| // SPDX-License-Identifier: GPL-2.0 |
| #include "bcachefs.h" |
| #include "alloc_background.h" |
| #include "alloc_foreground.h" |
| #include "btree_cache.h" |
| #include "btree_io.h" |
| #include "btree_key_cache.h" |
| #include "btree_update.h" |
| #include "btree_update_interior.h" |
| #include "btree_gc.h" |
| #include "buckets.h" |
| #include "clock.h" |
| #include "debug.h" |
| #include "ec.h" |
| #include "error.h" |
| #include "recovery.h" |
| #include "trace.h" |
| #include "varint.h" |
| |
| #include <linux/kthread.h> |
| #include <linux/math64.h> |
| #include <linux/random.h> |
| #include <linux/rculist.h> |
| #include <linux/rcupdate.h> |
| #include <linux/sched/task.h> |
| #include <linux/sort.h> |
| |
| const char * const bch2_allocator_states[] = { |
| #define x(n) #n, |
| ALLOC_THREAD_STATES() |
| #undef x |
| NULL |
| }; |
| |
| static const unsigned BCH_ALLOC_V1_FIELD_BYTES[] = { |
| #define x(name, bits) [BCH_ALLOC_FIELD_V1_##name] = bits / 8, |
| BCH_ALLOC_FIELDS_V1() |
| #undef x |
| }; |
| |
| /* Persistent alloc info: */ |
| |
| static inline u64 alloc_field_v1_get(const struct bch_alloc *a, |
| const void **p, unsigned field) |
| { |
| unsigned bytes = BCH_ALLOC_V1_FIELD_BYTES[field]; |
| u64 v; |
| |
| if (!(a->fields & (1 << field))) |
| return 0; |
| |
| switch (bytes) { |
| case 1: |
| v = *((const u8 *) *p); |
| break; |
| case 2: |
| v = le16_to_cpup(*p); |
| break; |
| case 4: |
| v = le32_to_cpup(*p); |
| break; |
| case 8: |
| v = le64_to_cpup(*p); |
| break; |
| default: |
| BUG(); |
| } |
| |
| *p += bytes; |
| return v; |
| } |
| |
| static inline void alloc_field_v1_put(struct bkey_i_alloc *a, void **p, |
| unsigned field, u64 v) |
| { |
| unsigned bytes = BCH_ALLOC_V1_FIELD_BYTES[field]; |
| |
| if (!v) |
| return; |
| |
| a->v.fields |= 1 << field; |
| |
| switch (bytes) { |
| case 1: |
| *((u8 *) *p) = v; |
| break; |
| case 2: |
| *((__le16 *) *p) = cpu_to_le16(v); |
| break; |
| case 4: |
| *((__le32 *) *p) = cpu_to_le32(v); |
| break; |
| case 8: |
| *((__le64 *) *p) = cpu_to_le64(v); |
| break; |
| default: |
| BUG(); |
| } |
| |
| *p += bytes; |
| } |
| |
| static void bch2_alloc_unpack_v1(struct bkey_alloc_unpacked *out, |
| struct bkey_s_c k) |
| { |
| const struct bch_alloc *in = bkey_s_c_to_alloc(k).v; |
| const void *d = in->data; |
| unsigned idx = 0; |
| |
| out->gen = in->gen; |
| |
| #define x(_name, _bits) out->_name = alloc_field_v1_get(in, &d, idx++); |
| BCH_ALLOC_FIELDS_V1() |
| #undef x |
| } |
| |
| static int bch2_alloc_unpack_v2(struct bkey_alloc_unpacked *out, |
| struct bkey_s_c k) |
| { |
| struct bkey_s_c_alloc_v2 a = bkey_s_c_to_alloc_v2(k); |
| const u8 *in = a.v->data; |
| const u8 *end = bkey_val_end(a); |
| unsigned fieldnr = 0; |
| int ret; |
| u64 v; |
| |
| out->gen = a.v->gen; |
| out->oldest_gen = a.v->oldest_gen; |
| out->data_type = a.v->data_type; |
| |
| #define x(_name, _bits) \ |
| if (fieldnr < a.v->nr_fields) { \ |
| ret = bch2_varint_decode_fast(in, end, &v); \ |
| if (ret < 0) \ |
| return ret; \ |
| in += ret; \ |
| } else { \ |
| v = 0; \ |
| } \ |
| out->_name = v; \ |
| if (v != out->_name) \ |
| return -1; \ |
| fieldnr++; |
| |
| BCH_ALLOC_FIELDS_V2() |
| #undef x |
| return 0; |
| } |
| |
| static void bch2_alloc_pack_v2(struct bkey_alloc_buf *dst, |
| const struct bkey_alloc_unpacked src) |
| { |
| struct bkey_i_alloc_v2 *a = bkey_alloc_v2_init(&dst->k); |
| unsigned nr_fields = 0, last_nonzero_fieldnr = 0; |
| u8 *out = a->v.data; |
| u8 *end = (void *) &dst[1]; |
| u8 *last_nonzero_field = out; |
| unsigned bytes; |
| |
| a->k.p = POS(src.dev, src.bucket); |
| a->v.gen = src.gen; |
| a->v.oldest_gen = src.oldest_gen; |
| a->v.data_type = src.data_type; |
| |
| #define x(_name, _bits) \ |
| nr_fields++; \ |
| \ |
| if (src._name) { \ |
| out += bch2_varint_encode_fast(out, src._name); \ |
| \ |
| last_nonzero_field = out; \ |
| last_nonzero_fieldnr = nr_fields; \ |
| } else { \ |
| *out++ = 0; \ |
| } |
| |
| BCH_ALLOC_FIELDS_V2() |
| #undef x |
| BUG_ON(out > end); |
| |
| out = last_nonzero_field; |
| a->v.nr_fields = last_nonzero_fieldnr; |
| |
| bytes = (u8 *) out - (u8 *) &a->v; |
| set_bkey_val_bytes(&a->k, bytes); |
| memset_u64s_tail(&a->v, 0, bytes); |
| } |
| |
| struct bkey_alloc_unpacked bch2_alloc_unpack(struct bkey_s_c k) |
| { |
| struct bkey_alloc_unpacked ret = { |
| .dev = k.k->p.inode, |
| .bucket = k.k->p.offset, |
| .gen = 0, |
| }; |
| |
| if (k.k->type == KEY_TYPE_alloc_v2) |
| bch2_alloc_unpack_v2(&ret, k); |
| else if (k.k->type == KEY_TYPE_alloc) |
| bch2_alloc_unpack_v1(&ret, k); |
| |
| return ret; |
| } |
| |
| void bch2_alloc_pack(struct bch_fs *c, |
| struct bkey_alloc_buf *dst, |
| const struct bkey_alloc_unpacked src) |
| { |
| bch2_alloc_pack_v2(dst, src); |
| } |
| |
| static unsigned bch_alloc_v1_val_u64s(const struct bch_alloc *a) |
| { |
| unsigned i, bytes = offsetof(struct bch_alloc, data); |
| |
| for (i = 0; i < ARRAY_SIZE(BCH_ALLOC_V1_FIELD_BYTES); i++) |
| if (a->fields & (1 << i)) |
| bytes += BCH_ALLOC_V1_FIELD_BYTES[i]; |
| |
| return DIV_ROUND_UP(bytes, sizeof(u64)); |
| } |
| |
| const char *bch2_alloc_v1_invalid(const struct bch_fs *c, struct bkey_s_c k) |
| { |
| struct bkey_s_c_alloc a = bkey_s_c_to_alloc(k); |
| |
| if (k.k->p.inode >= c->sb.nr_devices || |
| !c->devs[k.k->p.inode]) |
| return "invalid device"; |
| |
| /* allow for unknown fields */ |
| if (bkey_val_u64s(a.k) < bch_alloc_v1_val_u64s(a.v)) |
| return "incorrect value size"; |
| |
| return NULL; |
| } |
| |
| const char *bch2_alloc_v2_invalid(const struct bch_fs *c, struct bkey_s_c k) |
| { |
| struct bkey_alloc_unpacked u; |
| |
| if (k.k->p.inode >= c->sb.nr_devices || |
| !c->devs[k.k->p.inode]) |
| return "invalid device"; |
| |
| if (bch2_alloc_unpack_v2(&u, k)) |
| return "unpack error"; |
| |
| return NULL; |
| } |
| |
| void bch2_alloc_to_text(struct printbuf *out, struct bch_fs *c, |
| struct bkey_s_c k) |
| { |
| struct bkey_alloc_unpacked u = bch2_alloc_unpack(k); |
| |
| pr_buf(out, "gen %u oldest_gen %u data_type %s", |
| u.gen, u.oldest_gen, bch2_data_types[u.data_type]); |
| #define x(_name, ...) pr_buf(out, " " #_name " %llu", (u64) u._name); |
| BCH_ALLOC_FIELDS_V2() |
| #undef x |
| } |
| |
| static int bch2_alloc_read_fn(struct bch_fs *c, struct bkey_s_c k) |
| { |
| struct bch_dev *ca; |
| struct bucket *g; |
| struct bkey_alloc_unpacked u; |
| |
| if (k.k->type != KEY_TYPE_alloc && |
| k.k->type != KEY_TYPE_alloc_v2) |
| return 0; |
| |
| ca = bch_dev_bkey_exists(c, k.k->p.inode); |
| g = bucket(ca, k.k->p.offset); |
| u = bch2_alloc_unpack(k); |
| |
| g->_mark.gen = u.gen; |
| g->_mark.data_type = u.data_type; |
| g->_mark.dirty_sectors = u.dirty_sectors; |
| g->_mark.cached_sectors = u.cached_sectors; |
| g->io_time[READ] = u.read_time; |
| g->io_time[WRITE] = u.write_time; |
| g->oldest_gen = u.oldest_gen; |
| g->gen_valid = 1; |
| |
| return 0; |
| } |
| |
| int bch2_alloc_read(struct bch_fs *c) |
| { |
| int ret; |
| |
| down_read(&c->gc_lock); |
| ret = bch2_btree_and_journal_walk(c, BTREE_ID_alloc, bch2_alloc_read_fn); |
| up_read(&c->gc_lock); |
| if (ret) { |
| bch_err(c, "error reading alloc info: %i", ret); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int bch2_alloc_write_key(struct btree_trans *trans, |
| struct btree_iter *iter, |
| unsigned flags) |
| { |
| struct bch_fs *c = trans->c; |
| struct bkey_s_c k; |
| struct bch_dev *ca; |
| struct bucket *g; |
| struct bucket_mark m; |
| struct bkey_alloc_unpacked old_u, new_u; |
| struct bkey_alloc_buf a; |
| int ret; |
| retry: |
| bch2_trans_begin(trans); |
| |
| ret = bch2_btree_key_cache_flush(trans, |
| BTREE_ID_alloc, iter->pos); |
| if (ret) |
| goto err; |
| |
| k = bch2_btree_iter_peek_slot(iter); |
| ret = bkey_err(k); |
| if (ret) |
| goto err; |
| |
| old_u = bch2_alloc_unpack(k); |
| |
| percpu_down_read(&c->mark_lock); |
| ca = bch_dev_bkey_exists(c, iter->pos.inode); |
| g = bucket(ca, iter->pos.offset); |
| m = READ_ONCE(g->mark); |
| new_u = alloc_mem_to_key(iter, g, m); |
| percpu_up_read(&c->mark_lock); |
| |
| if (!bkey_alloc_unpacked_cmp(old_u, new_u)) |
| return 0; |
| |
| bch2_alloc_pack(c, &a, new_u); |
| ret = bch2_trans_update(trans, iter, &a.k, |
| BTREE_TRIGGER_NORUN) ?: |
| bch2_trans_commit(trans, NULL, NULL, |
| BTREE_INSERT_NOFAIL|flags); |
| err: |
| if (ret == -EINTR) |
| goto retry; |
| return ret; |
| } |
| |
| int bch2_alloc_write(struct bch_fs *c, unsigned flags) |
| { |
| struct btree_trans trans; |
| struct btree_iter iter; |
| struct bch_dev *ca; |
| unsigned i; |
| int ret = 0; |
| |
| bch2_trans_init(&trans, c, BTREE_ITER_MAX, 0); |
| bch2_trans_iter_init(&trans, &iter, BTREE_ID_alloc, POS_MIN, |
| BTREE_ITER_SLOTS|BTREE_ITER_INTENT); |
| |
| for_each_member_device(ca, c, i) { |
| bch2_btree_iter_set_pos(&iter, |
| POS(ca->dev_idx, ca->mi.first_bucket)); |
| |
| while (iter.pos.offset < ca->mi.nbuckets) { |
| bch2_trans_cond_resched(&trans); |
| |
| ret = bch2_alloc_write_key(&trans, &iter, flags); |
| if (ret) { |
| percpu_ref_put(&ca->ref); |
| goto err; |
| } |
| bch2_btree_iter_advance(&iter); |
| } |
| } |
| err: |
| bch2_trans_iter_exit(&trans, &iter); |
| bch2_trans_exit(&trans); |
| return ret; |
| } |
| |
| /* Bucket IO clocks: */ |
| |
| int bch2_bucket_io_time_reset(struct btree_trans *trans, unsigned dev, |
| size_t bucket_nr, int rw) |
| { |
| struct bch_fs *c = trans->c; |
| struct bch_dev *ca = bch_dev_bkey_exists(c, dev); |
| struct btree_iter iter; |
| struct bucket *g; |
| struct bkey_alloc_buf *a; |
| struct bkey_alloc_unpacked u; |
| u64 *time, now; |
| int ret = 0; |
| |
| bch2_trans_iter_init(trans, &iter, BTREE_ID_alloc, POS(dev, bucket_nr), |
| BTREE_ITER_CACHED| |
| BTREE_ITER_CACHED_NOFILL| |
| BTREE_ITER_INTENT); |
| ret = bch2_btree_iter_traverse(&iter); |
| if (ret) |
| goto out; |
| |
| a = bch2_trans_kmalloc(trans, sizeof(struct bkey_alloc_buf)); |
| ret = PTR_ERR_OR_ZERO(a); |
| if (ret) |
| goto out; |
| |
| percpu_down_read(&c->mark_lock); |
| g = bucket(ca, bucket_nr); |
| u = alloc_mem_to_key(&iter, g, READ_ONCE(g->mark)); |
| percpu_up_read(&c->mark_lock); |
| |
| time = rw == READ ? &u.read_time : &u.write_time; |
| now = atomic64_read(&c->io_clock[rw].now); |
| if (*time == now) |
| goto out; |
| |
| *time = now; |
| |
| bch2_alloc_pack(c, a, u); |
| ret = bch2_trans_update(trans, &iter, &a->k, 0) ?: |
| bch2_trans_commit(trans, NULL, NULL, 0); |
| out: |
| bch2_trans_iter_exit(trans, &iter); |
| return ret; |
| } |
| |
| /* Background allocator thread: */ |
| |
| /* |
| * Scans for buckets to be invalidated, invalidates them, rewrites prios/gens |
| * (marking them as invalidated on disk), then optionally issues discard |
| * commands to the newly free buckets, then puts them on the various freelists. |
| */ |
| |
| static bool bch2_can_invalidate_bucket(struct bch_dev *ca, size_t b, |
| struct bucket_mark m) |
| { |
| u8 gc_gen; |
| |
| if (!is_available_bucket(m)) |
| return false; |
| |
| if (m.owned_by_allocator) |
| return false; |
| |
| if (ca->buckets_nouse && |
| test_bit(b, ca->buckets_nouse)) |
| return false; |
| |
| gc_gen = bucket_gc_gen(bucket(ca, b)); |
| |
| ca->inc_gen_needs_gc += gc_gen >= BUCKET_GC_GEN_MAX / 2; |
| ca->inc_gen_really_needs_gc += gc_gen >= BUCKET_GC_GEN_MAX; |
| |
| return gc_gen < BUCKET_GC_GEN_MAX; |
| } |
| |
| /* |
| * Determines what order we're going to reuse buckets, smallest bucket_key() |
| * first. |
| */ |
| |
| static unsigned bucket_sort_key(struct bucket *g, struct bucket_mark m, |
| u64 now, u64 last_seq_ondisk) |
| { |
| unsigned used = bucket_sectors_used(m); |
| |
| if (used) { |
| /* |
| * Prefer to keep buckets that have been read more recently, and |
| * buckets that have more data in them: |
| */ |
| u64 last_read = max_t(s64, 0, now - g->io_time[READ]); |
| u32 last_read_scaled = max_t(u64, U32_MAX, div_u64(last_read, used)); |
| |
| return -last_read_scaled; |
| } else { |
| /* |
| * Prefer to use buckets with smaller gc_gen so that we don't |
| * have to walk the btree and recalculate oldest_gen - but shift |
| * off the low bits so that buckets will still have equal sort |
| * keys when there's only a small difference, so that we can |
| * keep sequential buckets together: |
| */ |
| return (bucket_needs_journal_commit(m, last_seq_ondisk) << 4)| |
| (bucket_gc_gen(g) >> 4); |
| } |
| } |
| |
| static inline int bucket_alloc_cmp(alloc_heap *h, |
| struct alloc_heap_entry l, |
| struct alloc_heap_entry r) |
| { |
| return cmp_int(l.key, r.key) ?: |
| cmp_int(r.nr, l.nr) ?: |
| cmp_int(l.bucket, r.bucket); |
| } |
| |
| static inline int bucket_idx_cmp(const void *_l, const void *_r) |
| { |
| const struct alloc_heap_entry *l = _l, *r = _r; |
| |
| return cmp_int(l->bucket, r->bucket); |
| } |
| |
| static void find_reclaimable_buckets_lru(struct bch_fs *c, struct bch_dev *ca) |
| { |
| struct bucket_array *buckets; |
| struct alloc_heap_entry e = { 0 }; |
| u64 now, last_seq_ondisk; |
| size_t b, i, nr = 0; |
| |
| down_read(&ca->bucket_lock); |
| |
| buckets = bucket_array(ca); |
| ca->alloc_heap.used = 0; |
| now = atomic64_read(&c->io_clock[READ].now); |
| last_seq_ondisk = c->journal.last_seq_ondisk; |
| |
| /* |
| * Find buckets with lowest read priority, by building a maxheap sorted |
| * by read priority and repeatedly replacing the maximum element until |
| * all buckets have been visited. |
| */ |
| for (b = ca->mi.first_bucket; b < ca->mi.nbuckets; b++) { |
| struct bucket *g = &buckets->b[b]; |
| struct bucket_mark m = READ_ONCE(g->mark); |
| unsigned key = bucket_sort_key(g, m, now, last_seq_ondisk); |
| |
| cond_resched(); |
| |
| if (!bch2_can_invalidate_bucket(ca, b, m)) |
| continue; |
| |
| if (e.nr && e.bucket + e.nr == b && e.key == key) { |
| e.nr++; |
| } else { |
| if (e.nr) |
| heap_add_or_replace(&ca->alloc_heap, e, |
| -bucket_alloc_cmp, NULL); |
| |
| e = (struct alloc_heap_entry) { |
| .bucket = b, |
| .nr = 1, |
| .key = key, |
| }; |
| } |
| } |
| |
| if (e.nr) |
| heap_add_or_replace(&ca->alloc_heap, e, |
| -bucket_alloc_cmp, NULL); |
| |
| for (i = 0; i < ca->alloc_heap.used; i++) |
| nr += ca->alloc_heap.data[i].nr; |
| |
| while (nr - ca->alloc_heap.data[0].nr >= ALLOC_SCAN_BATCH(ca)) { |
| nr -= ca->alloc_heap.data[0].nr; |
| heap_pop(&ca->alloc_heap, e, -bucket_alloc_cmp, NULL); |
| } |
| |
| up_read(&ca->bucket_lock); |
| } |
| |
| static void find_reclaimable_buckets_fifo(struct bch_fs *c, struct bch_dev *ca) |
| { |
| struct bucket_array *buckets = bucket_array(ca); |
| struct bucket_mark m; |
| size_t b, start; |
| |
| if (ca->fifo_last_bucket < ca->mi.first_bucket || |
| ca->fifo_last_bucket >= ca->mi.nbuckets) |
| ca->fifo_last_bucket = ca->mi.first_bucket; |
| |
| start = ca->fifo_last_bucket; |
| |
| do { |
| ca->fifo_last_bucket++; |
| if (ca->fifo_last_bucket == ca->mi.nbuckets) |
| ca->fifo_last_bucket = ca->mi.first_bucket; |
| |
| b = ca->fifo_last_bucket; |
| m = READ_ONCE(buckets->b[b].mark); |
| |
| if (bch2_can_invalidate_bucket(ca, b, m)) { |
| struct alloc_heap_entry e = { .bucket = b, .nr = 1, }; |
| |
| heap_add(&ca->alloc_heap, e, bucket_alloc_cmp, NULL); |
| if (heap_full(&ca->alloc_heap)) |
| break; |
| } |
| |
| cond_resched(); |
| } while (ca->fifo_last_bucket != start); |
| } |
| |
| static void find_reclaimable_buckets_random(struct bch_fs *c, struct bch_dev *ca) |
| { |
| struct bucket_array *buckets = bucket_array(ca); |
| struct bucket_mark m; |
| size_t checked, i; |
| |
| for (checked = 0; |
| checked < ca->mi.nbuckets / 2; |
| checked++) { |
| size_t b = bch2_rand_range(ca->mi.nbuckets - |
| ca->mi.first_bucket) + |
| ca->mi.first_bucket; |
| |
| m = READ_ONCE(buckets->b[b].mark); |
| |
| if (bch2_can_invalidate_bucket(ca, b, m)) { |
| struct alloc_heap_entry e = { .bucket = b, .nr = 1, }; |
| |
| heap_add(&ca->alloc_heap, e, bucket_alloc_cmp, NULL); |
| if (heap_full(&ca->alloc_heap)) |
| break; |
| } |
| |
| cond_resched(); |
| } |
| |
| sort(ca->alloc_heap.data, |
| ca->alloc_heap.used, |
| sizeof(ca->alloc_heap.data[0]), |
| bucket_idx_cmp, NULL); |
| |
| /* remove duplicates: */ |
| for (i = 0; i + 1 < ca->alloc_heap.used; i++) |
| if (ca->alloc_heap.data[i].bucket == |
| ca->alloc_heap.data[i + 1].bucket) |
| ca->alloc_heap.data[i].nr = 0; |
| } |
| |
| static size_t find_reclaimable_buckets(struct bch_fs *c, struct bch_dev *ca) |
| { |
| size_t i, nr = 0; |
| |
| ca->inc_gen_needs_gc = 0; |
| ca->inc_gen_really_needs_gc = 0; |
| |
| switch (ca->mi.replacement) { |
| case BCH_CACHE_REPLACEMENT_lru: |
| find_reclaimable_buckets_lru(c, ca); |
| break; |
| case BCH_CACHE_REPLACEMENT_fifo: |
| find_reclaimable_buckets_fifo(c, ca); |
| break; |
| case BCH_CACHE_REPLACEMENT_random: |
| find_reclaimable_buckets_random(c, ca); |
| break; |
| } |
| |
| heap_resort(&ca->alloc_heap, bucket_alloc_cmp, NULL); |
| |
| for (i = 0; i < ca->alloc_heap.used; i++) |
| nr += ca->alloc_heap.data[i].nr; |
| |
| return nr; |
| } |
| |
| /* |
| * returns sequence number of most recent journal entry that updated this |
| * bucket: |
| */ |
| static u64 bucket_journal_seq(struct bch_fs *c, struct bucket_mark m) |
| { |
| if (m.journal_seq_valid) { |
| u64 journal_seq = atomic64_read(&c->journal.seq); |
| u64 bucket_seq = journal_seq; |
| |
| bucket_seq &= ~((u64) U16_MAX); |
| bucket_seq |= m.journal_seq; |
| |
| if (bucket_seq > journal_seq) |
| bucket_seq -= 1 << 16; |
| |
| return bucket_seq; |
| } else { |
| return 0; |
| } |
| } |
| |
| static int bucket_invalidate_btree(struct btree_trans *trans, |
| struct bch_dev *ca, u64 b) |
| { |
| struct bch_fs *c = trans->c; |
| struct bkey_alloc_buf *a; |
| struct bkey_alloc_unpacked u; |
| struct bucket *g; |
| struct bucket_mark m; |
| struct btree_iter iter; |
| int ret; |
| |
| bch2_trans_iter_init(trans, &iter, BTREE_ID_alloc, |
| POS(ca->dev_idx, b), |
| BTREE_ITER_CACHED| |
| BTREE_ITER_CACHED_NOFILL| |
| BTREE_ITER_INTENT); |
| |
| a = bch2_trans_kmalloc(trans, sizeof(*a)); |
| ret = PTR_ERR_OR_ZERO(a); |
| if (ret) |
| goto err; |
| |
| ret = bch2_btree_iter_traverse(&iter); |
| if (ret) |
| goto err; |
| |
| percpu_down_read(&c->mark_lock); |
| g = bucket(ca, b); |
| m = READ_ONCE(g->mark); |
| u = alloc_mem_to_key(&iter, g, m); |
| percpu_up_read(&c->mark_lock); |
| |
| u.gen++; |
| u.data_type = 0; |
| u.dirty_sectors = 0; |
| u.cached_sectors = 0; |
| u.read_time = atomic64_read(&c->io_clock[READ].now); |
| u.write_time = atomic64_read(&c->io_clock[WRITE].now); |
| |
| bch2_alloc_pack(c, a, u); |
| ret = bch2_trans_update(trans, &iter, &a->k, |
| BTREE_TRIGGER_BUCKET_INVALIDATE); |
| err: |
| bch2_trans_iter_exit(trans, &iter); |
| return ret; |
| } |
| |
| static int bch2_invalidate_one_bucket(struct bch_fs *c, struct bch_dev *ca, |
| u64 *journal_seq, unsigned flags) |
| { |
| struct bucket *g; |
| struct bucket_mark m; |
| size_t b; |
| int ret = 0; |
| |
| BUG_ON(!ca->alloc_heap.used || |
| !ca->alloc_heap.data[0].nr); |
| b = ca->alloc_heap.data[0].bucket; |
| |
| /* first, put on free_inc and mark as owned by allocator: */ |
| percpu_down_read(&c->mark_lock); |
| g = bucket(ca, b); |
| m = READ_ONCE(g->mark); |
| |
| BUG_ON(m.dirty_sectors); |
| |
| bch2_mark_alloc_bucket(c, ca, b, true); |
| |
| spin_lock(&c->freelist_lock); |
| verify_not_on_freelist(c, ca, b); |
| BUG_ON(!fifo_push(&ca->free_inc, b)); |
| spin_unlock(&c->freelist_lock); |
| |
| /* |
| * If we're not invalidating cached data, we only increment the bucket |
| * gen in memory here, the incremented gen will be updated in the btree |
| * by bch2_trans_mark_pointer(): |
| */ |
| if (!m.cached_sectors && |
| !bucket_needs_journal_commit(m, c->journal.last_seq_ondisk)) { |
| BUG_ON(m.data_type); |
| bucket_cmpxchg(g, m, m.gen++); |
| percpu_up_read(&c->mark_lock); |
| goto out; |
| } |
| |
| percpu_up_read(&c->mark_lock); |
| |
| /* |
| * If the read-only path is trying to shut down, we can't be generating |
| * new btree updates: |
| */ |
| if (test_bit(BCH_FS_ALLOCATOR_STOPPING, &c->flags)) { |
| ret = 1; |
| goto out; |
| } |
| |
| ret = bch2_trans_do(c, NULL, journal_seq, |
| BTREE_INSERT_NOCHECK_RW| |
| BTREE_INSERT_NOFAIL| |
| BTREE_INSERT_JOURNAL_RESERVED| |
| flags, |
| bucket_invalidate_btree(&trans, ca, b)); |
| out: |
| if (!ret) { |
| /* remove from alloc_heap: */ |
| struct alloc_heap_entry e, *top = ca->alloc_heap.data; |
| |
| top->bucket++; |
| top->nr--; |
| |
| if (!top->nr) |
| heap_pop(&ca->alloc_heap, e, bucket_alloc_cmp, NULL); |
| |
| /* |
| * Make sure we flush the last journal entry that updated this |
| * bucket (i.e. deleting the last reference) before writing to |
| * this bucket again: |
| */ |
| *journal_seq = max(*journal_seq, bucket_journal_seq(c, m)); |
| } else { |
| size_t b2; |
| |
| /* remove from free_inc: */ |
| percpu_down_read(&c->mark_lock); |
| spin_lock(&c->freelist_lock); |
| |
| bch2_mark_alloc_bucket(c, ca, b, false); |
| |
| BUG_ON(!fifo_pop_back(&ca->free_inc, b2)); |
| BUG_ON(b != b2); |
| |
| spin_unlock(&c->freelist_lock); |
| percpu_up_read(&c->mark_lock); |
| } |
| |
| return ret < 0 ? ret : 0; |
| } |
| |
| /* |
| * Pull buckets off ca->alloc_heap, invalidate them, move them to ca->free_inc: |
| */ |
| static int bch2_invalidate_buckets(struct bch_fs *c, struct bch_dev *ca) |
| { |
| u64 journal_seq = 0; |
| int ret = 0; |
| |
| /* Only use nowait if we've already invalidated at least one bucket: */ |
| while (!ret && |
| !fifo_full(&ca->free_inc) && |
| ca->alloc_heap.used) { |
| if (kthread_should_stop()) { |
| ret = 1; |
| break; |
| } |
| |
| ret = bch2_invalidate_one_bucket(c, ca, &journal_seq, |
| (!fifo_empty(&ca->free_inc) |
| ? BTREE_INSERT_NOWAIT : 0)); |
| /* |
| * We only want to batch up invalidates when they're going to |
| * require flushing the journal: |
| */ |
| if (!journal_seq) |
| break; |
| } |
| |
| /* If we used NOWAIT, don't return the error: */ |
| if (!fifo_empty(&ca->free_inc)) |
| ret = 0; |
| if (ret < 0) |
| bch_err(ca, "error invalidating buckets: %i", ret); |
| if (ret) |
| return ret; |
| |
| if (journal_seq) |
| ret = bch2_journal_flush_seq(&c->journal, journal_seq); |
| if (ret) { |
| bch_err(ca, "journal error: %i", ret); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static void alloc_thread_set_state(struct bch_dev *ca, unsigned new_state) |
| { |
| if (ca->allocator_state != new_state) { |
| ca->allocator_state = new_state; |
| closure_wake_up(&ca->fs->freelist_wait); |
| } |
| } |
| |
| static int push_invalidated_bucket(struct bch_fs *c, struct bch_dev *ca, u64 b) |
| { |
| unsigned i; |
| int ret = 0; |
| |
| spin_lock(&c->freelist_lock); |
| for (i = 0; i < RESERVE_NR; i++) { |
| /* |
| * Don't strand buckets on the copygc freelist until |
| * after recovery is finished: |
| */ |
| if (i == RESERVE_MOVINGGC && |
| !test_bit(BCH_FS_STARTED, &c->flags)) |
| continue; |
| |
| if (fifo_push(&ca->free[i], b)) { |
| fifo_pop(&ca->free_inc, b); |
| ret = 1; |
| break; |
| } |
| } |
| spin_unlock(&c->freelist_lock); |
| |
| ca->allocator_state = ret |
| ? ALLOCATOR_running |
| : ALLOCATOR_blocked_full; |
| closure_wake_up(&c->freelist_wait); |
| return ret; |
| } |
| |
| static void discard_one_bucket(struct bch_fs *c, struct bch_dev *ca, u64 b) |
| { |
| if (ca->mi.discard && |
| bdev_max_discard_sectors(ca->disk_sb.bdev)) |
| blkdev_issue_discard(ca->disk_sb.bdev, bucket_to_sector(ca, b), |
| ca->mi.bucket_size, GFP_NOFS); |
| } |
| |
| static bool allocator_thread_running(struct bch_dev *ca) |
| { |
| unsigned state = ca->mi.state == BCH_MEMBER_STATE_rw && |
| test_bit(BCH_FS_ALLOCATOR_RUNNING, &ca->fs->flags) |
| ? ALLOCATOR_running |
| : ALLOCATOR_stopped; |
| alloc_thread_set_state(ca, state); |
| return state == ALLOCATOR_running; |
| } |
| |
| static int buckets_available(struct bch_dev *ca, unsigned long gc_count) |
| { |
| s64 available = dev_buckets_reclaimable(ca) - |
| (gc_count == ca->fs->gc_count ? ca->inc_gen_really_needs_gc : 0); |
| bool ret = available > 0; |
| |
| alloc_thread_set_state(ca, ret |
| ? ALLOCATOR_running |
| : ALLOCATOR_blocked); |
| return ret; |
| } |
| |
| /** |
| * bch_allocator_thread - move buckets from free_inc to reserves |
| * |
| * The free_inc FIFO is populated by find_reclaimable_buckets(), and |
| * the reserves are depleted by bucket allocation. When we run out |
| * of free_inc, try to invalidate some buckets and write out |
| * prios and gens. |
| */ |
| static int bch2_allocator_thread(void *arg) |
| { |
| struct bch_dev *ca = arg; |
| struct bch_fs *c = ca->fs; |
| unsigned long gc_count = c->gc_count; |
| size_t nr; |
| int ret; |
| |
| set_freezable(); |
| |
| while (1) { |
| ret = kthread_wait_freezable(allocator_thread_running(ca)); |
| if (ret) |
| goto stop; |
| |
| while (!ca->alloc_heap.used) { |
| cond_resched(); |
| |
| ret = kthread_wait_freezable(buckets_available(ca, gc_count)); |
| if (ret) |
| goto stop; |
| |
| gc_count = c->gc_count; |
| nr = find_reclaimable_buckets(c, ca); |
| |
| trace_alloc_scan(ca, nr, ca->inc_gen_needs_gc, |
| ca->inc_gen_really_needs_gc); |
| |
| if ((ca->inc_gen_needs_gc >= ALLOC_SCAN_BATCH(ca) || |
| ca->inc_gen_really_needs_gc) && |
| c->gc_thread) { |
| atomic_inc(&c->kick_gc); |
| wake_up_process(c->gc_thread); |
| } |
| } |
| |
| ret = bch2_invalidate_buckets(c, ca); |
| if (ret) |
| goto stop; |
| |
| while (!fifo_empty(&ca->free_inc)) { |
| u64 b = fifo_peek(&ca->free_inc); |
| |
| discard_one_bucket(c, ca, b); |
| |
| ret = kthread_wait_freezable(push_invalidated_bucket(c, ca, b)); |
| if (ret) |
| goto stop; |
| } |
| } |
| stop: |
| alloc_thread_set_state(ca, ALLOCATOR_stopped); |
| return 0; |
| } |
| |
| /* Startup/shutdown (ro/rw): */ |
| |
| void bch2_recalc_capacity(struct bch_fs *c) |
| { |
| struct bch_dev *ca; |
| u64 capacity = 0, reserved_sectors = 0, gc_reserve; |
| unsigned bucket_size_max = 0; |
| unsigned long ra_pages = 0; |
| unsigned i, j; |
| |
| lockdep_assert_held(&c->state_lock); |
| |
| for_each_online_member(ca, c, i) { |
| struct backing_dev_info *bdi = ca->disk_sb.bdev->bd_disk->bdi; |
| |
| ra_pages += bdi->ra_pages; |
| } |
| |
| bch2_set_ra_pages(c, ra_pages); |
| |
| for_each_rw_member(ca, c, i) { |
| u64 dev_reserve = 0; |
| |
| /* |
| * We need to reserve buckets (from the number |
| * of currently available buckets) against |
| * foreground writes so that mainly copygc can |
| * make forward progress. |
| * |
| * We need enough to refill the various reserves |
| * from scratch - copygc will use its entire |
| * reserve all at once, then run against when |
| * its reserve is refilled (from the formerly |
| * available buckets). |
| * |
| * This reserve is just used when considering if |
| * allocations for foreground writes must wait - |
| * not -ENOSPC calculations. |
| */ |
| for (j = 0; j < RESERVE_NONE; j++) |
| dev_reserve += ca->free[j].size; |
| |
| dev_reserve += 1; /* btree write point */ |
| dev_reserve += 1; /* copygc write point */ |
| dev_reserve += 1; /* rebalance write point */ |
| |
| dev_reserve *= ca->mi.bucket_size; |
| |
| capacity += bucket_to_sector(ca, ca->mi.nbuckets - |
| ca->mi.first_bucket); |
| |
| reserved_sectors += dev_reserve * 2; |
| |
| bucket_size_max = max_t(unsigned, bucket_size_max, |
| ca->mi.bucket_size); |
| } |
| |
| gc_reserve = c->opts.gc_reserve_bytes |
| ? c->opts.gc_reserve_bytes >> 9 |
| : div64_u64(capacity * c->opts.gc_reserve_percent, 100); |
| |
| reserved_sectors = max(gc_reserve, reserved_sectors); |
| |
| reserved_sectors = min(reserved_sectors, capacity); |
| |
| c->capacity = capacity - reserved_sectors; |
| |
| c->bucket_size_max = bucket_size_max; |
| |
| /* Wake up case someone was waiting for buckets */ |
| closure_wake_up(&c->freelist_wait); |
| } |
| |
| static bool bch2_dev_has_open_write_point(struct bch_fs *c, struct bch_dev *ca) |
| { |
| struct open_bucket *ob; |
| bool ret = false; |
| |
| for (ob = c->open_buckets; |
| ob < c->open_buckets + ARRAY_SIZE(c->open_buckets); |
| ob++) { |
| spin_lock(&ob->lock); |
| if (ob->valid && !ob->on_partial_list && |
| ob->ptr.dev == ca->dev_idx) |
| ret = true; |
| spin_unlock(&ob->lock); |
| } |
| |
| return ret; |
| } |
| |
| /* device goes ro: */ |
| void bch2_dev_allocator_remove(struct bch_fs *c, struct bch_dev *ca) |
| { |
| unsigned i; |
| |
| BUG_ON(ca->alloc_thread); |
| |
| /* First, remove device from allocation groups: */ |
| |
| for (i = 0; i < ARRAY_SIZE(c->rw_devs); i++) |
| clear_bit(ca->dev_idx, c->rw_devs[i].d); |
| |
| /* |
| * Capacity is calculated based off of devices in allocation groups: |
| */ |
| bch2_recalc_capacity(c); |
| |
| /* Next, close write points that point to this device... */ |
| for (i = 0; i < ARRAY_SIZE(c->write_points); i++) |
| bch2_writepoint_stop(c, ca, &c->write_points[i]); |
| |
| bch2_writepoint_stop(c, ca, &c->copygc_write_point); |
| bch2_writepoint_stop(c, ca, &c->rebalance_write_point); |
| bch2_writepoint_stop(c, ca, &c->btree_write_point); |
| |
| mutex_lock(&c->btree_reserve_cache_lock); |
| while (c->btree_reserve_cache_nr) { |
| struct btree_alloc *a = |
| &c->btree_reserve_cache[--c->btree_reserve_cache_nr]; |
| |
| bch2_open_buckets_put(c, &a->ob); |
| } |
| mutex_unlock(&c->btree_reserve_cache_lock); |
| |
| while (1) { |
| struct open_bucket *ob; |
| |
| spin_lock(&c->freelist_lock); |
| if (!ca->open_buckets_partial_nr) { |
| spin_unlock(&c->freelist_lock); |
| break; |
| } |
| ob = c->open_buckets + |
| ca->open_buckets_partial[--ca->open_buckets_partial_nr]; |
| ob->on_partial_list = false; |
| spin_unlock(&c->freelist_lock); |
| |
| bch2_open_bucket_put(c, ob); |
| } |
| |
| bch2_ec_stop_dev(c, ca); |
| |
| /* |
| * Wake up threads that were blocked on allocation, so they can notice |
| * the device can no longer be removed and the capacity has changed: |
| */ |
| closure_wake_up(&c->freelist_wait); |
| |
| /* |
| * journal_res_get() can block waiting for free space in the journal - |
| * it needs to notice there may not be devices to allocate from anymore: |
| */ |
| wake_up(&c->journal.wait); |
| |
| /* Now wait for any in flight writes: */ |
| |
| closure_wait_event(&c->open_buckets_wait, |
| !bch2_dev_has_open_write_point(c, ca)); |
| } |
| |
| /* device goes rw: */ |
| void bch2_dev_allocator_add(struct bch_fs *c, struct bch_dev *ca) |
| { |
| unsigned i; |
| |
| for (i = 0; i < ARRAY_SIZE(c->rw_devs); i++) |
| if (ca->mi.data_allowed & (1 << i)) |
| set_bit(ca->dev_idx, c->rw_devs[i].d); |
| } |
| |
| void bch2_dev_allocator_quiesce(struct bch_fs *c, struct bch_dev *ca) |
| { |
| if (ca->alloc_thread) |
| closure_wait_event(&c->freelist_wait, |
| ca->allocator_state != ALLOCATOR_running); |
| } |
| |
| /* stop allocator thread: */ |
| void bch2_dev_allocator_stop(struct bch_dev *ca) |
| { |
| struct task_struct *p; |
| |
| p = rcu_dereference_protected(ca->alloc_thread, 1); |
| ca->alloc_thread = NULL; |
| |
| /* |
| * We need an rcu barrier between setting ca->alloc_thread = NULL and |
| * the thread shutting down to avoid bch2_wake_allocator() racing: |
| * |
| * XXX: it would be better to have the rcu barrier be asynchronous |
| * instead of blocking us here |
| */ |
| synchronize_rcu(); |
| |
| if (p) { |
| kthread_stop(p); |
| put_task_struct(p); |
| } |
| } |
| |
| /* start allocator thread: */ |
| int bch2_dev_allocator_start(struct bch_dev *ca) |
| { |
| struct task_struct *p; |
| |
| /* |
| * allocator thread already started? |
| */ |
| if (ca->alloc_thread) |
| return 0; |
| |
| p = kthread_create(bch2_allocator_thread, ca, |
| "bch-alloc/%s", ca->name); |
| if (IS_ERR(p)) { |
| bch_err(ca->fs, "error creating allocator thread: %li", |
| PTR_ERR(p)); |
| return PTR_ERR(p); |
| } |
| |
| get_task_struct(p); |
| rcu_assign_pointer(ca->alloc_thread, p); |
| wake_up_process(p); |
| return 0; |
| } |
| |
| void bch2_fs_allocator_background_init(struct bch_fs *c) |
| { |
| spin_lock_init(&c->freelist_lock); |
| } |
| |
| void bch2_open_buckets_to_text(struct printbuf *out, struct bch_fs *c) |
| { |
| struct open_bucket *ob; |
| |
| for (ob = c->open_buckets; |
| ob < c->open_buckets + ARRAY_SIZE(c->open_buckets); |
| ob++) { |
| spin_lock(&ob->lock); |
| if (ob->valid && !ob->on_partial_list) { |
| pr_buf(out, "%zu ref %u type %s\n", |
| ob - c->open_buckets, |
| atomic_read(&ob->pin), |
| bch2_data_types[ob->type]); |
| } |
| spin_unlock(&ob->lock); |
| } |
| |
| } |