmGB_GPU_ID, 0x0000000f, 0x00000000,
mmPA_SC_ENHANCE, 0xffffffff, 0x00000001,
mmPA_SC_LINE_STIPPLE_STATE, 0x0000ff0f, 0x00000000,
mmRLC_CGCG_CGLS_CTRL, 0x00000003, 0x0000003c,
mmSQ_RANDOM_WAVE_PRI, 0x001fffff, 0x000006fd,
mmTA_CNTL_AUX, 0x000f000f, 0x00010000,
mmTCC_CTRL, 0x00100000, 0xf31fff7f,
mmTCC_EXE_DISABLE, 0x00000002, 0x00000002,
mmTCP_ADDR_CONFIG, 0x0000000f, 0x000000f3,
mmTCP_CHAN_STEER_LO, 0xffffffff, 0x00001302
};
static const u32 cz_golden_common_all[] =
{
mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000,
mmPA_SC_RASTER_CONFIG, 0xffffffff, 0x00000002,
mmPA_SC_RASTER_CONFIG_1, 0xffffffff, 0x00000000,
mmGB_ADDR_CONFIG, 0xffffffff, 0x22010001,
mmSPI_RESOURCE_RESERVE_CU_0, 0xffffffff, 0x00000800,
mmSPI_RESOURCE_RESERVE_CU_1, 0xffffffff, 0x00000800,
mmSPI_RESOURCE_RESERVE_EN_CU_0, 0xffffffff, 0x00FF7FBF,
mmSPI_RESOURCE_RESERVE_EN_CU_1, 0xffffffff, 0x00FF7FAF
};
static const u32 cz_mgcg_cgcg_init[] =
{
mmRLC_CGTT_MGCG_OVERRIDE, 0xffffffff, 0xffffffff,
mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000,
mmCB_CGTT_SCLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_BCI_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_CP_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_CPC_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_CPF_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_GDS_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_IA_CLK_CTRL, 0xffffffff, 0x06000100,
mmCGTT_PA_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_WD_CLK_CTRL, 0xffffffff, 0x06000100,
mmCGTT_PC_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_RLC_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_SC_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_SPI_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_SQ_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_SQG_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_SX_CLK_CTRL0, 0xffffffff, 0x00000100,
mmCGTT_SX_CLK_CTRL1, 0xffffffff, 0x00000100,
mmCGTT_SX_CLK_CTRL2, 0xffffffff, 0x00000100,
mmCGTT_SX_CLK_CTRL3, 0xffffffff, 0x00000100,
mmCGTT_SX_CLK_CTRL4, 0xffffffff, 0x00000100,
mmCGTT_TCI_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_TCP_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_VGT_CLK_CTRL, 0xffffffff, 0x06000100,
mmDB_CGTT_CLK_CTRL_0, 0xffffffff, 0x00000100,
mmTA_CGTT_CTRL, 0xffffffff, 0x00000100,
mmTCA_CGTT_SCLK_CTRL, 0xffffffff, 0x00000100,
mmTCC_CGTT_SCLK_CTRL, 0xffffffff, 0x00000100,
mmTD_CGTT_CTRL, 0xffffffff, 0x00000100,
mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000,
mmCGTS_CU0_SP0_CTRL_REG, 0xffffffff, 0x00010000,
mmCGTS_CU0_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002,
mmCGTS_CU0_TA_SQC_CTRL_REG, 0xffffffff, 0x00040007,
mmCGTS_CU0_SP1_CTRL_REG, 0xffffffff, 0x00060005,
mmCGTS_CU0_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008,
mmCGTS_CU1_SP0_CTRL_REG, 0xffffffff, 0x00010000,
mmCGTS_CU1_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002,
mmCGTS_CU1_TA_CTRL_REG, 0xffffffff, 0x00040007,
mmCGTS_CU1_SP1_CTRL_REG, 0xffffffff, 0x00060005,
mmCGTS_CU1_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008,
mmCGTS_CU2_SP0_CTRL_REG, 0xffffffff, 0x00010000,
mmCGTS_CU2_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002,
mmCGTS_CU2_TA_CTRL_REG, 0xffffffff, 0x00040007,
mmCGTS_CU2_SP1_CTRL_REG, 0xffffffff, 0x00060005,
mmCGTS_CU2_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008,
mmCGTS_CU3_SP0_CTRL_REG, 0xffffffff, 0x00010000,
mmCGTS_CU3_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002,
mmCGTS_CU3_TA_CTRL_REG, 0xffffffff, 0x00040007,
mmCGTS_CU3_SP1_CTRL_REG, 0xffffffff, 0x00060005,
mmCGTS_CU3_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008,
mmCGTS_CU4_SP0_CTRL_REG, 0xffffffff, 0x00010000,
mmCGTS_CU4_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002,
mmCGTS_CU4_TA_SQC_CTRL_REG, 0xffffffff, 0x00040007,
mmCGTS_CU4_SP1_CTRL_REG, 0xffffffff, 0x00060005,
mmCGTS_CU4_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008,
mmCGTS_CU5_SP0_CTRL_REG, 0xffffffff, 0x00010000,
mmCGTS_CU5_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002,
mmCGTS_CU5_TA_CTRL_REG, 0xffffffff, 0x00040007,
mmCGTS_CU5_SP1_CTRL_REG, 0xffffffff, 0x00060005,
mmCGTS_CU5_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008,
mmCGTS_CU6_SP0_CTRL_REG, 0xffffffff, 0x00010000,
mmCGTS_CU6_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002,
mmCGTS_CU6_TA_CTRL_REG, 0xffffffff, 0x00040007,
mmCGTS_CU6_SP1_CTRL_REG, 0xffffffff, 0x00060005,
mmCGTS_CU6_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008,
mmCGTS_CU7_SP0_CTRL_REG, 0xffffffff, 0x00010000,
mmCGTS_CU7_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002,
mmCGTS_CU7_TA_CTRL_REG, 0xffffffff, 0x00040007,
mmCGTS_CU7_SP1_CTRL_REG, 0xffffffff, 0x00060005,
mmCGTS_CU7_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008,
mmCGTS_SM_CTRL_REG, 0xffffffff, 0x96e00200,
mmCP_RB_WPTR_POLL_CNTL, 0xffffffff, 0x00900100,
mmRLC_CGCG_CGLS_CTRL, 0xffffffff, 0x0020003f,
mmCP_MEM_SLP_CNTL, 0x00000001, 0x00000001,
};
static const u32 stoney_golden_settings_a11[] =
{
mmDB_DEBUG2, 0xf00fffff, 0x00000400,
mmGB_GPU_ID, 0x0000000f, 0x00000000,
mmPA_SC_ENHANCE, 0xffffffff, 0x20000001,
mmPA_SC_LINE_STIPPLE_STATE, 0x0000ff0f, 0x00000000,
mmRLC_CGCG_CGLS_CTRL, 0x00000003, 0x0001003c,
mmTA_CNTL_AUX, 0x000f000f, 0x000b0000,
mmTCC_CTRL, 0x00100000, 0xf31fff7f,
mmTCC_EXE_DISABLE, 0x00000002, 0x00000002,
mmTCP_ADDR_CONFIG, 0x0000000f, 0x000000f1,
mmTCP_CHAN_STEER_LO, 0xffffffff, 0x10101010,
};
static const u32 stoney_golden_common_all[] =
{
mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000,
mmPA_SC_RASTER_CONFIG, 0xffffffff, 0x00000000,
mmPA_SC_RASTER_CONFIG_1, 0xffffffff, 0x00000000,
mmGB_ADDR_CONFIG, 0xffffffff, 0x12010001,
mmSPI_RESOURCE_RESERVE_CU_0, 0xffffffff, 0x00000800,
mmSPI_RESOURCE_RESERVE_CU_1, 0xffffffff, 0x00000800,
mmSPI_RESOURCE_RESERVE_EN_CU_0, 0xffffffff, 0x00FF7FBF,
mmSPI_RESOURCE_RESERVE_EN_CU_1, 0xffffffff, 0x00FF7FAF,
};
static const u32 stoney_mgcg_cgcg_init[] =
{
mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000,
mmRLC_CGCG_CGLS_CTRL, 0xffffffff, 0x0020003f,
mmCP_MEM_SLP_CNTL, 0xffffffff, 0x00020201,
mmRLC_MEM_SLP_CNTL, 0xffffffff, 0x00020201,
mmCGTS_SM_CTRL_REG, 0xffffffff, 0x96940200,
};
static const char * const sq_edc_source_names[] = {
"SQ_EDC_INFO_SOURCE_INVALID: No EDC error has occurred",
"SQ_EDC_INFO_SOURCE_INST: EDC source is Instruction Fetch",
"SQ_EDC_INFO_SOURCE_SGPR: EDC source is SGPR or SQC data return",
"SQ_EDC_INFO_SOURCE_VGPR: EDC source is VGPR",
"SQ_EDC_INFO_SOURCE_LDS: EDC source is LDS",
"SQ_EDC_INFO_SOURCE_GDS: EDC source is GDS",
"SQ_EDC_INFO_SOURCE_TA: EDC source is TA",
};
static void gfx_v8_0_set_ring_funcs(struct amdgpu_device *adev);
static void gfx_v8_0_set_irq_funcs(struct amdgpu_device *adev);
static void gfx_v8_0_set_gds_init(struct amdgpu_device *adev);
static void gfx_v8_0_set_rlc_funcs(struct amdgpu_device *adev);
static u32 gfx_v8_0_get_csb_size(struct amdgpu_device *adev);
static void gfx_v8_0_get_cu_info(struct amdgpu_device *adev);
static void gfx_v8_0_ring_emit_ce_meta(struct amdgpu_ring *ring);
static void gfx_v8_0_ring_emit_de_meta(struct amdgpu_ring *ring);
static void gfx_v8_0_init_golden_registers(struct amdgpu_device *adev)
{
switch (adev->asic_type) {
case CHIP_TOPAZ:
amdgpu_device_program_register_sequence(adev,
iceland_mgcg_cgcg_init,
ARRAY_SIZE(iceland_mgcg_cgcg_init));
amdgpu_device_program_register_sequence(adev,
golden_settings_iceland_a11,
ARRAY_SIZE(golden_settings_iceland_a11));
amdgpu_device_program_register_sequence(adev,
iceland_golden_common_all,
ARRAY_SIZE(iceland_golden_common_all));
break;
case CHIP_FIJI:
amdgpu_device_program_register_sequence(adev,
fiji_mgcg_cgcg_init,
ARRAY_SIZE(fiji_mgcg_cgcg_init));
amdgpu_device_program_register_sequence(adev,
golden_settings_fiji_a10,
ARRAY_SIZE(golden_settings_fiji_a10));
amdgpu_device_program_register_sequence(adev,
fiji_golden_common_all,
ARRAY_SIZE(fiji_golden_common_all));
break;
case CHIP_TONGA:
amdgpu_device_program_register_sequence(adev,
tonga_mgcg_cgcg_init,
ARRAY_SIZE(tonga_mgcg_cgcg_init));
amdgpu_device_program_register_sequence(adev,
golden_settings_tonga_a11,
ARRAY_SIZE(golden_settings_tonga_a11));
amdgpu_device_program_register_sequence(adev,
tonga_golden_common_all,
ARRAY_SIZE(tonga_golden_common_all));
break;
case CHIP_VEGAM:
amdgpu_device_program_register_sequence(adev,
golden_settings_vegam_a11,
ARRAY_SIZE(golden_settings_vegam_a11));
amdgpu_device_program_register_sequence(adev,
vegam_golden_common_all,
ARRAY_SIZE(vegam_golden_common_all));
break;
case CHIP_POLARIS11:
case CHIP_POLARIS12:
amdgpu_device_program_register_sequence(adev,
golden_settings_polaris11_a11,
ARRAY_SIZE(golden_settings_polaris11_a11));
amdgpu_device_program_register_sequence(adev,
polaris11_golden_common_all,
ARRAY_SIZE(polaris11_golden_common_all));
break;
case CHIP_POLARIS10:
amdgpu_device_program_register_sequence(adev,
golden_settings_polaris10_a11,
ARRAY_SIZE(golden_settings_polaris10_a11));
amdgpu_device_program_register_sequence(adev,
polaris10_golden_common_all,
ARRAY_SIZE(polaris10_golden_common_all));
WREG32_SMC(ixCG_ACLK_CNTL, 0x0000001C);
if (adev->pdev->revision == 0xc7 &&
((adev->pdev->subsystem_device == 0xb37 && adev->pdev->subsystem_vendor == 0x1002) ||
(adev->pdev->subsystem_device == 0x4a8 && adev->pdev->subsystem_vendor == 0x1043) ||
(adev->pdev->subsystem_device == 0x9480 && adev->pdev->subsystem_vendor == 0x1682))) {
amdgpu_atombios_i2c_channel_trans(adev, 0x10, 0x96, 0x1E, 0xDD);
amdgpu_atombios_i2c_channel_trans(adev, 0x10, 0x96, 0x1F, 0xD0);
}
break;
case CHIP_CARRIZO:
amdgpu_device_program_register_sequence(adev,
cz_mgcg_cgcg_init,
ARRAY_SIZE(cz_mgcg_cgcg_init));
amdgpu_device_program_register_sequence(adev,
cz_golden_settings_a11,
ARRAY_SIZE(cz_golden_settings_a11));
amdgpu_device_program_register_sequence(adev,
cz_golden_common_all,
ARRAY_SIZE(cz_golden_common_all));
break;
case CHIP_STONEY:
amdgpu_device_program_register_sequence(adev,
stoney_mgcg_cgcg_init,
ARRAY_SIZE(stoney_mgcg_cgcg_init));
amdgpu_device_program_register_sequence(adev,
stoney_golden_settings_a11,
ARRAY_SIZE(stoney_golden_settings_a11));
amdgpu_device_program_register_sequence(adev,
stoney_golden_common_all,
ARRAY_SIZE(stoney_golden_common_all));
break;
default:
break;
}
}
static void gfx_v8_0_scratch_init(struct amdgpu_device *adev)
{
adev->gfx.scratch.num_reg = 8;
adev->gfx.scratch.reg_base = mmSCRATCH_REG0;
adev->gfx.scratch.free_mask = (1u << adev->gfx.scratch.num_reg) - 1;
}
static int gfx_v8_0_ring_test_ring(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
uint32_t scratch;
uint32_t tmp = 0;
unsigned i;
int r;
r = amdgpu_gfx_scratch_get(adev, &scratch);
if (r)
return r;
WREG32(scratch, 0xCAFEDEAD);
r = amdgpu_ring_alloc(ring, 3);
if (r)
goto error_free_scratch;
amdgpu_ring_write(ring, PACKET3(PACKET3_SET_UCONFIG_REG, 1));
amdgpu_ring_write(ring, (scratch - PACKET3_SET_UCONFIG_REG_START));
amdgpu_ring_write(ring, 0xDEADBEEF);
amdgpu_ring_commit(ring);
for (i = 0; i < adev->usec_timeout; i++) {
tmp = RREG32(scratch);
if (tmp == 0xDEADBEEF)
break;
DRM_UDELAY(1);
}
if (i >= adev->usec_timeout)
r = -ETIMEDOUT;
error_free_scratch:
amdgpu_gfx_scratch_free(adev, scratch);
return r;
}
static int gfx_v8_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
{
struct amdgpu_device *adev = ring->adev;
struct amdgpu_ib ib;
struct dma_fence *f = NULL;
unsigned int index;
uint64_t gpu_addr;
uint32_t tmp;
long r;
r = amdgpu_device_wb_get(adev, &index);
if (r)
return r;
gpu_addr = adev->wb.gpu_addr + (index * 4);
adev->wb.wb[index] = cpu_to_le32(0xCAFEDEAD);
memset(&ib, 0, sizeof(ib));
r = amdgpu_ib_get(adev, NULL, 16, &ib);
if (r)
goto err1;
ib.ptr[0] = PACKET3(PACKET3_WRITE_DATA, 3);
ib.ptr[1] = WRITE_DATA_DST_SEL(5) | WR_CONFIRM;
ib.ptr[2] = lower_32_bits(gpu_addr);
ib.ptr[3] = upper_32_bits(gpu_addr);
ib.ptr[4] = 0xDEADBEEF;
ib.length_dw = 5;
r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
if (r)
goto err2;
r = dma_fence_wait_timeout(f, false, timeout);
if (r == 0) {
r = -ETIMEDOUT;
goto err2;
} else if (r < 0) {
goto err2;
}
tmp = adev->wb.wb[index];
if (tmp == 0xDEADBEEF)
r = 0;
else
r = -EINVAL;
err2:
amdgpu_ib_free(adev, &ib, NULL);
dma_fence_put(f);
err1:
amdgpu_device_wb_free(adev, index);
return r;
}
static void gfx_v8_0_free_microcode(struct amdgpu_device *adev)
{
release_firmware(adev->gfx.pfp_fw);
adev->gfx.pfp_fw = NULL;
release_firmware(adev->gfx.me_fw);
adev->gfx.me_fw = NULL;
release_firmware(adev->gfx.ce_fw);
adev->gfx.ce_fw = NULL;
release_firmware(adev->gfx.rlc_fw);
adev->gfx.rlc_fw = NULL;
release_firmware(adev->gfx.mec_fw);
adev->gfx.mec_fw = NULL;
if ((adev->asic_type != CHIP_STONEY) &&
(adev->asic_type != CHIP_TOPAZ))
release_firmware(adev->gfx.mec2_fw);
adev->gfx.mec2_fw = NULL;
kfree(adev->gfx.rlc.register_list_format);
}
static int gfx_v8_0_init_microcode(struct amdgpu_device *adev)
{
const char *chip_name;
char fw_name[30];
int err;
struct amdgpu_firmware_info *info = NULL;
const struct common_firmware_header *header = NULL;
const struct gfx_firmware_header_v1_0 *cp_hdr;
const struct rlc_firmware_header_v2_0 *rlc_hdr;
unsigned int *tmp = NULL, i;
DRM_DEBUG("\n");
switch (adev->asic_type) {
case CHIP_TOPAZ:
chip_name = "topaz";
break;
case CHIP_TONGA:
chip_name = "tonga";
break;
case CHIP_CARRIZO:
chip_name = "carrizo";
break;
case CHIP_FIJI:
chip_name = "fiji";
break;
case CHIP_STONEY:
chip_name = "stoney";
break;
case CHIP_POLARIS10:
chip_name = "polaris10";
break;
case CHIP_POLARIS11:
chip_name = "polaris11";
break;
case CHIP_POLARIS12:
chip_name = "polaris12";
break;
case CHIP_VEGAM:
chip_name = "vegam";
break;
default:
BUG();
}
if (adev->asic_type >= CHIP_POLARIS10 && adev->asic_type <= CHIP_POLARIS12) {
snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_pfp_2.bin", chip_name);
err = request_firmware(&adev->gfx.pfp_fw, fw_name, adev->dev);
if (err == -ENOENT) {
snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_pfp.bin", chip_name);
err = request_firmware(&adev->gfx.pfp_fw, fw_name, adev->dev);
}
} else {
snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_pfp.bin", chip_name);
err = request_firmware(&adev->gfx.pfp_fw, fw_name, adev->dev);
}
if (err)
goto out;
err = amdgpu_ucode_validate(adev->gfx.pfp_fw);
if (err)
goto out;
cp_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.pfp_fw->data;
adev->gfx.pfp_fw_version = le32_to_cpu(cp_hdr->header.ucode_version);
adev->gfx.pfp_feature_version = le32_to_cpu(cp_hdr->ucode_feature_version);
if (adev->asic_type >= CHIP_POLARIS10 && adev->asic_type <= CHIP_POLARIS12) {
snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_me_2.bin", chip_name);
err = request_firmware(&adev->gfx.me_fw, fw_name, adev->dev);
if (err == -ENOENT) {
snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_me.bin", chip_name);
err = request_firmware(&adev->gfx.me_fw, fw_name, adev->dev);
}
} else {
snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_me.bin", chip_name);
err = request_firmware(&adev->gfx.me_fw, fw_name, adev->dev);
}
if (err)
goto out;
err = amdgpu_ucode_validate(adev->gfx.me_fw);
if (err)
goto out;
cp_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.me_fw->data;
adev->gfx.me_fw_version = le32_to_cpu(cp_hdr->header.ucode_version);
adev->gfx.me_feature_version = le32_to_cpu(cp_hdr->ucode_feature_version);
if (adev->asic_type >= CHIP_POLARIS10 && adev->asic_type <= CHIP_POLARIS12) {
snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_ce_2.bin", chip_name);
err = request_firmware(&adev->gfx.ce_fw, fw_name, adev->dev);
if (err == -ENOENT) {
snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_ce.bin", chip_name);
err = request_firmware(&adev->gfx.ce_fw, fw_name, adev->dev);
}
} else {
snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_ce.bin", chip_name);
err = request_firmware(&adev->gfx.ce_fw, fw_name, adev->dev);
}
if (err)
goto out;
err = amdgpu_ucode_validate(adev->gfx.ce_fw);
if (err)
goto out;
cp_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.ce_fw->data;
adev->gfx.ce_fw_version = le32_to_cpu(cp_hdr->header.ucode_version);
adev->gfx.ce_feature_version = le32_to_cpu(cp_hdr->ucode_feature_version);
/*
* Support for MCBP/Virtualization in combination with chained IBs is
* formal released on feature version #46
*/
if (adev->gfx.ce_feature_version >= 46 &&
adev->gfx.pfp_feature_version >= 46) {
adev->virt.chained_ib_support = true;
DRM_INFO("Chained IB support enabled!\n");
} else
adev->virt.chained_ib_support = false;
snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_rlc.bin", chip_name);
err = request_firmware(&adev->gfx.rlc_fw, fw_name, adev->dev);
if (err)
goto out;
err = amdgpu_ucode_validate(adev->gfx.rlc_fw);
rlc_hdr = (const struct rlc_firmware_header_v2_0 *)adev->gfx.rlc_fw->data;
adev->gfx.rlc_fw_version = le32_to_cpu(rlc_hdr->header.ucode_version);
adev->gfx.rlc_feature_version = le32_to_cpu(rlc_hdr->ucode_feature_version);
adev->gfx.rlc.save_and_restore_offset =
le32_to_cpu(rlc_hdr->save_and_restore_offset);
adev->gfx.rlc.clear_state_descriptor_offset =
le32_to_cpu(rlc_hdr->clear_state_descriptor_offset);
adev->gfx.rlc.avail_scratch_ram_locations =
le32_to_cpu(rlc_hdr->avail_scratch_ram_locations);
adev->gfx.rlc.reg_restore_list_size =
le32_to_cpu(rlc_hdr->reg_restore_list_size);
adev->gfx.rlc.reg_list_format_start =
le32_to_cpu(rlc_hdr->reg_list_format_start);
adev->gfx.rlc.reg_list_format_separate_start =
le32_to_cpu(rlc_hdr->reg_list_format_separate_start);
adev->gfx.rlc.starting_offsets_start =
le32_to_cpu(rlc_hdr->starting_offsets_start);
adev->gfx.rlc.reg_list_format_size_bytes =
le32_to_cpu(rlc_hdr->reg_list_format_size_bytes);
adev->gfx.rlc.reg_list_size_bytes =
le32_to_cpu(rlc_hdr->reg_list_size_bytes);
adev->gfx.rlc.register_list_format =
kmalloc(adev->gfx.rlc.reg_list_format_size_bytes +
adev->gfx.rlc.reg_list_size_bytes, GFP_KERNEL);
if (!adev->gfx.rlc.register_list_format) {
err = -ENOMEM;
goto out;
}
tmp = (unsigned int *)((uintptr_t)rlc_hdr +
le32_to_cpu(rlc_hdr->reg_list_format_array_offset_bytes));
for (i = 0 ; i < (adev->gfx.rlc.reg_list_format_size_bytes >> 2); i++)
adev->gfx.rlc.register_list_format[i] = le32_to_cpu(tmp[i]);
adev->gfx.rlc.register_restore = adev->gfx.rlc.register_list_format + i;
tmp = (unsigned int *)((uintptr_t)rlc_hdr +
le32_to_cpu(rlc_hdr->reg_list_array_offset_bytes));
for (i = 0 ; i < (adev->gfx.rlc.reg_list_size_bytes >> 2); i++)
adev->gfx.rlc.register_restore[i] = le32_to_cpu(tmp[i]);
if (adev->asic_type >= CHIP_POLARIS10 && adev->asic_type <= CHIP_POLARIS12) {
snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mec_2.bin", chip_name);
err = request_firmware(&adev->gfx.mec_fw, fw_name, adev->dev);
if (err == -ENOENT) {
snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mec.bin", chip_name);
err = request_firmware(&adev->gfx.mec_fw, fw_name, adev->dev);
}
} else {
snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mec.bin", chip_name);
err = request_firmware(&adev->gfx.mec_fw, fw_name, adev->dev);
}
if (err)
goto out;
err = amdgpu_ucode_validate(adev->gfx.mec_fw);
if (err)
goto out;
cp_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.mec_fw->data;
adev->gfx.mec_fw_version = le32_to_cpu(cp_hdr->header.ucode_version);
adev->gfx.mec_feature_version = le32_to_cpu(cp_hdr->ucode_feature_version);
if ((adev->asic_type != CHIP_STONEY) &&
(adev->asic_type != CHIP_TOPAZ)) {
if (adev->asic_type >= CHIP_POLARIS10 && adev->asic_type <= CHIP_POLARIS12) {
snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mec2_2.bin", chip_name);
err = request_firmware(&adev->gfx.mec2_fw, fw_name, adev->dev);
if (err == -ENOENT) {
snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mec2.bin", chip_name);
err = request_firmware(&adev->gfx.mec2_fw, fw_name, adev->dev);
}
} else {
snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mec2.bin", chip_name);
err = request_firmware(&adev->gfx.mec2_fw, fw_name, adev->dev);
}
if (!err) {
err = amdgpu_ucode_validate(adev->gfx.mec2_fw);
if (err)
goto out;
cp_hdr = (const struct gfx_firmware_header_v1_0 *)
adev->gfx.mec2_fw->data;
adev->gfx.mec2_fw_version =
le32_to_cpu(cp_hdr->header.ucode_version);
adev->gfx.mec2_feature_version =
le32_to_cpu(cp_hdr->ucode_feature_version);
} else {
err = 0;
adev->gfx.mec2_fw = NULL;
}
}
info = &adev->firmware.ucode[AMDGPU_UCODE_ID_CP_PFP];
info->ucode_id = AMDGPU_UCODE_ID_CP_PFP;
info->fw = adev->gfx.pfp_fw;
header = (const struct common_firmware_header *)info->fw->data;
adev->firmware.fw_size +=
ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
info = &adev->firmware.ucode[AMDGPU_UCODE_ID_CP_ME];
info->ucode_id = AMDGPU_UCODE_ID_CP_ME;
info->fw = adev->gfx.me_fw;
header = (const struct common_firmware_header *)info->fw->data;
adev->firmware.fw_size +=
ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
info = &adev->firmware.ucode[AMDGPU_UCODE_ID_CP_CE];
info->ucode_id = AMDGPU_UCODE_ID_CP_CE;
info->fw = adev->gfx.ce_fw;
header = (const struct common_firmware_header *)info->fw->data;
adev->firmware.fw_size +=
ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
info = &adev->firmware.ucode[AMDGPU_UCODE_ID_RLC_G];
info->ucode_id = AMDGPU_UCODE_ID_RLC_G;
info->fw = adev->gfx.rlc_fw;
header = (const struct common_firmware_header *)info->fw->data;
adev->firmware.fw_size +=
ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
info = &adev->firmware.ucode[AMDGPU_UCODE_ID_CP_MEC1];
info->ucode_id = AMDGPU_UCODE_ID_CP_MEC1;
info->fw = adev->gfx.mec_fw;
header = (const struct common_firmware_header *)info->fw->data;
adev->firmware.fw_size +=
ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
/* we need account JT in */
cp_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.mec_fw->data;
adev->firmware.fw_size +=
ALIGN(le32_to_cpu(cp_hdr->jt_size) << 2, PAGE_SIZE);
if (amdgpu_sriov_vf(adev)) {
info = &adev->firmware.ucode[AMDGPU_UCODE_ID_STORAGE];
info->ucode_id = AMDGPU_UCODE_ID_STORAGE;
info->fw = adev->gfx.mec_fw;
adev->firmware.fw_size +=
ALIGN(le32_to_cpu(64 * PAGE_SIZE), PAGE_SIZE);
}
if (adev->gfx.mec2_fw) {
info = &adev->firmware.ucode[AMDGPU_UCODE_ID_CP_MEC2];
info->ucode_id = AMDGPU_UCODE_ID_CP_MEC2;
info->fw = adev->gfx.mec2_fw;
header = (const struct common_firmware_header *)info->fw->data;
adev->firmware.fw_size +=
ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
}
out:
if (err) {
dev_err(adev->dev,
"gfx8: Failed to load firmware \"%s\"\n",
fw_name);
release_firmware(adev->gfx.pfp_fw);
adev->gfx.pfp_fw = NULL;
release_firmware(adev->gfx.me_fw);
adev->gfx.me_fw = NULL;
release_firmware(adev->gfx.ce_fw);
adev->gfx.ce_fw = NULL;
release_firmware(adev->gfx.rlc_fw);
adev->gfx.rlc_fw = NULL;
release_firmware(adev->gfx.mec_fw);
adev->gfx.mec_fw = NULL;
release_firmware(adev->gfx.mec2_fw);
adev->gfx.mec2_fw = NULL;
}
return err;
}
static void gfx_v8_0_get_csb_buffer(struct amdgpu_device *adev,
volatile u32 *buffer)
{
u32 count = 0, i;
const struct cs_section_def *sect = NULL;
const struct cs_extent_def *ext = NULL;
if (adev->gfx.rlc.cs_data == NULL)
return;
if (buffer == NULL)
return;
buffer[count++] = cpu_to_le32(PACKET3(PACKET3_PREAMBLE_CNTL, 0));
buffer[count++] = cpu_to_le32(PACKET3_PREAMBLE_BEGIN_CLEAR_STATE);
buffer[count++] = cpu_to_le32(PACKET3(PACKET3_CONTEXT_CONTROL, 1));
buffer[count++] = cpu_to_le32(0x80000000);
buffer[count++] = cpu_to_le32(0x80000000);
for (sect = adev->gfx.rlc.cs_data; sect->section != NULL; ++sect) {
for (ext = sect->section; ext->extent != NULL; ++ext) {
if (sect->id == SECT_CONTEXT) {
buffer[count++] =
cpu_to_le32(PACKET3(PACKET3_SET_CONTEXT_REG, ext->reg_count));
buffer[count++] = cpu_to_le32(ext->reg_index -
PACKET3_SET_CONTEXT_REG_START);
for (i = 0; i < ext->reg_count; i++)
buffer[count++] = cpu_to_le32(ext->extent[i]);
} else {
return;
}
}
}
buffer[count++] = cpu_to_le32(PACKET3(PACKET3_SET_CONTEXT_REG, 2));
buffer[count++] = cpu_to_le32(mmPA_SC_RASTER_CONFIG -
PACKET3_SET_CONTEXT_REG_START);
buffer[count++] = cpu_to_le32(adev->gfx.config.rb_config[0][0].raster_config);
buffer[count++] = cpu_to_le32(adev->gfx.config.rb_config[0][0].raster_config_1);
buffer[count++] = cpu_to_le32(PACKET3(PACKET3_PREAMBLE_CNTL, 0));
buffer[count++] = cpu_to_le32(PACKET3_PREAMBLE_END_CLEAR_STATE);
buffer[count++] = cpu_to_le32(PACKET3(PACKET3_CLEAR_STATE, 0));
buffer[count++] = cpu_to_le32(0);
}
static int gfx_v8_0_cp_jump_table_num(struct amdgpu_device *adev)
{
if (adev->asic_type == CHIP_CARRIZO)
return 5;
else
return 4;
}
static int gfx_v8_0_rlc_init(struct amdgpu_device *adev)
{
const struct cs_section_def *cs_data;
int r;
adev->gfx.rlc.cs_data = vi_cs_data;
cs_data = adev->gfx.rlc.cs_data;
if (cs_data) {
/* init clear state block */
r = amdgpu_gfx_rlc_init_csb(adev);
if (r)
return r;
}
if ((adev->asic_type == CHIP_CARRIZO) ||
(adev->asic_type == CHIP_STONEY)) {
adev->gfx.rlc.cp_table_size = ALIGN(96 * 5 * 4, 2048) + (64 * 1024); /* JT + GDS */
r = amdgpu_gfx_rlc_init_cpt(adev);
if (r)
return r;
}
return 0;
}
static void gfx_v8_0_mec_fini(struct amdgpu_device *adev)
{
amdgpu_bo_free_kernel(&adev->gfx.mec.hpd_eop_obj, NULL, NULL);
}
static int gfx_v8_0_mec_init(struct amdgpu_device *adev)
{
int r;
u32 *hpd;
size_t mec_hpd_size;
bitmap_zero(adev->gfx.mec.queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES);
/* take ownership of the relevant compute queues */
amdgpu_gfx_compute_queue_acquire(adev);
mec_hpd_size = adev->gfx.num_compute_rings * GFX8_MEC_HPD_SIZE;
r = amdgpu_bo_create_reserved(adev, mec_hpd_size, PAGE_SIZE,
AMDGPU_GEM_DOMAIN_VRAM,
&adev->gfx.mec.hpd_eop_obj,
&adev->gfx.mec.hpd_eop_gpu_addr,
(void **)&hpd);
if (r) {
dev_warn(adev->dev, "(%d) create HDP EOP bo failed\n", r);
return r;
}
memset(hpd, 0, mec_hpd_size);
amdgpu_bo_kunmap(adev->gfx.mec.hpd_eop_obj);
amdgpu_bo_unreserve(adev->gfx.mec.hpd_eop_obj);
return 0;
}
static const u32 vgpr_init_compute_shader[] =
{
0x7e000209, 0x7e020208,
0x7e040207, 0x7e060206,
0x7e080205, 0x7e0a0204,
0x7e0c0203, 0x7e0e0202,
0x7e100201, 0x7e120200,
0x7e140209, 0x7e160208,
0x7e180207, 0x7e1a0206,
0x7e1c0205, 0x7e1e0204,
0x7e200203, 0x7e220202,
0x7e240201, 0x7e260200,
0x7e280209, 0x7e2a0208,
0x7e2c0207, 0x7e2e0206,
0x7e300205, 0x7e320204,
0x7e340203, 0x7e360202,
0x7e380201, 0x7e3a0200,
0x7e3c0209, 0x7e3e0208,
0x7e400207, 0x7e420206,
0x7e440205, 0x7e460204,
0x7e480203, 0x7e4a0202,
0x7e4c0201, 0x7e4e0200,
0x7e500209, 0x7e520208,
0x7e540207, 0x7e560206,
0x7e580205, 0x7e5a0204,
0x7e5c0203, 0x7e5e0202,
0x7e600201, 0x7e620200,
0x7e640209, 0x7e660208,
0x7e680207, 0x7e6a0206,
0x7e6c0205, 0x7e6e0204,
0x7e700203, 0x7e720202,
0x7e740201, 0x7e760200,
0x7e780209, 0x7e7a0208,
0x7e7c0207, 0x7e7e0206,
0xbf8a0000, 0xbf810000,
};
static const u32 sgpr_init_compute_shader[] =
{
0xbe8a0100, 0xbe8c0102,
0xbe8e0104, 0xbe900106,
0xbe920108, 0xbe940100,
0xbe960102, 0xbe980104,
0xbe9a0106, 0xbe9c0108,
0xbe9e0100, 0xbea00102,
0xbea20104, 0xbea40106,
0xbea60108, 0xbea80100,
0xbeaa0102, 0xbeac0104,
0xbeae0106, 0xbeb00108,
0xbeb20100, 0xbeb40102,
0xbeb60104, 0xbeb80106,
0xbeba0108, 0xbebc0100,
0xbebe0102, 0xbec00104,
0xbec20106, 0xbec40108,
0xbec60100, 0xbec80102,
0xbee60004, 0xbee70005,
0xbeea0006, 0xbeeb0007,
0xbee80008, 0xbee90009,
0xbefc0000, 0xbf8a0000,
0xbf810000, 0x00000000,
};
static const u32 vgpr_init_regs[] =
{
mmCOMPUTE_STATIC_THREAD_MGMT_SE0, 0xffffffff,
mmCOMPUTE_RESOURCE_LIMITS, 0x1000000, /* CU_GROUP_COUNT=1 */
mmCOMPUTE_NUM_THREAD_X, 256*4,
mmCOMPUTE_NUM_THREAD_Y, 1,
mmCOMPUTE_NUM_THREAD_Z, 1,
mmCOMPUTE_PGM_RSRC1, 0x100004f, /* VGPRS=15 (64 logical VGPRs), SGPRS=1 (16 SGPRs), BULKY=1 */
mmCOMPUTE_PGM_RSRC2, 20,
mmCOMPUTE_USER_DATA_0, 0xedcedc00,
mmCOMPUTE_USER_DATA_1, 0xedcedc01,
mmCOMPUTE_USER_DATA_2, 0xedcedc02,
mmCOMPUTE_USER_DATA_3, 0xedcedc03,
mmCOMPUTE_USER_DATA_4, 0xedcedc04,
mmCOMPUTE_USER_DATA_5, 0xedcedc05,
mmCOMPUTE_USER_DATA_6, 0xedcedc06,
mmCOMPUTE_USER_DATA_7, 0xedcedc07,
mmCOMPUTE_USER_DATA_8, 0xedcedc08,
mmCOMPUTE_USER_DATA_9, 0xedcedc09,
};
static const u32 sgpr1_init_regs[] =
{
mmCOMPUTE_STATIC_THREAD_MGMT_SE0, 0x0f,
mmCOMPUTE_RESOURCE_LIMITS, 0x1000000, /* CU_GROUP_COUNT=1 */
mmCOMPUTE_NUM_THREAD_X, 256*5,
mmCOMPUTE_NUM_THREAD_Y, 1,
mmCOMPUTE_NUM_THREAD_Z, 1,
mmCOMPUTE_PGM_RSRC1, 0x240, /* SGPRS=9 (80 GPRS) */
mmCOMPUTE_PGM_RSRC2, 20,
mmCOMPUTE_USER_DATA_0, 0xedcedc00,
mmCOMPUTE_USER_DATA_1, 0xedcedc01,
mmCOMPUTE_USER_DATA_2, 0xedcedc02,
mmCOMPUTE_USER_DATA_3, 0xedcedc03,
mmCOMPUTE_USER_DATA_4, 0xedcedc04,
mmCOMPUTE_USER_DATA_5, 0xedcedc05,
mmCOMPUTE_USER_DATA_6, 0xedcedc06,
mmCOMPUTE_USER_DATA_7, 0xedcedc07,
mmCOMPUTE_USER_DATA_8, 0xedcedc08,
mmCOMPUTE_USER_DATA_9, 0xedcedc09,
};
static const u32 sgpr2_init_regs[] =
{
mmCOMPUTE_STATIC_THREAD_MGMT_SE0, 0xf0,
mmCOMPUTE_RESOURCE_LIMITS, 0x1000000,
mmCOMPUTE_NUM_THREAD_X, 256*5,
mmCOMPUTE_NUM_THREAD_Y, 1,
mmCOMPUTE_NUM_THREAD_Z, 1,
mmCOMPUTE_PGM_RSRC1, 0x240, /* SGPRS=9 (80 GPRS) */
mmCOMPUTE_PGM_RSRC2, 20,
mmCOMPUTE_USER_DATA_0, 0xedcedc00,
mmCOMPUTE_USER_DATA_1, 0xedcedc01,
mmCOMPUTE_USER_DATA_2, 0xedcedc02,
mmCOMPUTE_USER_DATA_3, 0xedcedc03,
mmCOMPUTE_USER_DATA_4, 0xedcedc04,
mmCOMPUTE_USER_DATA_5, 0xedcedc05,
mmCOMPUTE_USER_DATA_6, 0xedcedc06,
mmCOMPUTE_USER_DATA_7, 0xedcedc07,
mmCOMPUTE_USER_DATA_8, 0xedcedc08,
mmCOMPUTE_USER_DATA_9, 0xedcedc09,
};
static const u32 sec_ded_counter_registers[] =
{
mmCPC_EDC_ATC_CNT,
mmCPC_EDC_SCRATCH_CNT,
mmCPC_EDC_UCODE_CNT,
mmCPF_EDC_ATC_CNT,
mmCPF_EDC_ROQ_CNT,
mmCPF_EDC_TAG_CNT,
mmCPG_EDC_ATC_CNT,
mmCPG_EDC_DMA_CNT,
mmCPG_EDC_TAG_CNT,
mmDC_EDC_CSINVOC_CNT,
mmDC_EDC_RESTORE_CNT,
mmDC_EDC_STATE_CNT,
mmGDS_EDC_CNT,
mmGDS_EDC_GRBM_CNT,
mmGDS_EDC_OA_DED,
mmSPI_EDC_CNT,
mmSQC_ATC_EDC_GATCL1_CNT,
mmSQC_EDC_CNT,
mmSQ_EDC_DED_CNT,
mmSQ_EDC_INFO,
mmSQ_EDC_SEC_CNT,
mmTCC_EDC_CNT,
mmTCP_ATC_EDC_GATCL1_CNT,
mmTCP_EDC_CNT,
mmTD_EDC_CNT
};
static int gfx_v8_0_do_edc_gpr_workarounds(struct amdgpu_device *adev)
{
struct amdgpu_ring *ring = &adev->gfx.compute_ring[0];
struct amdgpu_ib ib;
struct dma_fence *f = NULL;
int r, i;
u32 tmp;
unsigned total_size, vgpr_offset, sgpr_offset;
u64 gpu_addr;
/* only supported on CZ */
if (adev->asic_type != CHIP_CARRIZO)
return 0;
/* bail if the compute ring is not ready */
if (!ring->sched.ready)
return 0;
tmp = RREG32(mmGB_EDC_MODE);
WREG32(mmGB_EDC_MODE, 0);
total_size =
(((ARRAY_SIZE(vgpr_init_regs) / 2) * 3) + 4 + 5 + 2) * 4;
total_size +=
(((ARRAY_SIZE(sgpr1_init_regs) / 2) * 3) + 4 + 5 + 2) * 4;
total_size +=
(((ARRAY_SIZE(sgpr2_init_regs) / 2) * 3) + 4 + 5 + 2) * 4;
total_size = ALIGN(total_size, 256);
vgpr_offset = total_size;
total_size += ALIGN(sizeof(vgpr_init_compute_shader), 256);
sgpr_offset = total_size;
total_size += sizeof(sgpr_init_compute_shader);
/* allocate an indirect buffer to put the commands in */
memset(&ib, 0, sizeof(ib));
r = amdgpu_ib_get(adev, NULL, total_size, &ib);
if (r) {
DRM_ERROR("amdgpu: failed to get ib (%d).\n", r);
return r;
}
/* load the compute shaders */
for (i = 0; i < ARRAY_SIZE(vgpr_init_compute_shader); i++)
ib.ptr[i + (vgpr_offset / 4)] = vgpr_init_compute_shader[i];
for (i = 0; i < ARRAY_SIZE(sgpr_init_compute_shader); i++)
ib.ptr[i + (sgpr_offset / 4)] = sgpr_init_compute_shader[i];
/* init the ib length to 0 */
ib.length_dw = 0;
/* VGPR */
/* write the register state for the compute dispatch */
for (i = 0; i < ARRAY_SIZE(vgpr_init_regs); i += 2) {
ib.ptr[ib.length_dw++] = PACKET3(PACKET3_SET_SH_REG, 1);
ib.ptr[ib.length_dw++] = vgpr_init_regs[i] - PACKET3_SET_SH_REG_START;
ib.ptr[ib.length_dw++] = vgpr_init_regs[i + 1];
}
/* write the shader start address: mmCOMPUTE_PGM_LO, mmCOMPUTE_PGM_HI */
gpu_addr = (ib.gpu_addr + (u64)vgpr_offset) >> 8;
ib.ptr[ib.length_dw++] = PACKET3(PACKET3_SET_SH_REG, 2);
ib.ptr[ib.length_dw++] = mmCOMPUTE_PGM_LO - PACKET3_SET_SH_REG_START;
ib.ptr[ib.length_dw++] = lower_32_bits(gpu_addr);
ib.ptr[ib.length_dw++] = upper_32_bits(gpu_addr);
/* write dispatch packet */
ib.ptr[ib.length_dw++] = PACKET3(PACKET3_DISPATCH_DIRECT, 3);
ib.ptr[ib.length_dw++] = 8; /* x */
ib.ptr[ib.length_dw++] = 1; /* y */
ib.ptr[ib.length_dw++] = 1; /* z */
ib.ptr[ib.length_dw++] =
REG_SET_FIELD(0, COMPUTE_DISPATCH_INITIATOR, COMPUTE_SHADER_EN, 1);
/* write CS partial flush packet */
ib.ptr[ib.length_dw++] = PACKET3(PACKET3_EVENT_WRITE, 0);
ib.ptr[ib.length_dw++] = EVENT_TYPE(7) | EVENT_INDEX(4);
/* SGPR1 */
/* write the register state for the compute dispatch */
for (i = 0; i < ARRAY_SIZE(sgpr1_init_regs); i += 2) {
ib.ptr[ib.length_dw++] = PACKET3(PACKET3_SET_SH_REG, 1);
ib.ptr[ib.length_dw++] = sgpr1_init_regs[i] - PACKET3_SET_SH_REG_START;
ib.ptr[ib.length_dw++] = sgpr1_init_regs[i + 1];
}
/* write the shader start address: mmCOMPUTE_PGM_LO, mmCOMPUTE_PGM_HI */
gpu_addr = (ib.gpu_addr + (u64)sgpr_offset) >> 8;
ib.ptr[ib.length_dw++] = PACKET3(PACKET3_SET_SH_REG, 2);
ib.ptr[ib.length_dw++] = mmCOMPUTE_PGM_LO - PACKET3_SET_SH_REG_START;
ib.ptr[ib.length_dw++] = lower_32_bits(gpu_addr);
ib.ptr[ib.length_dw++] = upper_32_bits(gpu_addr);
/* write dispatch packet */
ib.ptr[ib.length_dw++] = PACKET3(PACKET3_DISPATCH_DIRECT, 3);
ib.ptr[ib.length_dw++] = 8; /* x */
ib.ptr[ib.length_dw++] = 1; /* y */
ib.ptr[ib.length_dw++] = 1; /* z */
ib.ptr[ib.length_dw++] =
REG_SET_FIELD(0, COMPUTE_DISPATCH_INITIATOR, COMPUTE_SHADER_EN, 1);
/* write CS partial flush packet */
ib.ptr[ib.length_dw++] = PACKET3(PACKET3_EVENT_WRITE, 0);
ib.ptr[ib.length_dw++] = EVENT_TYPE(7) | EVENT_INDEX(4);
/* SGPR2 */
/* write the register state for the compute dispatch */
for (i = 0; i < ARRAY_SIZE(sgpr2_init_regs); i += 2) {
ib.ptr[ib.length_dw++] = PACKET3(PACKET3_SET_SH_REG, 1);
ib.ptr[ib.length_dw++] = sgpr2_init_regs[i] - PACKET3_SET_SH_REG_START;
ib.ptr[ib.length_dw++] = sgpr2_init_regs[i + 1];
}
/* write the shader start address: mmCOMPUTE_PGM_LO, mmCOMPUTE_PGM_HI */
gpu_addr = (ib.gpu_addr + (u64)sgpr_offset) >> 8;
ib.ptr[ib.length_dw++] = PACKET3(PACKET3_SET_SH_REG, 2);
ib.ptr[ib.length_dw++] = mmCOMPUTE_PGM_LO - PACKET3_SET_SH_REG_START;
ib.ptr[ib.length_dw++] = lower_32_bits(gpu_addr);
ib.ptr[ib.length_dw++] = upper_32_bits(gpu_addr);
/* write dispatch packet */
ib.ptr[ib.length_dw++] = PACKET3(PACKET3_DISPATCH_DIRECT, 3);
ib.ptr[ib.length_dw++] = 8; /* x */
ib.ptr[ib.length_dw++] = 1; /* y */
ib.ptr[ib.length_dw++] = 1; /* z */
ib.ptr[ib.length_dw++] =
REG_SET_FIELD(0, COMPUTE_DISPATCH_INITIATOR, COMPUTE_SHADER_EN, 1);
/* write CS partial flush packet */
ib.ptr[ib.length_dw++] = PACKET3(PACKET3_EVENT_WRITE, 0);
ib.ptr[ib.length_dw++] = EVENT_TYPE(7) | EVENT_INDEX(4);
/* shedule the ib on the ring */
r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
if (r) {
DRM_ERROR("amdgpu: ib submit failed (%d).\n", r);
goto fail;
}
/* wait for the GPU to finish processing the IB */
r = dma_fence_wait(f, false);
if (r) {
DRM_ERROR("amdgpu: fence wait failed (%d).\n", r);
goto fail;
}
tmp = REG_SET_FIELD(tmp, GB_EDC_MODE, DED_MODE, 2);
tmp = REG_SET_FIELD(tmp, GB_EDC_MODE, PROP_FED, 1);
WREG32(mmGB_EDC_MODE, tmp);
tmp = RREG32(mmCC_GC_EDC_CONFIG);
tmp = REG_SET_FIELD(tmp, CC_GC_EDC_CONFIG, DIS_EDC, 0) | 1;
WREG32(mmCC_GC_EDC_CONFIG, tmp);
/* read back registers to clear the counters */
for (i = 0; i < ARRAY_SIZE(sec_ded_counter_registers); i++)
RREG32(sec_ded_counter_registers[i]);
fail:
amdgpu_ib_free(adev, &ib, NULL);
dma_fence_put(f);
return r;
}
static int gfx_v8_0_gpu_early_init(struct amdgpu_device *adev)
{
u32 gb_addr_config;
u32 mc_shared_chmap, mc_arb_ramcfg;
u32 dimm00_addr_map, dimm01_addr_map, dimm10_addr_map, dimm11_addr_map;
u32 tmp;
int ret;
switch (adev->asic_type) {
case CHIP_TOPAZ:
adev->gfx.config.max_shader_engines = 1;
adev->gfx.config.max_tile_pipes = 2;
adev->gfx.config.max_cu_per_sh = 6;
adev->gfx.config.max_sh_per_se = 1;
adev->gfx.config.max_backends_per_se = 2;
adev->gfx.config.max_texture_channel_caches = 2;
adev->gfx.config.max_gprs = 256;
adev->gfx.config.max_gs_threads = 32;
adev->gfx.config.max_hw_contexts = 8;
adev->gfx.config.sc_prim_fifo_size_frontend = 0x20;
adev->gfx.config.sc_prim_fifo_size_backend = 0x100;
adev->gfx.config.sc_hiz_tile_fifo_size = 0x30;
adev->gfx.config.sc_earlyz_tile_fifo_size = 0x130;
gb_addr_config = TOPAZ_GB_ADDR_CONFIG_GOLDEN;
break;
case CHIP_FIJI:
adev->gfx.config.max_shader_engines = 4;
adev->gfx.config.max_tile_pipes = 16;
adev->gfx.config.max_cu_per_sh = 16;
adev->gfx.config.max_sh_per_se = 1;
adev->gfx.config.max_backends_per_se = 4;
adev->gfx.config.max_texture_channel_caches = 16;
adev->gfx.config.max_gprs = 256;
adev->gfx.config.max_gs_threads = 32;
adev->gfx.config.max_hw_contexts = 8;
adev->gfx.config.sc_prim_fifo_size_frontend = 0x20;
adev->gfx.config.sc_prim_fifo_size_backend = 0x100;
adev->gfx.config.sc_hiz_tile_fifo_size = 0x30;
adev->gfx.config.sc_earlyz_tile_fifo_size = 0x130;
gb_addr_config = TONGA_GB_ADDR_CONFIG_GOLDEN;
break;
case CHIP_POLARIS11:
case CHIP_POLARIS12:
ret = amdgpu_atombios_get_gfx_info(adev);
if (ret)
return ret;
adev->gfx.config.max_gprs = 256;
adev->gfx.config.max_gs_threads = 32;
adev->gfx.config.max_hw_contexts = 8;
adev->gfx.config.sc_prim_fifo_size_frontend = 0x20;
adev->gfx.config.sc_prim_fifo_size_backend = 0x100;
adev->gfx.config.sc_hiz_tile_fifo_size = 0x30;
adev->gfx.config.sc_earlyz_tile_fifo_size = 0x130;
gb_addr_config = POLARIS11_GB_ADDR_CONFIG_GOLDEN;
break;
case CHIP_POLARIS10:
case CHIP_VEGAM:
ret = amdgpu_atombios_get_gfx_info(adev);
if (ret)
return ret;
adev->gfx.config.max_gprs = 256;
adev->gfx.config.max_gs_threads = 32;
adev->gfx.config.max_hw_contexts = 8;
adev->gfx.config.sc_prim_fifo_size_frontend = 0x20;
adev->gfx.config.sc_prim_fifo_size_backend = 0x100;
adev->gfx.config.sc_hiz_tile_fifo_size = 0x30;
adev->gfx.config.sc_earlyz_tile_fifo_size = 0x130;
gb_addr_config = TONGA_GB_ADDR_CONFIG_GOLDEN;
break;
case CHIP_TONGA:
adev->gfx.config.max_shader_engines = 4;
adev->gfx.config.max_tile_pipes = 8;
adev->gfx.config.max_cu_per_sh = 8;
adev->gfx.config.max_sh_per_se = 1;
adev->gfx.config.max_backends_per_se = 2;
adev->gfx.config.max_texture_channel_caches = 8;
adev->gfx.config.max_gprs = 256;
adev->gfx.config.max_gs_threads = 32;
adev->gfx.config.max_hw_contexts = 8;
adev->gfx.config.sc_prim_fifo_size_frontend = 0x20;
adev->gfx.config.sc_prim_fifo_size_backend = 0x100;
adev->gfx.config.sc_hiz_tile_fifo_size = 0x30;
adev->gfx.config.sc_earlyz_tile_fifo_size = 0x130;
gb_addr_config = TONGA_GB_ADDR_CONFIG_GOLDEN;
break;
case CHIP_CARRIZO:
adev->gfx.config.max_shader_engines = 1;
adev->gfx.config.max_tile_pipes = 2;
adev->gfx.config.max_sh_per_se = 1;
adev->gfx.config.max_backends_per_se = 2;
adev->gfx.config.max_cu_per_sh = 8;
adev->gfx.config.max_texture_channel_caches = 2;
adev->gfx.config.max_gprs = 256;
adev->gfx.config.max_gs_threads = 32;
adev->gfx.config.max_hw_contexts = 8;
adev->gfx.config.sc_prim_fifo_size_frontend = 0x20;
adev->gfx.config.sc_prim_fifo_size_backend = 0x100;
adev->gfx.config.sc_hiz_tile_fifo_size = 0x30;
adev->gfx.config.sc_earlyz_tile_fifo_size = 0x130;
gb_addr_config = CARRIZO_GB_ADDR_CONFIG_GOLDEN;
break;
case CHIP_STONEY:
adev->gfx.config.max_shader_engines = 1;
adev->gfx.config.max_tile_pipes = 2;
adev->gfx.config.max_sh_per_se = 1;
adev->gfx.config.max_backends_per_se = 1;
adev->gfx.config.max_cu_per_sh = 3;
adev->gfx.config.max_texture_channel_caches = 2;
adev->gfx.config.max_gprs = 256;
adev->gfx.config.max_gs_threads = 16;
adev->gfx.config.max_hw_contexts = 8;
adev->gfx.config.sc_prim_fifo_size_frontend = 0x20;
adev->gfx.config.sc_prim_fifo_size_backend = 0x100;
adev->gfx.config.sc_hiz_tile_fifo_size = 0x30;
adev->gfx.config.sc_earlyz_tile_fifo_size = 0x130;
gb_addr_config = CARRIZO_GB_ADDR_CONFIG_GOLDEN;
break;
default:
adev->gfx.config.max_shader_engines = 2;
adev->gfx.config.max_tile_pipes = 4;
adev->gfx.config.max_cu_per_sh = 2;
adev->gfx.config.max_sh_per_se = 1;
adev->gfx.config.max_backends_per_se = 2;
adev->gfx.config.max_texture_channel_caches = 4;
adev->gfx.config.max_gprs = 256;
adev->gfx.config.max_gs_threads = 32;
adev->gfx.config.max_hw_contexts = 8;
adev->gfx.config.sc_prim_fifo_size_frontend = 0x20;
adev->gfx.config.sc_prim_fifo_size_backend = 0x100;
adev->gfx.config.sc_hiz_tile_fifo_size = 0x30;
adev->gfx.config.sc_earlyz_tile_fifo_size = 0x130;
gb_addr_config = TONGA_GB_ADDR_CONFIG_GOLDEN;
break;
}
mc_shared_chmap = RREG32(mmMC_SHARED_CHMAP);
adev->gfx.config.mc_arb_ramcfg = RREG32(mmMC_ARB_RAMCFG);
mc_arb_ramcfg = adev->gfx.config.mc_arb_ramcfg;
adev->gfx.config.num_tile_pipes = adev->gfx.config.max_tile_pipes;
adev->gfx.config.mem_max_burst_length_bytes = 256;
if (adev->flags & AMD_IS_APU) {
/* Get memory bank mapping mode. */
tmp = RREG32(mmMC_FUS_DRAM0_BANK_ADDR_MAPPING);
dimm00_addr_map = REG_GET_FIELD(tmp, MC_FUS_DRAM0_BANK_ADDR_MAPPING, DIMM0ADDRMAP);
dimm01_addr_map = REG_GET_FIELD(tmp, MC_FUS_DRAM0_BANK_ADDR_MAPPING, DIMM1ADDRMAP);
tmp = RREG32(mmMC_FUS_DRAM1_BANK_ADDR_MAPPING);
dimm10_addr_map = REG_GET_FIELD(tmp, MC_FUS_DRAM1_BANK_ADDR_MAPPING, DIMM0ADDRMAP);
dimm11_addr_map = REG_GET_FIELD(tmp, MC_FUS_DRAM1_BANK_ADDR_MAPPING, DIMM1ADDRMAP);
/* Validate settings in case only one DIMM installed. */
if ((dimm00_addr_map == 0) || (dimm00_addr_map == 3) || (dimm00_addr_map == 4) || (dimm00_addr_map > 12))
dimm00_addr_map = 0;
if ((dimm01_addr_map == 0) || (dimm01_addr_map == 3) || (dimm01_addr_map == 4) || (dimm01_addr_map > 12))
dimm01_addr_map = 0;
if ((dimm10_addr_map == 0) || (dimm10_addr_map == 3) || (dimm10_addr_map == 4) || (dimm10_addr_map > 12))
dimm10_addr_map = 0;
if ((dimm11_addr_map == 0) || (dimm11_addr_map == 3) || (dimm11_addr_map == 4) || (dimm11_addr_map > 12))
dimm11_addr_map = 0;
/* If DIMM Addr map is 8GB, ROW size should be 2KB. Otherwise 1KB. */
/* If ROW size(DIMM1) != ROW size(DMIMM0), ROW size should be larger one. */
if ((dimm00_addr_map == 11) || (dimm01_addr_map == 11) || (dimm10_addr_map == 11) || (dimm11_addr_map == 11))
adev->gfx.config.mem_row_size_in_kb = 2;
else
adev->gfx.config.mem_row_size_in_kb = 1;
} else {
tmp = REG_GET_FIELD(mc_arb_ramcfg, MC_ARB_RAMCFG, NOOFCOLS);
adev->gfx.config.mem_row_size_in_kb = (4 * (1 << (8 + tmp))) / 1024;
if (adev->gfx.config.mem_row_size_in_kb > 4)
adev->gfx.config.mem_row_size_in_kb = 4;
}
adev->gfx.config.shader_engine_tile_size = 32;
adev->gfx.config.num_gpus = 1;
adev->gfx.config.multi_gpu_tile_size = 64;
/* fix up row size */
switch (adev->gfx.config.mem_row_size_in_kb) {
case 1:
default:
gb_addr_config = REG_SET_FIELD(gb_addr_config, GB_ADDR_CONFIG, ROW_SIZE, 0);
break;
case 2:
gb_addr_config = REG_SET_FIELD(gb_addr_config, GB_ADDR_CONFIG, ROW_SIZE, 1);
break;
case 4:
gb_addr_config = REG_SET_FIELD(gb_addr_config, GB_ADDR_CONFIG, ROW_SIZE, 2);
break;
}
adev->gfx.config.gb_addr_config = gb_addr_config;
return 0;
}
static int gfx_v8_0_compute_ring_init(struct amdgpu_device *adev, int ring_id,
int mec, int pipe, int queue)
{
int r;
unsigned irq_type;
struct amdgpu_ring *ring = &adev->gfx.compute_ring[ring_id];
ring = &adev->gfx.compute_ring[ring_id];
/* mec0 is me1 */
ring->me = mec + 1;
ring->pipe = pipe;
ring->queue = queue;
ring->ring_obj = NULL;
ring->use_doorbell = true;
ring->doorbell_index = adev->doorbell_index.mec_ring0 + ring_id;
ring->eop_gpu_addr = adev->gfx.mec.hpd_eop_gpu_addr
+ (ring_id * GFX8_MEC_HPD_SIZE);
sprintf(ring->name, "comp_%d.%d.%d", ring->me, ring->pipe, ring->queue);
irq_type = AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE0_EOP
+ ((ring->me - 1) * adev->gfx.mec.num_pipe_per_mec)
+ ring->pipe;
/* type-2 packets are deprecated on MEC, use type-3 instead */
r = amdgpu_ring_init(adev, ring, 1024,
&adev->gfx.eop_irq, irq_type);
if (r)
return r;
return 0;
}
static void gfx_v8_0_sq_irq_work_func(struct work_struct *work);
static int gfx_v8_0_sw_init(void *handle)
{
int i, j, k, r, ring_id;
struct amdgpu_ring *ring;
struct amdgpu_kiq *kiq;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
switch (adev->asic_type) {
case CHIP_TONGA:
case CHIP_CARRIZO:
case CHIP_FIJI:
case CHIP_POLARIS10:
case CHIP_POLARIS11:
case CHIP_POLARIS12:
case CHIP_VEGAM:
adev->gfx.mec.num_mec = 2;
break;
case CHIP_TOPAZ:
case CHIP_STONEY:
default:
adev->gfx.mec.num_mec = 1;
break;
}
adev->gfx.mec.num_pipe_per_mec = 4;
adev->gfx.mec.num_queue_per_pipe = 8;
/* EOP Event */
r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_CP_END_OF_PIPE, &adev->gfx.eop_irq);
if (r)
return r;
/* Privileged reg */
r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_CP_PRIV_REG_FAULT,
&adev->gfx.priv_reg_irq);
if (r)
return r;
/* Privileged inst */
r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_CP_PRIV_INSTR_FAULT,
&adev->gfx.priv_inst_irq);
if (r)
return r;
/* Add CP EDC/ECC irq */
r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_CP_ECC_ERROR,
&adev->gfx.cp_ecc_error_irq);
if (r)
return r;
/* SQ interrupts. */
r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_SQ_INTERRUPT_MSG,
&adev->gfx.sq_irq);
if (r) {
DRM_ERROR("amdgpu_irq_add() for SQ failed: %d\n", r);
return r;
}
INIT_WORK(&adev->gfx.sq_work.work, gfx_v8_0_sq_irq_work_func);
adev->gfx.gfx_current_status = AMDGPU_GFX_NORMAL_MODE;
gfx_v8_0_scratch_init(adev);
r = gfx_v8_0_init_microcode(adev);
if (r) {
DRM_ERROR("Failed to load gfx firmware!\n");
return r;
}
r = adev->gfx.rlc.funcs->init(adev);
if (r) {
DRM_ERROR("Failed to init rlc BOs!\n");
return r;
}
r = gfx_v8_0_mec_init(adev);
if (r) {
DRM_ERROR("Failed to init MEC BOs!\n");
return r;
}
/* set up the gfx ring */
for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
ring = &adev->gfx.gfx_ring[i];
ring->ring_obj = NULL;
sprintf(ring->name, "gfx");
/* no gfx doorbells on iceland */
if (adev->asic_type != CHIP_TOPAZ) {
ring->use_doorbell = true;
ring->doorbell_index = adev->doorbell_index.gfx_ring0;
}
r = amdgpu_ring_init(adev, ring, 1024, &adev->gfx.eop_irq,
AMDGPU_CP_IRQ_GFX_EOP);
if (r)
return r;
}
/* set up the compute queues - allocate horizontally across pipes */
ring_id = 0;
for (i = 0; i < adev->gfx.mec.num_mec; ++i) {
for (j = 0; j < adev->gfx.mec.num_queue_per_pipe; j++) {
for (k = 0; k < adev->gfx.mec.num_pipe_per_mec; k++) {
if (!amdgpu_gfx_is_mec_queue_enabled(adev, i, k, j))
continue;
r = gfx_v8_0_compute_ring_init(adev,
ring_id,
i, k, j);
if (r)
return r;
ring_id++;
}
}
}
r = amdgpu_gfx_kiq_init(adev, GFX8_MEC_HPD_SIZE);
if (r) {
DRM_ERROR("Failed to init KIQ BOs!\n");
return r;
}
kiq = &adev->gfx.kiq;
r = amdgpu_gfx_kiq_init_ring(adev, &kiq->ring, &kiq->irq);
if (r)
return r;
/* create MQD for all compute queues as well as KIQ for SRIOV case */
r = amdgpu_gfx_compute_mqd_sw_init(adev, sizeof(struct vi_mqd_allocation));
if (r)
return r;
adev->gfx.ce_ram_size = 0x8000;
r = gfx_v8_0_gpu_early_init(adev);
if (r)
return r;
return 0;
}
static int gfx_v8_0_sw_fini(void *handle)
{
int i;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
amdgpu_bo_free_kernel(&adev->gds.oa_gfx_bo, NULL, NULL);
amdgpu_bo_free_kernel(&adev->gds.gws_gfx_bo, NULL, NULL);
amdgpu_bo_free_kernel(&adev->gds.gds_gfx_bo, NULL, NULL);
for (i = 0; i < adev->gfx.num_gfx_rings; i++)
amdgpu_ring_fini(&adev->gfx.gfx_ring[i]);
for (i = 0; i < adev->gfx.num_compute_rings; i++)
amdgpu_ring_fini(&adev->gfx.compute_ring[i]);
amdgpu_gfx_compute_mqd_sw_fini(adev);
amdgpu_gfx_kiq_free_ring(&adev->gfx.kiq.ring, &adev->gfx.kiq.irq);
amdgpu_gfx_kiq_fini(adev);
gfx_v8_0_mec_fini(adev);
amdgpu_gfx_rlc_fini(adev);
amdgpu_bo_free_kernel(&adev->gfx.rlc.clear_state_obj,
&adev->gfx.rlc.clear_state_gpu_addr,
(void **)&adev->gfx.rlc.cs_ptr);
if ((adev->asic_type == CHIP_CARRIZO) ||
(adev->asic_type == CHIP_STONEY)) {
amdgpu_bo_free_kernel(&adev->gfx.rlc.cp_table_obj,
&adev->gfx.rlc.cp_table_gpu_addr,
(void **)&adev->gfx.rlc.cp_table_ptr);
}
gfx_v8_0_free_microcode(adev);
return 0;
}
static void gfx_v8_0_tiling_mode_table_init(struct amdgpu_device *adev)
{
uint32_t *modearray, *mod2array;
const u32 num_tile_mode_states = ARRAY_SIZE(adev->gfx.config.tile_mode_array);
const u32 num_secondary_tile_mode_states = ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
u32 reg_offset;
modearray = adev->gfx.config.tile_mode_array;
mod2array = adev->gfx.config.macrotile_mode_array;
for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++)
modearray[reg_offset] = 0;
for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++)
mod2array[reg_offset] = 0;
switch (adev->asic_type) {
case CHIP_TOPAZ:
modearray[0] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[1] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[2] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[3] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[4] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[5] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[6] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[8] = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) |
PIPE_CONFIG(ADDR_SURF_P2));
modearray[9] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[10] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[11] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
modearray[13] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[14] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[15] = (ARRAY_MODE(ARRAY_3D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[16] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
modearray[18] = (ARRAY_MODE(ARRAY_1D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[19] = (ARRAY_MODE(ARRAY_1D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[20] = (ARRAY_MODE(ARRAY_2D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[21] = (ARRAY_MODE(ARRAY_3D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[22] = (ARRAY_MODE(ARRAY_PRT_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[24] = (ARRAY_MODE(ARRAY_2D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[25] = (ARRAY_MODE(ARRAY_2D_TILED_XTHICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[26] = (ARRAY_MODE(ARRAY_3D_TILED_XTHICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[27] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[28] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[29] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
mod2array[0] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_4) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[1] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_4) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[2] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[3] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[4] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[5] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[6] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[8] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_4) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_8) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[9] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_4) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[10] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[11] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[12] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[13] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[14] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++)
if (reg_offset != 7 && reg_offset != 12 && reg_offset != 17 &&
reg_offset != 23)
WREG32(mmGB_TILE_MODE0 + reg_offset, modearray[reg_offset]);
for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++)
if (reg_offset != 7)
WREG32(mmGB_MACROTILE_MODE0 + reg_offset, mod2array[reg_offset]);
break;
case CHIP_FIJI:
case CHIP_VEGAM:
modearray[0] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[1] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[2] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[3] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[4] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[5] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[6] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[7] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[8] = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16));
modearray[9] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[10] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[11] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
modearray[12] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
modearray[13] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[14] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[15] = (ARRAY_MODE(ARRAY_3D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[16] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
modearray[17] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
modearray[18] = (ARRAY_MODE(ARRAY_1D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[19] = (ARRAY_MODE(ARRAY_1D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[20] = (ARRAY_MODE(ARRAY_2D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[21] = (ARRAY_MODE(ARRAY_3D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[22] = (ARRAY_MODE(ARRAY_PRT_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[23] = (ARRAY_MODE(ARRAY_PRT_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[24] = (ARRAY_MODE(ARRAY_2D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[25] = (ARRAY_MODE(ARRAY_2D_TILED_XTHICK) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[26] = (ARRAY_MODE(ARRAY_3D_TILED_XTHICK) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[27] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[28] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[29] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
modearray[30] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
mod2array[0] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[1] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[2] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[3] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[4] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[5] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[6] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[8] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_8) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[9] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[10] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[11] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[12] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[13] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[14] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
NUM_BANKS(ADDR_SURF_4_BANK));
for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++)
WREG32(mmGB_TILE_MODE0 + reg_offset, modearray[reg_offset]);
for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++)
if (reg_offset != 7)
WREG32(mmGB_MACROTILE_MODE0 + reg_offset, mod2array[reg_offset]);
break;
case CHIP_TONGA:
modearray[0] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[1] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[2] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[3] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[4] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[5] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[6] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[7] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[8] = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16));
modearray[9] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[10] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[11] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
modearray[12] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
modearray[13] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[14] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[15] = (ARRAY_MODE(ARRAY_3D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[16] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
modearray[17] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
modearray[18] = (ARRAY_MODE(ARRAY_1D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[19] = (ARRAY_MODE(ARRAY_1D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[20] = (ARRAY_MODE(ARRAY_2D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[21] = (ARRAY_MODE(ARRAY_3D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[22] = (ARRAY_MODE(ARRAY_PRT_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[23] = (ARRAY_MODE(ARRAY_PRT_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[24] = (ARRAY_MODE(ARRAY_2D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[25] = (ARRAY_MODE(ARRAY_2D_TILED_XTHICK) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[26] = (ARRAY_MODE(ARRAY_3D_TILED_XTHICK) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[27] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[28] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[29] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
modearray[30] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
mod2array[0] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[1] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[2] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[3] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[4] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[5] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[6] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[8] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_8) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[9] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[10] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[11] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[12] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[13] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
NUM_BANKS(ADDR_SURF_4_BANK));
mod2array[14] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
NUM_BANKS(ADDR_SURF_4_BANK));
for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++)
WREG32(mmGB_TILE_MODE0 + reg_offset, modearray[reg_offset]);
for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++)
if (reg_offset != 7)
WREG32(mmGB_MACROTILE_MODE0 + reg_offset, mod2array[reg_offset]);
break;
case CHIP_POLARIS11:
case CHIP_POLARIS12:
modearray[0] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[1] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[2] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[3] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[4] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[5] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[6] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[7] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[8] = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) |
PIPE_CONFIG(ADDR_SURF_P4_16x16));
modearray[9] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[10] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[11] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
modearray[12] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
modearray[13] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[14] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[15] = (ARRAY_MODE(ARRAY_3D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[16] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
modearray[17] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
modearray[18] = (ARRAY_MODE(ARRAY_1D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[19] = (ARRAY_MODE(ARRAY_1D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[20] = (ARRAY_MODE(ARRAY_2D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[21] = (ARRAY_MODE(ARRAY_3D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[22] = (ARRAY_MODE(ARRAY_PRT_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[23] = (ARRAY_MODE(ARRAY_PRT_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[24] = (ARRAY_MODE(ARRAY_2D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[25] = (ARRAY_MODE(ARRAY_2D_TILED_XTHICK) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[26] = (ARRAY_MODE(ARRAY_3D_TILED_XTHICK) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[27] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[28] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[29] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
modearray[30] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
mod2array[0] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[1] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[2] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[3] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[4] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[5] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[6] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[8] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_8) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[9] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[10] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[11] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[12] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[13] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[14] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
NUM_BANKS(ADDR_SURF_4_BANK));
for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++)
WREG32(mmGB_TILE_MODE0 + reg_offset, modearray[reg_offset]);
for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++)
if (reg_offset != 7)
WREG32(mmGB_MACROTILE_MODE0 + reg_offset, mod2array[reg_offset]);
break;
case CHIP_POLARIS10:
modearray[0] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[1] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[2] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[3] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[4] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[5] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[6] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[7] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[8] = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16));
modearray[9] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[10] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[11] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
modearray[12] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
modearray[13] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[14] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[15] = (ARRAY_MODE(ARRAY_3D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[16] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
modearray[17] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
modearray[18] = (ARRAY_MODE(ARRAY_1D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[19] = (ARRAY_MODE(ARRAY_1D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[20] = (ARRAY_MODE(ARRAY_2D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[21] = (ARRAY_MODE(ARRAY_3D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[22] = (ARRAY_MODE(ARRAY_PRT_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[23] = (ARRAY_MODE(ARRAY_PRT_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[24] = (ARRAY_MODE(ARRAY_2D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[25] = (ARRAY_MODE(ARRAY_2D_TILED_XTHICK) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[26] = (ARRAY_MODE(ARRAY_3D_TILED_XTHICK) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[27] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[28] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[29] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
modearray[30] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
mod2array[0] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[1] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[2] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[3] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[4] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[5] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[6] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[8] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_8) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[9] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[10] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[11] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[12] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[13] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
NUM_BANKS(ADDR_SURF_4_BANK));
mod2array[14] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
NUM_BANKS(ADDR_SURF_4_BANK));
for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++)
WREG32(mmGB_TILE_MODE0 + reg_offset, modearray[reg_offset]);
for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++)
if (reg_offset != 7)
WREG32(mmGB_MACROTILE_MODE0 + reg_offset, mod2array[reg_offset]);
break;
case CHIP_STONEY:
modearray[0] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[1] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[2] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[3] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[4] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[5] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[6] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[8] = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) |
PIPE_CONFIG(ADDR_SURF_P2));
modearray[9] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[10] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[11] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
modearray[13] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[14] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[15] = (ARRAY_MODE(ARRAY_3D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[16] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
modearray[18] = (ARRAY_MODE(ARRAY_1D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[19] = (ARRAY_MODE(ARRAY_1D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[20] = (ARRAY_MODE(ARRAY_2D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[21] = (ARRAY_MODE(ARRAY_3D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[22] = (ARRAY_MODE(ARRAY_PRT_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[24] = (ARRAY_MODE(ARRAY_2D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[25] = (ARRAY_MODE(ARRAY_2D_TILED_XTHICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[26] = (ARRAY_MODE(ARRAY_3D_TILED_XTHICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[27] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[28] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[29] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
mod2array[0] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[1] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[2] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[3] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[4] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[5] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[6] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[8] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_4) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_8) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[9] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_4) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[10] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[11] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[12] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[13] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[14] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++)
if (reg_offset != 7 && reg_offset != 12 && reg_offset != 17 &&
reg_offset != 23)
WREG32(mmGB_TILE_MODE0 + reg_offset, modearray[reg_offset]);
for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++)
if (reg_offset != 7)
WREG32(mmGB_MACROTILE_MODE0 + reg_offset, mod2array[reg_offset]);
break;
default:
dev_warn(adev->dev,
"Unknown chip type (%d) in function gfx_v8_0_tiling_mode_table_init() falling through to CHIP_CARRIZO\n",
adev->asic_type);
case CHIP_CARRIZO:
modearray[0] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[1] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[2] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[3] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[4] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[5] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[6] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[8] = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) |
PIPE_CONFIG(ADDR_SURF_P2));
modearray[9] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[10] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[11] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
modearray[13] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[14] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[15] = (ARRAY_MODE(ARRAY_3D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[16] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
modearray[18] = (ARRAY_MODE(ARRAY_1D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[19] = (ARRAY_MODE(ARRAY_1D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[20] = (ARRAY_MODE(ARRAY_2D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[21] = (ARRAY_MODE(ARRAY_3D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[22] = (ARRAY_MODE(ARRAY_PRT_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[24] = (ARRAY_MODE(ARRAY_2D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[25] = (ARRAY_MODE(ARRAY_2D_TILED_XTHICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[26] = (ARRAY_MODE(ARRAY_3D_TILED_XTHICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[27] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[28] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[29] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
mod2array[0] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[1] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[2] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[3] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[4] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[5] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[6] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[8] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_4) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_8) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[9] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_4) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[10] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[11] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[12] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[13] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[14] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++)
if (reg_offset != 7 && reg_offset != 12 && reg_offset != 17 &&
reg_offset != 23)
WREG32(mmGB_TILE_MODE0 + reg_offset, modearray[reg_offset]);
for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++)
if (reg_offset != 7)
WREG32(mmGB_MACROTILE_MODE0 + reg_offset, mod2array[reg_offset]);
break;
}
}
static void gfx_v8_0_select_se_sh(struct amdgpu_device *adev,
u32 se_num, u32 sh_num, u32 instance)
{
u32 data;
if (instance == 0xffffffff)
data = REG_SET_FIELD(0, GRBM_GFX_INDEX, INSTANCE_BROADCAST_WRITES, 1);
else
data = REG_SET_FIELD(0, GRBM_GFX_INDEX, INSTANCE_INDEX, instance);
if (se_num == 0xffffffff)
data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SE_BROADCAST_WRITES, 1);
else
data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SE_INDEX, se_num);
if (sh_num == 0xffffffff)
data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SH_BROADCAST_WRITES, 1);
else
data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SH_INDEX, sh_num);
WREG32(mmGRBM_GFX_INDEX, data);
}
static void gfx_v8_0_select_me_pipe_q(struct amdgpu_device *adev,
u32 me, u32 pipe, u32 q)
{
vi_srbm_select(adev, me, pipe, q, 0);
}
static u32 gfx_v8_0_get_rb_active_bitmap(struct amdgpu_device *adev)
{
u32 data, mask;
data = RREG32(mmCC_RB_BACKEND_DISABLE) |
RREG32(mmGC_USER_RB_BACKEND_DISABLE);
data = REG_GET_FIELD(data, GC_USER_RB_BACKEND_DISABLE, BACKEND_DISABLE);
mask = amdgpu_gfx_create_bitmask(adev->gfx.config.max_backends_per_se /
adev->gfx.config.max_sh_per_se);
return (~data) & mask;
}
static void
gfx_v8_0_raster_config(struct amdgpu_device *adev, u32 *rconf, u32 *rconf1)
{
switch (adev->asic_type) {
case CHIP_FIJI:
case CHIP_VEGAM:
*rconf |= RB_MAP_PKR0(2) | RB_MAP_PKR1(2) |
RB_XSEL2(1) | PKR_MAP(2) |
PKR_XSEL(1) | PKR_YSEL(1) |
SE_MAP(2) | SE_XSEL(2) | SE_YSEL(3);
*rconf1 |= SE_PAIR_MAP(2) | SE_PAIR_XSEL(3) |
SE_PAIR_YSEL(2);
break;
case CHIP_TONGA:
case CHIP_POLARIS10:
*rconf |= RB_MAP_PKR0(2) | RB_XSEL2(1) | SE_MAP(2) |
SE_XSEL(1) | SE_YSEL(1);
*rconf1 |= SE_PAIR_MAP(2) | SE_PAIR_XSEL(2) |
SE_PAIR_YSEL(2);
break;
case CHIP_TOPAZ:
case CHIP_CARRIZO:
*rconf |= RB_MAP_PKR0(2);
*rconf1 |= 0x0;
break;
case CHIP_POLARIS11:
case CHIP_POLARIS12:
*rconf |= RB_MAP_PKR0(2) | RB_XSEL2(1) | SE_MAP(2) |
SE_XSEL(1) | SE_YSEL(1);
*rconf1 |= 0x0;
break;
case CHIP_STONEY:
*rconf |= 0x0;
*rconf1 |= 0x0;
break;
default:
DRM_ERROR("unknown asic: 0x%x\n", adev->asic_type);
break;
}
}
static void
gfx_v8_0_write_harvested_raster_configs(struct amdgpu_device *adev,
u32 raster_config, u32 raster_config_1,
unsigned rb_mask, unsigned num_rb)
{
unsigned sh_per_se = max_t(unsigned, adev->gfx.config.max_sh_per_se, 1);
unsigned num_se = max_t(unsigned, adev->gfx.config.max_shader_engines, 1);
unsigned rb_per_pkr = min_t(unsigned, num_rb / num_se / sh_per_se, 2);
unsigned rb_per_se = num_rb / num_se;
unsigned se_mask[4];
unsigned se;
se_mask[0] = ((1 << rb_per_se) - 1) & rb_mask;
se_mask[1] = (se_mask[0] << rb_per_se) & rb_mask;
se_mask[2] = (se_mask[1] << rb_per_se) & rb_mask;
se_mask[3] = (se_mask[2] << rb_per_se) & rb_mask;
WARN_ON(!(num_se == 1 || num_se == 2 || num_se == 4));
WARN_ON(!(sh_per_se == 1 || sh_per_se == 2));
WARN_ON(!(rb_per_pkr == 1 || rb_per_pkr == 2));
if ((num_se > 2) && ((!se_mask[0] && !se_mask[1]) ||
(!se_mask[2] && !se_mask[3]))) {
raster_config_1 &= ~SE_PAIR_MAP_MASK;
if (!se_mask[0] && !se_mask[1]) {
raster_config_1 |=
SE_PAIR_MAP(RASTER_CONFIG_SE_PAIR_MAP_3);
} else {
raster_config_1 |=
SE_PAIR_MAP(RASTER_CONFIG_SE_PAIR_MAP_0);
}
}
for (se = 0; se < num_se; se++) {
unsigned raster_config_se = raster_config;
unsigned pkr0_mask = ((1 << rb_per_pkr) - 1) << (se * rb_per_se);
unsigned pkr1_mask = pkr0_mask << rb_per_pkr;
int idx = (se / 2) * 2;
if ((num_se > 1) && (!se_mask[idx] || !se_mask[idx + 1])) {
raster_config_se &= ~SE_MAP_MASK;
if (!se_mask[idx]) {
raster_config_se |= SE_MAP(RASTER_CONFIG_SE_MAP_3);
} else {
raster_config_se |= SE_MAP(RASTER_CONFIG_SE_MAP_0);
}
}
pkr0_mask &= rb_mask;
pkr1_mask &= rb_mask;
if (rb_per_se > 2 && (!pkr0_mask || !pkr1_mask)) {
raster_config_se &= ~PKR_MAP_MASK;
if (!pkr0_mask) {
raster_config_se |= PKR_MAP(RASTER_CONFIG_PKR_MAP_3);
} else {
raster_config_se |= PKR_MAP(RASTER_CONFIG_PKR_MAP_0);
}
}
if (rb_per_se >= 2) {
unsigned rb0_mask = 1 << (se * rb_per_se);
unsigned rb1_mask = rb0_mask << 1;
rb0_mask &= rb_mask;
rb1_mask &= rb_mask;
if (!rb0_mask || !rb1_mask) {
raster_config_se &= ~RB_MAP_PKR0_MASK;
if (!rb0_mask) {
raster_config_se |=
RB_MAP_PKR0(RASTER_CONFIG_RB_MAP_3);
} else {
raster_config_se |=
RB_MAP_PKR0(RASTER_CONFIG_RB_MAP_0);
}
}
if (rb_per_se > 2) {
rb0_mask = 1 << (se * rb_per_se + rb_per_pkr);
rb1_mask = rb0_mask << 1;
rb0_mask &= rb_mask;
rb1_mask &= rb_mask;
if (!rb0_mask || !rb1_mask) {
raster_config_se &= ~RB_MAP_PKR1_MASK;
if (!rb0_mask) {
raster_config_se |=
RB_MAP_PKR1(RASTER_CONFIG_RB_MAP_3);
} else {
raster_config_se |=
RB_MAP_PKR1(RASTER_CONFIG_RB_MAP_0);
}
}
}
}
/* GRBM_GFX_INDEX has a different offset on VI */
gfx_v8_0_select_se_sh(adev, se, 0xffffffff, 0xffffffff);
WREG32(mmPA_SC_RASTER_CONFIG, raster_config_se);
WREG32(mmPA_SC_RASTER_CONFIG_1, raster_config_1);
}
/* GRBM_GFX_INDEX has a different offset on VI */
gfx_v8_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff);
}
static void gfx_v8_0_setup_rb(struct amdgpu_device *adev)
{
int i, j;
u32 data;
u32 raster_config = 0, raster_config_1 = 0;
u32 active_rbs = 0;
u32 rb_bitmap_width_per_sh = adev->gfx.config.max_backends_per_se /
adev->gfx.config.max_sh_per_se;
unsigned num_rb_pipes;
mutex_lock(&adev->grbm_idx_mutex);
for (i = 0; i < adev->gfx.config.max_shader_engines; i++) {
for (j = 0; j < adev->gfx.config.max_sh_per_se; j++) {
gfx_v8_0_select_se_sh(adev, i, j, 0xffffffff);
data = gfx_v8_0_get_rb_active_bitmap(adev);
active_rbs |= data << ((i * adev->gfx.config.max_sh_per_se + j) *
rb_bitmap_width_per_sh);
}
}
gfx_v8_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff);
adev->gfx.config.backend_enable_mask = active_rbs;
adev->gfx.config.num_rbs = hweight32(active_rbs);
num_rb_pipes = min_t(unsigned, adev->gfx.config.max_backends_per_se *
adev->gfx.config.max_shader_engines, 16);
gfx_v8_0_raster_config(adev, &raster_config, &raster_config_1);
if (!adev->gfx.config.backend_enable_mask ||
adev->gfx.config.num_rbs >= num_rb_pipes) {
WREG32(mmPA_SC_RASTER_CONFIG, raster_config);
WREG32(mmPA_SC_RASTER_CONFIG_1, raster_config_1);
} else {
gfx_v8_0_write_harvested_raster_configs(adev, raster_config, raster_config_1,
adev->gfx.config.backend_enable_mask,
num_rb_pipes);
}
/* cache the values for userspace */
for (i = 0; i < adev->gfx.config.max_shader_engines; i++) {
for (j = 0; j < adev->gfx.config.max_sh_per_se; j++) {
gfx_v8_0_select_se_sh(adev, i, j, 0xffffffff);
adev->gfx.config.rb_config[i][j].rb_backend_disable =
RREG32(mmCC_RB_BACKEND_DISABLE);
adev->gfx.config.rb_config[i][j].user_rb_backend_disable =
RREG32(mmGC_USER_RB_BACKEND_DISABLE);
adev->gfx.config.rb_config[i][j].raster_config =
RREG32(mmPA_SC_RASTER_CONFIG);
adev->gfx.config.rb_config[i][j].raster_config_1 =
RREG32(mmPA_SC_RASTER_CONFIG_1);
}
}
gfx_v8_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff);
mutex_unlock(&adev->grbm_idx_mutex);
}
/**
* gfx_v8_0_init_compute_vmid - gart enable
*
* @adev: amdgpu_device pointer
*
* Initialize compute vmid sh_mem registers
*
*/
#define DEFAULT_SH_MEM_BASES (0x6000)
#define FIRST_COMPUTE_VMID (8)
#define LAST_COMPUTE_VMID (16)
static void gfx_v8_0_init_compute_vmid(struct amdgpu_device *adev)
{
int i;
uint32_t sh_mem_config;
uint32_t sh_mem_bases;
/*
* Configure apertures:
* LDS: 0x60000000'00000000 - 0x60000001'00000000 (4GB)
* Scratch: 0x60000001'00000000 - 0x60000002'00000000 (4GB)
* GPUVM: 0x60010000'00000000 - 0x60020000'00000000 (1TB)
*/
sh_mem_bases = DEFAULT_SH_MEM_BASES | (DEFAULT_SH_MEM_BASES << 16);
sh_mem_config = SH_MEM_ADDRESS_MODE_HSA64 <<
SH_MEM_CONFIG__ADDRESS_MODE__SHIFT |
SH_MEM_ALIGNMENT_MODE_UNALIGNED <<
SH_MEM_CONFIG__ALIGNMENT_MODE__SHIFT |
MTYPE_CC << SH_MEM_CONFIG__DEFAULT_MTYPE__SHIFT |
SH_MEM_CONFIG__PRIVATE_ATC_MASK;
mutex_lock(&adev->srbm_mutex);
for (i = FIRST_COMPUTE_VMID; i < LAST_COMPUTE_VMID; i++) {
vi_srbm_select(adev, 0, 0, 0, i);
/* CP and shaders */
WREG32(mmSH_MEM_CONFIG, sh_mem_config);
WREG32(mmSH_MEM_APE1_BASE, 1);
WREG32(mmSH_MEM_APE1_LIMIT, 0);
WREG32(mmSH_MEM_BASES, sh_mem_bases);
}
vi_srbm_select(adev, 0, 0, 0, 0);
mutex_unlock(&adev->srbm_mutex);
}
static void gfx_v8_0_config_init(struct amdgpu_device *adev)
{
switch (adev->asic_type) {
default:
adev->gfx.config.double_offchip_lds_buf = 1;
break;
case CHIP_CARRIZO:
case CHIP_STONEY:
adev->gfx.config.double_offchip_lds_buf = 0;
break;
}
}
static void gfx_v8_0_constants_init(struct amdgpu_device *adev)
{
u32 tmp, sh_static_mem_cfg;
int i;
WREG32_FIELD(GRBM_CNTL, READ_TIMEOUT, 0xFF);
WREG32(mmGB_ADDR_CONFIG, adev->gfx.config.gb_addr_config);
WREG32(mmHDP_ADDR_CONFIG, adev->gfx.config.gb_addr_config);
WREG32(mmDMIF_ADDR_CALC, adev->gfx.config.gb_addr_config);
gfx_v8_0_tiling_mode_table_init(adev);
gfx_v8_0_setup_rb(adev);
gfx_v8_0_get_cu_info(adev);
gfx_v8_0_config_init(adev);
/* XXX SH_MEM regs */
/* where to put LDS, scratch, GPUVM in FSA64 space */
sh_static_mem_cfg = REG_SET_FIELD(0, SH_STATIC_MEM_CONFIG,
SWIZZLE_ENABLE, 1);
sh_static_mem_cfg = REG_SET_FIELD(sh_static_mem_cfg, SH_STATIC_MEM_CONFIG,
ELEMENT_SIZE, 1);
sh_static_mem_cfg = REG_SET_FIELD(sh_static_mem_cfg, SH_STATIC_MEM_CONFIG,
INDEX_STRIDE, 3);
WREG32(mmSH_STATIC_MEM_CONFIG, sh_static_mem_cfg);
mutex_lock(&adev->srbm_mutex);
for (i = 0; i < adev->vm_manager.id_mgr[0].num_ids; i++) {
vi_srbm_select(adev, 0, 0, 0, i);
/* CP and shaders */
if (i == 0) {
tmp = REG_SET_FIELD(0, SH_MEM_CONFIG, DEFAULT_MTYPE, MTYPE_UC);
tmp = REG_SET_FIELD(tmp, SH_MEM_CONFIG, APE1_MTYPE, MTYPE_UC);
tmp = REG_SET_FIELD(tmp, SH_MEM_CONFIG, ALIGNMENT_MODE,
SH_MEM_ALIGNMENT_MODE_UNALIGNED);
WREG32(mmSH_MEM_CONFIG, tmp);
WREG32(mmSH_MEM_BASES, 0);
} else {
tmp = REG_SET_FIELD(0, SH_MEM_CONFIG, DEFAULT_MTYPE, MTYPE_NC);
tmp = REG_SET_FIELD(tmp, SH_MEM_CONFIG, APE1_MTYPE, MTYPE_UC);
tmp = REG_SET_FIELD(tmp, SH_MEM_CONFIG, ALIGNMENT_MODE,
SH_MEM_ALIGNMENT_MODE_UNALIGNED);
WREG32(mmSH_MEM_CONFIG, tmp);
tmp = adev->gmc.shared_aperture_start >> 48;
WREG32(mmSH_MEM_BASES, tmp);
}
WREG32(mmSH_MEM_APE1_BASE, 1);
WREG32(mmSH_MEM_APE1_LIMIT, 0);
}
vi_srbm_select(adev, 0, 0, 0, 0);
mutex_unlock(&adev->srbm_mutex);
gfx_v8_0_init_compute_vmid(adev);
mutex_lock(&adev->grbm_idx_mutex);
/*
* making sure that the following register writes will be broadcasted
* to all the shaders
*/
gfx_v8_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff);
WREG32(mmPA_SC_FIFO_SIZE,
(adev->gfx.config.sc_prim_fifo_size_frontend <<
PA_SC_FIFO_SIZE__SC_FRONTEND_PRIM_FIFO_SIZE__SHIFT) |
(adev->gfx.config.sc_prim_fifo_size_backend <<
PA_SC_FIFO_SIZE__SC_BACKEND_PRIM_FIFO_SIZE__SHIFT) |
(adev->gfx.config.sc_hiz_tile_fifo_size <<
PA_SC_FIFO_SIZE__SC_HIZ_TILE_FIFO_SIZE__SHIFT) |
(adev->gfx.config.sc_earlyz_tile_fifo_size <<
PA_SC_FIFO_SIZE__SC_EARLYZ_TILE_FIFO_SIZE__SHIFT));
tmp = RREG32(mmSPI_ARB_PRIORITY);
tmp = REG_SET_FIELD(tmp, SPI_ARB_PRIORITY, PIPE_ORDER_TS0, 2);
tmp = REG_SET_FIELD(tmp, SPI_ARB_PRIORITY, PIPE_ORDER_TS1, 2);
tmp = REG_SET_FIELD(tmp, SPI_ARB_PRIORITY, PIPE_ORDER_TS2, 2);
tmp = REG_SET_FIELD(tmp, SPI_ARB_PRIORITY, PIPE_ORDER_TS3, 2);
WREG32(mmSPI_ARB_PRIORITY, tmp);
mutex_unlock(&adev->grbm_idx_mutex);
}
static void gfx_v8_0_wait_for_rlc_serdes(struct amdgpu_device *adev)
{
u32 i, j, k;
u32 mask;
mutex_lock(&adev->grbm_idx_mutex);
for (i = 0; i < adev->gfx.config.max_shader_engines; i++) {
for (j = 0; j < adev->gfx.config.max_sh_per_se; j++) {
gfx_v8_0_select_se_sh(adev, i, j, 0xffffffff);
for (k = 0; k < adev->usec_timeout; k++) {
if (RREG32(mmRLC_SERDES_CU_MASTER_BUSY) == 0)
break;
udelay(1);
}
if (k == adev->usec_timeout) {
gfx_v8_0_select_se_sh(adev, 0xffffffff,
0xffffffff, 0xffffffff);
mutex_unlock(&adev->grbm_idx_mutex);
DRM_INFO("Timeout wait for RLC serdes %u,%u\n",
i, j);
return;
}
}
}
gfx_v8_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff);
mutex_unlock(&adev->grbm_idx_mutex);
mask = RLC_SERDES_NONCU_MASTER_BUSY__SE_MASTER_BUSY_MASK |
RLC_SERDES_NONCU_MASTER_BUSY__GC_MASTER_BUSY_MASK |
RLC_SERDES_NONCU_MASTER_BUSY__TC0_MASTER_BUSY_MASK |
RLC_SERDES_NONCU_MASTER_BUSY__TC1_MASTER_BUSY_MASK;
for (k = 0; k < adev->usec_timeout; k++) {
if ((RREG32(mmRLC_SERDES_NONCU_MASTER_BUSY) & mask) == 0)
break;
udelay(1);
}
}
static void gfx_v8_0_enable_gui_idle_interrupt(struct amdgpu_device *adev,
bool enable)
{
u32 tmp = RREG32(mmCP_INT_CNTL_RING0);
tmp = REG_SET_FIELD(tmp, CP_INT_CNTL_RING0, CNTX_BUSY_INT_ENABLE, enable ? 1 : 0);
tmp = REG_SET_FIELD(tmp, CP_INT_CNTL_RING0, CNTX_EMPTY_INT_ENABLE, enable ? 1 : 0);
tmp = REG_SET_FIELD(tmp, CP_INT_CNTL_RING0, CMP_BUSY_INT_ENABLE, enable ? 1 : 0);
tmp = REG_SET_FIELD(tmp, CP_INT_CNTL_RING0, GFX_IDLE_INT_ENABLE, enable ? 1 : 0);
WREG32(mmCP_INT_CNTL_RING0, tmp);
}
static void gfx_v8_0_init_csb(struct amdgpu_device *adev)
{
/* csib */
WREG32(mmRLC_CSIB_ADDR_HI,
adev->gfx.rlc.clear_state_gpu_addr >> 32);
WREG32(mmRLC_CSIB_ADDR_LO,
adev->gfx.rlc.clear_state_gpu_addr & 0xfffffffc);
WREG32(mmRLC_CSIB_LENGTH,
adev->gfx.rlc.clear_state_size);
}
static void gfx_v8_0_parse_ind_reg_list(int *register_list_format,
int ind_offset,
int list_size,
int *unique_indices,
int *indices_count,
int max_indices,
int *ind_start_offsets,
int *offset_count,
int max_offset)
{
int indices;
bool new_entry = true;
for (; ind_offset < list_size; ind_offset++) {
if (new_entry) {
new_entry = false;
ind_start_offsets[*offset_count] = ind_offset;
*offset_count = *offset_count + 1;
BUG_ON(*offset_count >= max_offset);
}
if (register_list_format[ind_offset] == 0xFFFFFFFF) {
new_entry = true;
continue;
}
ind_offset += 2;
/* look for the matching indice */
for (indices = 0;
indices < *indices_count;
indices++) {
if (unique_indices[indices] ==
register_list_format[ind_offset])
break;
}
if (indices >= *indices_count) {
unique_indices[*indices_count] =
register_list_format[ind_offset];
indices = *indices_count;
*indices_count = *indices_count + 1;
BUG_ON(*indices_count >= max_indices);
}
register_list_format[ind_offset] = indices;
}
}
static int gfx_v8_0_init_save_restore_list(struct amdgpu_device *adev)
{
int i, temp, data;
int unique_indices[] = {0, 0, 0, 0, 0, 0, 0, 0};
int indices_count = 0;
int indirect_start_offsets[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
int offset_count = 0;
int list_size;
unsigned int *register_list_format =
kmalloc(adev->gfx.rlc.reg_list_format_size_bytes, GFP_KERNEL);
if (!register_list_format)
return -ENOMEM;
memcpy(register_list_format, adev->gfx.rlc.register_list_format,
adev->gfx.rlc.reg_list_format_size_bytes);
gfx_v8_0_parse_ind_reg_list(register_list_format,
RLC_FormatDirectRegListLength,
adev->gfx.rlc.reg_list_format_size_bytes >> 2,
unique_indices,
&indices_count,
ARRAY_SIZE(unique_indices),
indirect_start_offsets,
&offset_count,
ARRAY_SIZE(indirect_start_offsets));
/* save and restore list */
WREG32_FIELD(RLC_SRM_CNTL, AUTO_INCR_ADDR, 1);
WREG32(mmRLC_SRM_ARAM_ADDR, 0);
for (i = 0; i < adev->gfx.rlc.reg_list_size_bytes >> 2; i++)
WREG32(mmRLC_SRM_ARAM_DATA, adev->gfx.rlc.register_restore[i]);
/* indirect list */
WREG32(mmRLC_GPM_SCRATCH_ADDR, adev->gfx.rlc.reg_list_format_start);
for (i = 0; i < adev->gfx.rlc.reg_list_format_size_bytes >> 2; i++)
WREG32(mmRLC_GPM_SCRATCH_DATA, register_list_format[i]);
list_size = adev->gfx.rlc.reg_list_size_bytes >> 2;
list_size = list_size >> 1;
WREG32(mmRLC_GPM_SCRATCH_ADDR, adev->gfx.rlc.reg_restore_list_size);
WREG32(mmRLC_GPM_SCRATCH_DATA, list_size);
/* starting offsets starts */
WREG32(mmRLC_GPM_SCRATCH_ADDR,
adev->gfx.rlc.starting_offsets_start);
for (i = 0; i < ARRAY_SIZE(indirect_start_offsets); i++)
WREG32(mmRLC_GPM_SCRATCH_DATA,
indirect_start_offsets[i]);
/* unique indices */
temp = mmRLC_SRM_INDEX_CNTL_ADDR_0;
data = mmRLC_SRM_INDEX_CNTL_DATA_0;
for (i = 0; i < ARRAY_SIZE(unique_indices); i++) {
if (unique_indices[i] != 0) {
WREG32(temp + i, unique_indices[i] & 0x3FFFF);
WREG32(data + i, unique_indices[i] >> 20);
}
}
kfree(register_list_format);
return 0;
}
static void gfx_v8_0_enable_save_restore_machine(struct amdgpu_device *adev)
{
WREG32_FIELD(RLC_SRM_CNTL, SRM_ENABLE, 1);
}
static void gfx_v8_0_init_power_gating(struct amdgpu_device *adev)
{
uint32_t data;
WREG32_FIELD(CP_RB_WPTR_POLL_CNTL, IDLE_POLL_COUNT, 0x60);
data = REG_SET_FIELD(0, RLC_PG_DELAY, POWER_UP_DELAY, 0x10);
data = REG_SET_FIELD(data, RLC_PG_DELAY, POWER_DOWN_DELAY, 0x10);
data = REG_SET_FIELD(data, RLC_PG_DELAY, CMD_PROPAGATE_DELAY, 0x10);
data = REG_SET_FIELD(data, RLC_PG_DELAY, MEM_SLEEP_DELAY, 0x10);
WREG32(mmRLC_PG_DELAY, data);
WREG32_FIELD(RLC_PG_DELAY_2, SERDES_CMD_DELAY, 0x3);
WREG32_FIELD(RLC_AUTO_PG_CTRL, GRBM_REG_SAVE_GFX_IDLE_THRESHOLD, 0x55f0);
}
static void cz_enable_sck_slow_down_on_power_up(struct amdgpu_device *adev,
bool enable)
{
WREG32_FIELD(RLC_PG_CNTL, SMU_CLK_SLOWDOWN_ON_PU_ENABLE, enable ? 1 : 0);
}
static void cz_enable_sck_slow_down_on_power_down(struct amdgpu_device *adev,
bool enable)
{
WREG32_FIELD(RLC_PG_CNTL, SMU_CLK_SLOWDOWN_ON_PD_ENABLE, enable ? 1 : 0);
}
static void cz_enable_cp_power_gating(struct amdgpu_device *adev, bool enable)
{
WREG32_FIELD(RLC_PG_CNTL, CP_PG_DISABLE, enable ? 0 : 1);
}
static void gfx_v8_0_init_pg(struct amdgpu_device *adev)
{
if ((adev->asic_type == CHIP_CARRIZO) ||
(adev->asic_type == CHIP_STONEY)) {
gfx_v8_0_init_csb(adev);
gfx_v8_0_init_save_restore_list(adev);
gfx_v8_0_enable_save_restore_machine(adev);
WREG32(mmRLC_JUMP_TABLE_RESTORE, adev->gfx.rlc.cp_table_gpu_addr >> 8);
gfx_v8_0_init_power_gating(adev);
WREG32(mmRLC_PG_ALWAYS_ON_CU_MASK, adev->gfx.cu_info.ao_cu_mask);
} else if ((adev->asic_type == CHIP_POLARIS11) ||
(adev->asic_type == CHIP_POLARIS12) ||
(adev->asic_type == CHIP_VEGAM)) {
gfx_v8_0_init_csb(adev);
gfx_v8_0_init_save_restore_list(adev);
gfx_v8_0_enable_save_restore_machine(adev);
gfx_v8_0_init_power_gating(adev);
}
}
static void gfx_v8_0_rlc_stop(struct amdgpu_device *adev)
{
WREG32_FIELD(RLC_CNTL, RLC_ENABLE_F32, 0);
gfx_v8_0_enable_gui_idle_interrupt(adev, false);
gfx_v8_0_wait_for_rlc_serdes(adev);
}
static void gfx_v8_0_rlc_reset(struct amdgpu_device *adev)
{
WREG32_FIELD(GRBM_SOFT_RESET, SOFT_RESET_RLC, 1);
udelay(50);
WREG32_FIELD(GRBM_SOFT_RESET, SOFT_RESET_RLC, 0);
udelay(50);
}
static void gfx_v8_0_rlc_start(struct amdgpu_device *adev)
{
WREG32_FIELD(RLC_CNTL, RLC_ENABLE_F32, 1);
/* carrizo do enable cp interrupt after cp inited */
if (!(adev->flags & AMD_IS_APU))
gfx_v8_0_enable_gui_idle_interrupt(adev, true);
udelay(50);
}
static int gfx_v8_0_rlc_resume(struct amdgpu_device *adev)
{
if (amdgpu_sriov_vf(adev)) {
gfx_v8_0_init_csb(adev);
return 0;
}
adev->gfx.rlc.funcs->stop(adev);
adev->gfx.rlc.funcs->reset(adev);
gfx_v8_0_init_pg(adev);
adev->gfx.rlc.funcs->start(adev);
return 0;
}
static void gfx_v8_0_cp_gfx_enable(struct amdgpu_device *adev, bool enable)
{
int i;
u32 tmp = RREG32(mmCP_ME_CNTL);
if (enable) {
tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, ME_HALT, 0);
tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, PFP_HALT, 0);
tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, CE_HALT, 0);
} else {
tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, ME_HALT, 1);
tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, PFP_HALT, 1);
tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, CE_HALT, 1);
for (i = 0; i < adev->gfx.num_gfx_rings; i++)
adev->gfx.gfx_ring[i].sched.ready = false;
}
WREG32(mmCP_ME_CNTL, tmp);
udelay(50);
}
static u32 gfx_v8_0_get_csb_size(struct amdgpu_device *adev)
{
u32 count = 0;
const struct cs_section_def *sect = NULL;
const struct cs_extent_def *ext = NULL;
/* begin clear state */
count += 2;
/* context control state */
count += 3;
for (sect = vi_cs_data; sect->section != NULL; ++sect) {
for (ext = sect->section; ext->extent != NULL; ++ext) {
if (sect->id == SECT_CONTEXT)
count += 2 + ext->reg_count;
else
return 0;
}
}
/* pa_sc_raster_config/pa_sc_raster_config1 */
count += 4;
/* end clear state */
count += 2;
/* clear state */
count += 2;
return count;
}
static int gfx_v8_0_cp_gfx_start(struct amdgpu_device *adev)
{
struct amdgpu_ring *ring = &adev->gfx.gfx_ring[0];
const struct cs_section_def *sect = NULL;
const struct cs_extent_def *ext = NULL;
int r, i;
/* init the CP */
WREG32(mmCP_MAX_CONTEXT, adev->gfx.config.max_hw_contexts - 1);
WREG32(mmCP_ENDIAN_SWAP, 0);
WREG32(mmCP_DEVICE_ID, 1);
gfx_v8_0_cp_gfx_enable(adev, true);
r = amdgpu_ring_alloc(ring, gfx_v8_0_get_csb_size(adev) + 4);
if (r) {
DRM_ERROR("amdgpu: cp failed to lock ring (%d).\n", r);
return r;
}
/* clear state buffer */
amdgpu_ring_write(ring, PACKET3(PACKET3_PREAMBLE_CNTL, 0));
amdgpu_ring_write(ring, PACKET3_PREAMBLE_BEGIN_CLEAR_STATE);
amdgpu_ring_write(ring, PACKET3(PACKET3_CONTEXT_CONTROL, 1));
amdgpu_ring_write(ring, 0x80000000);
amdgpu_ring_write(ring, 0x80000000);
for (sect = vi_cs_data; sect->section != NULL; ++sect) {
for (ext = sect->section; ext->extent != NULL; ++ext) {
if (sect->id == SECT_CONTEXT) {
amdgpu_ring_write(ring,
PACKET3(PACKET3_SET_CONTEXT_REG,
ext->reg_count));
amdgpu_ring_write(ring,
ext->reg_index - PACKET3_SET_CONTEXT_REG_START);
for (i = 0; i < ext->reg_count; i++)
amdgpu_ring_write(ring, ext->extent[i]);
}
}
}
amdgpu_ring_write(ring, PACKET3(PACKET3_SET_CONTEXT_REG, 2));
amdgpu_ring_write(ring, mmPA_SC_RASTER_CONFIG - PACKET3_SET_CONTEXT_REG_START);
amdgpu_ring_write(ring, adev->gfx.config.rb_config[0][0].raster_config);
amdgpu_ring_write(ring, adev->gfx.config.rb_config[0][0].raster_config_1);
amdgpu_ring_write(ring, PACKET3(PACKET3_PREAMBLE_CNTL, 0));
amdgpu_ring_write(ring, PACKET3_PREAMBLE_END_CLEAR_STATE);
amdgpu_ring_write(ring, PACKET3(PACKET3_CLEAR_STATE, 0));
amdgpu_ring_write(ring, 0);
/* init the CE partitions */
amdgpu_ring_write(ring, PACKET3(PACKET3_SET_BASE, 2));
amdgpu_ring_write(ring, PACKET3_BASE_INDEX(CE_PARTITION_BASE));
amdgpu_ring_write(ring, 0x8000);
amdgpu_ring_write(ring, 0x8000);
amdgpu_ring_commit(ring);
return 0;
}
static void gfx_v8_0_set_cpg_door_bell(struct amdgpu_device *adev, struct amdgpu_ring *ring)
{
u32 tmp;
/* no gfx doorbells on iceland */
if (adev->asic_type == CHIP_TOPAZ)
return;
tmp = RREG32(mmCP_RB_DOORBELL_CONTROL);
if (ring->use_doorbell) {
tmp = REG_SET_FIELD(tmp, CP_RB_DOORBELL_CONTROL,
DOORBELL_OFFSET, ring->doorbell_index);
tmp = REG_SET_FIELD(tmp, CP_RB_DOORBELL_CONTROL,
DOORBELL_HIT, 0);
tmp = REG_SET_FIELD(tmp, CP_RB_DOORBELL_CONTROL,
DOORBELL_EN, 1);
} else {
tmp = REG_SET_FIELD(tmp, CP_RB_DOORBELL_CONTROL, DOORBELL_EN, 0);
}
WREG32(mmCP_RB_DOORBELL_CONTROL, tmp);
if (adev->flags & AMD_IS_APU)
return;
tmp = REG_SET_FIELD(0, CP_RB_DOORBELL_RANGE_LOWER,
DOORBELL_RANGE_LOWER,
adev->doorbell_index.gfx_ring0);
WREG32(mmCP_RB_DOORBELL_RANGE_LOWER, tmp);
WREG32(mmCP_RB_DOORBELL_RANGE_UPPER,
CP_RB_DOORBELL_RANGE_UPPER__DOORBELL_RANGE_UPPER_MASK);
}
static int gfx_v8_0_cp_gfx_resume(struct amdgpu_device *adev)
{
struct amdgpu_ring *ring;
u32 tmp;
u32 rb_bufsz;
u64 rb_addr, rptr_addr, wptr_gpu_addr;
/* Set the write pointer delay */
WREG32(mmCP_RB_WPTR_DELAY, 0);
/* set the RB to use vmid 0 */
WREG32(mmCP_RB_VMID, 0);
/* Set ring buffer size */
ring = &adev->gfx.gfx_ring[0];
rb_bufsz = order_base_2(ring->ring_size / 8);
tmp = REG_SET_FIELD(0, CP_RB0_CNTL, RB_BUFSZ, rb_bufsz);
tmp = REG_SET_FIELD(tmp, CP_RB0_CNTL, RB_BLKSZ, rb_bufsz - 2);
tmp = REG_SET_FIELD(tmp, CP_RB0_CNTL, MTYPE, 3);
tmp = REG_SET_FIELD(tmp, CP_RB0_CNTL, MIN_IB_AVAILSZ, 1);
#ifdef __BIG_ENDIAN
tmp = REG_SET_FIELD(tmp, CP_RB0_CNTL, BUF_SWAP, 1);
#endif
WREG32(mmCP_RB0_CNTL, tmp);
/* Initialize the ring buffer's read and write pointers */
WREG32(mmCP_RB0_CNTL, tmp | CP_RB0_CNTL__RB_RPTR_WR_ENA_MASK);
ring->wptr = 0;
WREG32(mmCP_RB0_WPTR, lower_32_bits(ring->wptr));
/* set the wb address wether it's enabled or not */
rptr_addr = adev->wb.gpu_addr + (ring->rptr_offs * 4);
WREG32(mmCP_RB0_RPTR_ADDR, lower_32_bits(rptr_addr));
WREG32(mmCP_RB0_RPTR_ADDR_HI, upper_32_bits(rptr_addr) & 0xFF);
wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
WREG32(mmCP_RB_WPTR_POLL_ADDR_LO, lower_32_bits(wptr_gpu_addr));
WREG32(mmCP_RB_WPTR_POLL_ADDR_HI, upper_32_bits(wptr_gpu_addr));
mdelay(1);
WREG32(mmCP_RB0_CNTL, tmp);
rb_addr = ring->gpu_addr >> 8;
WREG32(mmCP_RB0_BASE, rb_addr);
WREG32(mmCP_RB0_BASE_HI, upper_32_bits(rb_addr));
gfx_v8_0_set_cpg_door_bell(adev, ring);
/* start the ring */
amdgpu_ring_clear_ring(ring);
gfx_v8_0_cp_gfx_start(adev);
ring->sched.ready = true;
return 0;
}
static void gfx_v8_0_cp_compute_enable(struct amdgpu_device *adev, bool enable)
{
int i;
if (enable) {
WREG32(mmCP_MEC_CNTL, 0);
} else {
WREG32(mmCP_MEC_CNTL, (CP_MEC_CNTL__MEC_ME1_HALT_MASK | CP_MEC_CNTL__MEC_ME2_HALT_MASK));
for (i = 0; i < adev->gfx.num_compute_rings; i++)
adev->gfx.compute_ring[i].sched.ready = false;
adev->gfx.kiq.ring.sched.ready = false;
}
udelay(50);
}
/* KIQ functions */
static void gfx_v8_0_kiq_setting(struct amdgpu_ring *ring)
{
uint32_t tmp;
struct amdgpu_device *adev = ring->adev;
/* tell RLC which is KIQ queue */
tmp = RREG32(mmRLC_CP_SCHEDULERS);
tmp &= 0xffffff00;
tmp |= (ring->me << 5) | (ring->pipe << 3) | (ring->queue);
WREG32(mmRLC_CP_SCHEDULERS, tmp);
tmp |= 0x80;
WREG32(mmRLC_CP_SCHEDULERS, tmp);
}
static int gfx_v8_0_kiq_kcq_enable(struct amdgpu_device *adev)
{
struct amdgpu_ring *kiq_ring = &adev->gfx.kiq.ring;
uint64_t queue_mask = 0;
int r, i;
for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) {
if (!test_bit(i, adev->gfx.mec.queue_bitmap))
continue;
/* This situation may be hit in the future if a new HW
* generation exposes more than 64 queues. If so, the
* definition of queue_mask needs updating */
if (WARN_ON(i >= (sizeof(queue_mask)*8))) {
DRM_ERROR("Invalid KCQ enabled: %d\n", i);
break;
}
queue_mask |= (1ull << i);
}
r = amdgpu_ring_alloc(kiq_ring, (8 * adev->gfx.num_compute_rings) + 8);
if (r) {
DRM_ERROR("Failed to lock KIQ (%d).\n", r);
return r;
}
/* set resources */
amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_SET_RESOURCES, 6));
amdgpu_ring_write(kiq_ring, 0); /* vmid_mask:0 queue_type:0 (KIQ) */
amdgpu_ring_write(kiq_ring, lower_32_bits(queue_mask)); /* queue mask lo */
amdgpu_ring_write(kiq_ring, upper_32_bits(queue_mask)); /* queue mask hi */
amdgpu_ring_write(kiq_ring, 0); /* gws mask lo */
amdgpu_ring_write(kiq_ring, 0); /* gws mask hi */
amdgpu_ring_write(kiq_ring, 0); /* oac mask */
amdgpu_ring_write(kiq_ring, 0); /* gds heap base:0, gds heap size:0 */
for (i = 0; i < adev->gfx.num_compute_rings; i++) {
struct amdgpu_ring *ring = &adev->gfx.compute_ring[i];
uint64_t mqd_addr = amdgpu_bo_gpu_offset(ring->mqd_obj);
uint64_t wptr_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
/* map queues */
amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_MAP_QUEUES, 5));
/* Q_sel:0, vmid:0, vidmem: 1, engine:0, num_Q:1*/
amdgpu_ring_write(kiq_ring,
PACKET3_MAP_QUEUES_NUM_QUEUES(1));
amdgpu_ring_write(kiq_ring,
PACKET3_MAP_QUEUES_DOORBELL_OFFSET(ring->doorbell_index) |
PACKET3_MAP_QUEUES_QUEUE(ring->queue) |
PACKET3_MAP_QUEUES_PIPE(ring->pipe) |
PACKET3_MAP_QUEUES_ME(ring->me == 1 ? 0 : 1)); /* doorbell */
amdgpu_ring_write(kiq_ring, lower_32_bits(mqd_addr));
amdgpu_ring_write(kiq_ring, upper_32_bits(mqd_addr));
amdgpu_ring_write(kiq_ring, lower_32_bits(wptr_addr));
amdgpu_ring_write(kiq_ring, upper_32_bits(wptr_addr));
}
amdgpu_ring_commit(kiq_ring);
return 0;
}
static int gfx_v8_0_deactivate_hqd(struct amdgpu_device *adev, u32 req)
{
int i, r = 0;
if (RREG32(mmCP_HQD_ACTIVE) & CP_HQD_ACTIVE__ACTIVE_MASK) {
WREG32_FIELD(CP_HQD_DEQUEUE_REQUEST, DEQUEUE_REQ, req);
for (i = 0; i < adev->usec_timeout; i++) {
if (!(RREG32(mmCP_HQD_ACTIVE) & CP_HQD_ACTIVE__ACTIVE_MASK))
break;
udelay(1);
}
if (i == adev->usec_timeout)
r = -ETIMEDOUT;
}
WREG32(mmCP_HQD_DEQUEUE_REQUEST, 0);
WREG32(mmCP_HQD_PQ_RPTR, 0);
WREG32(mmCP_HQD_PQ_WPTR, 0);
return r;
}
static int gfx_v8_0_mqd_init(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
struct vi_mqd *mqd = ring->mqd_ptr;
uint64_t hqd_gpu_addr, wb_gpu_addr, eop_base_addr;
uint32_t tmp;
mqd->header = 0xC0310800;
mqd->compute_pipelinestat_enable = 0x00000001;
mqd->compute_static_thread_mgmt_se0 = 0xffffffff;
mqd->compute_static_thread_mgmt_se1 = 0xffffffff;
mqd->compute_static_thread_mgmt_se2 = 0xffffffff;
mqd->compute_static_thread_mgmt_se3 = 0xffffffff;
mqd->compute_misc_reserved = 0x00000003;
mqd->dynamic_cu_mask_addr_lo = lower_32_bits(ring->mqd_gpu_addr
+ offsetof(struct vi_mqd_allocation, dynamic_cu_mask));
mqd->dynamic_cu_mask_addr_hi = upper_32_bits(ring->mqd_gpu_addr
+ offsetof(struct vi_mqd_allocation, dynamic_cu_mask));
eop_base_addr = ring->eop_gpu_addr >> 8;
mqd->cp_hqd_eop_base_addr_lo = eop_base_addr;
mqd->cp_hqd_eop_base_addr_hi = upper_32_bits(eop_base_addr);
/* set the EOP size, register value is 2^(EOP_SIZE+1) dwords */
tmp = RREG32(mmCP_HQD_EOP_CONTROL);
tmp = REG_SET_FIELD(tmp, CP_HQD_EOP_CONTROL, EOP_SIZE,
(order_base_2(GFX8_MEC_HPD_SIZE / 4) - 1));
mqd->cp_hqd_eop_control = tmp;
/* enable doorbell? */
tmp = REG_SET_FIELD(RREG32(mmCP_HQD_PQ_DOORBELL_CONTROL),
CP_HQD_PQ_DOORBELL_CONTROL,
DOORBELL_EN,
ring->use_doorbell ? 1 : 0);
mqd->cp_hqd_pq_doorbell_control = tmp;
/* set the pointer to the MQD */
mqd->cp_mqd_base_addr_lo = ring->mqd_gpu_addr & 0xfffffffc;
mqd->cp_mqd_base_addr_hi = upper_32_bits(ring->mqd_gpu_addr);
/* set MQD vmid to 0 */
tmp = RREG32(mmCP_MQD_CONTROL);
tmp = REG_SET_FIELD(tmp, CP_MQD_CONTROL, VMID, 0);
mqd->cp_mqd_control = tmp;
/* set the pointer to the HQD, this is similar CP_RB0_BASE/_HI */
hqd_gpu_addr = ring->gpu_addr >> 8;
mqd->cp_hqd_pq_base_lo = hqd_gpu_addr;
mqd->cp_hqd_pq_base_hi = upper_32_bits(hqd_gpu_addr);
/* set up the HQD, this is similar to CP_RB0_CNTL */
tmp = RREG32(mmCP_HQD_PQ_CONTROL);
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, QUEUE_SIZE,
(order_base_2(ring->ring_size / 4) - 1));
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, RPTR_BLOCK_SIZE,
((order_base_2(AMDGPU_GPU_PAGE_SIZE / 4) - 1) << 8));
#ifdef __BIG_ENDIAN
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, ENDIAN_SWAP, 1);
#endif
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, UNORD_DISPATCH, 0);
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, ROQ_PQ_IB_FLIP, 0);
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, PRIV_STATE, 1);
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, KMD_QUEUE, 1);
mqd->cp_hqd_pq_control = tmp;
/* set the wb address whether it's enabled or not */
wb_gpu_addr = adev->wb.gpu_addr + (ring->rptr_offs * 4);
mqd->cp_hqd_pq_rptr_report_addr_lo = wb_gpu_addr & 0xfffffffc;
mqd->cp_hqd_pq_rptr_report_addr_hi =
upper_32_bits(wb_gpu_addr) & 0xffff;
/* only used if CP_PQ_WPTR_POLL_CNTL.CP_PQ_WPTR_POLL_CNTL__EN_MASK=1 */
wb_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
mqd->cp_hqd_pq_wptr_poll_addr_lo = wb_gpu_addr & 0xfffffffc;
mqd->cp_hqd_pq_wptr_poll_addr_hi = upper_32_bits(wb_gpu_addr) & 0xffff;
tmp = 0;
/* enable the doorbell if requested */
if (ring->use_doorbell) {
tmp = RREG32(mmCP_HQD_PQ_DOORBELL_CONTROL);
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL,
DOORBELL_OFFSET, ring->doorbell_index);
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL,
DOORBELL_EN, 1);
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL,
DOORBELL_SOURCE, 0);
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL,
DOORBELL_HIT, 0);
}
mqd->cp_hqd_pq_doorbell_control = tmp;
/* reset read and write pointers, similar to CP_RB0_WPTR/_RPTR */
ring->wptr = 0;
mqd->cp_hqd_pq_wptr = ring->wptr;
mqd->cp_hqd_pq_rptr = RREG32(mmCP_HQD_PQ_RPTR);
/* set the vmid for the queue */
mqd->cp_hqd_vmid = 0;
tmp = RREG32(mmCP_HQD_PERSISTENT_STATE);
tmp = REG_SET_FIELD(tmp, CP_HQD_PERSISTENT_STATE, PRELOAD_SIZE, 0x53);
mqd->cp_hqd_persistent_state = tmp;
/* set MTYPE */
tmp = RREG32(mmCP_HQD_IB_CONTROL);
tmp = REG_SET_FIELD(tmp, CP_HQD_IB_CONTROL, MIN_IB_AVAIL_SIZE, 3);
tmp = REG_SET_FIELD(tmp, CP_HQD_IB_CONTROL, MTYPE, 3);
mqd->cp_hqd_ib_control = tmp;
tmp = RREG32(mmCP_HQD_IQ_TIMER);
tmp = REG_SET_FIELD(tmp, CP_HQD_IQ_TIMER, MTYPE, 3);
mqd->cp_hqd_iq_timer = tmp;
tmp = RREG32(mmCP_HQD_CTX_SAVE_CONTROL);
tmp = REG_SET_FIELD(tmp, CP_HQD_CTX_SAVE_CONTROL, MTYPE, 3);
mqd->cp_hqd_ctx_save_control = tmp;
/* defaults */
mqd->cp_hqd_eop_rptr = RREG32(mmCP_HQD_EOP_RPTR);
mqd->cp_hqd_eop_wptr = RREG32(mmCP_HQD_EOP_WPTR);
mqd->cp_hqd_pipe_priority = RREG32(mmCP_HQD_PIPE_PRIORITY);
mqd->cp_hqd_queue_priority = RREG32(mmCP_HQD_QUEUE_PRIORITY);
mqd->cp_hqd_quantum = RREG32(mmCP_HQD_QUANTUM);
mqd->cp_hqd_ctx_save_base_addr_lo = RREG32(mmCP_HQD_CTX_SAVE_BASE_ADDR_LO);
mqd->cp_hqd_ctx_save_base_addr_hi = RREG32(mmCP_HQD_CTX_SAVE_BASE_ADDR_HI);
mqd->cp_hqd_cntl_stack_offset = RREG32(mmCP_HQD_CNTL_STACK_OFFSET);
mqd->cp_hqd_cntl_stack_size = RREG32(mmCP_HQD_CNTL_STACK_SIZE);
mqd->cp_hqd_wg_state_offset = RREG32(mmCP_HQD_WG_STATE_OFFSET);
mqd->cp_hqd_ctx_save_size = RREG32(mmCP_HQD_CTX_SAVE_SIZE);
mqd->cp_hqd_eop_done_events = RREG32(mmCP_HQD_EOP_EVENTS);
mqd->cp_hqd_error = RREG32(mmCP_HQD_ERROR);
mqd->cp_hqd_eop_wptr_mem = RREG32(mmCP_HQD_EOP_WPTR_MEM);
mqd->cp_hqd_eop_dones = RREG32(mmCP_HQD_EOP_DONES);
/* activate the queue */
mqd->cp_hqd_active = 1;
return 0;
}
int gfx_v8_0_mqd_commit(struct amdgpu_device *adev,
struct vi_mqd *mqd)
{
uint32_t mqd_reg;
uint32_t *mqd_data;
/* HQD registers extend from mmCP_MQD_BASE_ADDR to mmCP_HQD_ERROR */
mqd_data = &mqd->cp_mqd_base_addr_lo;
/* disable wptr polling */
WREG32_FIELD(CP_PQ_WPTR_POLL_CNTL, EN, 0);
/* program all HQD registers */
for (mqd_reg = mmCP_HQD_VMID; mqd_reg <= mmCP_HQD_EOP_CONTROL; mqd_reg++)
WREG32(mqd_reg, mqd_data[mqd_reg - mmCP_MQD_BASE_ADDR]);
/* Tonga errata: EOP RPTR/WPTR should be left unmodified.
* This is safe since EOP RPTR==WPTR for any inactive HQD
* on ASICs that do not support context-save.
* EOP writes/reads can start anywhere in the ring.
*/
if (adev->asic_type != CHIP_TONGA) {
WREG32(mmCP_HQD_EOP_RPTR, mqd->cp_hqd_eop_rptr);
WREG32(mmCP_HQD_EOP_WPTR, mqd->cp_hqd_eop_wptr);
WREG32(mmCP_HQD_EOP_WPTR_MEM, mqd->cp_hqd_eop_wptr_mem);
}
for (mqd_reg = mmCP_HQD_EOP_EVENTS; mqd_reg <= mmCP_HQD_ERROR; mqd_reg++)
WREG32(mqd_reg, mqd_data[mqd_reg - mmCP_MQD_BASE_ADDR]);
/* activate the HQD */
for (mqd_reg = mmCP_MQD_BASE_ADDR; mqd_reg <= mmCP_HQD_ACTIVE; mqd_reg++)
WREG32(mqd_reg, mqd_data[mqd_reg - mmCP_MQD_BASE_ADDR]);
return 0;
}
static int gfx_v8_0_kiq_init_queue(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
struct vi_mqd *mqd = ring->mqd_ptr;
int mqd_idx = AMDGPU_MAX_COMPUTE_RINGS;
gfx_v8_0_kiq_setting(ring);
if (adev->in_gpu_reset) { /* for GPU_RESET case */
/* reset MQD to a clean status */
if (adev->gfx.mec.mqd_backup[mqd_idx])
memcpy(mqd, adev->gfx.mec.mqd_backup[mqd_idx], sizeof(struct vi_mqd_allocation));
/* reset ring buffer */
ring->wptr = 0;
amdgpu_ring_clear_ring(ring);
mutex_lock(&adev->srbm_mutex);
vi_srbm_select(adev, ring->me, ring->pipe, ring->queue, 0);
gfx_v8_0_mqd_commit(adev, mqd);
vi_srbm_select(adev, 0, 0, 0, 0);
mutex_unlock(&adev->srbm_mutex);
} else {
memset((void *)mqd, 0, sizeof(struct vi_mqd_allocation));
((struct vi_mqd_allocation *)mqd)->dynamic_cu_mask = 0xFFFFFFFF;
((struct vi_mqd_allocation *)mqd)->dynamic_rb_mask = 0xFFFFFFFF;
mutex_lock(&adev->srbm_mutex);
vi_srbm_select(adev, ring->me, ring->pipe, ring->queue, 0);
gfx_v8_0_mqd_init(ring);
gfx_v8_0_mqd_commit(adev, mqd);
vi_srbm_select(adev, 0, 0, 0, 0);
mutex_unlock(&adev->srbm_mutex);
if (adev->gfx.mec.mqd_backup[mqd_idx])
memcpy(adev->gfx.mec.mqd_backup[mqd_idx], mqd, sizeof(struct vi_mqd_allocation));
}
return 0;
}
static int gfx_v8_0_kcq_init_queue(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
struct vi_mqd *mqd = ring->mqd_ptr;
int mqd_idx = ring - &adev->gfx.compute_ring[0];
if (!adev->in_gpu_reset && !adev->in_suspend) {
memset((void *)mqd, 0, sizeof(struct vi_mqd_allocation));
((struct vi_mqd_allocation *)mqd)->dynamic_cu_mask = 0xFFFFFFFF;
((struct vi_mqd_allocation *)mqd)->dynamic_rb_mask = 0xFFFFFFFF;
mutex_lock(&adev->srbm_mutex);
vi_srbm_select(adev, ring->me, ring->pipe, ring->queue, 0);
gfx_v8_0_mqd_init(ring);
vi_srbm_select(adev, 0, 0, 0, 0);
mutex_unlock(&adev->srbm_mutex);
if (adev->gfx.mec.mqd_backup[mqd_idx])
memcpy(adev->gfx.mec.mqd_backup[mqd_idx], mqd, sizeof(struct vi_mqd_allocation));
} else if (adev->in_gpu_reset) { /* for GPU_RESET case */
/* reset MQD to a clean status */
if (adev->gfx.mec.mqd_backup[mqd_idx])
memcpy(mqd, adev->gfx.mec.mqd_backup[mqd_idx], sizeof(struct vi_mqd_allocation));
/* reset ring buffer */
ring->wptr = 0;
amdgpu_ring_clear_ring(ring);
} else {
amdgpu_ring_clear_ring(ring);
}
return 0;
}
static void gfx_v8_0_set_mec_doorbell_range(struct amdgpu_device *adev)
{
if (adev->asic_type > CHIP_TONGA) {
WREG32(mmCP_MEC_DOORBELL_RANGE_LOWER, adev->doorbell_index.kiq << 2);
WREG32(mmCP_MEC_DOORBELL_RANGE_UPPER, adev->doorbell_index.mec_ring7 << 2);
}
/* enable doorbells */
WREG32_FIELD(CP_PQ_STATUS, DOORBELL_ENABLE, 1);
}
static int gfx_v8_0_kiq_resume(struct amdgpu_device *adev)
{
struct amdgpu_ring *ring;
int r;
ring = &adev->gfx.kiq.ring;
r = amdgpu_bo_reserve(ring->mqd_obj, false);
if (unlikely(r != 0))
return r;
r = amdgpu_bo_kmap(ring->mqd_obj, &ring->mqd_ptr);
if (unlikely(r != 0))
return r;
gfx_v8_0_kiq_init_queue(ring);
amdgpu_bo_kunmap(ring->mqd_obj);
ring->mqd_ptr = NULL;
amdgpu_bo_unreserve(ring->mqd_obj);
ring->sched.ready = true;
return 0;
}
static int gfx_v8_0_kcq_resume(struct amdgpu_device *adev)
{
struct amdgpu_ring *ring = NULL;
int r = 0, i;
gfx_v8_0_cp_compute_enable(adev, true);
for (i = 0; i < adev->gfx.num_compute_rings; i++) {
ring = &adev->gfx.compute_ring[i];
r = amdgpu_bo_reserve(ring->mqd_obj, false);
if (unlikely(r != 0))
goto done;
r = amdgpu_bo_kmap(ring->mqd_obj, &ring->mqd_ptr);
if (!r) {
r = gfx_v8_0_kcq_init_queue(ring);
amdgpu_bo_kunmap(ring->mqd_obj);
ring->mqd_ptr = NULL;
}
amdgpu_bo_unreserve(ring->mqd_obj);
if (r)
goto done;
}
gfx_v8_0_set_mec_doorbell_range(adev);
r = gfx_v8_0_kiq_kcq_enable(adev);
if (r)
goto done;
done:
return r;
}
static int gfx_v8_0_cp_test_all_rings(struct amdgpu_device *adev)
{
int r, i;
struct amdgpu_ring *ring;
/* collect all the ring_tests here, gfx, kiq, compute */
ring = &adev->gfx.gfx_ring[0];
r = amdgpu_ring_test_helper(ring);
if (r)
return r;
ring = &adev->gfx.kiq.ring;
r = amdgpu_ring_test_helper(ring);
if (r)
return r;
for (i = 0; i < adev->gfx.num_compute_rings; i++) {
ring = &adev->gfx.compute_ring[i];
amdgpu_ring_test_helper(ring);
}
return 0;
}
static int gfx_v8_0_cp_resume(struct amdgpu_device *adev)
{
int r;
if (!(adev->flags & AMD_IS_APU))
gfx_v8_0_enable_gui_idle_interrupt(adev, false);
r = gfx_v8_0_kiq_resume(adev);
if (r)
return r;
r = gfx_v8_0_cp_gfx_resume(adev);
if (r)
return r;
r = gfx_v8_0_kcq_resume(adev);
if (r)
return r;
r = gfx_v8_0_cp_test_all_rings(adev);
if (r)
return r;
gfx_v8_0_enable_gui_idle_interrupt(adev, true);
return 0;
}
static void gfx_v8_0_cp_enable(struct amdgpu_device *adev, bool enable)
{
gfx_v8_0_cp_gfx_enable(adev, enable);
gfx_v8_0_cp_compute_enable(adev, enable);
}
static int gfx_v8_0_hw_init(void *handle)
{
int r;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
gfx_v8_0_init_golden_registers(adev);
gfx_v8_0_constants_init(adev);
r = adev->gfx.rlc.funcs->resume(adev);
if (r)
return r;
r = gfx_v8_0_cp_resume(adev);
return r;
}
static int gfx_v8_0_kcq_disable(struct amdgpu_device *adev)
{
int r, i;
struct amdgpu_ring *kiq_ring = &adev->gfx.kiq.ring;
r = amdgpu_ring_alloc(kiq_ring, 6 * adev->gfx.num_compute_rings);
if (r)
DRM_ERROR("Failed to lock KIQ (%d).\n", r);
for (i = 0; i < adev->gfx.num_compute_rings; i++) {
struct amdgpu_ring *ring = &adev->gfx.compute_ring[i];
amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_UNMAP_QUEUES, 4));
amdgpu_ring_write(kiq_ring, /* Q_sel: 0, vmid: 0, engine: 0, num_Q: 1 */
PACKET3_UNMAP_QUEUES_ACTION(1) | /* RESET_QUEUES */
PACKET3_UNMAP_QUEUES_QUEUE_SEL(0) |
PACKET3_UNMAP_QUEUES_ENGINE_SEL(0) |
PACKET3_UNMAP_QUEUES_NUM_QUEUES(1));
amdgpu_ring_write(kiq_ring, PACKET3_UNMAP_QUEUES_DOORBELL_OFFSET0(ring->doorbell_index));
amdgpu_ring_write(kiq_ring, 0);
amdgpu_ring_write(kiq_ring, 0);
amdgpu_ring_write(kiq_ring, 0);
}
r = amdgpu_ring_test_helper(kiq_ring);
if (r)
DRM_ERROR("KCQ disable failed\n");
return r;
}
static bool gfx_v8_0_is_idle(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
if (REG_GET_FIELD(RREG32(mmGRBM_STATUS), GRBM_STATUS, GUI_ACTIVE)
|| RREG32(mmGRBM_STATUS2) != 0x8)
return false;
else
return true;
}
static bool gfx_v8_0_rlc_is_idle(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
if (RREG32(mmGRBM_STATUS2) != 0x8)
return false;
else
return true;
}
static int gfx_v8_0_wait_for_rlc_idle(void *handle)
{
unsigned int i;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
for (i = 0; i < adev->usec_timeout; i++) {
if (gfx_v8_0_rlc_is_idle(handle))
return 0;
udelay(1);
}
return -ETIMEDOUT;
}
static int gfx_v8_0_wait_for_idle(void *handle)
{
unsigned int i;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
for (i = 0; i < adev->usec_timeout; i++) {
if (gfx_v8_0_is_idle(handle))
return 0;
udelay(1);
}
return -ETIMEDOUT;
}
static int gfx_v8_0_hw_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
amdgpu_irq_put(adev, &adev->gfx.priv_reg_irq, 0);
amdgpu_irq_put(adev, &adev->gfx.priv_inst_irq, 0);
amdgpu_irq_put(adev, &adev->gfx.cp_ecc_error_irq, 0);
amdgpu_irq_put(adev, &adev->gfx.sq_irq, 0);
/* disable KCQ to avoid CPC touch memory not valid anymore */
gfx_v8_0_kcq_disable(adev);
if (amdgpu_sriov_vf(adev)) {
pr_debug("For SRIOV client, shouldn't do anything.\n");
return 0;
}
amdgpu_gfx_rlc_enter_safe_mode(adev);
if (!gfx_v8_0_wait_for_idle(adev))
gfx_v8_0_cp_enable(adev, false);
else
pr_err("cp is busy, skip halt cp\n");
if (!gfx_v8_0_wait_for_rlc_idle(adev))
adev->gfx.rlc.funcs->stop(adev);
else
pr_err("rlc is busy, skip halt rlc\n");
amdgpu_gfx_rlc_exit_safe_mode(adev);
return 0;
}
static int gfx_v8_0_suspend(void *handle)
{
return gfx_v8_0_hw_fini(handle);
}
static int gfx_v8_0_resume(void *handle)
{
return gfx_v8_0_hw_init(handle);
}
static bool gfx_v8_0_check_soft_reset(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
u32 grbm_soft_reset = 0, srbm_soft_reset = 0;
u32 tmp;
/* GRBM_STATUS */
tmp = RREG32(mmGRBM_STATUS);
if (tmp & (GRBM_STATUS__PA_BUSY_MASK | GRBM_STATUS__SC_BUSY_MASK |
GRBM_STATUS__BCI_BUSY_MASK | GRBM_STATUS__SX_BUSY_MASK |
GRBM_STATUS__TA_BUSY_MASK | GRBM_STATUS__VGT_BUSY_MASK |
GRBM_STATUS__DB_BUSY_MASK | GRBM_STATUS__CB_BUSY_MASK |
GRBM_STATUS__GDS_BUSY_MASK | GRBM_STATUS__SPI_BUSY_MASK |
GRBM_STATUS__IA_BUSY_MASK | GRBM_STATUS__IA_BUSY_NO_DMA_MASK |
GRBM_STATUS__CP_BUSY_MASK | GRBM_STATUS__CP_COHERENCY_BUSY_MASK)) {
grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset,
GRBM_SOFT_RESET, SOFT_RESET_CP, 1);
grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset,
GRBM_SOFT_RESET, SOFT_RESET_GFX, 1);
srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset,
SRBM_SOFT_RESET, SOFT_RESET_GRBM, 1);
}
/* GRBM_STATUS2 */
tmp = RREG32(mmGRBM_STATUS2);
if (REG_GET_FIELD(tmp, GRBM_STATUS2, RLC_BUSY))
grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset,
GRBM_SOFT_RESET, SOFT_RESET_RLC, 1);
if (REG_GET_FIELD(tmp, GRBM_STATUS2, CPF_BUSY) ||
REG_GET_FIELD(tmp, GRBM_STATUS2, CPC_BUSY) ||
REG_GET_FIELD(tmp, GRBM_STATUS2, CPG_BUSY)) {
grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET,
SOFT_RESET_CPF, 1);
grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET,
SOFT_RESET_CPC, 1);
grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET,
SOFT_RESET_CPG, 1);
srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET,
SOFT_RESET_GRBM, 1);
}
/* SRBM_STATUS */
tmp = RREG32(mmSRBM_STATUS);
if (REG_GET_FIELD(tmp, SRBM_STATUS, GRBM_RQ_PENDING))
srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset,
SRBM_SOFT_RESET, SOFT_RESET_GRBM, 1);
if (REG_GET_FIELD(tmp, SRBM_STATUS, SEM_BUSY))
srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset,
SRBM_SOFT_RESET, SOFT_RESET_SEM, 1);
if (grbm_soft_reset || srbm_soft_reset) {
adev->gfx.grbm_soft_reset = grbm_soft_reset;
adev->gfx.srbm_soft_reset = srbm_soft_reset;
return true;
} else {
adev->gfx.grbm_soft_reset = 0;
adev->gfx.srbm_soft_reset = 0;
return false;
}
}
static int gfx_v8_0_pre_soft_reset(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
u32 grbm_soft_reset = 0;
if ((!adev->gfx.grbm_soft_reset) &&
(!adev->gfx.srbm_soft_reset))
return 0;
grbm_soft_reset = adev->gfx.grbm_soft_reset;
/* stop the rlc */
adev->gfx.rlc.funcs->stop(adev);
if (REG_GET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_CP) ||
REG_GET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_GFX))
/* Disable GFX parsing/prefetching */
gfx_v8_0_cp_gfx_enable(adev, false);
if (REG_GET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_CP) ||
REG_GET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_CPF) ||
REG_GET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_CPC) ||
REG_GET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_CPG)) {
int i;
for (i = 0; i < adev->gfx.num_compute_rings; i++) {
struct amdgpu_ring *ring = &adev->gfx.compute_ring[i];
mutex_lock(&adev->srbm_mutex);
vi_srbm_select(adev, ring->me, ring->pipe, ring->queue, 0);
gfx_v8_0_deactivate_hqd(adev, 2);
vi_srbm_select(adev, 0, 0, 0, 0);
mutex_unlock(&adev->srbm_mutex);
}
/* Disable MEC parsing/prefetching */
gfx_v8_0_cp_compute_enable(adev, false);
}
return 0;
}
static int gfx_v8_0_soft_reset(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
u32 grbm_soft_reset = 0, srbm_soft_reset = 0;
u32 tmp;
if ((!adev->gfx.grbm_soft_reset) &&
(!adev->gfx.srbm_soft_reset))
return 0;
grbm_soft_reset = adev->gfx.grbm_soft_reset;
srbm_soft_reset = adev->gfx.srbm_soft_reset;
if (grbm_soft_reset || srbm_soft_reset) {
tmp = RREG32(mmGMCON_DEBUG);
tmp = REG_SET_FIELD(tmp, GMCON_DEBUG, GFX_STALL, 1);
tmp = REG_SET_FIELD(tmp, GMCON_DEBUG, GFX_CLEAR, 1);
WREG32(mmGMCON_DEBUG, tmp);
udelay(50);
}
if (grbm_soft_reset) {
tmp = RREG32(mmGRBM_SOFT_RESET);
tmp |= grbm_soft_reset;
dev_info(adev->dev, "GRBM_SOFT_RESET=0x%08X\n", tmp);
WREG32(mmGRBM_SOFT_RESET, tmp);
tmp = RREG32(mmGRBM_SOFT_RESET);
udelay(50);
tmp &= ~grbm_soft_reset;
WREG32(mmGRBM_SOFT_RESET, tmp);
tmp = RREG32(mmGRBM_SOFT_RESET);
}
if (srbm_soft_reset) {
tmp = RREG32(mmSRBM_SOFT_RESET);
tmp |= srbm_soft_reset;
dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
WREG32(mmSRBM_SOFT_RESET, tmp);
tmp = RREG32(mmSRBM_SOFT_RESET);
udelay(50);
tmp &= ~srbm_soft_reset;
WREG32(mmSRBM_SOFT_RESET, tmp);
tmp = RREG32(mmSRBM_SOFT_RESET);
}
if (grbm_soft_reset || srbm_soft_reset) {
tmp = RREG32(mmGMCON_DEBUG);
tmp = REG_SET_FIELD(tmp, GMCON_DEBUG, GFX_STALL, 0);
tmp = REG_SET_FIELD(tmp, GMCON_DEBUG, GFX_CLEAR, 0);
WREG32(mmGMCON_DEBUG, tmp);
}
/* Wait a little for things to settle down */
udelay(50);
return 0;
}
static int gfx_v8_0_post_soft_reset(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
u32 grbm_soft_reset = 0;
if ((!adev->gfx.grbm_soft_reset) &&
(!adev->gfx.srbm_soft_reset))
return 0;
grbm_soft_reset = adev->gfx.grbm_soft_reset;
if (REG_GET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_CP) ||
REG_GET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_CPF) ||
REG_GET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_CPC) ||
REG_GET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_CPG)) {
int i;
for (i = 0; i < adev->gfx.num_compute_rings; i++) {
struct amdgpu_ring *ring = &adev->gfx.compute_ring[i];
mutex_lock(&adev->srbm_mutex);
vi_srbm_select(adev, ring->me, ring->pipe, ring->queue, 0);
gfx_v8_0_deactivate_hqd(adev, 2);
vi_srbm_select(adev, 0, 0, 0, 0);
mutex_unlock(&adev->srbm_mutex);
}
gfx_v8_0_kiq_resume(adev);
gfx_v8_0_kcq_resume(adev);
}
if (REG_GET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_CP) ||
REG_GET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_GFX))
gfx_v8_0_cp_gfx_resume(adev);
gfx_v8_0_cp_test_all_rings(adev);
adev->gfx.rlc.funcs->start(adev);
return 0;
}
/**
* gfx_v8_0_get_gpu_clock_counter - return GPU clock counter snapshot
*
* @adev: amdgpu_device pointer
*
* Fetches a GPU clock counter snapshot.
* Returns the 64 bit clock counter snapshot.
*/
static uint64_t gfx_v8_0_get_gpu_clock_counter(struct amdgpu_device *adev)
{
uint64_t clock;
mutex_lock(&adev->gfx.gpu_clock_mutex);
WREG32(mmRLC_CAPTURE_GPU_CLOCK_COUNT, 1);
clock = (uint64_t)RREG32(mmRLC_GPU_CLOCK_COUNT_LSB) |
((uint64_t)RREG32(mmRLC_GPU_CLOCK_COUNT_MSB) << 32ULL);
mutex_unlock(&adev->gfx.gpu_clock_mutex);
return clock;
}
static void gfx_v8_0_ring_emit_gds_switch(struct amdgpu_ring *ring,
uint32_t vmid,
uint32_t gds_base, uint32_t gds_size,
uint32_t gws_base, uint32_t gws_size,
uint32_t oa_base, uint32_t oa_size)
{
/* GDS Base */
amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) |
WRITE_DATA_DST_SEL(0)));
amdgpu_ring_write(ring, amdgpu_gds_reg_offset[vmid].mem_base);
amdgpu_ring_write(ring, 0);
amdgpu_ring_write(ring, gds_base);
/* GDS Size */
amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) |
WRITE_DATA_DST_SEL(0)));
amdgpu_ring_write(ring, amdgpu_gds_reg_offset[vmid].mem_size);
amdgpu_ring_write(ring, 0);
amdgpu_ring_write(ring, gds_size);
/* GWS */
amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) |
WRITE_DATA_DST_SEL(0)));
amdgpu_ring_write(ring, amdgpu_gds_reg_offset[vmid].gws);
amdgpu_ring_write(ring, 0);
amdgpu_ring_write(ring, gws_size << GDS_GWS_VMID0__SIZE__SHIFT | gws_base);
/* OA */
amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) |
WRITE_DATA_DST_SEL(0)));
amdgpu_ring_write(ring, amdgpu_gds_reg_offset[vmid].oa);
amdgpu_ring_write(ring, 0);
amdgpu_ring_write(ring, (1 << (oa_size + oa_base)) - (1 << oa_base));
}
static uint32_t wave_read_ind(struct amdgpu_device *adev, uint32_t simd, uint32_t wave, uint32_t address)
{
WREG32(mmSQ_IND_INDEX,
(wave << SQ_IND_INDEX__WAVE_ID__SHIFT) |
(simd << SQ_IND_INDEX__SIMD_ID__SHIFT) |
(address << SQ_IND_INDEX__INDEX__SHIFT) |
(SQ_IND_INDEX__FORCE_READ_MASK));
return RREG32(mmSQ_IND_DATA);
}
static void wave_read_regs(struct amdgpu_device *adev, uint32_t simd,
uint32_t wave, uint32_t thread,
uint32_t regno, uint32_t num, uint32_t *out)
{
WREG32(mmSQ_IND_INDEX,
(wave << SQ_IND_INDEX__WAVE_ID__SHIFT) |
(simd << SQ_IND_INDEX__SIMD_ID__SHIFT) |
(regno << SQ_IND_INDEX__INDEX__SHIFT) |
(thread << SQ_IND_INDEX__THREAD_ID__SHIFT) |
(SQ_IND_INDEX__FORCE_READ_MASK) |
(SQ_IND_INDEX__AUTO_INCR_MASK));
while (num--)
*(out++) = RREG32(mmSQ_IND_DATA);
}
static void gfx_v8_0_read_wave_data(struct amdgpu_device *adev, uint32_t simd, uint32_t wave, uint32_t *dst, int *no_fields)
{
/* type 0 wave data */
dst[(*no_fields)++] = 0;
dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_STATUS);
dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_PC_LO);
dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_PC_HI);
dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_EXEC_LO);
dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_EXEC_HI);
dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_HW_ID);
dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_INST_DW0);
dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_INST_DW1);
dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_GPR_ALLOC);
dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_LDS_ALLOC);
dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_TRAPSTS);
dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_IB_STS);
dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_TBA_LO);
dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_TBA_HI);
dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_TMA_LO);
dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_TMA_HI);
dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_IB_DBG0);
dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_M0);
}
static void gfx_v8_0_read_wave_sgprs(struct amdgpu_device *adev, uint32_t simd,
uint32_t wave, uint32_t start,
uint32_t size, uint32_t *dst)
{
wave_read_regs(
adev, simd, wave, 0,
start + SQIND_WAVE_SGPRS_OFFSET, size, dst);
}
static const struct amdgpu_gfx_funcs gfx_v8_0_gfx_funcs = {
.get_gpu_clock_counter = &gfx_v8_0_get_gpu_clock_counter,
.select_se_sh = &gfx_v8_0_select_se_sh,
.read_wave_data = &gfx_v8_0_read_wave_data,
.read_wave_sgprs = &gfx_v8_0_read_wave_sgprs,
.select_me_pipe_q = &gfx_v8_0_select_me_pipe_q
};
static int gfx_v8_0_early_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
adev->gfx.num_gfx_rings = GFX8_NUM_GFX_RINGS;
adev->gfx.num_compute_rings = AMDGPU_MAX_COMPUTE_RINGS;
adev->gfx.funcs = &gfx_v8_0_gfx_funcs;
gfx_v8_0_set_ring_funcs(adev);
gfx_v8_0_set_irq_funcs(adev);
gfx_v8_0_set_gds_init(adev);
gfx_v8_0_set_rlc_funcs(adev);
return 0;
}
static int gfx_v8_0_late_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
int r;
r = amdgpu_irq_get(adev, &adev->gfx.priv_reg_irq, 0);
if (r)
return r;
r = amdgpu_irq_get(adev, &adev->gfx.priv_inst_irq, 0);
if (r)
return r;
/* requires IBs so do in late init after IB pool is initialized */
r = gfx_v8_0_do_edc_gpr_workarounds(adev);
if (r)
return r;
r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0);
if (r) {
DRM_ERROR("amdgpu_irq_get() failed to get IRQ for EDC, r: %d.\n", r);
return r;
}
r = amdgpu_irq_get(adev, &adev->gfx.sq_irq, 0);
if (r) {
DRM_ERROR(
"amdgpu_irq_get() failed to get IRQ for SQ, r: %d.\n",
r);
return r;
}
return 0;
}
static void gfx_v8_0_enable_gfx_static_mg_power_gating(struct amdgpu_device *adev,
bool enable)
{
if (((adev->asic_type == CHIP_POLARIS11) ||
(adev->asic_type == CHIP_POLARIS12) ||
(adev->asic_type == CHIP_VEGAM)) &&
adev->powerplay.pp_funcs->set_powergating_by_smu)
/* Send msg to SMU via Powerplay */
amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, enable);
WREG32_FIELD(RLC_PG_CNTL, STATIC_PER_CU_PG_ENABLE, enable ? 1 : 0);
}
static void gfx_v8_0_enable_gfx_dynamic_mg_power_gating(struct amdgpu_device *adev,
bool enable)
{
WREG32_FIELD(RLC_PG_CNTL, DYN_PER_CU_PG_ENABLE, enable ? 1 : 0);
}
static void polaris11_enable_gfx_quick_mg_power_gating(struct amdgpu_device *adev,
bool enable)
{
WREG32_FIELD(RLC_PG_CNTL, QUICK_PG_ENABLE, enable ? 1 : 0);
}
static void cz_enable_gfx_cg_power_gating(struct amdgpu_device *adev,
bool enable)
{
WREG32_FIELD(RLC_PG_CNTL, GFX_POWER_GATING_ENABLE, enable ? 1 : 0);
}
static void cz_enable_gfx_pipeline_power_gating(struct amdgpu_device *adev,
bool enable)
{
WREG32_FIELD(RLC_PG_CNTL, GFX_PIPELINE_PG_ENABLE, enable ? 1 : 0);
/* Read any GFX register to wake up GFX. */
if (!enable)
RREG32(mmDB_RENDER_CONTROL);
}
static void cz_update_gfx_cg_power_gating(struct amdgpu_device *adev,
bool enable)
{
if ((adev->pg_flags & AMD_PG_SUPPORT_GFX_PG) && enable) {
cz_enable_gfx_cg_power_gating(adev, true);
if (adev->pg_flags & AMD_PG_SUPPORT_GFX_PIPELINE)
cz_enable_gfx_pipeline_power_gating(adev, true);
} else {
cz_enable_gfx_cg_power_gating(adev, false);
cz_enable_gfx_pipeline_power_gating(adev, false);
}
}
static int gfx_v8_0_set_powergating_state(void *handle,
enum amd_powergating_state state)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
bool enable = (state == AMD_PG_STATE_GATE);
if (amdgpu_sriov_vf(adev))
return 0;
if (adev->pg_flags & (AMD_PG_SUPPORT_GFX_SMG |
AMD_PG_SUPPORT_RLC_SMU_HS |
AMD_PG_SUPPORT_CP |
AMD_PG_SUPPORT_GFX_DMG))
amdgpu_gfx_rlc_enter_safe_mode(adev);
switch (adev->asic_type) {
case CHIP_CARRIZO:
case CHIP_STONEY:
if (adev->pg_flags & AMD_PG_SUPPORT_RLC_SMU_HS) {
cz_enable_sck_slow_down_on_power_up(adev, true);
cz_enable_sck_slow_down_on_power_down(adev, true);
} else {
cz_enable_sck_slow_down_on_power_up(adev, false);
cz_enable_sck_slow_down_on_power_down(adev, false);
}
if (adev->pg_flags & AMD_PG_SUPPORT_CP)
cz_enable_cp_power_gating(adev, true);
else
cz_enable_cp_power_gating(adev, false);
cz_update_gfx_cg_power_gating(adev, enable);
if ((adev->pg_flags & AMD_PG_SUPPORT_GFX_SMG) && enable)
gfx_v8_0_enable_gfx_static_mg_power_gating(adev, true);
else
gfx_v8_0_enable_gfx_static_mg_power_gating(adev, false);
if ((adev->pg_flags & AMD_PG_SUPPORT_GFX_DMG) && enable)
gfx_v8_0_enable_gfx_dynamic_mg_power_gating(adev, true);
else
gfx_v8_0_enable_gfx_dynamic_mg_power_gating(adev, false);
break;
case CHIP_POLARIS11:
case CHIP_POLARIS12:
case CHIP_VEGAM:
if ((adev->pg_flags & AMD_PG_SUPPORT_GFX_SMG) && enable)
gfx_v8_0_enable_gfx_static_mg_power_gating(adev, true);
else
gfx_v8_0_enable_gfx_static_mg_power_gating(adev, false);
if ((adev->pg_flags & AMD_PG_SUPPORT_GFX_DMG) && enable)
gfx_v8_0_enable_gfx_dynamic_mg_power_gating(adev, true);
else
gfx_v8_0_enable_gfx_dynamic_mg_power_gating(adev, false);
if ((adev->pg_flags & AMD_PG_SUPPORT_GFX_QUICK_MG) && enable)
polaris11_enable_gfx_quick_mg_power_gating(adev, true);
else
polaris11_enable_gfx_quick_mg_power_gating(adev, false);
break;
default:
break;
}
if (adev->pg_flags & (AMD_PG_SUPPORT_GFX_SMG |
AMD_PG_SUPPORT_RLC_SMU_HS |
AMD_PG_SUPPORT_CP |
AMD_PG_SUPPORT_GFX_DMG))
amdgpu_gfx_rlc_exit_safe_mode(adev);
return 0;
}
static void gfx_v8_0_get_clockgating_state(void *handle, u32 *flags)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
int data;
if (amdgpu_sriov_vf(adev))
*flags = 0;
/* AMD_CG_SUPPORT_GFX_MGCG */
data = RREG32(mmRLC_CGTT_MGCG_OVERRIDE);
if (!(data & RLC_CGTT_MGCG_OVERRIDE__CPF_MASK))
*flags |= AMD_CG_SUPPORT_GFX_MGCG;
/* AMD_CG_SUPPORT_GFX_CGLG */
data = RREG32(mmRLC_CGCG_CGLS_CTRL);
if (data & RLC_CGCG_CGLS_CTRL__CGCG_EN_MASK)
*flags |= AMD_CG_SUPPORT_GFX_CGCG;
/* AMD_CG_SUPPORT_GFX_CGLS */
if (data & RLC_CGCG_CGLS_CTRL__CGLS_EN_MASK)
*flags |= AMD_CG_SUPPORT_GFX_CGLS;
/* AMD_CG_SUPPORT_GFX_CGTS */
data = RREG32(mmCGTS_SM_CTRL_REG);
if (!(data & CGTS_SM_CTRL_REG__OVERRIDE_MASK))
*flags |= AMD_CG_SUPPORT_GFX_CGTS;
/* AMD_CG_SUPPORT_GFX_CGTS_LS */
if (!(data & CGTS_SM_CTRL_REG__LS_OVERRIDE_MASK))
*flags |= AMD_CG_SUPPORT_GFX_CGTS_LS;
/* AMD_CG_SUPPORT_GFX_RLC_LS */
data = RREG32(mmRLC_MEM_SLP_CNTL);
if (data & RLC_MEM_SLP_CNTL__RLC_MEM_LS_EN_MASK)
*flags |= AMD_CG_SUPPORT_GFX_RLC_LS | AMD_CG_SUPPORT_GFX_MGLS;
/* AMD_CG_SUPPORT_GFX_CP_LS */
data = RREG32(mmCP_MEM_SLP_CNTL);
if (data & CP_MEM_SLP_CNTL__CP_MEM_LS_EN_MASK)
*flags |= AMD_CG_SUPPORT_GFX_CP_LS | AMD_CG_SUPPORT_GFX_MGLS;
}
static void gfx_v8_0_send_serdes_cmd(struct amdgpu_device *adev,
uint32_t reg_addr, uint32_t cmd)
{
uint32_t data;
gfx_v8_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff);
WREG32(mmRLC_SERDES_WR_CU_MASTER_MASK, 0xffffffff);
WREG32(mmRLC_SERDES_WR_NONCU_MASTER_MASK, 0xffffffff);
data = RREG32(mmRLC_SERDES_WR_CTRL);
if (adev->asic_type == CHIP_STONEY)
data &= ~(RLC_SERDES_WR_CTRL__WRITE_COMMAND_MASK |
RLC_SERDES_WR_CTRL__READ_COMMAND_MASK |
RLC_SERDES_WR_CTRL__P1_SELECT_MASK |
RLC_SERDES_WR_CTRL__P2_SELECT_MASK |
RLC_SERDES_WR_CTRL__RDDATA_RESET_MASK |
RLC_SERDES_WR_CTRL__POWER_DOWN_MASK |
RLC_SERDES_WR_CTRL__POWER_UP_MASK |
RLC_SERDES_WR_CTRL__SHORT_FORMAT_MASK |
RLC_SERDES_WR_CTRL__SRBM_OVERRIDE_MASK);
else
data &= ~(RLC_SERDES_WR_CTRL__WRITE_COMMAND_MASK |
RLC_SERDES_WR_CTRL__READ_COMMAND_MASK |
RLC_SERDES_WR_CTRL__P1_SELECT_MASK |
RLC_SERDES_WR_CTRL__P2_SELECT_MASK |
RLC_SERDES_WR_CTRL__RDDATA_RESET_MASK |
RLC_SERDES_WR_CTRL__POWER_DOWN_MASK |
RLC_SERDES_WR_CTRL__POWER_UP_MASK |
RLC_SERDES_WR_CTRL__SHORT_FORMAT_MASK |
RLC_SERDES_WR_CTRL__BPM_DATA_MASK |
RLC_SERDES_WR_CTRL__REG_ADDR_MASK |
RLC_SERDES_WR_CTRL__SRBM_OVERRIDE_MASK);
data |= (RLC_SERDES_WR_CTRL__RSVD_BPM_ADDR_MASK |
(cmd << RLC_SERDES_WR_CTRL__BPM_DATA__SHIFT) |
(reg_addr << RLC_SERDES_WR_CTRL__REG_ADDR__SHIFT) |
(0xff << RLC_SERDES_WR_CTRL__BPM_ADDR__SHIFT));
WREG32(mmRLC_SERDES_WR_CTRL, data);
}
#define MSG_ENTER_RLC_SAFE_MODE 1
#define MSG_EXIT_RLC_SAFE_MODE 0
#define RLC_GPR_REG2__REQ_MASK 0x00000001
#define RLC_GPR_REG2__REQ__SHIFT 0
#define RLC_GPR_REG2__MESSAGE__SHIFT 0x00000001
#define RLC_GPR_REG2__MESSAGE_MASK 0x0000001e
static bool gfx_v8_0_is_rlc_enabled(struct amdgpu_device *adev)
{
uint32_t rlc_setting;
rlc_setting = RREG32(mmRLC_CNTL);
if (!(rlc_setting & RLC_CNTL__RLC_ENABLE_F32_MASK))
return false;
return true;
}
static void gfx_v8_0_set_safe_mode(struct amdgpu_device *adev)
{
uint32_t data;
unsigned i;
data = RREG32(mmRLC_CNTL);
data |= RLC_SAFE_MODE__CMD_MASK;
data &= ~RLC_SAFE_MODE__MESSAGE_MASK;
data |= (1 << RLC_SAFE_MODE__MESSAGE__SHIFT);
WREG32(mmRLC_SAFE_MODE, data);
/* wait for RLC_SAFE_MODE */
for (i = 0; i < adev->usec_timeout; i++) {
if ((RREG32(mmRLC_GPM_STAT) &
(RLC_GPM_STAT__GFX_CLOCK_STATUS_MASK |
RLC_GPM_STAT__GFX_POWER_STATUS_MASK)) ==
(RLC_GPM_STAT__GFX_CLOCK_STATUS_MASK |
RLC_GPM_STAT__GFX_POWER_STATUS_MASK))
break;
udelay(1);
}
for (i = 0; i < adev->usec_timeout; i++) {
if (!REG_GET_FIELD(RREG32(mmRLC_SAFE_MODE), RLC_SAFE_MODE, CMD))
break;
udelay(1);
}
}
static void gfx_v8_0_unset_safe_mode(struct amdgpu_device *adev)
{
uint32_t data;
unsigned i;
data = RREG32(mmRLC_CNTL);
data |= RLC_SAFE_MODE__CMD_MASK;
data &= ~RLC_SAFE_MODE__MESSAGE_MASK;
WREG32(mmRLC_SAFE_MODE, data);
for (i = 0; i < adev->usec_timeout; i++) {
if (!REG_GET_FIELD(RREG32(mmRLC_SAFE_MODE), RLC_SAFE_MODE, CMD))
break;
udelay(1);
}
}
static const struct amdgpu_rlc_funcs iceland_rlc_funcs = {
.is_rlc_enabled = gfx_v8_0_is_rlc_enabled,
.set_safe_mode = gfx_v8_0_set_safe_mode,
.unset_safe_mode = gfx_v8_0_unset_safe_mode,
.init = gfx_v8_0_rlc_init,
.get_csb_size = gfx_v8_0_get_csb_size,
.get_csb_buffer = gfx_v8_0_get_csb_buffer,
.get_cp_table_num = gfx_v8_0_cp_jump_table_num,
.resume = gfx_v8_0_rlc_resume,
.stop = gfx_v8_0_rlc_stop,
.reset = gfx_v8_0_rlc_reset,
.start = gfx_v8_0_rlc_start
};
static void gfx_v8_0_update_medium_grain_clock_gating(struct amdgpu_device *adev,
bool enable)
{
uint32_t temp, data;
amdgpu_gfx_rlc_enter_safe_mode(adev);
/* It is disabled by HW by default */
if (enable && (adev->cg_flags & AMD_CG_SUPPORT_GFX_MGCG)) {
if (adev->cg_flags & AMD_CG_SUPPORT_GFX_MGLS) {
if (adev->cg_flags & AMD_CG_SUPPORT_GFX_RLC_LS)
/* 1 - RLC memory Light sleep */
WREG32_FIELD(RLC_MEM_SLP_CNTL, RLC_MEM_LS_EN, 1);
if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CP_LS)
WREG32_FIELD(CP_MEM_SLP_CNTL, CP_MEM_LS_EN, 1);
}
/* 3 - RLC_CGTT_MGCG_OVERRIDE */
temp = data = RREG32(mmRLC_CGTT_MGCG_OVERRIDE);
if (adev->flags & AMD_IS_APU)
data &= ~(RLC_CGTT_MGCG_OVERRIDE__CPF_MASK |
RLC_CGTT_MGCG_OVERRIDE__RLC_MASK |
RLC_CGTT_MGCG_OVERRIDE__MGCG_MASK);
else
data &= ~(RLC_CGTT_MGCG_OVERRIDE__CPF_MASK |
RLC_CGTT_MGCG_OVERRIDE__RLC_MASK |
RLC_CGTT_MGCG_OVERRIDE__MGCG_MASK |
RLC_CGTT_MGCG_OVERRIDE__GRBM_MASK);
if (temp != data)
WREG32(mmRLC_CGTT_MGCG_OVERRIDE, data);
/* 4 - wait for RLC_SERDES_CU_MASTER & RLC_SERDES_NONCU_MASTER idle */
gfx_v8_0_wait_for_rlc_serdes(adev);
/* 5 - clear mgcg override */
gfx_v8_0_send_serdes_cmd(adev, BPM_REG_MGCG_OVERRIDE, CLE_BPM_SERDES_CMD);
if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGTS) {
/* 6 - Enable CGTS(Tree Shade) MGCG /MGLS */
temp = data = RREG32(mmCGTS_SM_CTRL_REG);
data &= ~(CGTS_SM_CTRL_REG__SM_MODE_MASK);
data |= (0x2 << CGTS_SM_CTRL_REG__SM_MODE__SHIFT);
data |= CGTS_SM_CTRL_REG__SM_MODE_ENABLE_MASK;
data &= ~CGTS_SM_CTRL_REG__OVERRIDE_MASK;
if ((adev->cg_flags & AMD_CG_SUPPORT_GFX_MGLS) &&
(adev->cg_flags & AMD_CG_SUPPORT_GFX_CGTS_LS))
data &= ~CGTS_SM_CTRL_REG__LS_OVERRIDE_MASK;
data |= CGTS_SM_CTRL_REG__ON_MONITOR_ADD_EN_MASK;
data |= (0x96 << CGTS_SM_CTRL_REG__ON_MONITOR_ADD__SHIFT);
if (temp != data)
WREG32(mmCGTS_SM_CTRL_REG, data);
}
udelay(50);
/* 7 - wait for RLC_SERDES_CU_MASTER & RLC_SERDES_NONCU_MASTER idle */
gfx_v8_0_wait_for_rlc_serdes(adev);
} else {
/* 1 - MGCG_OVERRIDE[0] for CP and MGCG_OVERRIDE[1] for RLC */
temp = data = RREG32(mmRLC_CGTT_MGCG_OVERRIDE);
data |= (RLC_CGTT_MGCG_OVERRIDE__CPF_MASK |
RLC_CGTT_MGCG_OVERRIDE__RLC_MASK |
RLC_CGTT_MGCG_OVERRIDE__MGCG_MASK |
RLC_CGTT_MGCG_OVERRIDE__GRBM_MASK);
if (temp != data)
WREG32(mmRLC_CGTT_MGCG_OVERRIDE, data);
/* 2 - disable MGLS in RLC */
data = RREG32(mmRLC_MEM_SLP_CNTL);
if (data & RLC_MEM_SLP_CNTL__RLC_MEM_LS_EN_MASK) {
data &= ~RLC_MEM_SLP_CNTL__RLC_MEM_LS_EN_MASK;
WREG32(mmRLC_MEM_SLP_CNTL, data);
}
/* 3 - disable MGLS in CP */
data = RREG32(mmCP_MEM_SLP_CNTL);
if (data & CP_MEM_SLP_CNTL__CP_MEM_LS_EN_MASK) {
data &= ~CP_MEM_SLP_CNTL__CP_MEM_LS_EN_MASK;
WREG32(mmCP_MEM_SLP_CNTL, data);
}
/* 4 - Disable CGTS(Tree Shade) MGCG and MGLS */
temp = data = RREG32(mmCGTS_SM_CTRL_REG);
data |= (CGTS_SM_CTRL_REG__OVERRIDE_MASK |
CGTS_SM_CTRL_REG__LS_OVERRIDE_MASK);
if (temp != data)
WREG32(mmCGTS_SM_CTRL_REG, data);
/* 5 - wait for RLC_SERDES_CU_MASTER & RLC_SERDES_NONCU_MASTER idle */
gfx_v8_0_wait_for_rlc_serdes(adev);
/* 6 - set mgcg override */
gfx_v8_0_send_serdes_cmd(adev, BPM_REG_MGCG_OVERRIDE, SET_BPM_SERDES_CMD);
udelay(50);
/* 7- wait for RLC_SERDES_CU_MASTER & RLC_SERDES_NONCU_MASTER idle */
gfx_v8_0_wait_for_rlc_serdes(adev);
}
amdgpu_gfx_rlc_exit_safe_mode(adev);
}
static void gfx_v8_0_update_coarse_grain_clock_gating(struct amdgpu_device *adev,
bool enable)
{
uint32_t temp, temp1, data, data1;
temp = data = RREG32(mmRLC_CGCG_CGLS_CTRL);
amdgpu_gfx_rlc_enter_safe_mode(adev);
if (enable && (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGCG)) {
temp1 = data1 = RREG32(mmRLC_CGTT_MGCG_OVERRIDE);
data1 &= ~RLC_CGTT_MGCG_OVERRIDE__CGCG_MASK;
if (temp1 != data1)
WREG32(mmRLC_CGTT_MGCG_OVERRIDE, data1);
/* : wait for RLC_SERDES_CU_MASTER & RLC_SERDES_NONCU_MASTER idle */
gfx_v8_0_wait_for_rlc_serdes(adev);
/* 2 - clear cgcg override */
gfx_v8_0_send_serdes_cmd(adev, BPM_REG_CGCG_OVERRIDE, CLE_BPM_SERDES_CMD);
/* wait for RLC_SERDES_CU_MASTER & RLC_SERDES_NONCU_MASTER idle */
gfx_v8_0_wait_for_rlc_serdes(adev);
/* 3 - write cmd to set CGLS */
gfx_v8_0_send_serdes_cmd(adev, BPM_REG_CGLS_EN, SET_BPM_SERDES_CMD);
/* 4 - enable cgcg */
data |= RLC_CGCG_CGLS_CTRL__CGCG_EN_MASK;
if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGLS) {
/* enable cgls*/
data |= RLC_CGCG_CGLS_CTRL__CGLS_EN_MASK;
temp1 = data1 = RREG32(mmRLC_CGTT_MGCG_OVERRIDE);
data1 &= ~RLC_CGTT_MGCG_OVERRIDE__CGLS_MASK;
if (temp1 != data1)
WREG32(mmRLC_CGTT_MGCG_OVERRIDE, data1);
} else {
data &= ~RLC_CGCG_CGLS_CTRL__CGLS_EN_MASK;
}
if (temp != data)
WREG32(mmRLC_CGCG_CGLS_CTRL, data);
/* 5 enable cntx_empty_int_enable/cntx_busy_int_enable/
* Cmp_busy/GFX_Idle interrupts
*/
gfx_v8_0_enable_gui_idle_interrupt(adev, true);
} else {
/* disable cntx_empty_int_enable & GFX Idle interrupt */
gfx_v8_0_enable_gui_idle_interrupt(adev, false);
/* TEST CGCG */
temp1 = data1 = RREG32(mmRLC_CGTT_MGCG_OVERRIDE);
data1 |= (RLC_CGTT_MGCG_OVERRIDE__CGCG_MASK |
RLC_CGTT_MGCG_OVERRIDE__CGLS_MASK);
if (temp1 != data1)
WREG32(mmRLC_CGTT_MGCG_OVERRIDE, data1);
/* read gfx register to wake up cgcg */
RREG32(mmCB_CGTT_SCLK_CTRL);
RREG32(mmCB_CGTT_SCLK_CTRL);
RREG32(mmCB_CGTT_SCLK_CTRL);
RREG32(mmCB_CGTT_SCLK_CTRL);
/* wait for RLC_SERDES_CU_MASTER & RLC_SERDES_NONCU_MASTER idle */
gfx_v8_0_wait_for_rlc_serdes(adev);
/* write cmd to Set CGCG Overrride */
gfx_v8_0_send_serdes_cmd(adev, BPM_REG_CGCG_OVERRIDE, SET_BPM_SERDES_CMD);
/* wait for RLC_SERDES_CU_MASTER & RLC_SERDES_NONCU_MASTER idle */
gfx_v8_0_wait_for_rlc_serdes(adev);
/* write cmd to Clear CGLS */
gfx_v8_0_send_serdes_cmd(adev, BPM_REG_CGLS_EN, CLE_BPM_SERDES_CMD);
/* disable cgcg, cgls should be disabled too. */
data &= ~(RLC_CGCG_CGLS_CTRL__CGCG_EN_MASK |
RLC_CGCG_CGLS_CTRL__CGLS_EN_MASK);
if (temp != data)
WREG32(mmRLC_CGCG_CGLS_CTRL, data);
/* enable interrupts again for PG */
gfx_v8_0_enable_gui_idle_interrupt(adev, true);
}
gfx_v8_0_wait_for_rlc_serdes(adev);
amdgpu_gfx_rlc_exit_safe_mode(adev);
}
static int gfx_v8_0_update_gfx_clock_gating(struct amdgpu_device *adev,
bool enable)
{
if (enable) {
/* CGCG/CGLS should be enabled after MGCG/MGLS/TS(CG/LS)
* === MGCG + MGLS + TS(CG/LS) ===
*/
gfx_v8_0_update_medium_grain_clock_gating(adev, enable);
gfx_v8_0_update_coarse_grain_clock_gating(adev, enable);
} else {
/* CGCG/CGLS should be disabled before MGCG/MGLS/TS(CG/LS)
* === CGCG + CGLS ===
*/
gfx_v8_0_update_coarse_grain_clock_gating(adev, enable);
gfx_v8_0_update_medium_grain_clock_gating(adev, enable);
}
return 0;
}
static int gfx_v8_0_tonga_update_gfx_clock_gating(struct amdgpu_device *adev,
enum amd_clockgating_state state)
{
uint32_t msg_id, pp_state = 0;
uint32_t pp_support_state = 0;
if (adev->cg_flags & (AMD_CG_SUPPORT_GFX_CGCG | AMD_CG_SUPPORT_GFX_CGLS)) {
if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGLS) {
pp_support_state = PP_STATE_SUPPORT_LS;
pp_state = PP_STATE_LS;
}
if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGCG) {
pp_support_state |= PP_STATE_SUPPORT_CG;
pp_state |= PP_STATE_CG;
}
if (state == AMD_CG_STATE_UNGATE)
pp_state = 0;
msg_id = PP_CG_MSG_ID(PP_GROUP_GFX,
PP_BLOCK_GFX_CG,
pp_support_state,
pp_state);
if (adev->powerplay.pp_funcs->set_clockgating_by_smu)
amdgpu_dpm_set_clockgating_by_smu(adev, msg_id);
}
if (adev->cg_flags & (AMD_CG_SUPPORT_GFX_MGCG | AMD_CG_SUPPORT_GFX_MGLS)) {
if (adev->cg_flags & AMD_CG_SUPPORT_GFX_MGLS) {
pp_support_state = PP_STATE_SUPPORT_LS;
pp_state = PP_STATE_LS;
}
if (adev->cg_flags & AMD_CG_SUPPORT_GFX_MGCG) {
pp_support_state |= PP_STATE_SUPPORT_CG;
pp_state |= PP_STATE_CG;
}
if (state == AMD_CG_STATE_UNGATE)
pp_state = 0;
msg_id = PP_CG_MSG_ID(PP_GROUP_GFX,
PP_BLOCK_GFX_MG,
pp_support_state,
pp_state);
if (adev->powerplay.pp_funcs->set_clockgating_by_smu)
amdgpu_dpm_set_clockgating_by_smu(adev, msg_id);
}
return 0;
}
static int gfx_v8_0_polaris_update_gfx_clock_gating(struct amdgpu_device *adev,
enum amd_clockgating_state state)
{
uint32_t msg_id, pp_state = 0;
uint32_t pp_support_state = 0;
if (adev->cg_flags & (AMD_CG_SUPPORT_GFX_CGCG | AMD_CG_SUPPORT_GFX_CGLS)) {
if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGLS) {
pp_support_state = PP_STATE_SUPPORT_LS;
pp_state = PP_STATE_LS;
}
if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGCG) {
pp_support_state |= PP_STATE_SUPPORT_CG;
pp_state |= PP_STATE_CG;
}
if (state == AMD_CG_STATE_UNGATE)
pp_state = 0;
msg_id = PP_CG_MSG_ID(PP_GROUP_GFX,
PP_BLOCK_GFX_CG,
pp_support_state,
pp_state);
if (adev->powerplay.pp_funcs->set_clockgating_by_smu)
amdgpu_dpm_set_clockgating_by_smu(adev, msg_id);
}
if (adev->cg_flags & (AMD_CG_SUPPORT_GFX_3D_CGCG | AMD_CG_SUPPORT_GFX_3D_CGLS)) {
if (adev->cg_flags & AMD_CG_SUPPORT_GFX_3D_CGLS) {
pp_support_state = PP_STATE_SUPPORT_LS;
pp_state = PP_STATE_LS;
}
if (adev->cg_flags & AMD_CG_SUPPORT_GFX_3D_CGCG) {
pp_support_state |= PP_STATE_SUPPORT_CG;
pp_state |= PP_STATE_CG;
}
if (state == AMD_CG_STATE_UNGATE)
pp_state = 0;
msg_id = PP_CG_MSG_ID(PP_GROUP_GFX,
PP_BLOCK_GFX_3D,
pp_support_state,
pp_state);
if (adev->powerplay.pp_funcs->set_clockgating_by_smu)
amdgpu_dpm_set_clockgating_by_smu(adev, msg_id);
}
if (adev->cg_flags & (AMD_CG_SUPPORT_GFX_MGCG | AMD_CG_SUPPORT_GFX_MGLS)) {
if (adev->cg_flags & AMD_CG_SUPPORT_GFX_MGLS) {
pp_support_state = PP_STATE_SUPPORT_LS;
pp_state = PP_STATE_LS;
}
if (adev->cg_flags & AMD_CG_SUPPORT_GFX_MGCG) {
pp_support_state |= PP_STATE_SUPPORT_CG;
pp_state |= PP_STATE_CG;
}
if (state == AMD_CG_STATE_UNGATE)
pp_state = 0;
msg_id = PP_CG_MSG_ID(PP_GROUP_GFX,
PP_BLOCK_GFX_MG,
pp_support_state,
pp_state);
if (adev->powerplay.pp_funcs->set_clockgating_by_smu)
amdgpu_dpm_set_clockgating_by_smu(adev, msg_id);
}
if (adev->cg_flags & AMD_CG_SUPPORT_GFX_RLC_LS) {
pp_support_state = PP_STATE_SUPPORT_LS;
if (state == AMD_CG_STATE_UNGATE)
pp_state = 0;
else
pp_state = PP_STATE_LS;
msg_id = PP_CG_MSG_ID(PP_GROUP_GFX,
PP_BLOCK_GFX_RLC,
pp_support_state,
pp_state);
if (adev->powerplay.pp_funcs->set_clockgating_by_smu)
amdgpu_dpm_set_clockgating_by_smu(adev, msg_id);
}
if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CP_LS) {
pp_support_state = PP_STATE_SUPPORT_LS;
if (state == AMD_CG_STATE_UNGATE)
pp_state = 0;
else
pp_state = PP_STATE_LS;
msg_id = PP_CG_MSG_ID(PP_GROUP_GFX,
PP_BLOCK_GFX_CP,
pp_support_state,
pp_state);
if (adev->powerplay.pp_funcs->set_clockgating_by_smu)
amdgpu_dpm_set_clockgating_by_smu(adev, msg_id);
}
return 0;
}
static int gfx_v8_0_set_clockgating_state(void *handle,
enum amd_clockgating_state state)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
if (amdgpu_sriov_vf(adev))
return 0;
switch (adev->asic_type) {
case CHIP_FIJI:
case CHIP_CARRIZO:
case CHIP_STONEY:
gfx_v8_0_update_gfx_clock_gating(adev,
state == AMD_CG_STATE_GATE);
break;
case CHIP_TONGA:
gfx_v8_0_tonga_update_gfx_clock_gating(adev, state);
break;
case CHIP_POLARIS10:
case CHIP_POLARIS11:
case CHIP_POLARIS12:
case CHIP_VEGAM:
gfx_v8_0_polaris_update_gfx_clock_gating(adev, state);
break;
default:
break;
}
return 0;
}
static u64 gfx_v8_0_ring_get_rptr(struct amdgpu_ring *ring)
{
return ring->adev->wb.wb[ring->rptr_offs];
}
static u64 gfx_v8_0_ring_get_wptr_gfx(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
if (ring->use_doorbell)
/* XXX check if swapping is necessary on BE */
return ring->adev->wb.wb[ring->wptr_offs];
else
return RREG32(mmCP_RB0_WPTR);
}
static void gfx_v8_0_ring_set_wptr_gfx(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
if (ring->use_doorbell) {
/* XXX check if swapping is necessary on BE */
adev->wb.wb[ring->wptr_offs] = lower_32_bits(ring->wptr);
WDOORBELL32(ring->doorbell_index, lower_32_bits(ring->wptr));
} else {
WREG32(mmCP_RB0_WPTR, lower_32_bits(ring->wptr));
(void)RREG32(mmCP_RB0_WPTR);
}
}
static void gfx_v8_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
{
u32 ref_and_mask, reg_mem_engine;
if ((ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) ||
(ring->funcs->type == AMDGPU_RING_TYPE_KIQ)) {
switch (ring->me) {
case 1:
ref_and_mask = GPU_HDP_FLUSH_DONE__CP2_MASK << ring->pipe;
break;
case 2:
ref_and_mask = GPU_HDP_FLUSH_DONE__CP6_MASK << ring->pipe;
break;
default:
return;
}
reg_mem_engine = 0;
} else {
ref_and_mask = GPU_HDP_FLUSH_DONE__CP0_MASK;
reg_mem_engine = WAIT_REG_MEM_ENGINE(1); /* pfp */
}
amdgpu_ring_write(ring, PACKET3(PACKET3_WAIT_REG_MEM, 5));
amdgpu_ring_write(ring, (WAIT_REG_MEM_OPERATION(1) | /* write, wait, write */
WAIT_REG_MEM_FUNCTION(3) | /* == */
reg_mem_engine));
amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ);
amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE);
amdgpu_ring_write(ring, ref_and_mask);
amdgpu_ring_write(ring, ref_and_mask);
amdgpu_ring_write(ring, 0x20); /* poll interval */
}
static void gfx_v8_0_ring_emit_vgt_flush(struct amdgpu_ring *ring)
{
amdgpu_ring_write(ring, PACKET3(PACKET3_EVENT_WRITE, 0));
amdgpu_ring_write(ring, EVENT_TYPE(VS_PARTIAL_FLUSH) |
EVENT_INDEX(4));
amdgpu_ring_write(ring, PACKET3(PACKET3_EVENT_WRITE, 0));
amdgpu_ring_write(ring, EVENT_TYPE(VGT_FLUSH) |
EVENT_INDEX(0));
}
static void gfx_v8_0_ring_emit_ib_gfx(struct amdgpu_ring *ring,
struct amdgpu_job *job,
struct amdgpu_ib *ib,
uint32_t flags)
{
unsigned vmid = AMDGPU_JOB_GET_VMID(job);
u32 header, control = 0;
if (ib->flags & AMDGPU_IB_FLAG_CE)
header = PACKET3(PACKET3_INDIRECT_BUFFER_CONST, 2);
else
header = PACKET3(PACKET3_INDIRECT_BUFFER, 2);
control |= ib->length_dw | (vmid << 24);
if (amdgpu_sriov_vf(ring->adev) && (ib->flags & AMDGPU_IB_FLAG_PREEMPT)) {
control |= INDIRECT_BUFFER_PRE_ENB(1);
if (!(ib->flags & AMDGPU_IB_FLAG_CE))
gfx_v8_0_ring_emit_de_meta(ring);
}
amdgpu_ring_write(ring, header);
amdgpu_ring_write(ring,
#ifdef __BIG_ENDIAN
(2 << 0) |
#endif
(ib->gpu_addr & 0xFFFFFFFC));
amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr) & 0xFFFF);
amdgpu_ring_write(ring, control);
}
static void gfx_v8_0_ring_emit_ib_compute(struct amdgpu_ring *ring,
struct amdgpu_job *job,
struct amdgpu_ib *ib,
uint32_t flags)
{
unsigned vmid = AMDGPU_JOB_GET_VMID(job);
u32 control = INDIRECT_BUFFER_VALID | ib->length_dw | (vmid << 24);
/* Currently, there is a high possibility to get wave ID mismatch
* between ME and GDS, leading to a hw deadlock, because ME generates
* different wave IDs than the GDS expects. This situation happens
* randomly when at least 5 compute pipes use GDS ordered append.
* The wave IDs generated by ME are also wrong after suspend/resume.
* Those are probably bugs somewhere else in the kernel driver.
*
* Writing GDS_COMPUTE_MAX_WAVE_ID resets wave ID counters in ME and
* GDS to 0 for this ring (me/pipe).
*/
if (ib->flags & AMDGPU_IB_FLAG_RESET_GDS_MAX_WAVE_ID) {
amdgpu_ring_write(ring, PACKET3(PACKET3_SET_CONFIG_REG, 1));
amdgpu_ring_write(ring, mmGDS_COMPUTE_MAX_WAVE_ID - PACKET3_SET_CONFIG_REG_START);
amdgpu_ring_write(ring, ring->adev->gds.gds_compute_max_wave_id);
}
amdgpu_ring_write(ring, PACKET3(PACKET3_INDIRECT_BUFFER, 2));
amdgpu_ring_write(ring,
#ifdef __BIG_ENDIAN
(2 << 0) |
#endif
(ib->gpu_addr & 0xFFFFFFFC));
amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr) & 0xFFFF);
amdgpu_ring_write(ring, control);
}
static void gfx_v8_0_ring_emit_fence_gfx(struct amdgpu_ring *ring, u64 addr,
u64 seq, unsigned flags)
{
bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
bool int_sel = flags & AMDGPU_FENCE_FLAG_INT;
/* EVENT_WRITE_EOP - flush caches, send int */
amdgpu_ring_write(ring, PACKET3(PACKET3_EVENT_WRITE_EOP, 4));
amdgpu_ring_write(ring, (EOP_TCL1_ACTION_EN |
EOP_TC_ACTION_EN |
EOP_TC_WB_ACTION_EN |
EVENT_TYPE(CACHE_FLUSH_AND_INV_TS_EVENT) |
EVENT_INDEX(5)));
amdgpu_ring_write(ring, addr & 0xfffffffc);
amdgpu_ring_write(ring, (upper_32_bits(addr) & 0xffff) |
DATA_SEL(write64bit ? 2 : 1) | INT_SEL(int_sel ? 2 : 0));
amdgpu_ring_write(ring, lower_32_bits(seq));
amdgpu_ring_write(ring, upper_32_bits(seq));
}
static void gfx_v8_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
{
int usepfp = (ring->funcs->type == AMDGPU_RING_TYPE_GFX);
uint32_t seq = ring->fence_drv.sync_seq;
uint64_t addr = ring->fence_drv.gpu_addr;
amdgpu_ring_write(ring, PACKET3(PACKET3_WAIT_REG_MEM, 5));
amdgpu_ring_write(ring, (WAIT_REG_MEM_MEM_SPACE(1) | /* memory */
WAIT_REG_MEM_FUNCTION(3) | /* equal */
WAIT_REG_MEM_ENGINE(usepfp))); /* pfp or me */
amdgpu_ring_write(ring, addr & 0xfffffffc);
amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
amdgpu_ring_write(ring, seq);
amdgpu_ring_write(ring, 0xffffffff);
amdgpu_ring_write(ring, 4); /* poll interval */
}
static void gfx_v8_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
unsigned vmid, uint64_t pd_addr)
{
int usepfp = (ring->funcs->type == AMDGPU_RING_TYPE_GFX);
amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
/* wait for the invalidate to complete */
amdgpu_ring_write(ring, PACKET3(PACKET3_WAIT_REG_MEM, 5));
amdgpu_ring_write(ring, (WAIT_REG_MEM_OPERATION(0) | /* wait */
WAIT_REG_MEM_FUNCTION(0) | /* always */
WAIT_REG_MEM_ENGINE(0))); /* me */
amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
amdgpu_ring_write(ring, 0);
amdgpu_ring_write(ring, 0); /* ref */
amdgpu_ring_write(ring, 0); /* mask */
amdgpu_ring_write(ring, 0x20); /* poll interval */
/* compute doesn't have PFP */
if (usepfp) {
/* sync PFP to ME, otherwise we might get invalid PFP reads */
amdgpu_ring_write(ring, PACKET3(PACKET3_PFP_SYNC_ME, 0));
amdgpu_ring_write(ring, 0x0);
}
}
static u64 gfx_v8_0_ring_get_wptr_compute(struct amdgpu_ring *ring)
{
return ring->adev->wb.wb[ring->wptr_offs];
}
static void gfx_v8_0_ring_set_wptr_compute(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
/* XXX check if swapping is necessary on BE */
adev->wb.wb[ring->wptr_offs] = lower_32_bits(ring->wptr);
WDOORBELL32(ring->doorbell_index, lower_32_bits(ring->wptr));
}
static void gfx_v8_0_ring_set_pipe_percent(struct amdgpu_ring *ring,
bool acquire)
{
struct amdgpu_device *adev = ring->adev;
int pipe_num, tmp, reg;
int pipe_percent = acquire ? SPI_WCL_PIPE_PERCENT_GFX__VALUE_MASK : 0x1;
pipe_num = ring->me * adev->gfx.mec.num_pipe_per_mec + ring->pipe;
/* first me only has 2 entries, GFX and HP3D */
if (ring->me > 0)
pipe_num -= 2;
reg = mmSPI_WCL_PIPE_PERCENT_GFX + pipe_num;
tmp = RREG32(reg);
tmp = REG_SET_FIELD(tmp, SPI_WCL_PIPE_PERCENT_GFX, VALUE, pipe_percent);
WREG32(reg, tmp);
}
static void gfx_v8_0_pipe_reserve_resources(struct amdgpu_device *adev,
struct amdgpu_ring *ring,
bool acquire)
{
int i, pipe;
bool reserve;
struct amdgpu_ring *iring;
mutex_lock(&adev->gfx.pipe_reserve_mutex);
pipe = amdgpu_gfx_queue_to_bit(adev, ring->me, ring->pipe, 0);
if (acquire)
set_bit(pipe, adev->gfx.pipe_reserve_bitmap);
else
clear_bit(pipe, adev->gfx.pipe_reserve_bitmap);
if (!bitmap_weight(adev->gfx.pipe_reserve_bitmap, AMDGPU_MAX_COMPUTE_QUEUES)) {
/* Clear all reservations - everyone reacquires all resources */
for (i = 0; i < adev->gfx.num_gfx_rings; ++i)
gfx_v8_0_ring_set_pipe_percent(&adev->gfx.gfx_ring[i],
true);
for (i = 0; i < adev->gfx.num_compute_rings; ++i)
gfx_v8_0_ring_set_pipe_percent(&adev->gfx.compute_ring[i],
true);
} else {
/* Lower all pipes without a current reservation */
for (i = 0; i < adev->gfx.num_gfx_rings; ++i) {
iring = &adev->gfx.gfx_ring[i];
pipe = amdgpu_gfx_queue_to_bit(adev,
iring->me,
iring->pipe,
0);
reserve = test_bit(pipe, adev->gfx.pipe_reserve_bitmap);
gfx_v8_0_ring_set_pipe_percent(iring, reserve);
}
for (i = 0; i < adev->gfx.num_compute_rings; ++i) {
iring = &adev->gfx.compute_ring[i];
pipe = amdgpu_gfx_queue_to_bit(adev,
iring->me,
iring->pipe,
0);
reserve = test_bit(pipe, adev->gfx.pipe_reserve_bitmap);
gfx_v8_0_ring_set_pipe_percent(iring, reserve);
}
}
mutex_unlock(&adev->gfx.pipe_reserve_mutex);
}
static void gfx_v8_0_hqd_set_priority(struct amdgpu_device *adev,
struct amdgpu_ring *ring,
bool acquire)
{
uint32_t pipe_priority = acquire ? 0x2 : 0x0;
uint32_t queue_priority = acquire ? 0xf : 0x0;
mutex_lock(&adev->srbm_mutex);
vi_srbm_select(adev, ring->me, ring->pipe, ring->queue, 0);
WREG32(mmCP_HQD_PIPE_PRIORITY, pipe_priority);
WREG32(mmCP_HQD_QUEUE_PRIORITY, queue_priority);
vi_srbm_select(adev, 0, 0, 0, 0);
mutex_unlock(&adev->srbm_mutex);
}
static void gfx_v8_0_ring_set_priority_compute(struct amdgpu_ring *ring,
enum drm_sched_priority priority)
{
struct amdgpu_device *adev = ring->adev;
bool acquire = priority == DRM_SCHED_PRIORITY_HIGH_HW;
if (ring->funcs->type != AMDGPU_RING_TYPE_COMPUTE)
return;
gfx_v8_0_hqd_set_priority(adev, ring, acquire);
gfx_v8_0_pipe_reserve_resources(adev, ring, acquire);
}
static void gfx_v8_0_ring_emit_fence_compute(struct amdgpu_ring *ring,
u64 addr, u64 seq,
unsigned flags)
{
bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
bool int_sel = flags & AMDGPU_FENCE_FLAG_INT;
/* RELEASE_MEM - flush caches, send int */
amdgpu_ring_write(ring, PACKET3(PACKET3_RELEASE_MEM, 5));
amdgpu_ring_write(ring, (EOP_TCL1_ACTION_EN |
EOP_TC_ACTION_EN |
EOP_TC_WB_ACTION_EN |
EVENT_TYPE(CACHE_FLUSH_AND_INV_TS_EVENT) |
EVENT_INDEX(5)));
amdgpu_ring_write(ring, DATA_SEL(write64bit ? 2 : 1) | INT_SEL(int_sel ? 2 : 0));
amdgpu_ring_write(ring, addr & 0xfffffffc);
amdgpu_ring_write(ring, upper_32_bits(addr));
amdgpu_ring_write(ring, lower_32_bits(seq));
amdgpu_ring_write(ring, upper_32_bits(seq));
}
static void gfx_v8_0_ring_emit_fence_kiq(struct amdgpu_ring *ring, u64 addr,
u64 seq, unsigned int flags)
{
/* we only allocate 32bit for each seq wb address */
BUG_ON(flags & AMDGPU_FENCE_FLAG_64BIT);
/* write fence seq to the "addr" */
amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) |
WRITE_DATA_DST_SEL(5) | WR_CONFIRM));
amdgpu_ring_write(ring, lower_32_bits(addr));
amdgpu_ring_write(ring, upper_32_bits(addr));
amdgpu_ring_write(ring, lower_32_bits(seq));
if (flags & AMDGPU_FENCE_FLAG_INT) {
/* set register to trigger INT */
amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) |
WRITE_DATA_DST_SEL(0) | WR_CONFIRM));
amdgpu_ring_write(ring, mmCPC_INT_STATUS);
amdgpu_ring_write(ring, 0);
amdgpu_ring_write(ring, 0x20000000); /* src_id is 178 */
}
}
static void gfx_v8_ring_emit_sb(struct amdgpu_ring *ring)
{
amdgpu_ring_write(ring, PACKET3(PACKET3_SWITCH_BUFFER, 0));
amdgpu_ring_write(ring, 0);
}
static void gfx_v8_ring_emit_cntxcntl(struct amdgpu_ring *ring, uint32_t flags)
{
uint32_t dw2 = 0;
if (amdgpu_sriov_vf(ring->adev))
gfx_v8_0_ring_emit_ce_meta(ring);
dw2 |= 0x80000000; /* set load_enable otherwise this package is just NOPs */
if (flags & AMDGPU_HAVE_CTX_SWITCH) {
gfx_v8_0_ring_emit_vgt_flush(ring);
/* set load_global_config & load_global_uconfig */
dw2 |= 0x8001;
/* set load_cs_sh_regs */
dw2 |= 0x01000000;
/* set load_per_context_state & load_gfx_sh_regs for GFX */
dw2 |= 0x10002;
/* set load_ce_ram if preamble presented */
if (AMDGPU_PREAMBLE_IB_PRESENT & flags)
dw2 |= 0x10000000;
} else {
/* still load_ce_ram if this is the first time preamble presented
* although there is no context switch happens.
*/
if (AMDGPU_PREAMBLE_IB_PRESENT_FIRST & flags)
dw2 |= 0x10000000;
}
amdgpu_ring_write(ring, PACKET3(PACKET3_CONTEXT_CONTROL, 1));
amdgpu_ring_write(ring, dw2);
amdgpu_ring_write(ring, 0);
}
static unsigned gfx_v8_0_ring_emit_init_cond_exec(struct amdgpu_ring *ring)
{
unsigned ret;
amdgpu_ring_write(ring, PACKET3(PACKET3_COND_EXEC, 3));
amdgpu_ring_write(ring, lower_32_bits(ring->cond_exe_gpu_addr));
amdgpu_ring_write(ring, upper_32_bits(ring->cond_exe_gpu_addr));
amdgpu_ring_write(ring, 0); /* discard following DWs if *cond_exec_gpu_addr==0 */
ret = ring->wptr & ring->buf_mask;
amdgpu_ring_write(ring, 0x55aa55aa); /* patch dummy value later */
return ret;
}
static void gfx_v8_0_ring_emit_patch_cond_exec(struct amdgpu_ring *ring, unsigned offset)
{
unsigned cur;
BUG_ON(offset > ring->buf_mask);
BUG_ON(ring->ring[offset] != 0x55aa55aa);
cur = (ring->wptr & ring->buf_mask) - 1;
if (likely(cur > offset))
ring->ring[offset] = cur - offset;
else
ring->ring[offset] = (ring->ring_size >> 2) - offset + cur;
}
static void gfx_v8_0_ring_emit_rreg(struct amdgpu_ring *ring, uint32_t reg)
{
struct amdgpu_device *adev = ring->adev;
amdgpu_ring_write(ring, PACKET3(PACKET3_COPY_DATA, 4));
amdgpu_ring_write(ring, 0 | /* src: register*/
(5 << 8) | /* dst: memory */
(1 << 20)); /* write confirm */
amdgpu_ring_write(ring, reg);
amdgpu_ring_write(ring, 0);
amdgpu_ring_write(ring, lower_32_bits(adev->wb.gpu_addr +
adev->virt.reg_val_offs * 4));
amdgpu_ring_write(ring, upper_32_bits(adev->wb.gpu_addr +
adev->virt.reg_val_offs * 4));
}
static void gfx_v8_0_ring_emit_wreg(struct amdgpu_ring *ring, uint32_t reg,
uint32_t val)
{
uint32_t cmd;
switch (ring->funcs->type) {
case AMDGPU_RING_TYPE_GFX:
cmd = WRITE_DATA_ENGINE_SEL(1) | WR_CONFIRM;
break;
case AMDGPU_RING_TYPE_KIQ:
cmd = 1 << 16; /* no inc addr */
break;
default:
cmd = WR_CONFIRM;
break;
}
amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
amdgpu_ring_write(ring, cmd);
amdgpu_ring_write(ring, reg);
amdgpu_ring_write(ring, 0);
amdgpu_ring_write(ring, val);
}
static void gfx_v8_0_ring_soft_recovery(struct amdgpu_ring *ring, unsigned vmid)
{
struct amdgpu_device *adev = ring->adev;
uint32_t value = 0;
value = REG_SET_FIELD(value, SQ_CMD, CMD, 0x03);
value = REG_SET_FIELD(value, SQ_CMD, MODE, 0x01);
value = REG_SET_FIELD(value, SQ_CMD, CHECK_VMID, 1);
value = REG_SET_FIELD(value, SQ_CMD, VM_ID, vmid);
WREG32(mmSQ_CMD, value);
}
static void gfx_v8_0_set_gfx_eop_interrupt_state(struct amdgpu_device *adev,
enum amdgpu_interrupt_state state)
{
WREG32_FIELD(CP_INT_CNTL_RING0, TIME_STAMP_INT_ENABLE,
state == AMDGPU_IRQ_STATE_DISABLE ? 0 : 1);
}
static void gfx_v8_0_set_compute_eop_interrupt_state(struct amdgpu_device *adev,
int me, int pipe,
enum amdgpu_interrupt_state state)
{
u32 mec_int_cntl, mec_int_cntl_reg;
/*
* amdgpu controls only the first MEC. That's why this function only
* handles the setting of interrupts for this specific MEC. All other
* pipes' interrupts are set by amdkfd.
*/
if (me == 1) {
switch (pipe) {
case 0:
mec_int_cntl_reg = mmCP_ME1_PIPE0_INT_CNTL;
break;
case 1:
mec_int_cntl_reg = mmCP_ME1_PIPE1_INT_CNTL;
break;
case 2:
mec_int_cntl_reg = mmCP_ME1_PIPE2_INT_CNTL;
break;
case 3:
mec_int_cntl_reg = mmCP_ME1_PIPE3_INT_CNTL;
break;
default:
DRM_DEBUG("invalid pipe %d\n", pipe);
return;
}
} else {
DRM_DEBUG("invalid me %d\n", me);
return;
}
switch (state) {
case AMDGPU_IRQ_STATE_DISABLE:
mec_int_cntl = RREG32(mec_int_cntl_reg);
mec_int_cntl &= ~CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK;
WREG32(mec_int_cntl_reg, mec_int_cntl);
break;
case AMDGPU_IRQ_STATE_ENABLE:
mec_int_cntl = RREG32(mec_int_cntl_reg);
mec_int_cntl |= CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK;
WREG32(mec_int_cntl_reg, mec_int_cntl);
break;
default:
break;
}
}
static int gfx_v8_0_set_priv_reg_fault_state(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
unsigned type,
enum amdgpu_interrupt_state state)
{
WREG32_FIELD(CP_INT_CNTL_RING0, PRIV_REG_INT_ENABLE,
state == AMDGPU_IRQ_STATE_DISABLE ? 0 : 1);
return 0;
}
static int gfx_v8_0_set_priv_inst_fault_state(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
unsigned type,
enum amdgpu_interrupt_state state)
{
WREG32_FIELD(CP_INT_CNTL_RING0, PRIV_INSTR_INT_ENABLE,
state == AMDGPU_IRQ_STATE_DISABLE ? 0 : 1);
return 0;
}
static int gfx_v8_0_set_eop_interrupt_state(struct amdgpu_device *adev,
struct amdgpu_irq_src *src,
unsigned type,
enum amdgpu_interrupt_state state)
{
switch (type) {
case AMDGPU_CP_IRQ_GFX_EOP:
gfx_v8_0_set_gfx_eop_interrupt_state(adev, state);
break;
case AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE0_EOP:
gfx_v8_0_set_compute_eop_interrupt_state(adev, 1, 0, state);
break;
case AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE1_EOP:
gfx_v8_0_set_compute_eop_interrupt_state(adev, 1, 1, state);
break;
case AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE2_EOP:
gfx_v8_0_set_compute_eop_interrupt_state(adev, 1, 2, state);
break;
case AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE3_EOP:
gfx_v8_0_set_compute_eop_interrupt_state(adev, 1, 3, state);
break;
case AMDGPU_CP_IRQ_COMPUTE_MEC2_PIPE0_EOP:
gfx_v8_0_set_compute_eop_interrupt_state(adev, 2, 0, state);
break;
case AMDGPU_CP_IRQ_COMPUTE_MEC2_PIPE1_EOP:
gfx_v8_0_set_compute_eop_interrupt_state(adev, 2, 1, state);
break;
case AMDGPU_CP_IRQ_COMPUTE_MEC2_PIPE2_EOP:
gfx_v8_0_set_compute_eop_interrupt_state(adev, 2, 2, state);
break;
case AMDGPU_CP_IRQ_COMPUTE_MEC2_PIPE3_EOP:
gfx_v8_0_set_compute_eop_interrupt_state(adev, 2, 3, state);
break;
default:
break;
}
return 0;
}
static int gfx_v8_0_set_cp_ecc_int_state(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
unsigned int type,
enum amdgpu_interrupt_state state)
{
int enable_flag;
switch (state) {
case AMDGPU_IRQ_STATE_DISABLE:
enable_flag = 0;
break;
case AMDGPU_IRQ_STATE_ENABLE:
enable_flag = 1;
break;
default:
return -EINVAL;
}
WREG32_FIELD(CP_INT_CNTL, CP_ECC_ERROR_INT_ENABLE, enable_flag);
WREG32_FIELD(CP_INT_CNTL_RING0, CP_ECC_ERROR_INT_ENABLE, enable_flag);
WREG32_FIELD(CP_INT_CNTL_RING1, CP_ECC_ERROR_INT_ENABLE, enable_flag);
WREG32_FIELD(CP_INT_CNTL_RING2, CP_ECC_ERROR_INT_ENABLE, enable_flag);
WREG32_FIELD(CPC_INT_CNTL, CP_ECC_ERROR_INT_ENABLE, enable_flag);
WREG32_FIELD(CP_ME1_PIPE0_INT_CNTL, CP_ECC_ERROR_INT_ENABLE,
enable_flag);
WREG32_FIELD(CP_ME1_PIPE1_INT_CNTL, CP_ECC_ERROR_INT_ENABLE,
enable_flag);
WREG32_FIELD(CP_ME1_PIPE2_INT_CNTL, CP_ECC_ERROR_INT_ENABLE,
enable_flag);
WREG32_FIELD(CP_ME1_PIPE3_INT_CNTL, CP_ECC_ERROR_INT_ENABLE,
enable_flag);
WREG32_FIELD(CP_ME2_PIPE0_INT_CNTL, CP_ECC_ERROR_INT_ENABLE,
enable_flag);
WREG32_FIELD(CP_ME2_PIPE1_INT_CNTL, CP_ECC_ERROR_INT_ENABLE,
enable_flag);
WREG32_FIELD(CP_ME2_PIPE2_INT_CNTL, CP_ECC_ERROR_INT_ENABLE,
enable_flag);
WREG32_FIELD(CP_ME2_PIPE3_INT_CNTL, CP_ECC_ERROR_INT_ENABLE,
enable_flag);
return 0;
}
static int gfx_v8_0_set_sq_int_state(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
unsigned int type,
enum amdgpu_interrupt_state state)
{
int enable_flag;
switch (state) {
case AMDGPU_IRQ_STATE_DISABLE:
enable_flag = 1;
break;
case AMDGPU_IRQ_STATE_ENABLE:
enable_flag = 0;
break;
default:
return -EINVAL;
}
WREG32_FIELD(SQ_INTERRUPT_MSG_CTRL, STALL,
enable_flag);
return 0;
}
static int gfx_v8_0_eop_irq(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
int i;
u8 me_id, pipe_id, queue_id;
struct amdgpu_ring *ring;
DRM_DEBUG("IH: CP EOP\n");
me_id = (entry->ring_id & 0x0c) >> 2;
pipe_id = (entry->ring_id & 0x03) >> 0;
queue_id = (entry->ring_id & 0x70) >> 4;
switch (me_id) {
case 0:
amdgpu_fence_process(&adev->gfx.gfx_ring[0]);
break;
case 1:
case 2:
for (i = 0; i < adev->gfx.num_compute_rings; i++) {
ring = &adev->gfx.compute_ring[i];
/* Per-queue interrupt is supported for MEC starting from VI.
* The interrupt can only be enabled/disabled per pipe instead of per queue.
*/
if ((ring->me == me_id) && (ring->pipe == pipe_id) && (ring->queue == queue_id))
amdgpu_fence_process(ring);
}
break;
}
return 0;
}
static void gfx_v8_0_fault(struct amdgpu_device *adev,
struct amdgpu_iv_entry *entry)
{
u8 me_id, pipe_id, queue_id;
struct amdgpu_ring *ring;
int i;
me_id = (entry->ring_id & 0x0c) >> 2;
pipe_id = (entry->ring_id & 0x03) >> 0;
queue_id = (entry->ring_id & 0x70) >> 4;
switch (me_id) {
case 0:
drm_sched_fault(&adev->gfx.gfx_ring[0].sched);
break;
case 1:
case 2:
for (i = 0; i < adev->gfx.num_compute_rings; i++) {
ring = &adev->gfx.compute_ring[i];
if (ring->me == me_id && ring->pipe == pipe_id &&
ring->queue == queue_id)
drm_sched_fault(&ring->sched);
}
break;
}
}
static int gfx_v8_0_priv_reg_irq(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
DRM_ERROR("Illegal register access in command stream\n");
gfx_v8_0_fault(adev, entry);
return 0;
}
static int gfx_v8_0_priv_inst_irq(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
DRM_ERROR("Illegal instruction in command stream\n");
gfx_v8_0_fault(adev, entry);
return 0;
}
static int gfx_v8_0_cp_ecc_error_irq(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
DRM_ERROR("CP EDC/ECC error detected.");
return 0;
}
static void gfx_v8_0_parse_sq_irq(struct amdgpu_device *adev, unsigned ih_data)
{
u32 enc, se_id, sh_id, cu_id;
char type[20];
int sq_edc_source = -1;
enc = REG_GET_FIELD(ih_data, SQ_INTERRUPT_WORD_CMN, ENCODING);
se_id = REG_GET_FIELD(ih_data, SQ_INTERRUPT_WORD_CMN, SE_ID);
switch (enc) {
case 0:
DRM_INFO("SQ general purpose intr detected:"
"se_id %d, immed_overflow %d, host_reg_overflow %d,"
"host_cmd_overflow %d, cmd_timestamp %d,"
"reg_timestamp %d, thread_trace_buff_full %d,"
"wlt %d, thread_trace %d.\n",
se_id,
REG_GET_FIELD(ih_data, SQ_INTERRUPT_WORD_AUTO, IMMED_OVERFLOW),
REG_GET_FIELD(ih_data, SQ_INTERRUPT_WORD_AUTO, HOST_REG_OVERFLOW),
REG_GET_FIELD(ih_data, SQ_INTERRUPT_WORD_AUTO, HOST_CMD_OVERFLOW),
REG_GET_FIELD(ih_data, SQ_INTERRUPT_WORD_AUTO, CMD_TIMESTAMP),
REG_GET_FIELD(ih_data, SQ_INTERRUPT_WORD_AUTO, REG_TIMESTAMP),
REG_GET_FIELD(ih_data, SQ_INTERRUPT_WORD_AUTO, THREAD_TRACE_BUF_FULL),
REG_GET_FIELD(ih_data, SQ_INTERRUPT_WORD_AUTO, WLT),
REG_GET_FIELD(ih_data, SQ_INTERRUPT_WORD_AUTO, THREAD_TRACE)
);
break;
case 1:
case 2:
cu_id = REG_GET_FIELD(ih_data, SQ_INTERRUPT_WORD_WAVE, CU_ID);
sh_id = REG_GET_FIELD(ih_data, SQ_INTERRUPT_WORD_WAVE, SH_ID);
/*
* This function can be called either directly from ISR
* or from BH in which case we can access SQ_EDC_INFO
* instance
*/
if (in_task()) {
mutex_lock(&adev->grbm_idx_mutex);
gfx_v8_0_select_se_sh(adev, se_id, sh_id, cu_id);
sq_edc_source = REG_GET_FIELD(RREG32(mmSQ_EDC_INFO), SQ_EDC_INFO, SOURCE);
gfx_v8_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff);
mutex_unlock(&adev->grbm_idx_mutex);
}
if (enc == 1)
sprintf(type, "instruction intr");
else
sprintf(type, "EDC/ECC error");
DRM_INFO(
"SQ %s detected: "
"se_id %d, sh_id %d, cu_id %d, simd_id %d, wave_id %d, vm_id %d "
"trap %s, sq_ed_info.source %s.\n",
type, se_id, sh_id, cu_id,
REG_GET_FIELD(ih_data, SQ_INTERRUPT_WORD_WAVE, SIMD_ID),
REG_GET_FIELD(ih_data, SQ_INTERRUPT_WORD_WAVE, WAVE_ID),
REG_GET_FIELD(ih_data, SQ_INTERRUPT_WORD_WAVE, VM_ID),
REG_GET_FIELD(ih_data, SQ_INTERRUPT_WORD_WAVE, PRIV) ? "true" : "false",
(sq_edc_source != -1) ? sq_edc_source_names[sq_edc_source] : "unavailable"
);
break;
default:
DRM_ERROR("SQ invalid encoding type\n.");
}
}
static void gfx_v8_0_sq_irq_work_func(struct work_struct *work)
{
struct amdgpu_device *adev = container_of(work, struct amdgpu_device, gfx.sq_work.work);
struct sq_work *sq_work = container_of(work, struct sq_work, work);
gfx_v8_0_parse_sq_irq(adev, sq_work->ih_data);
}
static int gfx_v8_0_sq_irq(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
unsigned ih_data = entry->src_data[0];
/*
* Try to submit work so SQ_EDC_INFO can be accessed from
* BH. If previous work submission hasn't finished yet
* just print whatever info is possible directly from the ISR.
*/
if (work_pending(&adev->gfx.sq_work.work)) {
gfx_v8_0_parse_sq_irq(adev, ih_data);
} else {
adev->gfx.sq_work.ih_data = ih_data;
schedule_work(&adev->gfx.sq_work.work);
}
return 0;
}
static const struct amd_ip_funcs gfx_v8_0_ip_funcs = {
.name = "gfx_v8_0",
.early_init = gfx_v8_0_early_init,
.late_init = gfx_v8_0_late_init,
.sw_init = gfx_v8_0_sw_init,
.sw_fini = gfx_v8_0_sw_fini,
.hw_init = gfx_v8_0_hw_init,
.hw_fini = gfx_v8_0_hw_fini,
.suspend = gfx_v8_0_suspend,
.resume = gfx_v8_0_resume,
.is_idle = gfx_v8_0_is_idle,
.wait_for_idle = gfx_v8_0_wait_for_idle,
.check_soft_reset = gfx_v8_0_check_soft_reset,
.pre_soft_reset = gfx_v8_0_pre_soft_reset,
.soft_reset = gfx_v8_0_soft_reset,
.post_soft_reset = gfx_v8_0_post_soft_reset,
.set_clockgating_state = gfx_v8_0_set_clockgating_state,
.set_powergating_state = gfx_v8_0_set_powergating_state,
.get_clockgating_state = gfx_v8_0_get_clockgating_state,
};
static const struct amdgpu_ring_funcs gfx_v8_0_ring_funcs_gfx = {
.type = AMDGPU_RING_TYPE_GFX,
.align_mask = 0xff,
.nop = PACKET3(PACKET3_NOP, 0x3FFF),
.support_64bit_ptrs = false,
.get_rptr = gfx_v8_0_ring_get_rptr,
.get_wptr = gfx_v8_0_ring_get_wptr_gfx,
.set_wptr = gfx_v8_0_ring_set_wptr_gfx,
.emit_frame_size = /* maximum 215dw if count 16 IBs in */
5 + /* COND_EXEC */
7 + /* PIPELINE_SYNC */
VI_FLUSH_GPU_TLB_NUM_WREG * 5 + 9 + /* VM_FLUSH */
8 + /* FENCE for VM_FLUSH */
20 + /* GDS switch */
4 + /* double SWITCH_BUFFER,
the first COND_EXEC jump to the place just
prior to this double SWITCH_BUFFER */
5 + /* COND_EXEC */
7 + /* HDP_flush */
4 + /* VGT_flush */
14 + /* CE_META */
31 + /* DE_META */
3 + /* CNTX_CTRL */
5 + /* HDP_INVL */
8 + 8 + /* FENCE x2 */
2, /* SWITCH_BUFFER */
.emit_ib_size = 4, /* gfx_v8_0_ring_emit_ib_gfx */
.emit_ib = gfx_v8_0_ring_emit_ib_gfx,
.emit_fence = gfx_v8_0_ring_emit_fence_gfx,
.emit_pipeline_sync = gfx_v8_0_ring_emit_pipeline_sync,
.emit_vm_flush = gfx_v8_0_ring_emit_vm_flush,
.emit_gds_switch = gfx_v8_0_ring_emit_gds_switch,
.emit_hdp_flush = gfx_v8_0_ring_emit_hdp_flush,
.test_ring = gfx_v8_0_ring_test_ring,
.test_ib = gfx_v8_0_ring_test_ib,
.insert_nop = amdgpu_ring_insert_nop,
.pad_ib = amdgpu_ring_generic_pad_ib,
.emit_switch_buffer = gfx_v8_ring_emit_sb,
.emit_cntxcntl = gfx_v8_ring_emit_cntxcntl,
.init_cond_exec = gfx_v8_0_ring_emit_init_cond_exec,
.patch_cond_exec = gfx_v8_0_ring_emit_patch_cond_exec,
.emit_wreg = gfx_v8_0_ring_emit_wreg,
.soft_recovery = gfx_v8_0_ring_soft_recovery,
};
static const struct amdgpu_ring_funcs gfx_v8_0_ring_funcs_compute = {
.type = AMDGPU_RING_TYPE_COMPUTE,
.align_mask = 0xff,
.nop = PACKET3(PACKET3_NOP, 0x3FFF),
.support_64bit_ptrs = false,
.get_rptr = gfx_v8_0_ring_get_rptr,
.get_wptr = gfx_v8_0_ring_get_wptr_compute,
.set_wptr = gfx_v8_0_ring_set_wptr_compute,
.emit_frame_size =
20 + /* gfx_v8_0_ring_emit_gds_switch */
7 + /* gfx_v8_0_ring_emit_hdp_flush */
5 + /* hdp_invalidate */
7 + /* gfx_v8_0_ring_emit_pipeline_sync */
VI_FLUSH_GPU_TLB_NUM_WREG * 5 + 7 + /* gfx_v8_0_ring_emit_vm_flush */
7 + 7 + 7, /* gfx_v8_0_ring_emit_fence_compute x3 for user fence, vm fence */
.emit_ib_size = 7, /* gfx_v8_0_ring_emit_ib_compute */
.emit_ib = gfx_v8_0_ring_emit_ib_compute,
.emit_fence = gfx_v8_0_ring_emit_fence_compute,
.emit_pipeline_sync = gfx_v8_0_ring_emit_pipeline_sync,
.emit_vm_flush = gfx_v8_0_ring_emit_vm_flush,
.emit_gds_switch = gfx_v8_0_ring_emit_gds_switch,
.emit_hdp_flush = gfx_v8_0_ring_emit_hdp_flush,
.test_ring = gfx_v8_0_ring_test_ring,
.test_ib = gfx_v8_0_ring_test_ib,
.insert_nop = amdgpu_ring_insert_nop,
.pad_ib = amdgpu_ring_generic_pad_ib,
.set_priority = gfx_v8_0_ring_set_priority_compute,
.emit_wreg = gfx_v8_0_ring_emit_wreg,
};
static const struct amdgpu_ring_funcs gfx_v8_0_ring_funcs_kiq = {
.type = AMDGPU_RING_TYPE_KIQ,
.align_mask = 0xff,
.nop = PACKET3(PACKET3_NOP, 0x3FFF),
.support_64bit_ptrs = false,
.get_rptr = gfx_v8_0_ring_get_rptr,
.get_wptr = gfx_v8_0_ring_get_wptr_compute,
.set_wptr = gfx_v8_0_ring_set_wptr_compute,
.emit_frame_size =
20 + /* gfx_v8_0_ring_emit_gds_switch */
7 + /* gfx_v8_0_ring_emit_hdp_flush */
5 + /* hdp_invalidate */
7 + /* gfx_v8_0_ring_emit_pipeline_sync */
17 + /* gfx_v8_0_ring_emit_vm_flush */
7 + 7 + 7, /* gfx_v8_0_ring_emit_fence_kiq x3 for user fence, vm fence */
.emit_ib_size = 7, /* gfx_v8_0_ring_emit_ib_compute */
.emit_fence = gfx_v8_0_ring_emit_fence_kiq,
.test_ring = gfx_v8_0_ring_test_ring,
.insert_nop = amdgpu_ring_insert_nop,
.pad_ib = amdgpu_ring_generic_pad_ib,
.emit_rreg = gfx_v8_0_ring_emit_rreg,
.emit_wreg = gfx_v8_0_ring_emit_wreg,
};
static void gfx_v8_0_set_ring_funcs(struct amdgpu_device *adev)
{
int i;
adev->gfx.kiq.ring.funcs = &gfx_v8_0_ring_funcs_kiq;
for (i = 0; i < adev->gfx.num_gfx_rings; i++)
adev->gfx.gfx_ring[i].funcs = &gfx_v8_0_ring_funcs_gfx;
for (i = 0; i < adev->gfx.num_compute_rings; i++)
adev->gfx.compute_ring[i].funcs = &gfx_v8_0_ring_funcs_compute;
}
static const struct amdgpu_irq_src_funcs gfx_v8_0_eop_irq_funcs = {
.set = gfx_v8_0_set_eop_interrupt_state,
.process = gfx_v8_0_eop_irq,
};
static const struct amdgpu_irq_src_funcs gfx_v8_0_priv_reg_irq_funcs = {
.set = gfx_v8_0_set_priv_reg_fault_state,
.process = gfx_v8_0_priv_reg_irq,
};
static const struct amdgpu_irq_src_funcs gfx_v8_0_priv_inst_irq_funcs = {
.set = gfx_v8_0_set_priv_inst_fault_state,
.process = gfx_v8_0_priv_inst_irq,
};
static const struct amdgpu_irq_src_funcs gfx_v8_0_cp_ecc_error_irq_funcs = {
.set = gfx_v8_0_set_cp_ecc_int_state,
.process = gfx_v8_0_cp_ecc_error_irq,
};
static const struct amdgpu_irq_src_funcs gfx_v8_0_sq_irq_funcs = {
.set = gfx_v8_0_set_sq_int_state,
.process = gfx_v8_0_sq_irq,
};
static void gfx_v8_0_set_irq_funcs(struct amdgpu_device *adev)
{
adev->gfx.eop_irq.num_types = AMDGPU_CP_IRQ_LAST;
adev->gfx.eop_irq.funcs = &gfx_v8_0_eop_irq_funcs;
adev->gfx.priv_reg_irq.num_types = 1;
adev->gfx.priv_reg_irq.funcs = &gfx_v8_0_priv_reg_irq_funcs;
adev->gfx.priv_inst_irq.num_types = 1;
adev->gfx.priv_inst_irq.funcs = &gfx_v8_0_priv_inst_irq_funcs;
adev->gfx.cp_ecc_error_irq.num_types = 1;
adev->gfx.cp_ecc_error_irq.funcs = &gfx_v8_0_cp_ecc_error_irq_funcs;
adev->gfx.sq_irq.num_types = 1;
adev->gfx.sq_irq.funcs = &gfx_v8_0_sq_irq_funcs;
}
static void gfx_v8_0_set_rlc_funcs(struct amdgpu_device *adev)
{
adev->gfx.rlc.funcs = &iceland_rlc_funcs;
}
static void gfx_v8_0_set_gds_init(struct amdgpu_device *adev)
{
/* init asci gds info */
adev->gds.mem.total_size = RREG32(mmGDS_VMID0_SIZE);
adev->gds.gws.total_size = 64;
adev->gds.oa.total_size = 16;
adev->gds.gds_compute_max_wave_id = RREG32(mmGDS_COMPUTE_MAX_WAVE_ID);
if (adev->gds.mem.total_size == 64 * 1024) {
adev->gds.mem.gfx_partition_size = 4096;
adev->gds.mem.cs_partition_size = 4096;
adev->gds.gws.gfx_partition_size = 4;
adev->gds.gws.cs_partition_size = 4;
adev->gds.oa.gfx_partition_size = 4;
adev->gds.oa.cs_partition_size = 1;
} else {
adev->gds.mem.gfx_partition_size = 1024;
adev->gds.mem.cs_partition_size = 1024;
adev->gds.gws.gfx_partition_size = 16;
adev->gds.gws.cs_partition_size = 16;
adev->gds.oa.gfx_partition_size = 4;
adev->gds.oa.cs_partition_size = 4;
}
}
static void gfx_v8_0_set_user_cu_inactive_bitmap(struct amdgpu_device *adev,
u32 bitmap)
{
u32 data;
if (!bitmap)
return;
data = bitmap << GC_USER_SHADER_ARRAY_CONFIG__INACTIVE_CUS__SHIFT;
data &= GC_USER_SHADER_ARRAY_CONFIG__INACTIVE_CUS_MASK;
WREG32(mmGC_USER_SHADER_ARRAY_CONFIG, data);
}
static u32 gfx_v8_0_get_cu_active_bitmap(struct amdgpu_device *adev)
{
u32 data, mask;
data = RREG32(mmCC_GC_SHADER_ARRAY_CONFIG) |
RREG32(mmGC_USER_SHADER_ARRAY_CONFIG);
mask = amdgpu_gfx_create_bitmask(adev->gfx.config.max_cu_per_sh);
return ~REG_GET_FIELD(data, CC_GC_SHADER_ARRAY_CONFIG, INACTIVE_CUS) & mask;
}
static void gfx_v8_0_get_cu_info(struct amdgpu_device *adev)
{
int i, j, k, counter, active_cu_number = 0;
u32 mask, bitmap, ao_bitmap, ao_cu_mask = 0;
struct amdgpu_cu_info *cu_info = &adev->gfx.cu_info;
unsigned disable_masks[4 * 2];
u32 ao_cu_num;
memset(cu_info, 0, sizeof(*cu_info));
if (adev->flags & AMD_IS_APU)
ao_cu_num = 2;
else
ao_cu_num = adev->gfx.config.max_cu_per_sh;
amdgpu_gfx_parse_disable_cu(disable_masks, 4, 2);
mutex_lock(&adev->grbm_idx_mutex);
for (i = 0; i < adev->gfx.config.max_shader_engines; i++) {
for (j = 0; j < adev->gfx.config.max_sh_per_se; j++) {
mask = 1;
ao_bitmap = 0;
counter = 0;
gfx_v8_0_select_se_sh(adev, i, j, 0xffffffff);
if (i < 4 && j < 2)
gfx_v8_0_set_user_cu_inactive_bitmap(
adev, disable_masks[i * 2 + j]);
bitmap = gfx_v8_0_get_cu_active_bitmap(adev);
cu_info->bitmap[i][j] = bitmap;
for (k = 0; k < adev->gfx.config.max_cu_per_sh; k ++) {
if (bitmap & mask) {
if (counter < ao_cu_num)
ao_bitmap |= mask;
counter ++;
}
mask <<= 1;
}
active_cu_number += counter;
if (i < 2 && j < 2)
ao_cu_mask |= (ao_bitmap << (i * 16 + j * 8));
cu_info->ao_cu_bitmap[i][j] = ao_bitmap;
}
}
gfx_v8_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff);
mutex_unlock(&adev->grbm_idx_mutex);
cu_info->number = active_cu_number;
cu_info->ao_cu_mask = ao_cu_mask;
cu_info->simd_per_cu = NUM_SIMD_PER_CU;
cu_info->max_waves_per_simd = 10;
cu_info->max_scratch_slots_per_cu = 32;
cu_info->wave_front_size = 64;
cu_info->lds_size = 64;
}
const struct amdgpu_ip_block_version gfx_v8_0_ip_block =
{
.type = AMD_IP_BLOCK_TYPE_GFX,
.major = 8,
.minor = 0,
.rev = 0,
.funcs = &gfx_v8_0_ip_funcs,
};
const struct amdgpu_ip_block_version gfx_v8_1_ip_block =
{
.type = AMD_IP_BLOCK_TYPE_GFX,
.major = 8,
.minor = 1,
.rev = 0,
.funcs = &gfx_v8_0_ip_funcs,
};
static void gfx_v8_0_ring_emit_ce_meta(struct amdgpu_ring *ring)
{
uint64_t ce_payload_addr;
int cnt_ce;
union {
struct vi_ce_ib_state regular;
struct vi_ce_ib_state_chained_ib chained;
} ce_payload = {};
if (ring->adev->virt.chained_ib_support) {
ce_payload_addr = amdgpu_csa_vaddr(ring->adev) +
offsetof(struct vi_gfx_meta_data_chained_ib, ce_payload);
cnt_ce = (sizeof(ce_payload.chained) >> 2) + 4 - 2;
} else {
ce_payload_addr = amdgpu_csa_vaddr(ring->adev) +
offsetof(struct vi_gfx_meta_data, ce_payload);
cnt_ce = (sizeof(ce_payload.regular) >> 2) + 4 - 2;
}
amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, cnt_ce));
amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(2) |
WRITE_DATA_DST_SEL(8) |
WR_CONFIRM) |
WRITE_DATA_CACHE_POLICY(0));
amdgpu_ring_write(ring, lower_32_bits(ce_payload_addr));
amdgpu_ring_write(ring, upper_32_bits(ce_payload_addr));
amdgpu_ring_write_multiple(ring, (void *)&ce_payload, cnt_ce - 2);
}
static void gfx_v8_0_ring_emit_de_meta(struct amdgpu_ring *ring)
{
uint64_t de_payload_addr, gds_addr, csa_addr;
int cnt_de;
union {
struct vi_de_ib_state regular;
struct vi_de_ib_state_chained_ib chained;
} de_payload = {};
csa_addr = amdgpu_csa_vaddr(ring->adev);
gds_addr = csa_addr + 4096;
if (ring->adev->virt.chained_ib_support) {
de_payload.chained.gds_backup_addrlo = lower_32_bits(gds_addr);
de_payload.chained.gds_backup_addrhi = upper_32_bits(gds_addr);
de_payload_addr = csa_addr + offsetof(struct vi_gfx_meta_data_chained_ib, de_payload);
cnt_de = (sizeof(de_payload.chained) >> 2) + 4 - 2;
} else {
de_payload.regular.gds_backup_addrlo = lower_32_bits(gds_addr);
de_payload.regular.gds_backup_addrhi = upper_32_bits(gds_addr);
de_payload_addr = csa_addr + offsetof(struct vi_gfx_meta_data, de_payload);
cnt_de = (sizeof(de_payload.regular) >> 2) + 4 - 2;
}
amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, cnt_de));
amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(1) |
WRITE_DATA_DST_SEL(8) |
WR_CONFIRM) |
WRITE_DATA_CACHE_POLICY(0));
amdgpu_ring_write(ring, lower_32_bits(de_payload_addr));
amdgpu_ring_write(ring, upper_32_bits(de_payload_addr));
amdgpu_ring_write_multiple(ring, (void *)&de_payload, cnt_de - 2);
}