| /* |
| * Copyright © 2006-2007 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
| * DEALINGS IN THE SOFTWARE. |
| * |
| * Authors: |
| * Eric Anholt <eric@anholt.net> |
| */ |
| |
| #include <linux/dmi.h> |
| #include <linux/module.h> |
| #include <linux/input.h> |
| #include <linux/i2c.h> |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/vgaarb.h> |
| #include <drm/drm_edid.h> |
| #include <drm/drmP.h> |
| #include "intel_drv.h" |
| #include "intel_frontbuffer.h" |
| #include <drm/i915_drm.h> |
| #include "i915_drv.h" |
| #include "i915_gem_dmabuf.h" |
| #include "intel_dsi.h" |
| #include "i915_trace.h" |
| #include <drm/drm_atomic.h> |
| #include <drm/drm_atomic_helper.h> |
| #include <drm/drm_dp_helper.h> |
| #include <drm/drm_crtc_helper.h> |
| #include <drm/drm_plane_helper.h> |
| #include <drm/drm_rect.h> |
| #include <linux/dma_remapping.h> |
| #include <linux/reservation.h> |
| |
| static bool is_mmio_work(struct intel_flip_work *work) |
| { |
| return work->mmio_work.func; |
| } |
| |
| /* Primary plane formats for gen <= 3 */ |
| static const uint32_t i8xx_primary_formats[] = { |
| DRM_FORMAT_C8, |
| DRM_FORMAT_RGB565, |
| DRM_FORMAT_XRGB1555, |
| DRM_FORMAT_XRGB8888, |
| }; |
| |
| /* Primary plane formats for gen >= 4 */ |
| static const uint32_t i965_primary_formats[] = { |
| DRM_FORMAT_C8, |
| DRM_FORMAT_RGB565, |
| DRM_FORMAT_XRGB8888, |
| DRM_FORMAT_XBGR8888, |
| DRM_FORMAT_XRGB2101010, |
| DRM_FORMAT_XBGR2101010, |
| }; |
| |
| static const uint32_t skl_primary_formats[] = { |
| DRM_FORMAT_C8, |
| DRM_FORMAT_RGB565, |
| DRM_FORMAT_XRGB8888, |
| DRM_FORMAT_XBGR8888, |
| DRM_FORMAT_ARGB8888, |
| DRM_FORMAT_ABGR8888, |
| DRM_FORMAT_XRGB2101010, |
| DRM_FORMAT_XBGR2101010, |
| DRM_FORMAT_YUYV, |
| DRM_FORMAT_YVYU, |
| DRM_FORMAT_UYVY, |
| DRM_FORMAT_VYUY, |
| }; |
| |
| /* Cursor formats */ |
| static const uint32_t intel_cursor_formats[] = { |
| DRM_FORMAT_ARGB8888, |
| }; |
| |
| static void i9xx_crtc_clock_get(struct intel_crtc *crtc, |
| struct intel_crtc_state *pipe_config); |
| static void ironlake_pch_clock_get(struct intel_crtc *crtc, |
| struct intel_crtc_state *pipe_config); |
| |
| static int intel_framebuffer_init(struct drm_device *dev, |
| struct intel_framebuffer *ifb, |
| struct drm_mode_fb_cmd2 *mode_cmd, |
| struct drm_i915_gem_object *obj); |
| static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc); |
| static void intel_set_pipe_timings(struct intel_crtc *intel_crtc); |
| static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc); |
| static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc, |
| struct intel_link_m_n *m_n, |
| struct intel_link_m_n *m2_n2); |
| static void ironlake_set_pipeconf(struct drm_crtc *crtc); |
| static void haswell_set_pipeconf(struct drm_crtc *crtc); |
| static void haswell_set_pipemisc(struct drm_crtc *crtc); |
| static void vlv_prepare_pll(struct intel_crtc *crtc, |
| const struct intel_crtc_state *pipe_config); |
| static void chv_prepare_pll(struct intel_crtc *crtc, |
| const struct intel_crtc_state *pipe_config); |
| static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *); |
| static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *); |
| static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc, |
| struct intel_crtc_state *crtc_state); |
| static void skylake_pfit_enable(struct intel_crtc *crtc); |
| static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force); |
| static void ironlake_pfit_enable(struct intel_crtc *crtc); |
| static void intel_modeset_setup_hw_state(struct drm_device *dev); |
| static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc); |
| static int ilk_max_pixel_rate(struct drm_atomic_state *state); |
| static int bxt_calc_cdclk(int max_pixclk); |
| |
| struct intel_limit { |
| struct { |
| int min, max; |
| } dot, vco, n, m, m1, m2, p, p1; |
| |
| struct { |
| int dot_limit; |
| int p2_slow, p2_fast; |
| } p2; |
| }; |
| |
| /* returns HPLL frequency in kHz */ |
| static int valleyview_get_vco(struct drm_i915_private *dev_priv) |
| { |
| int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 }; |
| |
| /* Obtain SKU information */ |
| mutex_lock(&dev_priv->sb_lock); |
| hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) & |
| CCK_FUSE_HPLL_FREQ_MASK; |
| mutex_unlock(&dev_priv->sb_lock); |
| |
| return vco_freq[hpll_freq] * 1000; |
| } |
| |
| int vlv_get_cck_clock(struct drm_i915_private *dev_priv, |
| const char *name, u32 reg, int ref_freq) |
| { |
| u32 val; |
| int divider; |
| |
| mutex_lock(&dev_priv->sb_lock); |
| val = vlv_cck_read(dev_priv, reg); |
| mutex_unlock(&dev_priv->sb_lock); |
| |
| divider = val & CCK_FREQUENCY_VALUES; |
| |
| WARN((val & CCK_FREQUENCY_STATUS) != |
| (divider << CCK_FREQUENCY_STATUS_SHIFT), |
| "%s change in progress\n", name); |
| |
| return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1); |
| } |
| |
| static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv, |
| const char *name, u32 reg) |
| { |
| if (dev_priv->hpll_freq == 0) |
| dev_priv->hpll_freq = valleyview_get_vco(dev_priv); |
| |
| return vlv_get_cck_clock(dev_priv, name, reg, |
| dev_priv->hpll_freq); |
| } |
| |
| static int |
| intel_pch_rawclk(struct drm_i915_private *dev_priv) |
| { |
| return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000; |
| } |
| |
| static int |
| intel_vlv_hrawclk(struct drm_i915_private *dev_priv) |
| { |
| /* RAWCLK_FREQ_VLV register updated from power well code */ |
| return vlv_get_cck_clock_hpll(dev_priv, "hrawclk", |
| CCK_DISPLAY_REF_CLOCK_CONTROL); |
| } |
| |
| static int |
| intel_g4x_hrawclk(struct drm_i915_private *dev_priv) |
| { |
| uint32_t clkcfg; |
| |
| /* hrawclock is 1/4 the FSB frequency */ |
| clkcfg = I915_READ(CLKCFG); |
| switch (clkcfg & CLKCFG_FSB_MASK) { |
| case CLKCFG_FSB_400: |
| return 100000; |
| case CLKCFG_FSB_533: |
| return 133333; |
| case CLKCFG_FSB_667: |
| return 166667; |
| case CLKCFG_FSB_800: |
| return 200000; |
| case CLKCFG_FSB_1067: |
| return 266667; |
| case CLKCFG_FSB_1333: |
| return 333333; |
| /* these two are just a guess; one of them might be right */ |
| case CLKCFG_FSB_1600: |
| case CLKCFG_FSB_1600_ALT: |
| return 400000; |
| default: |
| return 133333; |
| } |
| } |
| |
| void intel_update_rawclk(struct drm_i915_private *dev_priv) |
| { |
| if (HAS_PCH_SPLIT(dev_priv)) |
| dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv); |
| else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) |
| dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv); |
| else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv)) |
| dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv); |
| else |
| return; /* no rawclk on other platforms, or no need to know it */ |
| |
| DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq); |
| } |
| |
| static void intel_update_czclk(struct drm_i915_private *dev_priv) |
| { |
| if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))) |
| return; |
| |
| dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk", |
| CCK_CZ_CLOCK_CONTROL); |
| |
| DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq); |
| } |
| |
| static inline u32 /* units of 100MHz */ |
| intel_fdi_link_freq(struct drm_i915_private *dev_priv, |
| const struct intel_crtc_state *pipe_config) |
| { |
| if (HAS_DDI(dev_priv)) |
| return pipe_config->port_clock; /* SPLL */ |
| else if (IS_GEN5(dev_priv)) |
| return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000; |
| else |
| return 270000; |
| } |
| |
| static const struct intel_limit intel_limits_i8xx_dac = { |
| .dot = { .min = 25000, .max = 350000 }, |
| .vco = { .min = 908000, .max = 1512000 }, |
| .n = { .min = 2, .max = 16 }, |
| .m = { .min = 96, .max = 140 }, |
| .m1 = { .min = 18, .max = 26 }, |
| .m2 = { .min = 6, .max = 16 }, |
| .p = { .min = 4, .max = 128 }, |
| .p1 = { .min = 2, .max = 33 }, |
| .p2 = { .dot_limit = 165000, |
| .p2_slow = 4, .p2_fast = 2 }, |
| }; |
| |
| static const struct intel_limit intel_limits_i8xx_dvo = { |
| .dot = { .min = 25000, .max = 350000 }, |
| .vco = { .min = 908000, .max = 1512000 }, |
| .n = { .min = 2, .max = 16 }, |
| .m = { .min = 96, .max = 140 }, |
| .m1 = { .min = 18, .max = 26 }, |
| .m2 = { .min = 6, .max = 16 }, |
| .p = { .min = 4, .max = 128 }, |
| .p1 = { .min = 2, .max = 33 }, |
| .p2 = { .dot_limit = 165000, |
| .p2_slow = 4, .p2_fast = 4 }, |
| }; |
| |
| static const struct intel_limit intel_limits_i8xx_lvds = { |
| .dot = { .min = 25000, .max = 350000 }, |
| .vco = { .min = 908000, .max = 1512000 }, |
| .n = { .min = 2, .max = 16 }, |
| .m = { .min = 96, .max = 140 }, |
| .m1 = { .min = 18, .max = 26 }, |
| .m2 = { .min = 6, .max = 16 }, |
| .p = { .min = 4, .max = 128 }, |
| .p1 = { .min = 1, .max = 6 }, |
| .p2 = { .dot_limit = 165000, |
| .p2_slow = 14, .p2_fast = 7 }, |
| }; |
| |
| static const struct intel_limit intel_limits_i9xx_sdvo = { |
| .dot = { .min = 20000, .max = 400000 }, |
| .vco = { .min = 1400000, .max = 2800000 }, |
| .n = { .min = 1, .max = 6 }, |
| .m = { .min = 70, .max = 120 }, |
| .m1 = { .min = 8, .max = 18 }, |
| .m2 = { .min = 3, .max = 7 }, |
| .p = { .min = 5, .max = 80 }, |
| .p1 = { .min = 1, .max = 8 }, |
| .p2 = { .dot_limit = 200000, |
| .p2_slow = 10, .p2_fast = 5 }, |
| }; |
| |
| static const struct intel_limit intel_limits_i9xx_lvds = { |
| .dot = { .min = 20000, .max = 400000 }, |
| .vco = { .min = 1400000, .max = 2800000 }, |
| .n = { .min = 1, .max = 6 }, |
| .m = { .min = 70, .max = 120 }, |
| .m1 = { .min = 8, .max = 18 }, |
| .m2 = { .min = 3, .max = 7 }, |
| .p = { .min = 7, .max = 98 }, |
| .p1 = { .min = 1, .max = 8 }, |
| .p2 = { .dot_limit = 112000, |
| .p2_slow = 14, .p2_fast = 7 }, |
| }; |
| |
| |
| static const struct intel_limit intel_limits_g4x_sdvo = { |
| .dot = { .min = 25000, .max = 270000 }, |
| .vco = { .min = 1750000, .max = 3500000}, |
| .n = { .min = 1, .max = 4 }, |
| .m = { .min = 104, .max = 138 }, |
| .m1 = { .min = 17, .max = 23 }, |
| .m2 = { .min = 5, .max = 11 }, |
| .p = { .min = 10, .max = 30 }, |
| .p1 = { .min = 1, .max = 3}, |
| .p2 = { .dot_limit = 270000, |
| .p2_slow = 10, |
| .p2_fast = 10 |
| }, |
| }; |
| |
| static const struct intel_limit intel_limits_g4x_hdmi = { |
| .dot = { .min = 22000, .max = 400000 }, |
| .vco = { .min = 1750000, .max = 3500000}, |
| .n = { .min = 1, .max = 4 }, |
| .m = { .min = 104, .max = 138 }, |
| .m1 = { .min = 16, .max = 23 }, |
| .m2 = { .min = 5, .max = 11 }, |
| .p = { .min = 5, .max = 80 }, |
| .p1 = { .min = 1, .max = 8}, |
| .p2 = { .dot_limit = 165000, |
| .p2_slow = 10, .p2_fast = 5 }, |
| }; |
| |
| static const struct intel_limit intel_limits_g4x_single_channel_lvds = { |
| .dot = { .min = 20000, .max = 115000 }, |
| .vco = { .min = 1750000, .max = 3500000 }, |
| .n = { .min = 1, .max = 3 }, |
| .m = { .min = 104, .max = 138 }, |
| .m1 = { .min = 17, .max = 23 }, |
| .m2 = { .min = 5, .max = 11 }, |
| .p = { .min = 28, .max = 112 }, |
| .p1 = { .min = 2, .max = 8 }, |
| .p2 = { .dot_limit = 0, |
| .p2_slow = 14, .p2_fast = 14 |
| }, |
| }; |
| |
| static const struct intel_limit intel_limits_g4x_dual_channel_lvds = { |
| .dot = { .min = 80000, .max = 224000 }, |
| .vco = { .min = 1750000, .max = 3500000 }, |
| .n = { .min = 1, .max = 3 }, |
| .m = { .min = 104, .max = 138 }, |
| .m1 = { .min = 17, .max = 23 }, |
| .m2 = { .min = 5, .max = 11 }, |
| .p = { .min = 14, .max = 42 }, |
| .p1 = { .min = 2, .max = 6 }, |
| .p2 = { .dot_limit = 0, |
| .p2_slow = 7, .p2_fast = 7 |
| }, |
| }; |
| |
| static const struct intel_limit intel_limits_pineview_sdvo = { |
| .dot = { .min = 20000, .max = 400000}, |
| .vco = { .min = 1700000, .max = 3500000 }, |
| /* Pineview's Ncounter is a ring counter */ |
| .n = { .min = 3, .max = 6 }, |
| .m = { .min = 2, .max = 256 }, |
| /* Pineview only has one combined m divider, which we treat as m2. */ |
| .m1 = { .min = 0, .max = 0 }, |
| .m2 = { .min = 0, .max = 254 }, |
| .p = { .min = 5, .max = 80 }, |
| .p1 = { .min = 1, .max = 8 }, |
| .p2 = { .dot_limit = 200000, |
| .p2_slow = 10, .p2_fast = 5 }, |
| }; |
| |
| static const struct intel_limit intel_limits_pineview_lvds = { |
| .dot = { .min = 20000, .max = 400000 }, |
| .vco = { .min = 1700000, .max = 3500000 }, |
| .n = { .min = 3, .max = 6 }, |
| .m = { .min = 2, .max = 256 }, |
| .m1 = { .min = 0, .max = 0 }, |
| .m2 = { .min = 0, .max = 254 }, |
| .p = { .min = 7, .max = 112 }, |
| .p1 = { .min = 1, .max = 8 }, |
| .p2 = { .dot_limit = 112000, |
| .p2_slow = 14, .p2_fast = 14 }, |
| }; |
| |
| /* Ironlake / Sandybridge |
| * |
| * We calculate clock using (register_value + 2) for N/M1/M2, so here |
| * the range value for them is (actual_value - 2). |
| */ |
| static const struct intel_limit intel_limits_ironlake_dac = { |
| .dot = { .min = 25000, .max = 350000 }, |
| .vco = { .min = 1760000, .max = 3510000 }, |
| .n = { .min = 1, .max = 5 }, |
| .m = { .min = 79, .max = 127 }, |
| .m1 = { .min = 12, .max = 22 }, |
| .m2 = { .min = 5, .max = 9 }, |
| .p = { .min = 5, .max = 80 }, |
| .p1 = { .min = 1, .max = 8 }, |
| .p2 = { .dot_limit = 225000, |
| .p2_slow = 10, .p2_fast = 5 }, |
| }; |
| |
| static const struct intel_limit intel_limits_ironlake_single_lvds = { |
| .dot = { .min = 25000, .max = 350000 }, |
| .vco = { .min = 1760000, .max = 3510000 }, |
| .n = { .min = 1, .max = 3 }, |
| .m = { .min = 79, .max = 118 }, |
| .m1 = { .min = 12, .max = 22 }, |
| .m2 = { .min = 5, .max = 9 }, |
| .p = { .min = 28, .max = 112 }, |
| .p1 = { .min = 2, .max = 8 }, |
| .p2 = { .dot_limit = 225000, |
| .p2_slow = 14, .p2_fast = 14 }, |
| }; |
| |
| static const struct intel_limit intel_limits_ironlake_dual_lvds = { |
| .dot = { .min = 25000, .max = 350000 }, |
| .vco = { .min = 1760000, .max = 3510000 }, |
| .n = { .min = 1, .max = 3 }, |
| .m = { .min = 79, .max = 127 }, |
| .m1 = { .min = 12, .max = 22 }, |
| .m2 = { .min = 5, .max = 9 }, |
| .p = { .min = 14, .max = 56 }, |
| .p1 = { .min = 2, .max = 8 }, |
| .p2 = { .dot_limit = 225000, |
| .p2_slow = 7, .p2_fast = 7 }, |
| }; |
| |
| /* LVDS 100mhz refclk limits. */ |
| static const struct intel_limit intel_limits_ironlake_single_lvds_100m = { |
| .dot = { .min = 25000, .max = 350000 }, |
| .vco = { .min = 1760000, .max = 3510000 }, |
| .n = { .min = 1, .max = 2 }, |
| .m = { .min = 79, .max = 126 }, |
| .m1 = { .min = 12, .max = 22 }, |
| .m2 = { .min = 5, .max = 9 }, |
| .p = { .min = 28, .max = 112 }, |
| .p1 = { .min = 2, .max = 8 }, |
| .p2 = { .dot_limit = 225000, |
| .p2_slow = 14, .p2_fast = 14 }, |
| }; |
| |
| static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = { |
| .dot = { .min = 25000, .max = 350000 }, |
| .vco = { .min = 1760000, .max = 3510000 }, |
| .n = { .min = 1, .max = 3 }, |
| .m = { .min = 79, .max = 126 }, |
| .m1 = { .min = 12, .max = 22 }, |
| .m2 = { .min = 5, .max = 9 }, |
| .p = { .min = 14, .max = 42 }, |
| .p1 = { .min = 2, .max = 6 }, |
| .p2 = { .dot_limit = 225000, |
| .p2_slow = 7, .p2_fast = 7 }, |
| }; |
| |
| static const struct intel_limit intel_limits_vlv = { |
| /* |
| * These are the data rate limits (measured in fast clocks) |
| * since those are the strictest limits we have. The fast |
| * clock and actual rate limits are more relaxed, so checking |
| * them would make no difference. |
| */ |
| .dot = { .min = 25000 * 5, .max = 270000 * 5 }, |
| .vco = { .min = 4000000, .max = 6000000 }, |
| .n = { .min = 1, .max = 7 }, |
| .m1 = { .min = 2, .max = 3 }, |
| .m2 = { .min = 11, .max = 156 }, |
| .p1 = { .min = 2, .max = 3 }, |
| .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */ |
| }; |
| |
| static const struct intel_limit intel_limits_chv = { |
| /* |
| * These are the data rate limits (measured in fast clocks) |
| * since those are the strictest limits we have. The fast |
| * clock and actual rate limits are more relaxed, so checking |
| * them would make no difference. |
| */ |
| .dot = { .min = 25000 * 5, .max = 540000 * 5}, |
| .vco = { .min = 4800000, .max = 6480000 }, |
| .n = { .min = 1, .max = 1 }, |
| .m1 = { .min = 2, .max = 2 }, |
| .m2 = { .min = 24 << 22, .max = 175 << 22 }, |
| .p1 = { .min = 2, .max = 4 }, |
| .p2 = { .p2_slow = 1, .p2_fast = 14 }, |
| }; |
| |
| static const struct intel_limit intel_limits_bxt = { |
| /* FIXME: find real dot limits */ |
| .dot = { .min = 0, .max = INT_MAX }, |
| .vco = { .min = 4800000, .max = 6700000 }, |
| .n = { .min = 1, .max = 1 }, |
| .m1 = { .min = 2, .max = 2 }, |
| /* FIXME: find real m2 limits */ |
| .m2 = { .min = 2 << 22, .max = 255 << 22 }, |
| .p1 = { .min = 2, .max = 4 }, |
| .p2 = { .p2_slow = 1, .p2_fast = 20 }, |
| }; |
| |
| static bool |
| needs_modeset(struct drm_crtc_state *state) |
| { |
| return drm_atomic_crtc_needs_modeset(state); |
| } |
| |
| /* |
| * Platform specific helpers to calculate the port PLL loopback- (clock.m), |
| * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast |
| * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic. |
| * The helpers' return value is the rate of the clock that is fed to the |
| * display engine's pipe which can be the above fast dot clock rate or a |
| * divided-down version of it. |
| */ |
| /* m1 is reserved as 0 in Pineview, n is a ring counter */ |
| static int pnv_calc_dpll_params(int refclk, struct dpll *clock) |
| { |
| clock->m = clock->m2 + 2; |
| clock->p = clock->p1 * clock->p2; |
| if (WARN_ON(clock->n == 0 || clock->p == 0)) |
| return 0; |
| clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); |
| clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); |
| |
| return clock->dot; |
| } |
| |
| static uint32_t i9xx_dpll_compute_m(struct dpll *dpll) |
| { |
| return 5 * (dpll->m1 + 2) + (dpll->m2 + 2); |
| } |
| |
| static int i9xx_calc_dpll_params(int refclk, struct dpll *clock) |
| { |
| clock->m = i9xx_dpll_compute_m(clock); |
| clock->p = clock->p1 * clock->p2; |
| if (WARN_ON(clock->n + 2 == 0 || clock->p == 0)) |
| return 0; |
| clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2); |
| clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); |
| |
| return clock->dot; |
| } |
| |
| static int vlv_calc_dpll_params(int refclk, struct dpll *clock) |
| { |
| clock->m = clock->m1 * clock->m2; |
| clock->p = clock->p1 * clock->p2; |
| if (WARN_ON(clock->n == 0 || clock->p == 0)) |
| return 0; |
| clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); |
| clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); |
| |
| return clock->dot / 5; |
| } |
| |
| int chv_calc_dpll_params(int refclk, struct dpll *clock) |
| { |
| clock->m = clock->m1 * clock->m2; |
| clock->p = clock->p1 * clock->p2; |
| if (WARN_ON(clock->n == 0 || clock->p == 0)) |
| return 0; |
| clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m, |
| clock->n << 22); |
| clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); |
| |
| return clock->dot / 5; |
| } |
| |
| #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0) |
| /** |
| * Returns whether the given set of divisors are valid for a given refclk with |
| * the given connectors. |
| */ |
| |
| static bool intel_PLL_is_valid(struct drm_device *dev, |
| const struct intel_limit *limit, |
| const struct dpll *clock) |
| { |
| if (clock->n < limit->n.min || limit->n.max < clock->n) |
| INTELPllInvalid("n out of range\n"); |
| if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1) |
| INTELPllInvalid("p1 out of range\n"); |
| if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2) |
| INTELPllInvalid("m2 out of range\n"); |
| if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1) |
| INTELPllInvalid("m1 out of range\n"); |
| |
| if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && |
| !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) |
| if (clock->m1 <= clock->m2) |
| INTELPllInvalid("m1 <= m2\n"); |
| |
| if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) { |
| if (clock->p < limit->p.min || limit->p.max < clock->p) |
| INTELPllInvalid("p out of range\n"); |
| if (clock->m < limit->m.min || limit->m.max < clock->m) |
| INTELPllInvalid("m out of range\n"); |
| } |
| |
| if (clock->vco < limit->vco.min || limit->vco.max < clock->vco) |
| INTELPllInvalid("vco out of range\n"); |
| /* XXX: We may need to be checking "Dot clock" depending on the multiplier, |
| * connector, etc., rather than just a single range. |
| */ |
| if (clock->dot < limit->dot.min || limit->dot.max < clock->dot) |
| INTELPllInvalid("dot out of range\n"); |
| |
| return true; |
| } |
| |
| static int |
| i9xx_select_p2_div(const struct intel_limit *limit, |
| const struct intel_crtc_state *crtc_state, |
| int target) |
| { |
| struct drm_device *dev = crtc_state->base.crtc->dev; |
| |
| if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { |
| /* |
| * For LVDS just rely on its current settings for dual-channel. |
| * We haven't figured out how to reliably set up different |
| * single/dual channel state, if we even can. |
| */ |
| if (intel_is_dual_link_lvds(dev)) |
| return limit->p2.p2_fast; |
| else |
| return limit->p2.p2_slow; |
| } else { |
| if (target < limit->p2.dot_limit) |
| return limit->p2.p2_slow; |
| else |
| return limit->p2.p2_fast; |
| } |
| } |
| |
| /* |
| * Returns a set of divisors for the desired target clock with the given |
| * refclk, or FALSE. The returned values represent the clock equation: |
| * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. |
| * |
| * Target and reference clocks are specified in kHz. |
| * |
| * If match_clock is provided, then best_clock P divider must match the P |
| * divider from @match_clock used for LVDS downclocking. |
| */ |
| static bool |
| i9xx_find_best_dpll(const struct intel_limit *limit, |
| struct intel_crtc_state *crtc_state, |
| int target, int refclk, struct dpll *match_clock, |
| struct dpll *best_clock) |
| { |
| struct drm_device *dev = crtc_state->base.crtc->dev; |
| struct dpll clock; |
| int err = target; |
| |
| memset(best_clock, 0, sizeof(*best_clock)); |
| |
| clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); |
| |
| for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; |
| clock.m1++) { |
| for (clock.m2 = limit->m2.min; |
| clock.m2 <= limit->m2.max; clock.m2++) { |
| if (clock.m2 >= clock.m1) |
| break; |
| for (clock.n = limit->n.min; |
| clock.n <= limit->n.max; clock.n++) { |
| for (clock.p1 = limit->p1.min; |
| clock.p1 <= limit->p1.max; clock.p1++) { |
| int this_err; |
| |
| i9xx_calc_dpll_params(refclk, &clock); |
| if (!intel_PLL_is_valid(dev, limit, |
| &clock)) |
| continue; |
| if (match_clock && |
| clock.p != match_clock->p) |
| continue; |
| |
| this_err = abs(clock.dot - target); |
| if (this_err < err) { |
| *best_clock = clock; |
| err = this_err; |
| } |
| } |
| } |
| } |
| } |
| |
| return (err != target); |
| } |
| |
| /* |
| * Returns a set of divisors for the desired target clock with the given |
| * refclk, or FALSE. The returned values represent the clock equation: |
| * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. |
| * |
| * Target and reference clocks are specified in kHz. |
| * |
| * If match_clock is provided, then best_clock P divider must match the P |
| * divider from @match_clock used for LVDS downclocking. |
| */ |
| static bool |
| pnv_find_best_dpll(const struct intel_limit *limit, |
| struct intel_crtc_state *crtc_state, |
| int target, int refclk, struct dpll *match_clock, |
| struct dpll *best_clock) |
| { |
| struct drm_device *dev = crtc_state->base.crtc->dev; |
| struct dpll clock; |
| int err = target; |
| |
| memset(best_clock, 0, sizeof(*best_clock)); |
| |
| clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); |
| |
| for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; |
| clock.m1++) { |
| for (clock.m2 = limit->m2.min; |
| clock.m2 <= limit->m2.max; clock.m2++) { |
| for (clock.n = limit->n.min; |
| clock.n <= limit->n.max; clock.n++) { |
| for (clock.p1 = limit->p1.min; |
| clock.p1 <= limit->p1.max; clock.p1++) { |
| int this_err; |
| |
| pnv_calc_dpll_params(refclk, &clock); |
| if (!intel_PLL_is_valid(dev, limit, |
| &clock)) |
| continue; |
| if (match_clock && |
| clock.p != match_clock->p) |
| continue; |
| |
| this_err = abs(clock.dot - target); |
| if (this_err < err) { |
| *best_clock = clock; |
| err = this_err; |
| } |
| } |
| } |
| } |
| } |
| |
| return (err != target); |
| } |
| |
| /* |
| * Returns a set of divisors for the desired target clock with the given |
| * refclk, or FALSE. The returned values represent the clock equation: |
| * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. |
| * |
| * Target and reference clocks are specified in kHz. |
| * |
| * If match_clock is provided, then best_clock P divider must match the P |
| * divider from @match_clock used for LVDS downclocking. |
| */ |
| static bool |
| g4x_find_best_dpll(const struct intel_limit *limit, |
| struct intel_crtc_state *crtc_state, |
| int target, int refclk, struct dpll *match_clock, |
| struct dpll *best_clock) |
| { |
| struct drm_device *dev = crtc_state->base.crtc->dev; |
| struct dpll clock; |
| int max_n; |
| bool found = false; |
| /* approximately equals target * 0.00585 */ |
| int err_most = (target >> 8) + (target >> 9); |
| |
| memset(best_clock, 0, sizeof(*best_clock)); |
| |
| clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); |
| |
| max_n = limit->n.max; |
| /* based on hardware requirement, prefer smaller n to precision */ |
| for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { |
| /* based on hardware requirement, prefere larger m1,m2 */ |
| for (clock.m1 = limit->m1.max; |
| clock.m1 >= limit->m1.min; clock.m1--) { |
| for (clock.m2 = limit->m2.max; |
| clock.m2 >= limit->m2.min; clock.m2--) { |
| for (clock.p1 = limit->p1.max; |
| clock.p1 >= limit->p1.min; clock.p1--) { |
| int this_err; |
| |
| i9xx_calc_dpll_params(refclk, &clock); |
| if (!intel_PLL_is_valid(dev, limit, |
| &clock)) |
| continue; |
| |
| this_err = abs(clock.dot - target); |
| if (this_err < err_most) { |
| *best_clock = clock; |
| err_most = this_err; |
| max_n = clock.n; |
| found = true; |
| } |
| } |
| } |
| } |
| } |
| return found; |
| } |
| |
| /* |
| * Check if the calculated PLL configuration is more optimal compared to the |
| * best configuration and error found so far. Return the calculated error. |
| */ |
| static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq, |
| const struct dpll *calculated_clock, |
| const struct dpll *best_clock, |
| unsigned int best_error_ppm, |
| unsigned int *error_ppm) |
| { |
| /* |
| * For CHV ignore the error and consider only the P value. |
| * Prefer a bigger P value based on HW requirements. |
| */ |
| if (IS_CHERRYVIEW(dev)) { |
| *error_ppm = 0; |
| |
| return calculated_clock->p > best_clock->p; |
| } |
| |
| if (WARN_ON_ONCE(!target_freq)) |
| return false; |
| |
| *error_ppm = div_u64(1000000ULL * |
| abs(target_freq - calculated_clock->dot), |
| target_freq); |
| /* |
| * Prefer a better P value over a better (smaller) error if the error |
| * is small. Ensure this preference for future configurations too by |
| * setting the error to 0. |
| */ |
| if (*error_ppm < 100 && calculated_clock->p > best_clock->p) { |
| *error_ppm = 0; |
| |
| return true; |
| } |
| |
| return *error_ppm + 10 < best_error_ppm; |
| } |
| |
| /* |
| * Returns a set of divisors for the desired target clock with the given |
| * refclk, or FALSE. The returned values represent the clock equation: |
| * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. |
| */ |
| static bool |
| vlv_find_best_dpll(const struct intel_limit *limit, |
| struct intel_crtc_state *crtc_state, |
| int target, int refclk, struct dpll *match_clock, |
| struct dpll *best_clock) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); |
| struct drm_device *dev = crtc->base.dev; |
| struct dpll clock; |
| unsigned int bestppm = 1000000; |
| /* min update 19.2 MHz */ |
| int max_n = min(limit->n.max, refclk / 19200); |
| bool found = false; |
| |
| target *= 5; /* fast clock */ |
| |
| memset(best_clock, 0, sizeof(*best_clock)); |
| |
| /* based on hardware requirement, prefer smaller n to precision */ |
| for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { |
| for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { |
| for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow; |
| clock.p2 -= clock.p2 > 10 ? 2 : 1) { |
| clock.p = clock.p1 * clock.p2; |
| /* based on hardware requirement, prefer bigger m1,m2 values */ |
| for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) { |
| unsigned int ppm; |
| |
| clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n, |
| refclk * clock.m1); |
| |
| vlv_calc_dpll_params(refclk, &clock); |
| |
| if (!intel_PLL_is_valid(dev, limit, |
| &clock)) |
| continue; |
| |
| if (!vlv_PLL_is_optimal(dev, target, |
| &clock, |
| best_clock, |
| bestppm, &ppm)) |
| continue; |
| |
| *best_clock = clock; |
| bestppm = ppm; |
| found = true; |
| } |
| } |
| } |
| } |
| |
| return found; |
| } |
| |
| /* |
| * Returns a set of divisors for the desired target clock with the given |
| * refclk, or FALSE. The returned values represent the clock equation: |
| * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. |
| */ |
| static bool |
| chv_find_best_dpll(const struct intel_limit *limit, |
| struct intel_crtc_state *crtc_state, |
| int target, int refclk, struct dpll *match_clock, |
| struct dpll *best_clock) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); |
| struct drm_device *dev = crtc->base.dev; |
| unsigned int best_error_ppm; |
| struct dpll clock; |
| uint64_t m2; |
| int found = false; |
| |
| memset(best_clock, 0, sizeof(*best_clock)); |
| best_error_ppm = 1000000; |
| |
| /* |
| * Based on hardware doc, the n always set to 1, and m1 always |
| * set to 2. If requires to support 200Mhz refclk, we need to |
| * revisit this because n may not 1 anymore. |
| */ |
| clock.n = 1, clock.m1 = 2; |
| target *= 5; /* fast clock */ |
| |
| for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { |
| for (clock.p2 = limit->p2.p2_fast; |
| clock.p2 >= limit->p2.p2_slow; |
| clock.p2 -= clock.p2 > 10 ? 2 : 1) { |
| unsigned int error_ppm; |
| |
| clock.p = clock.p1 * clock.p2; |
| |
| m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p * |
| clock.n) << 22, refclk * clock.m1); |
| |
| if (m2 > INT_MAX/clock.m1) |
| continue; |
| |
| clock.m2 = m2; |
| |
| chv_calc_dpll_params(refclk, &clock); |
| |
| if (!intel_PLL_is_valid(dev, limit, &clock)) |
| continue; |
| |
| if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock, |
| best_error_ppm, &error_ppm)) |
| continue; |
| |
| *best_clock = clock; |
| best_error_ppm = error_ppm; |
| found = true; |
| } |
| } |
| |
| return found; |
| } |
| |
| bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock, |
| struct dpll *best_clock) |
| { |
| int refclk = 100000; |
| const struct intel_limit *limit = &intel_limits_bxt; |
| |
| return chv_find_best_dpll(limit, crtc_state, |
| target_clock, refclk, NULL, best_clock); |
| } |
| |
| bool intel_crtc_active(struct drm_crtc *crtc) |
| { |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| |
| /* Be paranoid as we can arrive here with only partial |
| * state retrieved from the hardware during setup. |
| * |
| * We can ditch the adjusted_mode.crtc_clock check as soon |
| * as Haswell has gained clock readout/fastboot support. |
| * |
| * We can ditch the crtc->primary->fb check as soon as we can |
| * properly reconstruct framebuffers. |
| * |
| * FIXME: The intel_crtc->active here should be switched to |
| * crtc->state->active once we have proper CRTC states wired up |
| * for atomic. |
| */ |
| return intel_crtc->active && crtc->primary->state->fb && |
| intel_crtc->config->base.adjusted_mode.crtc_clock; |
| } |
| |
| enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv, |
| enum pipe pipe) |
| { |
| struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| |
| return intel_crtc->config->cpu_transcoder; |
| } |
| |
| static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| i915_reg_t reg = PIPEDSL(pipe); |
| u32 line1, line2; |
| u32 line_mask; |
| |
| if (IS_GEN2(dev)) |
| line_mask = DSL_LINEMASK_GEN2; |
| else |
| line_mask = DSL_LINEMASK_GEN3; |
| |
| line1 = I915_READ(reg) & line_mask; |
| msleep(5); |
| line2 = I915_READ(reg) & line_mask; |
| |
| return line1 == line2; |
| } |
| |
| /* |
| * intel_wait_for_pipe_off - wait for pipe to turn off |
| * @crtc: crtc whose pipe to wait for |
| * |
| * After disabling a pipe, we can't wait for vblank in the usual way, |
| * spinning on the vblank interrupt status bit, since we won't actually |
| * see an interrupt when the pipe is disabled. |
| * |
| * On Gen4 and above: |
| * wait for the pipe register state bit to turn off |
| * |
| * Otherwise: |
| * wait for the display line value to settle (it usually |
| * ends up stopping at the start of the next frame). |
| * |
| */ |
| static void intel_wait_for_pipe_off(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| enum transcoder cpu_transcoder = crtc->config->cpu_transcoder; |
| enum pipe pipe = crtc->pipe; |
| |
| if (INTEL_INFO(dev)->gen >= 4) { |
| i915_reg_t reg = PIPECONF(cpu_transcoder); |
| |
| /* Wait for the Pipe State to go off */ |
| if (intel_wait_for_register(dev_priv, |
| reg, I965_PIPECONF_ACTIVE, 0, |
| 100)) |
| WARN(1, "pipe_off wait timed out\n"); |
| } else { |
| /* Wait for the display line to settle */ |
| if (wait_for(pipe_dsl_stopped(dev, pipe), 100)) |
| WARN(1, "pipe_off wait timed out\n"); |
| } |
| } |
| |
| /* Only for pre-ILK configs */ |
| void assert_pll(struct drm_i915_private *dev_priv, |
| enum pipe pipe, bool state) |
| { |
| u32 val; |
| bool cur_state; |
| |
| val = I915_READ(DPLL(pipe)); |
| cur_state = !!(val & DPLL_VCO_ENABLE); |
| I915_STATE_WARN(cur_state != state, |
| "PLL state assertion failure (expected %s, current %s)\n", |
| onoff(state), onoff(cur_state)); |
| } |
| |
| /* XXX: the dsi pll is shared between MIPI DSI ports */ |
| void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state) |
| { |
| u32 val; |
| bool cur_state; |
| |
| mutex_lock(&dev_priv->sb_lock); |
| val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL); |
| mutex_unlock(&dev_priv->sb_lock); |
| |
| cur_state = val & DSI_PLL_VCO_EN; |
| I915_STATE_WARN(cur_state != state, |
| "DSI PLL state assertion failure (expected %s, current %s)\n", |
| onoff(state), onoff(cur_state)); |
| } |
| |
| static void assert_fdi_tx(struct drm_i915_private *dev_priv, |
| enum pipe pipe, bool state) |
| { |
| bool cur_state; |
| enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, |
| pipe); |
| |
| if (HAS_DDI(dev_priv)) { |
| /* DDI does not have a specific FDI_TX register */ |
| u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder)); |
| cur_state = !!(val & TRANS_DDI_FUNC_ENABLE); |
| } else { |
| u32 val = I915_READ(FDI_TX_CTL(pipe)); |
| cur_state = !!(val & FDI_TX_ENABLE); |
| } |
| I915_STATE_WARN(cur_state != state, |
| "FDI TX state assertion failure (expected %s, current %s)\n", |
| onoff(state), onoff(cur_state)); |
| } |
| #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true) |
| #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false) |
| |
| static void assert_fdi_rx(struct drm_i915_private *dev_priv, |
| enum pipe pipe, bool state) |
| { |
| u32 val; |
| bool cur_state; |
| |
| val = I915_READ(FDI_RX_CTL(pipe)); |
| cur_state = !!(val & FDI_RX_ENABLE); |
| I915_STATE_WARN(cur_state != state, |
| "FDI RX state assertion failure (expected %s, current %s)\n", |
| onoff(state), onoff(cur_state)); |
| } |
| #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true) |
| #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false) |
| |
| static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv, |
| enum pipe pipe) |
| { |
| u32 val; |
| |
| /* ILK FDI PLL is always enabled */ |
| if (IS_GEN5(dev_priv)) |
| return; |
| |
| /* On Haswell, DDI ports are responsible for the FDI PLL setup */ |
| if (HAS_DDI(dev_priv)) |
| return; |
| |
| val = I915_READ(FDI_TX_CTL(pipe)); |
| I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n"); |
| } |
| |
| void assert_fdi_rx_pll(struct drm_i915_private *dev_priv, |
| enum pipe pipe, bool state) |
| { |
| u32 val; |
| bool cur_state; |
| |
| val = I915_READ(FDI_RX_CTL(pipe)); |
| cur_state = !!(val & FDI_RX_PLL_ENABLE); |
| I915_STATE_WARN(cur_state != state, |
| "FDI RX PLL assertion failure (expected %s, current %s)\n", |
| onoff(state), onoff(cur_state)); |
| } |
| |
| void assert_panel_unlocked(struct drm_i915_private *dev_priv, |
| enum pipe pipe) |
| { |
| struct drm_device *dev = &dev_priv->drm; |
| i915_reg_t pp_reg; |
| u32 val; |
| enum pipe panel_pipe = PIPE_A; |
| bool locked = true; |
| |
| if (WARN_ON(HAS_DDI(dev))) |
| return; |
| |
| if (HAS_PCH_SPLIT(dev)) { |
| u32 port_sel; |
| |
| pp_reg = PP_CONTROL(0); |
| port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK; |
| |
| if (port_sel == PANEL_PORT_SELECT_LVDS && |
| I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT) |
| panel_pipe = PIPE_B; |
| /* XXX: else fix for eDP */ |
| } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) { |
| /* presumably write lock depends on pipe, not port select */ |
| pp_reg = PP_CONTROL(pipe); |
| panel_pipe = pipe; |
| } else { |
| pp_reg = PP_CONTROL(0); |
| if (I915_READ(LVDS) & LVDS_PIPEB_SELECT) |
| panel_pipe = PIPE_B; |
| } |
| |
| val = I915_READ(pp_reg); |
| if (!(val & PANEL_POWER_ON) || |
| ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS)) |
| locked = false; |
| |
| I915_STATE_WARN(panel_pipe == pipe && locked, |
| "panel assertion failure, pipe %c regs locked\n", |
| pipe_name(pipe)); |
| } |
| |
| static void assert_cursor(struct drm_i915_private *dev_priv, |
| enum pipe pipe, bool state) |
| { |
| struct drm_device *dev = &dev_priv->drm; |
| bool cur_state; |
| |
| if (IS_845G(dev) || IS_I865G(dev)) |
| cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE; |
| else |
| cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE; |
| |
| I915_STATE_WARN(cur_state != state, |
| "cursor on pipe %c assertion failure (expected %s, current %s)\n", |
| pipe_name(pipe), onoff(state), onoff(cur_state)); |
| } |
| #define assert_cursor_enabled(d, p) assert_cursor(d, p, true) |
| #define assert_cursor_disabled(d, p) assert_cursor(d, p, false) |
| |
| void assert_pipe(struct drm_i915_private *dev_priv, |
| enum pipe pipe, bool state) |
| { |
| bool cur_state; |
| enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, |
| pipe); |
| enum intel_display_power_domain power_domain; |
| |
| /* if we need the pipe quirk it must be always on */ |
| if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) || |
| (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)) |
| state = true; |
| |
| power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); |
| if (intel_display_power_get_if_enabled(dev_priv, power_domain)) { |
| u32 val = I915_READ(PIPECONF(cpu_transcoder)); |
| cur_state = !!(val & PIPECONF_ENABLE); |
| |
| intel_display_power_put(dev_priv, power_domain); |
| } else { |
| cur_state = false; |
| } |
| |
| I915_STATE_WARN(cur_state != state, |
| "pipe %c assertion failure (expected %s, current %s)\n", |
| pipe_name(pipe), onoff(state), onoff(cur_state)); |
| } |
| |
| static void assert_plane(struct drm_i915_private *dev_priv, |
| enum plane plane, bool state) |
| { |
| u32 val; |
| bool cur_state; |
| |
| val = I915_READ(DSPCNTR(plane)); |
| cur_state = !!(val & DISPLAY_PLANE_ENABLE); |
| I915_STATE_WARN(cur_state != state, |
| "plane %c assertion failure (expected %s, current %s)\n", |
| plane_name(plane), onoff(state), onoff(cur_state)); |
| } |
| |
| #define assert_plane_enabled(d, p) assert_plane(d, p, true) |
| #define assert_plane_disabled(d, p) assert_plane(d, p, false) |
| |
| static void assert_planes_disabled(struct drm_i915_private *dev_priv, |
| enum pipe pipe) |
| { |
| struct drm_device *dev = &dev_priv->drm; |
| int i; |
| |
| /* Primary planes are fixed to pipes on gen4+ */ |
| if (INTEL_INFO(dev)->gen >= 4) { |
| u32 val = I915_READ(DSPCNTR(pipe)); |
| I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE, |
| "plane %c assertion failure, should be disabled but not\n", |
| plane_name(pipe)); |
| return; |
| } |
| |
| /* Need to check both planes against the pipe */ |
| for_each_pipe(dev_priv, i) { |
| u32 val = I915_READ(DSPCNTR(i)); |
| enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >> |
| DISPPLANE_SEL_PIPE_SHIFT; |
| I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe, |
| "plane %c assertion failure, should be off on pipe %c but is still active\n", |
| plane_name(i), pipe_name(pipe)); |
| } |
| } |
| |
| static void assert_sprites_disabled(struct drm_i915_private *dev_priv, |
| enum pipe pipe) |
| { |
| struct drm_device *dev = &dev_priv->drm; |
| int sprite; |
| |
| if (INTEL_INFO(dev)->gen >= 9) { |
| for_each_sprite(dev_priv, pipe, sprite) { |
| u32 val = I915_READ(PLANE_CTL(pipe, sprite)); |
| I915_STATE_WARN(val & PLANE_CTL_ENABLE, |
| "plane %d assertion failure, should be off on pipe %c but is still active\n", |
| sprite, pipe_name(pipe)); |
| } |
| } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) { |
| for_each_sprite(dev_priv, pipe, sprite) { |
| u32 val = I915_READ(SPCNTR(pipe, sprite)); |
| I915_STATE_WARN(val & SP_ENABLE, |
| "sprite %c assertion failure, should be off on pipe %c but is still active\n", |
| sprite_name(pipe, sprite), pipe_name(pipe)); |
| } |
| } else if (INTEL_INFO(dev)->gen >= 7) { |
| u32 val = I915_READ(SPRCTL(pipe)); |
| I915_STATE_WARN(val & SPRITE_ENABLE, |
| "sprite %c assertion failure, should be off on pipe %c but is still active\n", |
| plane_name(pipe), pipe_name(pipe)); |
| } else if (INTEL_INFO(dev)->gen >= 5) { |
| u32 val = I915_READ(DVSCNTR(pipe)); |
| I915_STATE_WARN(val & DVS_ENABLE, |
| "sprite %c assertion failure, should be off on pipe %c but is still active\n", |
| plane_name(pipe), pipe_name(pipe)); |
| } |
| } |
| |
| static void assert_vblank_disabled(struct drm_crtc *crtc) |
| { |
| if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0)) |
| drm_crtc_vblank_put(crtc); |
| } |
| |
| void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv, |
| enum pipe pipe) |
| { |
| u32 val; |
| bool enabled; |
| |
| val = I915_READ(PCH_TRANSCONF(pipe)); |
| enabled = !!(val & TRANS_ENABLE); |
| I915_STATE_WARN(enabled, |
| "transcoder assertion failed, should be off on pipe %c but is still active\n", |
| pipe_name(pipe)); |
| } |
| |
| static bool dp_pipe_enabled(struct drm_i915_private *dev_priv, |
| enum pipe pipe, u32 port_sel, u32 val) |
| { |
| if ((val & DP_PORT_EN) == 0) |
| return false; |
| |
| if (HAS_PCH_CPT(dev_priv)) { |
| u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe)); |
| if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel) |
| return false; |
| } else if (IS_CHERRYVIEW(dev_priv)) { |
| if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe)) |
| return false; |
| } else { |
| if ((val & DP_PIPE_MASK) != (pipe << 30)) |
| return false; |
| } |
| return true; |
| } |
| |
| static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv, |
| enum pipe pipe, u32 val) |
| { |
| if ((val & SDVO_ENABLE) == 0) |
| return false; |
| |
| if (HAS_PCH_CPT(dev_priv)) { |
| if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe)) |
| return false; |
| } else if (IS_CHERRYVIEW(dev_priv)) { |
| if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe)) |
| return false; |
| } else { |
| if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe)) |
| return false; |
| } |
| return true; |
| } |
| |
| static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv, |
| enum pipe pipe, u32 val) |
| { |
| if ((val & LVDS_PORT_EN) == 0) |
| return false; |
| |
| if (HAS_PCH_CPT(dev_priv)) { |
| if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe)) |
| return false; |
| } else { |
| if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe)) |
| return false; |
| } |
| return true; |
| } |
| |
| static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv, |
| enum pipe pipe, u32 val) |
| { |
| if ((val & ADPA_DAC_ENABLE) == 0) |
| return false; |
| if (HAS_PCH_CPT(dev_priv)) { |
| if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe)) |
| return false; |
| } else { |
| if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe)) |
| return false; |
| } |
| return true; |
| } |
| |
| static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv, |
| enum pipe pipe, i915_reg_t reg, |
| u32 port_sel) |
| { |
| u32 val = I915_READ(reg); |
| I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val), |
| "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n", |
| i915_mmio_reg_offset(reg), pipe_name(pipe)); |
| |
| I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0 |
| && (val & DP_PIPEB_SELECT), |
| "IBX PCH dp port still using transcoder B\n"); |
| } |
| |
| static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv, |
| enum pipe pipe, i915_reg_t reg) |
| { |
| u32 val = I915_READ(reg); |
| I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val), |
| "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n", |
| i915_mmio_reg_offset(reg), pipe_name(pipe)); |
| |
| I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0 |
| && (val & SDVO_PIPE_B_SELECT), |
| "IBX PCH hdmi port still using transcoder B\n"); |
| } |
| |
| static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv, |
| enum pipe pipe) |
| { |
| u32 val; |
| |
| assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B); |
| assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C); |
| assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D); |
| |
| val = I915_READ(PCH_ADPA); |
| I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val), |
| "PCH VGA enabled on transcoder %c, should be disabled\n", |
| pipe_name(pipe)); |
| |
| val = I915_READ(PCH_LVDS); |
| I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val), |
| "PCH LVDS enabled on transcoder %c, should be disabled\n", |
| pipe_name(pipe)); |
| |
| assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB); |
| assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC); |
| assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID); |
| } |
| |
| static void _vlv_enable_pll(struct intel_crtc *crtc, |
| const struct intel_crtc_state *pipe_config) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| enum pipe pipe = crtc->pipe; |
| |
| I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll); |
| POSTING_READ(DPLL(pipe)); |
| udelay(150); |
| |
| if (intel_wait_for_register(dev_priv, |
| DPLL(pipe), |
| DPLL_LOCK_VLV, |
| DPLL_LOCK_VLV, |
| 1)) |
| DRM_ERROR("DPLL %d failed to lock\n", pipe); |
| } |
| |
| static void vlv_enable_pll(struct intel_crtc *crtc, |
| const struct intel_crtc_state *pipe_config) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| enum pipe pipe = crtc->pipe; |
| |
| assert_pipe_disabled(dev_priv, pipe); |
| |
| /* PLL is protected by panel, make sure we can write it */ |
| assert_panel_unlocked(dev_priv, pipe); |
| |
| if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) |
| _vlv_enable_pll(crtc, pipe_config); |
| |
| I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md); |
| POSTING_READ(DPLL_MD(pipe)); |
| } |
| |
| |
| static void _chv_enable_pll(struct intel_crtc *crtc, |
| const struct intel_crtc_state *pipe_config) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| enum pipe pipe = crtc->pipe; |
| enum dpio_channel port = vlv_pipe_to_channel(pipe); |
| u32 tmp; |
| |
| mutex_lock(&dev_priv->sb_lock); |
| |
| /* Enable back the 10bit clock to display controller */ |
| tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)); |
| tmp |= DPIO_DCLKP_EN; |
| vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp); |
| |
| mutex_unlock(&dev_priv->sb_lock); |
| |
| /* |
| * Need to wait > 100ns between dclkp clock enable bit and PLL enable. |
| */ |
| udelay(1); |
| |
| /* Enable PLL */ |
| I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll); |
| |
| /* Check PLL is locked */ |
| if (intel_wait_for_register(dev_priv, |
| DPLL(pipe), DPLL_LOCK_VLV, DPLL_LOCK_VLV, |
| 1)) |
| DRM_ERROR("PLL %d failed to lock\n", pipe); |
| } |
| |
| static void chv_enable_pll(struct intel_crtc *crtc, |
| const struct intel_crtc_state *pipe_config) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| enum pipe pipe = crtc->pipe; |
| |
| assert_pipe_disabled(dev_priv, pipe); |
| |
| /* PLL is protected by panel, make sure we can write it */ |
| assert_panel_unlocked(dev_priv, pipe); |
| |
| if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) |
| _chv_enable_pll(crtc, pipe_config); |
| |
| if (pipe != PIPE_A) { |
| /* |
| * WaPixelRepeatModeFixForC0:chv |
| * |
| * DPLLCMD is AWOL. Use chicken bits to propagate |
| * the value from DPLLBMD to either pipe B or C. |
| */ |
| I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C); |
| I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md); |
| I915_WRITE(CBR4_VLV, 0); |
| dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md; |
| |
| /* |
| * DPLLB VGA mode also seems to cause problems. |
| * We should always have it disabled. |
| */ |
| WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0); |
| } else { |
| I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md); |
| POSTING_READ(DPLL_MD(pipe)); |
| } |
| } |
| |
| static int intel_num_dvo_pipes(struct drm_device *dev) |
| { |
| struct intel_crtc *crtc; |
| int count = 0; |
| |
| for_each_intel_crtc(dev, crtc) { |
| count += crtc->base.state->active && |
| intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO); |
| } |
| |
| return count; |
| } |
| |
| static void i9xx_enable_pll(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| i915_reg_t reg = DPLL(crtc->pipe); |
| u32 dpll = crtc->config->dpll_hw_state.dpll; |
| |
| assert_pipe_disabled(dev_priv, crtc->pipe); |
| |
| /* PLL is protected by panel, make sure we can write it */ |
| if (IS_MOBILE(dev) && !IS_I830(dev)) |
| assert_panel_unlocked(dev_priv, crtc->pipe); |
| |
| /* Enable DVO 2x clock on both PLLs if necessary */ |
| if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) { |
| /* |
| * It appears to be important that we don't enable this |
| * for the current pipe before otherwise configuring the |
| * PLL. No idea how this should be handled if multiple |
| * DVO outputs are enabled simultaneosly. |
| */ |
| dpll |= DPLL_DVO_2X_MODE; |
| I915_WRITE(DPLL(!crtc->pipe), |
| I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE); |
| } |
| |
| /* |
| * Apparently we need to have VGA mode enabled prior to changing |
| * the P1/P2 dividers. Otherwise the DPLL will keep using the old |
| * dividers, even though the register value does change. |
| */ |
| I915_WRITE(reg, 0); |
| |
| I915_WRITE(reg, dpll); |
| |
| /* Wait for the clocks to stabilize. */ |
| POSTING_READ(reg); |
| udelay(150); |
| |
| if (INTEL_INFO(dev)->gen >= 4) { |
| I915_WRITE(DPLL_MD(crtc->pipe), |
| crtc->config->dpll_hw_state.dpll_md); |
| } else { |
| /* The pixel multiplier can only be updated once the |
| * DPLL is enabled and the clocks are stable. |
| * |
| * So write it again. |
| */ |
| I915_WRITE(reg, dpll); |
| } |
| |
| /* We do this three times for luck */ |
| I915_WRITE(reg, dpll); |
| POSTING_READ(reg); |
| udelay(150); /* wait for warmup */ |
| I915_WRITE(reg, dpll); |
| POSTING_READ(reg); |
| udelay(150); /* wait for warmup */ |
| I915_WRITE(reg, dpll); |
| POSTING_READ(reg); |
| udelay(150); /* wait for warmup */ |
| } |
| |
| /** |
| * i9xx_disable_pll - disable a PLL |
| * @dev_priv: i915 private structure |
| * @pipe: pipe PLL to disable |
| * |
| * Disable the PLL for @pipe, making sure the pipe is off first. |
| * |
| * Note! This is for pre-ILK only. |
| */ |
| static void i9xx_disable_pll(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| enum pipe pipe = crtc->pipe; |
| |
| /* Disable DVO 2x clock on both PLLs if necessary */ |
| if (IS_I830(dev) && |
| intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO) && |
| !intel_num_dvo_pipes(dev)) { |
| I915_WRITE(DPLL(PIPE_B), |
| I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE); |
| I915_WRITE(DPLL(PIPE_A), |
| I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE); |
| } |
| |
| /* Don't disable pipe or pipe PLLs if needed */ |
| if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) || |
| (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)) |
| return; |
| |
| /* Make sure the pipe isn't still relying on us */ |
| assert_pipe_disabled(dev_priv, pipe); |
| |
| I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS); |
| POSTING_READ(DPLL(pipe)); |
| } |
| |
| static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) |
| { |
| u32 val; |
| |
| /* Make sure the pipe isn't still relying on us */ |
| assert_pipe_disabled(dev_priv, pipe); |
| |
| val = DPLL_INTEGRATED_REF_CLK_VLV | |
| DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; |
| if (pipe != PIPE_A) |
| val |= DPLL_INTEGRATED_CRI_CLK_VLV; |
| |
| I915_WRITE(DPLL(pipe), val); |
| POSTING_READ(DPLL(pipe)); |
| } |
| |
| static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) |
| { |
| enum dpio_channel port = vlv_pipe_to_channel(pipe); |
| u32 val; |
| |
| /* Make sure the pipe isn't still relying on us */ |
| assert_pipe_disabled(dev_priv, pipe); |
| |
| val = DPLL_SSC_REF_CLK_CHV | |
| DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; |
| if (pipe != PIPE_A) |
| val |= DPLL_INTEGRATED_CRI_CLK_VLV; |
| |
| I915_WRITE(DPLL(pipe), val); |
| POSTING_READ(DPLL(pipe)); |
| |
| mutex_lock(&dev_priv->sb_lock); |
| |
| /* Disable 10bit clock to display controller */ |
| val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)); |
| val &= ~DPIO_DCLKP_EN; |
| vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val); |
| |
| mutex_unlock(&dev_priv->sb_lock); |
| } |
| |
| void vlv_wait_port_ready(struct drm_i915_private *dev_priv, |
| struct intel_digital_port *dport, |
| unsigned int expected_mask) |
| { |
| u32 port_mask; |
| i915_reg_t dpll_reg; |
| |
| switch (dport->port) { |
| case PORT_B: |
| port_mask = DPLL_PORTB_READY_MASK; |
| dpll_reg = DPLL(0); |
| break; |
| case PORT_C: |
| port_mask = DPLL_PORTC_READY_MASK; |
| dpll_reg = DPLL(0); |
| expected_mask <<= 4; |
| break; |
| case PORT_D: |
| port_mask = DPLL_PORTD_READY_MASK; |
| dpll_reg = DPIO_PHY_STATUS; |
| break; |
| default: |
| BUG(); |
| } |
| |
| if (intel_wait_for_register(dev_priv, |
| dpll_reg, port_mask, expected_mask, |
| 1000)) |
| WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n", |
| port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask); |
| } |
| |
| static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv, |
| enum pipe pipe) |
| { |
| struct drm_device *dev = &dev_priv->drm; |
| struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| i915_reg_t reg; |
| uint32_t val, pipeconf_val; |
| |
| /* Make sure PCH DPLL is enabled */ |
| assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll); |
| |
| /* FDI must be feeding us bits for PCH ports */ |
| assert_fdi_tx_enabled(dev_priv, pipe); |
| assert_fdi_rx_enabled(dev_priv, pipe); |
| |
| if (HAS_PCH_CPT(dev)) { |
| /* Workaround: Set the timing override bit before enabling the |
| * pch transcoder. */ |
| reg = TRANS_CHICKEN2(pipe); |
| val = I915_READ(reg); |
| val |= TRANS_CHICKEN2_TIMING_OVERRIDE; |
| I915_WRITE(reg, val); |
| } |
| |
| reg = PCH_TRANSCONF(pipe); |
| val = I915_READ(reg); |
| pipeconf_val = I915_READ(PIPECONF(pipe)); |
| |
| if (HAS_PCH_IBX(dev_priv)) { |
| /* |
| * Make the BPC in transcoder be consistent with |
| * that in pipeconf reg. For HDMI we must use 8bpc |
| * here for both 8bpc and 12bpc. |
| */ |
| val &= ~PIPECONF_BPC_MASK; |
| if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_HDMI)) |
| val |= PIPECONF_8BPC; |
| else |
| val |= pipeconf_val & PIPECONF_BPC_MASK; |
| } |
| |
| val &= ~TRANS_INTERLACE_MASK; |
| if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK) |
| if (HAS_PCH_IBX(dev_priv) && |
| intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO)) |
| val |= TRANS_LEGACY_INTERLACED_ILK; |
| else |
| val |= TRANS_INTERLACED; |
| else |
| val |= TRANS_PROGRESSIVE; |
| |
| I915_WRITE(reg, val | TRANS_ENABLE); |
| if (intel_wait_for_register(dev_priv, |
| reg, TRANS_STATE_ENABLE, TRANS_STATE_ENABLE, |
| 100)) |
| DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe)); |
| } |
| |
| static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv, |
| enum transcoder cpu_transcoder) |
| { |
| u32 val, pipeconf_val; |
| |
| /* FDI must be feeding us bits for PCH ports */ |
| assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder); |
| assert_fdi_rx_enabled(dev_priv, TRANSCODER_A); |
| |
| /* Workaround: set timing override bit. */ |
| val = I915_READ(TRANS_CHICKEN2(PIPE_A)); |
| val |= TRANS_CHICKEN2_TIMING_OVERRIDE; |
| I915_WRITE(TRANS_CHICKEN2(PIPE_A), val); |
| |
| val = TRANS_ENABLE; |
| pipeconf_val = I915_READ(PIPECONF(cpu_transcoder)); |
| |
| if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) == |
| PIPECONF_INTERLACED_ILK) |
| val |= TRANS_INTERLACED; |
| else |
| val |= TRANS_PROGRESSIVE; |
| |
| I915_WRITE(LPT_TRANSCONF, val); |
| if (intel_wait_for_register(dev_priv, |
| LPT_TRANSCONF, |
| TRANS_STATE_ENABLE, |
| TRANS_STATE_ENABLE, |
| 100)) |
| DRM_ERROR("Failed to enable PCH transcoder\n"); |
| } |
| |
| static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv, |
| enum pipe pipe) |
| { |
| struct drm_device *dev = &dev_priv->drm; |
| i915_reg_t reg; |
| uint32_t val; |
| |
| /* FDI relies on the transcoder */ |
| assert_fdi_tx_disabled(dev_priv, pipe); |
| assert_fdi_rx_disabled(dev_priv, pipe); |
| |
| /* Ports must be off as well */ |
| assert_pch_ports_disabled(dev_priv, pipe); |
| |
| reg = PCH_TRANSCONF(pipe); |
| val = I915_READ(reg); |
| val &= ~TRANS_ENABLE; |
| I915_WRITE(reg, val); |
| /* wait for PCH transcoder off, transcoder state */ |
| if (intel_wait_for_register(dev_priv, |
| reg, TRANS_STATE_ENABLE, 0, |
| 50)) |
| DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe)); |
| |
| if (HAS_PCH_CPT(dev)) { |
| /* Workaround: Clear the timing override chicken bit again. */ |
| reg = TRANS_CHICKEN2(pipe); |
| val = I915_READ(reg); |
| val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; |
| I915_WRITE(reg, val); |
| } |
| } |
| |
| void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv) |
| { |
| u32 val; |
| |
| val = I915_READ(LPT_TRANSCONF); |
| val &= ~TRANS_ENABLE; |
| I915_WRITE(LPT_TRANSCONF, val); |
| /* wait for PCH transcoder off, transcoder state */ |
| if (intel_wait_for_register(dev_priv, |
| LPT_TRANSCONF, TRANS_STATE_ENABLE, 0, |
| 50)) |
| DRM_ERROR("Failed to disable PCH transcoder\n"); |
| |
| /* Workaround: clear timing override bit. */ |
| val = I915_READ(TRANS_CHICKEN2(PIPE_A)); |
| val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; |
| I915_WRITE(TRANS_CHICKEN2(PIPE_A), val); |
| } |
| |
| /** |
| * intel_enable_pipe - enable a pipe, asserting requirements |
| * @crtc: crtc responsible for the pipe |
| * |
| * Enable @crtc's pipe, making sure that various hardware specific requirements |
| * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc. |
| */ |
| static void intel_enable_pipe(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| enum pipe pipe = crtc->pipe; |
| enum transcoder cpu_transcoder = crtc->config->cpu_transcoder; |
| enum pipe pch_transcoder; |
| i915_reg_t reg; |
| u32 val; |
| |
| DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe)); |
| |
| assert_planes_disabled(dev_priv, pipe); |
| assert_cursor_disabled(dev_priv, pipe); |
| assert_sprites_disabled(dev_priv, pipe); |
| |
| if (HAS_PCH_LPT(dev_priv)) |
| pch_transcoder = TRANSCODER_A; |
| else |
| pch_transcoder = pipe; |
| |
| /* |
| * A pipe without a PLL won't actually be able to drive bits from |
| * a plane. On ILK+ the pipe PLLs are integrated, so we don't |
| * need the check. |
| */ |
| if (HAS_GMCH_DISPLAY(dev_priv)) { |
| if (intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DSI)) |
| assert_dsi_pll_enabled(dev_priv); |
| else |
| assert_pll_enabled(dev_priv, pipe); |
| } else { |
| if (crtc->config->has_pch_encoder) { |
| /* if driving the PCH, we need FDI enabled */ |
| assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder); |
| assert_fdi_tx_pll_enabled(dev_priv, |
| (enum pipe) cpu_transcoder); |
| } |
| /* FIXME: assert CPU port conditions for SNB+ */ |
| } |
| |
| reg = PIPECONF(cpu_transcoder); |
| val = I915_READ(reg); |
| if (val & PIPECONF_ENABLE) { |
| WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) || |
| (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))); |
| return; |
| } |
| |
| I915_WRITE(reg, val | PIPECONF_ENABLE); |
| POSTING_READ(reg); |
| |
| /* |
| * Until the pipe starts DSL will read as 0, which would cause |
| * an apparent vblank timestamp jump, which messes up also the |
| * frame count when it's derived from the timestamps. So let's |
| * wait for the pipe to start properly before we call |
| * drm_crtc_vblank_on() |
| */ |
| if (dev->max_vblank_count == 0 && |
| wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50)) |
| DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe)); |
| } |
| |
| /** |
| * intel_disable_pipe - disable a pipe, asserting requirements |
| * @crtc: crtc whose pipes is to be disabled |
| * |
| * Disable the pipe of @crtc, making sure that various hardware |
| * specific requirements are met, if applicable, e.g. plane |
| * disabled, panel fitter off, etc. |
| * |
| * Will wait until the pipe has shut down before returning. |
| */ |
| static void intel_disable_pipe(struct intel_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| enum transcoder cpu_transcoder = crtc->config->cpu_transcoder; |
| enum pipe pipe = crtc->pipe; |
| i915_reg_t reg; |
| u32 val; |
| |
| DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe)); |
| |
| /* |
| * Make sure planes won't keep trying to pump pixels to us, |
| * or we might hang the display. |
| */ |
| assert_planes_disabled(dev_priv, pipe); |
| assert_cursor_disabled(dev_priv, pipe); |
| assert_sprites_disabled(dev_priv, pipe); |
| |
| reg = PIPECONF(cpu_transcoder); |
| val = I915_READ(reg); |
| if ((val & PIPECONF_ENABLE) == 0) |
| return; |
| |
| /* |
| * Double wide has implications for planes |
| * so best keep it disabled when not needed. |
| */ |
| if (crtc->config->double_wide) |
| val &= ~PIPECONF_DOUBLE_WIDE; |
| |
| /* Don't disable pipe or pipe PLLs if needed */ |
| if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) && |
| !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)) |
| val &= ~PIPECONF_ENABLE; |
| |
| I915_WRITE(reg, val); |
| if ((val & PIPECONF_ENABLE) == 0) |
| intel_wait_for_pipe_off(crtc); |
| } |
| |
| static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv) |
| { |
| return IS_GEN2(dev_priv) ? 2048 : 4096; |
| } |
| |
| static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv, |
| uint64_t fb_modifier, unsigned int cpp) |
| { |
| switch (fb_modifier) { |
| case DRM_FORMAT_MOD_NONE: |
| return cpp; |
| case I915_FORMAT_MOD_X_TILED: |
| if (IS_GEN2(dev_priv)) |
| return 128; |
| else |
| return 512; |
| case I915_FORMAT_MOD_Y_TILED: |
| if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv)) |
| return 128; |
| else |
| return 512; |
| case I915_FORMAT_MOD_Yf_TILED: |
| switch (cpp) { |
| case 1: |
| return 64; |
| case 2: |
| case 4: |
| return 128; |
| case 8: |
| case 16: |
| return 256; |
| default: |
| MISSING_CASE(cpp); |
| return cpp; |
| } |
| break; |
| default: |
| MISSING_CASE(fb_modifier); |
| return cpp; |
| } |
| } |
| |
| unsigned int intel_tile_height(const struct drm_i915_private *dev_priv, |
| uint64_t fb_modifier, unsigned int cpp) |
| { |
| if (fb_modifier == DRM_FORMAT_MOD_NONE) |
| return 1; |
| else |
| return intel_tile_size(dev_priv) / |
| intel_tile_width_bytes(dev_priv, fb_modifier, cpp); |
| } |
| |
| /* Return the tile dimensions in pixel units */ |
| static void intel_tile_dims(const struct drm_i915_private *dev_priv, |
| unsigned int *tile_width, |
| unsigned int *tile_height, |
| uint64_t fb_modifier, |
| unsigned int cpp) |
| { |
| unsigned int tile_width_bytes = |
| intel_tile_width_bytes(dev_priv, fb_modifier, cpp); |
| |
| *tile_width = tile_width_bytes / cpp; |
| *tile_height = intel_tile_size(dev_priv) / tile_width_bytes; |
| } |
| |
| unsigned int |
| intel_fb_align_height(struct drm_device *dev, unsigned int height, |
| uint32_t pixel_format, uint64_t fb_modifier) |
| { |
| unsigned int cpp = drm_format_plane_cpp(pixel_format, 0); |
| unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp); |
| |
| return ALIGN(height, tile_height); |
| } |
| |
| unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info) |
| { |
| unsigned int size = 0; |
| int i; |
| |
| for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) |
| size += rot_info->plane[i].width * rot_info->plane[i].height; |
| |
| return size; |
| } |
| |
| static void |
| intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, |
| const struct drm_framebuffer *fb, |
| unsigned int rotation) |
| { |
| if (intel_rotation_90_or_270(rotation)) { |
| *view = i915_ggtt_view_rotated; |
| view->params.rotated = to_intel_framebuffer(fb)->rot_info; |
| } else { |
| *view = i915_ggtt_view_normal; |
| } |
| } |
| |
| static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv) |
| { |
| if (INTEL_INFO(dev_priv)->gen >= 9) |
| return 256 * 1024; |
| else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) || |
| IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) |
| return 128 * 1024; |
| else if (INTEL_INFO(dev_priv)->gen >= 4) |
| return 4 * 1024; |
| else |
| return 0; |
| } |
| |
| static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv, |
| uint64_t fb_modifier) |
| { |
| switch (fb_modifier) { |
| case DRM_FORMAT_MOD_NONE: |
| return intel_linear_alignment(dev_priv); |
| case I915_FORMAT_MOD_X_TILED: |
| if (INTEL_INFO(dev_priv)->gen >= 9) |
| return 256 * 1024; |
| return 0; |
| case I915_FORMAT_MOD_Y_TILED: |
| case I915_FORMAT_MOD_Yf_TILED: |
| return 1 * 1024 * 1024; |
| default: |
| MISSING_CASE(fb_modifier); |
| return 0; |
| } |
| } |
| |
| struct i915_vma * |
| intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, unsigned int rotation) |
| { |
| struct drm_device *dev = fb->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct drm_i915_gem_object *obj = intel_fb_obj(fb); |
| struct i915_ggtt_view view; |
| struct i915_vma *vma; |
| u32 alignment; |
| |
| WARN_ON(!mutex_is_locked(&dev->struct_mutex)); |
| |
| alignment = intel_surf_alignment(dev_priv, fb->modifier[0]); |
| |
| intel_fill_fb_ggtt_view(&view, fb, rotation); |
| |
| /* Note that the w/a also requires 64 PTE of padding following the |
| * bo. We currently fill all unused PTE with the shadow page and so |
| * we should always have valid PTE following the scanout preventing |
| * the VT-d warning. |
| */ |
| if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024) |
| alignment = 256 * 1024; |
| |
| /* |
| * Global gtt pte registers are special registers which actually forward |
| * writes to a chunk of system memory. Which means that there is no risk |
| * that the register values disappear as soon as we call |
| * intel_runtime_pm_put(), so it is correct to wrap only the |
| * pin/unpin/fence and not more. |
| */ |
| intel_runtime_pm_get(dev_priv); |
| |
| vma = i915_gem_object_pin_to_display_plane(obj, alignment, &view); |
| if (IS_ERR(vma)) |
| goto err; |
| |
| if (i915_vma_is_map_and_fenceable(vma)) { |
| /* Install a fence for tiled scan-out. Pre-i965 always needs a |
| * fence, whereas 965+ only requires a fence if using |
| * framebuffer compression. For simplicity, we always, when |
| * possible, install a fence as the cost is not that onerous. |
| * |
| * If we fail to fence the tiled scanout, then either the |
| * modeset will reject the change (which is highly unlikely as |
| * the affected systems, all but one, do not have unmappable |
| * space) or we will not be able to enable full powersaving |
| * techniques (also likely not to apply due to various limits |
| * FBC and the like impose on the size of the buffer, which |
| * presumably we violated anyway with this unmappable buffer). |
| * Anyway, it is presumably better to stumble onwards with |
| * something and try to run the system in a "less than optimal" |
| * mode that matches the user configuration. |
| */ |
| if (i915_vma_get_fence(vma) == 0) |
| i915_vma_pin_fence(vma); |
| } |
| |
| err: |
| intel_runtime_pm_put(dev_priv); |
| return vma; |
| } |
| |
| void intel_unpin_fb_obj(struct drm_framebuffer *fb, unsigned int rotation) |
| { |
| struct drm_i915_gem_object *obj = intel_fb_obj(fb); |
| struct i915_ggtt_view view; |
| struct i915_vma *vma; |
| |
| WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex)); |
| |
| intel_fill_fb_ggtt_view(&view, fb, rotation); |
| vma = i915_gem_object_to_ggtt(obj, &view); |
| |
| i915_vma_unpin_fence(vma); |
| i915_gem_object_unpin_from_display_plane(vma); |
| } |
| |
| static int intel_fb_pitch(const struct drm_framebuffer *fb, int plane, |
| unsigned int rotation) |
| { |
| if (intel_rotation_90_or_270(rotation)) |
| return to_intel_framebuffer(fb)->rotated[plane].pitch; |
| else |
| return fb->pitches[plane]; |
| } |
| |
| /* |
| * Convert the x/y offsets into a linear offset. |
| * Only valid with 0/180 degree rotation, which is fine since linear |
| * offset is only used with linear buffers on pre-hsw and tiled buffers |
| * with gen2/3, and 90/270 degree rotations isn't supported on any of them. |
| */ |
| u32 intel_fb_xy_to_linear(int x, int y, |
| const struct intel_plane_state *state, |
| int plane) |
| { |
| const struct drm_framebuffer *fb = state->base.fb; |
| unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane); |
| unsigned int pitch = fb->pitches[plane]; |
| |
| return y * pitch + x * cpp; |
| } |
| |
| /* |
| * Add the x/y offsets derived from fb->offsets[] to the user |
| * specified plane src x/y offsets. The resulting x/y offsets |
| * specify the start of scanout from the beginning of the gtt mapping. |
| */ |
| void intel_add_fb_offsets(int *x, int *y, |
| const struct intel_plane_state *state, |
| int plane) |
| |
| { |
| const struct intel_framebuffer *intel_fb = to_intel_framebuffer(state->base.fb); |
| unsigned int rotation = state->base.rotation; |
| |
| if (intel_rotation_90_or_270(rotation)) { |
| *x += intel_fb->rotated[plane].x; |
| *y += intel_fb->rotated[plane].y; |
| } else { |
| *x += intel_fb->normal[plane].x; |
| *y += intel_fb->normal[plane].y; |
| } |
| } |
| |
| /* |
| * Input tile dimensions and pitch must already be |
| * rotated to match x and y, and in pixel units. |
| */ |
| static u32 _intel_adjust_tile_offset(int *x, int *y, |
| unsigned int tile_width, |
| unsigned int tile_height, |
| unsigned int tile_size, |
| unsigned int pitch_tiles, |
| u32 old_offset, |
| u32 new_offset) |
| { |
| unsigned int pitch_pixels = pitch_tiles * tile_width; |
| unsigned int tiles; |
| |
| WARN_ON(old_offset & (tile_size - 1)); |
| WARN_ON(new_offset & (tile_size - 1)); |
| WARN_ON(new_offset > old_offset); |
| |
| tiles = (old_offset - new_offset) / tile_size; |
| |
| *y += tiles / pitch_tiles * tile_height; |
| *x += tiles % pitch_tiles * tile_width; |
| |
| /* minimize x in case it got needlessly big */ |
| *y += *x / pitch_pixels * tile_height; |
| *x %= pitch_pixels; |
| |
| return new_offset; |
| } |
| |
| /* |
| * Adjust the tile offset by moving the difference into |
| * the x/y offsets. |
| */ |
| static u32 intel_adjust_tile_offset(int *x, int *y, |
| const struct intel_plane_state *state, int plane, |
| u32 old_offset, u32 new_offset) |
| { |
| const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev); |
| const struct drm_framebuffer *fb = state->base.fb; |
| unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane); |
| unsigned int rotation = state->base.rotation; |
| unsigned int pitch = intel_fb_pitch(fb, plane, rotation); |
| |
| WARN_ON(new_offset > old_offset); |
| |
| if (fb->modifier[plane] != DRM_FORMAT_MOD_NONE) { |
| unsigned int tile_size, tile_width, tile_height; |
| unsigned int pitch_tiles; |
| |
| tile_size = intel_tile_size(dev_priv); |
| intel_tile_dims(dev_priv, &tile_width, &tile_height, |
| fb->modifier[plane], cpp); |
| |
| if (intel_rotation_90_or_270(rotation)) { |
| pitch_tiles = pitch / tile_height; |
| swap(tile_width, tile_height); |
| } else { |
| pitch_tiles = pitch / (tile_width * cpp); |
| } |
| |
| _intel_adjust_tile_offset(x, y, tile_width, tile_height, |
| tile_size, pitch_tiles, |
| old_offset, new_offset); |
| } else { |
| old_offset += *y * pitch + *x * cpp; |
| |
| *y = (old_offset - new_offset) / pitch; |
| *x = ((old_offset - new_offset) - *y * pitch) / cpp; |
| } |
| |
| return new_offset; |
| } |
| |
| /* |
| * Computes the linear offset to the base tile and adjusts |
| * x, y. bytes per pixel is assumed to be a power-of-two. |
| * |
| * In the 90/270 rotated case, x and y are assumed |
| * to be already rotated to match the rotated GTT view, and |
| * pitch is the tile_height aligned framebuffer height. |
| * |
| * This function is used when computing the derived information |
| * under intel_framebuffer, so using any of that information |
| * here is not allowed. Anything under drm_framebuffer can be |
| * used. This is why the user has to pass in the pitch since it |
| * is specified in the rotated orientation. |
| */ |
| static u32 _intel_compute_tile_offset(const struct drm_i915_private *dev_priv, |
| int *x, int *y, |
| const struct drm_framebuffer *fb, int plane, |
| unsigned int pitch, |
| unsigned int rotation, |
| u32 alignment) |
| { |
| uint64_t fb_modifier = fb->modifier[plane]; |
| unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane); |
| u32 offset, offset_aligned; |
| |
| if (alignment) |
| alignment--; |
| |
| if (fb_modifier != DRM_FORMAT_MOD_NONE) { |
| unsigned int tile_size, tile_width, tile_height; |
| unsigned int tile_rows, tiles, pitch_tiles; |
| |
| tile_size = intel_tile_size(dev_priv); |
| intel_tile_dims(dev_priv, &tile_width, &tile_height, |
| fb_modifier, cpp); |
| |
| if (intel_rotation_90_or_270(rotation)) { |
| pitch_tiles = pitch / tile_height; |
| swap(tile_width, tile_height); |
| } else { |
| pitch_tiles = pitch / (tile_width * cpp); |
| } |
| |
| tile_rows = *y / tile_height; |
| *y %= tile_height; |
| |
| tiles = *x / tile_width; |
| *x %= tile_width; |
| |
| offset = (tile_rows * pitch_tiles + tiles) * tile_size; |
| offset_aligned = offset & ~alignment; |
| |
| _intel_adjust_tile_offset(x, y, tile_width, tile_height, |
| tile_size, pitch_tiles, |
| offset, offset_aligned); |
| } else { |
| offset = *y * pitch + *x * cpp; |
| offset_aligned = offset & ~alignment; |
| |
| *y = (offset & alignment) / pitch; |
| *x = ((offset & alignment) - *y * pitch) / cpp; |
| } |
| |
| return offset_aligned; |
| } |
| |
| u32 intel_compute_tile_offset(int *x, int *y, |
| const struct intel_plane_state *state, |
| int plane) |
| { |
| const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev); |
| const struct drm_framebuffer *fb = state->base.fb; |
| unsigned int rotation = state->base.rotation; |
| int pitch = intel_fb_pitch(fb, plane, rotation); |
| u32 alignment; |
| |
| /* AUX_DIST needs only 4K alignment */ |
| if (fb->pixel_format == DRM_FORMAT_NV12 && plane == 1) |
| alignment = 4096; |
| else |
| alignment = intel_surf_alignment(dev_priv, fb->modifier[plane]); |
| |
| return _intel_compute_tile_offset(dev_priv, x, y, fb, plane, pitch, |
| rotation, alignment); |
| } |
| |
| /* Convert the fb->offset[] linear offset into x/y offsets */ |
| static void intel_fb_offset_to_xy(int *x, int *y, |
| const struct drm_framebuffer *fb, int plane) |
| { |
| unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane); |
| unsigned int pitch = fb->pitches[plane]; |
| u32 linear_offset = fb->offsets[plane]; |
| |
| *y = linear_offset / pitch; |
| *x = linear_offset % pitch / cpp; |
| } |
| |
| static unsigned int intel_fb_modifier_to_tiling(uint64_t fb_modifier) |
| { |
| switch (fb_modifier) { |
| case I915_FORMAT_MOD_X_TILED: |
| return I915_TILING_X; |
| case I915_FORMAT_MOD_Y_TILED: |
| return I915_TILING_Y; |
| default: |
| return I915_TILING_NONE; |
| } |
| } |
| |
| static int |
| intel_fill_fb_info(struct drm_i915_private *dev_priv, |
| struct drm_framebuffer *fb) |
| { |
| struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); |
| struct intel_rotation_info *rot_info = &intel_fb->rot_info; |
| u32 gtt_offset_rotated = 0; |
| unsigned int max_size = 0; |
| uint32_t format = fb->pixel_format; |
| int i, num_planes = drm_format_num_planes(format); |
| unsigned int tile_size = intel_tile_size(dev_priv); |
| |
| for (i = 0; i < num_planes; i++) { |
| unsigned int width, height; |
| unsigned int cpp, size; |
| u32 offset; |
| int x, y; |
| |
| cpp = drm_format_plane_cpp(format, i); |
| width = drm_format_plane_width(fb->width, format, i); |
| height = drm_format_plane_height(fb->height, format, i); |
| |
| intel_fb_offset_to_xy(&x, &y, fb, i); |
| |
| /* |
| * The fence (if used) is aligned to the start of the object |
| * so having the framebuffer wrap around across the edge of the |
| * fenced region doesn't really work. We have no API to configure |
| * the fence start offset within the object (nor could we probably |
| * on gen2/3). So it's just easier if we just require that the |
| * fb layout agrees with the fence layout. We already check that the |
| * fb stride matches the fence stride elsewhere. |
| */ |
| if (i915_gem_object_is_tiled(intel_fb->obj) && |
| (x + width) * cpp > fb->pitches[i]) { |
| DRM_DEBUG("bad fb plane %d offset: 0x%x\n", |
| i, fb->offsets[i]); |
| return -EINVAL; |
| } |
| |
| /* |
| * First pixel of the framebuffer from |
| * the start of the normal gtt mapping. |
| */ |
| intel_fb->normal[i].x = x; |
| intel_fb->normal[i].y = y; |
| |
| offset = _intel_compute_tile_offset(dev_priv, &x, &y, |
| fb, 0, fb->pitches[i], |
| DRM_ROTATE_0, tile_size); |
| offset /= tile_size; |
| |
| if (fb->modifier[i] != DRM_FORMAT_MOD_NONE) { |
| unsigned int tile_width, tile_height; |
| unsigned int pitch_tiles; |
| struct drm_rect r; |
| |
| intel_tile_dims(dev_priv, &tile_width, &tile_height, |
| fb->modifier[i], cpp); |
| |
| rot_info->plane[i].offset = offset; |
| rot_info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], tile_width * cpp); |
| rot_info->plane[i].width = DIV_ROUND_UP(x + width, tile_width); |
| rot_info->plane[i].height = DIV_ROUND_UP(y + height, tile_height); |
| |
| intel_fb->rotated[i].pitch = |
| rot_info->plane[i].height * tile_height; |
| |
| /* how many tiles does this plane need */ |
| size = rot_info->plane[i].stride * rot_info->plane[i].height; |
| /* |
| * If the plane isn't horizontally tile aligned, |
| * we need one more tile. |
| */ |
| if (x != 0) |
| size++; |
| |
| /* rotate the x/y offsets to match the GTT view */ |
| r.x1 = x; |
| r.y1 = y; |
| r.x2 = x + width; |
| r.y2 = y + height; |
| drm_rect_rotate(&r, |
| rot_info->plane[i].width * tile_width, |
| rot_info->plane[i].height * tile_height, |
| DRM_ROTATE_270); |
| x = r.x1; |
| y = r.y1; |
| |
| /* rotate the tile dimensions to match the GTT view */ |
| pitch_tiles = intel_fb->rotated[i].pitch / tile_height; |
| swap(tile_width, tile_height); |
| |
| /* |
| * We only keep the x/y offsets, so push all of the |
| * gtt offset into the x/y offsets. |
| */ |
| _intel_adjust_tile_offset(&x, &y, tile_size, |
| tile_width, tile_height, pitch_tiles, |
| gtt_offset_rotated * tile_size, 0); |
| |
| gtt_offset_rotated += rot_info->plane[i].width * rot_info->plane[i].height; |
| |
| /* |
| * First pixel of the framebuffer from |
| * the start of the rotated gtt mapping. |
| */ |
| intel_fb->rotated[i].x = x; |
| intel_fb->rotated[i].y = y; |
| } else { |
| size = DIV_ROUND_UP((y + height) * fb->pitches[i] + |
| x * cpp, tile_size); |
| } |
| |
| /* how many tiles in total needed in the bo */ |
| max_size = max(max_size, offset + size); |
| } |
| |
| if (max_size * tile_size > to_intel_framebuffer(fb)->obj->base.size) { |
| DRM_DEBUG("fb too big for bo (need %u bytes, have %zu bytes)\n", |
| max_size * tile_size, to_intel_framebuffer(fb)->obj->base.size); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int i9xx_format_to_fourcc(int format) |
| { |
| switch (format) { |
| case DISPPLANE_8BPP: |
| return DRM_FORMAT_C8; |
| case DISPPLANE_BGRX555: |
| return DRM_FORMAT_XRGB1555; |
| case DISPPLANE_BGRX565: |
| return DRM_FORMAT_RGB565; |
| default: |
| case DISPPLANE_BGRX888: |
| return DRM_FORMAT_XRGB8888; |
| case DISPPLANE_RGBX888: |
| return DRM_FORMAT_XBGR8888; |
| case DISPPLANE_BGRX101010: |
| return DRM_FORMAT_XRGB2101010; |
| case DISPPLANE_RGBX101010: |
| return DRM_FORMAT_XBGR2101010; |
| } |
| } |
| |
| static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha) |
| { |
| switch (format) { |
| case PLANE_CTL_FORMAT_RGB_565: |
| return DRM_FORMAT_RGB565; |
| default: |
| case PLANE_CTL_FORMAT_XRGB_8888: |
| if (rgb_order) { |
| if (alpha) |
| return DRM_FORMAT_ABGR8888; |
| else |
| return DRM_FORMAT_XBGR8888; |
| } else { |
| if (alpha) |
| return DRM_FORMAT_ARGB8888; |
| else |
| return DRM_FORMAT_XRGB8888; |
| } |
| case PLANE_CTL_FORMAT_XRGB_2101010: |
| if (rgb_order) |
| return DRM_FORMAT_XBGR2101010; |
| else |
| return DRM_FORMAT_XRGB2101010; |
| } |
| } |
| |
| static bool |
| intel_alloc_initial_plane_obj(struct intel_crtc *crtc, |
| struct intel_initial_plane_config *plane_config) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct i915_ggtt *ggtt = &dev_priv->ggtt; |
| struct drm_i915_gem_object *obj = NULL; |
| struct drm_mode_fb_cmd2 mode_cmd = { 0 }; |
| struct drm_framebuffer *fb = &plane_config->fb->base; |
| u32 base_aligned = round_down(plane_config->base, PAGE_SIZE); |
| u32 size_aligned = round_up(plane_config->base + plane_config->size, |
| PAGE_SIZE); |
| |
| size_aligned -= base_aligned; |
| |
| if (plane_config->size == 0) |
| return false; |
| |
| /* If the FB is too big, just don't use it since fbdev is not very |
| * important and we should probably use that space with FBC or other |
| * features. */ |
| if (size_aligned * 2 > ggtt->stolen_usable_size) |
| return false; |
| |
| mutex_lock(&dev->struct_mutex); |
| |
| obj = i915_gem_object_create_stolen_for_preallocated(dev, |
| base_aligned, |
| base_aligned, |
| size_aligned); |
| if (!obj) { |
| mutex_unlock(&dev->struct_mutex); |
| return false; |
| } |
| |
| if (plane_config->tiling == I915_TILING_X) |
| obj->tiling_and_stride = fb->pitches[0] | I915_TILING_X; |
| |
| mode_cmd.pixel_format = fb->pixel_format; |
| mode_cmd.width = fb->width; |
| mode_cmd.height = fb->height; |
| mode_cmd.pitches[0] = fb->pitches[0]; |
| mode_cmd.modifier[0] = fb->modifier[0]; |
| mode_cmd.flags = DRM_MODE_FB_MODIFIERS; |
| |
| if (intel_framebuffer_init(dev, to_intel_framebuffer(fb), |
| &mode_cmd, obj)) { |
| DRM_DEBUG_KMS("intel fb init failed\n"); |
| goto out_unref_obj; |
| } |
| |
| mutex_unlock(&dev->struct_mutex); |
| |
| DRM_DEBUG_KMS("initial plane fb obj %p\n", obj); |
| return true; |
| |
| out_unref_obj: |
| i915_gem_object_put(obj); |
| mutex_unlock(&dev->struct_mutex); |
| return false; |
| } |
| |
| /* Update plane->state->fb to match plane->fb after driver-internal updates */ |
| static void |
| update_state_fb(struct drm_plane *plane) |
| { |
| if (plane->fb == plane->state->fb) |
| return; |
| |
| if (plane->state->fb) |
| drm_framebuffer_unreference(plane->state->fb); |
| plane->state->fb = plane->fb; |
| if (plane->state->fb) |
| drm_framebuffer_reference(plane->state->fb); |
| } |
| |
| static void |
| intel_find_initial_plane_obj(struct intel_crtc *intel_crtc, |
| struct intel_initial_plane_config *plane_config) |
| { |
| struct drm_device *dev = intel_crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct drm_crtc *c; |
| struct intel_crtc *i; |
| struct drm_i915_gem_object *obj; |
| struct drm_plane *primary = intel_crtc->base.primary; |
| struct drm_plane_state *plane_state = primary->state; |
| struct drm_crtc_state *crtc_state = intel_crtc->base.state; |
| struct intel_plane *intel_plane = to_intel_plane(primary); |
| struct intel_plane_state *intel_state = |
| to_intel_plane_state(plane_state); |
| struct drm_framebuffer *fb; |
| |
| if (!plane_config->fb) |
| return; |
| |
| if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) { |
| fb = &plane_config->fb->base; |
| goto valid_fb; |
| } |
| |
| kfree(plane_config->fb); |
| |
| /* |
| * Failed to alloc the obj, check to see if we should share |
| * an fb with another CRTC instead |
| */ |
| for_each_crtc(dev, c) { |
| i = to_intel_crtc(c); |
| |
| if (c == &intel_crtc->base) |
| continue; |
| |
| if (!i->active) |
| continue; |
| |
| fb = c->primary->fb; |
| if (!fb) |
| continue; |
| |
| obj = intel_fb_obj(fb); |
| if (i915_gem_object_ggtt_offset(obj, NULL) == plane_config->base) { |
| drm_framebuffer_reference(fb); |
| goto valid_fb; |
| } |
| } |
| |
| /* |
| * We've failed to reconstruct the BIOS FB. Current display state |
| * indicates that the primary plane is visible, but has a NULL FB, |
| * which will lead to problems later if we don't fix it up. The |
| * simplest solution is to just disable the primary plane now and |
| * pretend the BIOS never had it enabled. |
| */ |
| to_intel_plane_state(plane_state)->base.visible = false; |
| crtc_state->plane_mask &= ~(1 << drm_plane_index(primary)); |
| intel_pre_disable_primary_noatomic(&intel_crtc->base); |
| intel_plane->disable_plane(primary, &intel_crtc->base); |
| |
| return; |
| |
| valid_fb: |
| plane_state->src_x = 0; |
| plane_state->src_y = 0; |
| plane_state->src_w = fb->width << 16; |
| plane_state->src_h = fb->height << 16; |
| |
| plane_state->crtc_x = 0; |
| plane_state->crtc_y = 0; |
| plane_state->crtc_w = fb->width; |
| plane_state->crtc_h = fb->height; |
| |
| intel_state->base.src.x1 = plane_state->src_x; |
| intel_state->base.src.y1 = plane_state->src_y; |
| intel_state->base.src.x2 = plane_state->src_x + plane_state->src_w; |
| intel_state->base.src.y2 = plane_state->src_y + plane_state->src_h; |
| intel_state->base.dst.x1 = plane_state->crtc_x; |
| intel_state->base.dst.y1 = plane_state->crtc_y; |
| intel_state->base.dst.x2 = plane_state->crtc_x + plane_state->crtc_w; |
| intel_state->base.dst.y2 = plane_state->crtc_y + plane_state->crtc_h; |
| |
| obj = intel_fb_obj(fb); |
| if (i915_gem_object_is_tiled(obj)) |
| dev_priv->preserve_bios_swizzle = true; |
| |
| drm_framebuffer_reference(fb); |
| primary->fb = primary->state->fb = fb; |
| primary->crtc = primary->state->crtc = &intel_crtc->base; |
| intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary)); |
| atomic_or(to_intel_plane(primary)->frontbuffer_bit, |
| &obj->frontbuffer_bits); |
| } |
| |
| static int skl_max_plane_width(const struct drm_framebuffer *fb, int plane, |
| unsigned int rotation) |
| { |
| int cpp = drm_format_plane_cpp(fb->pixel_format, plane); |
| |
| switch (fb->modifier[plane]) { |
| case DRM_FORMAT_MOD_NONE: |
| case I915_FORMAT_MOD_X_TILED: |
| switch (cpp) { |
| case 8: |
| return 4096; |
| case 4: |
| case 2: |
| case 1: |
| return 8192; |
| default: |
| MISSING_CASE(cpp); |
| break; |
| } |
| break; |
| case I915_FORMAT_MOD_Y_TILED: |
| case I915_FORMAT_MOD_Yf_TILED: |
| switch (cpp) { |
| case 8: |
| return 2048; |
| case 4: |
| return 4096; |
| case 2: |
| case 1: |
| return 8192; |
| default: |
| MISSING_CASE(cpp); |
| break; |
| } |
| break; |
| default: |
| MISSING_CASE(fb->modifier[plane]); |
| } |
| |
| return 2048; |
| } |
| |
| static int skl_check_main_surface(struct intel_plane_state *plane_state) |
| { |
| const struct drm_i915_private *dev_priv = to_i915(plane_state->base.plane->dev); |
| const struct drm_framebuffer *fb = plane_state->base.fb; |
| unsigned int rotation = plane_state->base.rotation; |
| int x = plane_state->base.src.x1 >> 16; |
| int y = plane_state->base.src.y1 >> 16; |
| int w = drm_rect_width(&plane_state->base.src) >> 16; |
| int h = drm_rect_height(&plane_state->base.src) >> 16; |
| int max_width = skl_max_plane_width(fb, 0, rotation); |
| int max_height = 4096; |
| u32 alignment, offset, aux_offset = plane_state->aux.offset; |
| |
| if (w > max_width || h > max_height) { |
| DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n", |
| w, h, max_width, max_height); |
| return -EINVAL; |
| } |
| |
| intel_add_fb_offsets(&x, &y, plane_state, 0); |
| offset = intel_compute_tile_offset(&x, &y, plane_state, 0); |
| |
| alignment = intel_surf_alignment(dev_priv, fb->modifier[0]); |
| |
| /* |
| * AUX surface offset is specified as the distance from the |
| * main surface offset, and it must be non-negative. Make |
| * sure that is what we will get. |
| */ |
| if (offset > aux_offset) |
| offset = intel_adjust_tile_offset(&x, &y, plane_state, 0, |
| offset, aux_offset & ~(alignment - 1)); |
| |
| /* |
| * When using an X-tiled surface, the plane blows up |
| * if the x offset + width exceed the stride. |
| * |
| * TODO: linear and Y-tiled seem fine, Yf untested, |
| */ |
| if (fb->modifier[0] == I915_FORMAT_MOD_X_TILED) { |
| int cpp = drm_format_plane_cpp(fb->pixel_format, 0); |
| |
| while ((x + w) * cpp > fb->pitches[0]) { |
| if (offset == 0) { |
| DRM_DEBUG_KMS("Unable to find suitable display surface offset\n"); |
| return -EINVAL; |
| } |
| |
| offset = intel_adjust_tile_offset(&x, &y, plane_state, 0, |
| offset, offset - alignment); |
| } |
| } |
| |
| plane_state->main.offset = offset; |
| plane_state->main.x = x; |
| plane_state->main.y = y; |
| |
| return 0; |
| } |
| |
| static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state) |
| { |
| const struct drm_framebuffer *fb = plane_state->base.fb; |
| unsigned int rotation = plane_state->base.rotation; |
| int max_width = skl_max_plane_width(fb, 1, rotation); |
| int max_height = 4096; |
| int x = plane_state->base.src.x1 >> 17; |
| int y = plane_state->base.src.y1 >> 17; |
| int w = drm_rect_width(&plane_state->base.src) >> 17; |
| int h = drm_rect_height(&plane_state->base.src) >> 17; |
| u32 offset; |
| |
| intel_add_fb_offsets(&x, &y, plane_state, 1); |
| offset = intel_compute_tile_offset(&x, &y, plane_state, 1); |
| |
| /* FIXME not quite sure how/if these apply to the chroma plane */ |
| if (w > max_width || h > max_height) { |
| DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n", |
| w, h, max_width, max_height); |
| return -EINVAL; |
| } |
| |
| plane_state->aux.offset = offset; |
| plane_state->aux.x = x; |
| plane_state->aux.y = y; |
| |
| return 0; |
| } |
| |
| int skl_check_plane_surface(struct intel_plane_state *plane_state) |
| { |
| const struct drm_framebuffer *fb = plane_state->base.fb; |
| unsigned int rotation = plane_state->base.rotation; |
| int ret; |
| |
| /* Rotate src coordinates to match rotated GTT view */ |
| if (intel_rotation_90_or_270(rotation)) |
| drm_rect_rotate(&plane_state->base.src, |
| fb->width << 16, fb->height << 16, |
| DRM_ROTATE_270); |
| |
| /* |
| * Handle the AUX surface first since |
| * the main surface setup depends on it. |
| */ |
| if (fb->pixel_format == DRM_FORMAT_NV12) { |
| ret = skl_check_nv12_aux_surface(plane_state); |
| if (ret) |
| return ret; |
| } else { |
| plane_state->aux.offset = ~0xfff; |
| plane_state->aux.x = 0; |
| plane_state->aux.y = 0; |
| } |
| |
| ret = skl_check_main_surface(plane_state); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| static void i9xx_update_primary_plane(struct drm_plane *primary, |
| const struct intel_crtc_state *crtc_state, |
| const struct intel_plane_state *plane_state) |
| { |
| struct drm_device *dev = primary->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc); |
| struct drm_framebuffer *fb = plane_state->base.fb; |
| struct drm_i915_gem_object *obj = intel_fb_obj(fb); |
| int plane = intel_crtc->plane; |
| u32 linear_offset; |
| u32 dspcntr; |
| i915_reg_t reg = DSPCNTR(plane); |
| unsigned int rotation = plane_state->base.rotation; |
| int x = plane_state->base.src.x1 >> 16; |
| int y = plane_state->base.src.y1 >> 16; |
| |
| dspcntr = DISPPLANE_GAMMA_ENABLE; |
| |
| dspcntr |= DISPLAY_PLANE_ENABLE; |
| |
| if (INTEL_INFO(dev)->gen < 4) { |
| if (intel_crtc->pipe == PIPE_B) |
| dspcntr |= DISPPLANE_SEL_PIPE_B; |
| |
| /* pipesrc and dspsize control the size that is scaled from, |
| * which should always be the user's requested size. |
| */ |
| I915_WRITE(DSPSIZE(plane), |
| ((crtc_state->pipe_src_h - 1) << 16) | |
| (crtc_state->pipe_src_w - 1)); |
| I915_WRITE(DSPPOS(plane), 0); |
| } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) { |
| I915_WRITE(PRIMSIZE(plane), |
| ((crtc_state->pipe_src_h - 1) << 16) | |
| (crtc_state->pipe_src_w - 1)); |
| I915_WRITE(PRIMPOS(plane), 0); |
| I915_WRITE(PRIMCNSTALPHA(plane), 0); |
| } |
| |
| switch (fb->pixel_format) { |
| case DRM_FORMAT_C8: |
| dspcntr |= DISPPLANE_8BPP; |
| break; |
| case DRM_FORMAT_XRGB1555: |
| dspcntr |= DISPPLANE_BGRX555; |
| break; |
| case DRM_FORMAT_RGB565: |
| dspcntr |= DISPPLANE_BGRX565; |
| break; |
| case DRM_FORMAT_XRGB8888: |
| dspcntr |= DISPPLANE_BGRX888; |
| break; |
| case DRM_FORMAT_XBGR8888: |
| dspcntr |= DISPPLANE_RGBX888; |
| break; |
| case DRM_FORMAT_XRGB2101010: |
| dspcntr |= DISPPLANE_BGRX101010; |
| break; |
| case DRM_FORMAT_XBGR2101010: |
| dspcntr |= DISPPLANE_RGBX101010; |
| break; |
| default: |
| BUG(); |
| } |
| |
| if (INTEL_GEN(dev_priv) >= 4 && |
| fb->modifier[0] == I915_FORMAT_MOD_X_TILED) |
| dspcntr |= DISPPLANE_TILED; |
| |
| if (IS_G4X(dev)) |
| dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE; |
| |
| intel_add_fb_offsets(&x, &y, plane_state, 0); |
| |
| if (INTEL_INFO(dev)->gen >= 4) |
| intel_crtc->dspaddr_offset = |
| intel_compute_tile_offset(&x, &y, plane_state, 0); |
| |
| if (rotation == DRM_ROTATE_180) { |
| dspcntr |= DISPPLANE_ROTATE_180; |
| |
| x += (crtc_state->pipe_src_w - 1); |
| y += (crtc_state->pipe_src_h - 1); |
| } |
| |
| linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0); |
| |
| if (INTEL_INFO(dev)->gen < 4) |
| intel_crtc->dspaddr_offset = linear_offset; |
| |
| intel_crtc->adjusted_x = x; |
| intel_crtc->adjusted_y = y; |
| |
| I915_WRITE(reg, dspcntr); |
| |
| I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]); |
| if (INTEL_INFO(dev)->gen >= 4) { |
| I915_WRITE(DSPSURF(plane), |
| intel_fb_gtt_offset(fb, rotation) + |
| intel_crtc->dspaddr_offset); |
| I915_WRITE(DSPTILEOFF(plane), (y << 16) | x); |
| I915_WRITE(DSPLINOFF(plane), linear_offset); |
| } else |
| I915_WRITE(DSPADDR(plane), i915_gem_object_ggtt_offset(obj, NULL) + linear_offset); |
| POSTING_READ(reg); |
| } |
| |
| static void i9xx_disable_primary_plane(struct drm_plane *primary, |
| struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int plane = intel_crtc->plane; |
| |
| I915_WRITE(DSPCNTR(plane), 0); |
| if (INTEL_INFO(dev_priv)->gen >= 4) |
| I915_WRITE(DSPSURF(plane), 0); |
| else |
| I915_WRITE(DSPADDR(plane), 0); |
| POSTING_READ(DSPCNTR(plane)); |
| } |
| |
| static void ironlake_update_primary_plane(struct drm_plane *primary, |
| const struct intel_crtc_state *crtc_state, |
| const struct intel_plane_state *plane_state) |
| { |
| struct drm_device *dev = primary->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc); |
| struct drm_framebuffer *fb = plane_state->base.fb; |
| int plane = intel_crtc->plane; |
| u32 linear_offset; |
| u32 dspcntr; |
| i915_reg_t reg = DSPCNTR(plane); |
| unsigned int rotation = plane_state->base.rotation; |
| int x = plane_state->base.src.x1 >> 16; |
| int y = plane_state->base.src.y1 >> 16; |
| |
| dspcntr = DISPPLANE_GAMMA_ENABLE; |
| dspcntr |= DISPLAY_PLANE_ENABLE; |
| |
| if (IS_HASWELL(dev) || IS_BROADWELL(dev)) |
| dspcntr |= DISPPLANE_PIPE_CSC_ENABLE; |
| |
| switch (fb->pixel_format) { |
| case DRM_FORMAT_C8: |
| dspcntr |= DISPPLANE_8BPP; |
| break; |
| case DRM_FORMAT_RGB565: |
| dspcntr |= DISPPLANE_BGRX565; |
| break; |
| case DRM_FORMAT_XRGB8888: |
| dspcntr |= DISPPLANE_BGRX888; |
| break; |
| case DRM_FORMAT_XBGR8888: |
| dspcntr |= DISPPLANE_RGBX888; |
| break; |
| case DRM_FORMAT_XRGB2101010: |
| dspcntr |= DISPPLANE_BGRX101010; |
| break; |
| case DRM_FORMAT_XBGR2101010: |
| dspcntr |= DISPPLANE_RGBX101010; |
| break; |
| default: |
| BUG(); |
| } |
| |
| if (fb->modifier[0] == I915_FORMAT_MOD_X_TILED) |
| dspcntr |= DISPPLANE_TILED; |
| |
| if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) |
| dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE; |
| |
| intel_add_fb_offsets(&x, &y, plane_state, 0); |
| |
| intel_crtc->dspaddr_offset = |
| intel_compute_tile_offset(&x, &y, plane_state, 0); |
| |
| if (rotation == DRM_ROTATE_180) { |
| dspcntr |= DISPPLANE_ROTATE_180; |
| |
| if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) { |
| x += (crtc_state->pipe_src_w - 1); |
| y += (crtc_state->pipe_src_h - 1); |
| } |
| } |
| |
| linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0); |
| |
| intel_crtc->adjusted_x = x; |
| intel_crtc->adjusted_y = y; |
| |
| I915_WRITE(reg, dspcntr); |
| |
| I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]); |
| I915_WRITE(DSPSURF(plane), |
| intel_fb_gtt_offset(fb, rotation) + |
| intel_crtc->dspaddr_offset); |
| if (IS_HASWELL(dev) || IS_BROADWELL(dev)) { |
| I915_WRITE(DSPOFFSET(plane), (y << 16) | x); |
| } else { |
| I915_WRITE(DSPTILEOFF(plane), (y << 16) | x); |
| I915_WRITE(DSPLINOFF(plane), linear_offset); |
| } |
| POSTING_READ(reg); |
| } |
| |
| u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv, |
| uint64_t fb_modifier, uint32_t pixel_format) |
| { |
| if (fb_modifier == DRM_FORMAT_MOD_NONE) { |
| return 64; |
| } else { |
| int cpp = drm_format_plane_cpp(pixel_format, 0); |
| |
| return intel_tile_width_bytes(dev_priv, fb_modifier, cpp); |
| } |
| } |
| |
| u32 intel_fb_gtt_offset(struct drm_framebuffer *fb, |
| unsigned int rotation) |
| { |
| struct drm_i915_gem_object *obj = intel_fb_obj(fb); |
| struct i915_ggtt_view view; |
| struct i915_vma *vma; |
| |
| intel_fill_fb_ggtt_view(&view, fb, rotation); |
| |
| vma = i915_gem_object_to_ggtt(obj, &view); |
| if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n", |
| view.type)) |
| return -1; |
| |
| return i915_ggtt_offset(vma); |
| } |
| |
| static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id) |
| { |
| struct drm_device *dev = intel_crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| |
| I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0); |
| I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0); |
| I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0); |
| } |
| |
| /* |
| * This function detaches (aka. unbinds) unused scalers in hardware |
| */ |
| static void skl_detach_scalers(struct intel_crtc *intel_crtc) |
| { |
| struct intel_crtc_scaler_state *scaler_state; |
| int i; |
| |
| scaler_state = &intel_crtc->config->scaler_state; |
| |
| /* loop through and disable scalers that aren't in use */ |
| for (i = 0; i < intel_crtc->num_scalers; i++) { |
| if (!scaler_state->scalers[i].in_use) |
| skl_detach_scaler(intel_crtc, i); |
| } |
| } |
| |
| u32 skl_plane_stride(const struct drm_framebuffer *fb, int plane, |
| unsigned int rotation) |
| { |
| const struct drm_i915_private *dev_priv = to_i915(fb->dev); |
| u32 stride = intel_fb_pitch(fb, plane, rotation); |
| |
| /* |
| * The stride is either expressed as a multiple of 64 bytes chunks for |
| * linear buffers or in number of tiles for tiled buffers. |
| */ |
| if (intel_rotation_90_or_270(rotation)) { |
| int cpp = drm_format_plane_cpp(fb->pixel_format, plane); |
| |
| stride /= intel_tile_height(dev_priv, fb->modifier[0], cpp); |
| } else { |
| stride /= intel_fb_stride_alignment(dev_priv, fb->modifier[0], |
| fb->pixel_format); |
| } |
| |
| return stride; |
| } |
| |
| u32 skl_plane_ctl_format(uint32_t pixel_format) |
| { |
| switch (pixel_format) { |
| case DRM_FORMAT_C8: |
| return PLANE_CTL_FORMAT_INDEXED; |
| case DRM_FORMAT_RGB565: |
| return PLANE_CTL_FORMAT_RGB_565; |
| case DRM_FORMAT_XBGR8888: |
| return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX; |
| case DRM_FORMAT_XRGB8888: |
| return PLANE_CTL_FORMAT_XRGB_8888; |
| /* |
| * XXX: For ARBG/ABGR formats we default to expecting scanout buffers |
| * to be already pre-multiplied. We need to add a knob (or a different |
| * DRM_FORMAT) for user-space to configure that. |
| */ |
| case DRM_FORMAT_ABGR8888: |
| return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX | |
| PLANE_CTL_ALPHA_SW_PREMULTIPLY; |
| case DRM_FORMAT_ARGB8888: |
| return PLANE_CTL_FORMAT_XRGB_8888 | |
| PLANE_CTL_ALPHA_SW_PREMULTIPLY; |
| case DRM_FORMAT_XRGB2101010: |
| return PLANE_CTL_FORMAT_XRGB_2101010; |
| case DRM_FORMAT_XBGR2101010: |
| return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010; |
| case DRM_FORMAT_YUYV: |
| return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV; |
| case DRM_FORMAT_YVYU: |
| return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU; |
| case DRM_FORMAT_UYVY: |
| return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY; |
| case DRM_FORMAT_VYUY: |
| return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY; |
| default: |
| MISSING_CASE(pixel_format); |
| } |
| |
| return 0; |
| } |
| |
| u32 skl_plane_ctl_tiling(uint64_t fb_modifier) |
| { |
| switch (fb_modifier) { |
| case DRM_FORMAT_MOD_NONE: |
| break; |
| case I915_FORMAT_MOD_X_TILED: |
| return PLANE_CTL_TILED_X; |
| case I915_FORMAT_MOD_Y_TILED: |
| return PLANE_CTL_TILED_Y; |
| case I915_FORMAT_MOD_Yf_TILED: |
| return PLANE_CTL_TILED_YF; |
| default: |
| MISSING_CASE(fb_modifier); |
| } |
| |
| return 0; |
| } |
| |
| u32 skl_plane_ctl_rotation(unsigned int rotation) |
| { |
| switch (rotation) { |
| case DRM_ROTATE_0: |
| break; |
| /* |
| * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr |
| * while i915 HW rotation is clockwise, thats why this swapping. |
| */ |
| case DRM_ROTATE_90: |
| return PLANE_CTL_ROTATE_270; |
| case DRM_ROTATE_180: |
| return PLANE_CTL_ROTATE_180; |
| case DRM_ROTATE_270: |
| return PLANE_CTL_ROTATE_90; |
| default: |
| MISSING_CASE(rotation); |
| } |
| |
| return 0; |
| } |
| |
| static void skylake_update_primary_plane(struct drm_plane *plane, |
| const struct intel_crtc_state *crtc_state, |
| const struct intel_plane_state *plane_state) |
| { |
| struct drm_device *dev = plane->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc); |
| struct drm_framebuffer *fb = plane_state->base.fb; |
| const struct skl_wm_values *wm = &dev_priv->wm.skl_results; |
| int pipe = intel_crtc->pipe; |
| u32 plane_ctl; |
| unsigned int rotation = plane_state->base.rotation; |
| u32 stride = skl_plane_stride(fb, 0, rotation); |
| u32 surf_addr = plane_state->main.offset; |
| int scaler_id = plane_state->scaler_id; |
| int src_x = plane_state->main.x; |
| int src_y = plane_state->main.y; |
| int src_w = drm_rect_width(&plane_state->base.src) >> 16; |
| int src_h = drm_rect_height(&plane_state->base.src) >> 16; |
| int dst_x = plane_state->base.dst.x1; |
| int dst_y = plane_state->base.dst.y1; |
| int dst_w = drm_rect_width(&plane_state->base.dst); |
| int dst_h = drm_rect_height(&plane_state->base.dst); |
| |
| plane_ctl = PLANE_CTL_ENABLE | |
| PLANE_CTL_PIPE_GAMMA_ENABLE | |
| PLANE_CTL_PIPE_CSC_ENABLE; |
| |
| plane_ctl |= skl_plane_ctl_format(fb->pixel_format); |
| plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]); |
| plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE; |
| plane_ctl |= skl_plane_ctl_rotation(rotation); |
| |
| /* Sizes are 0 based */ |
| src_w--; |
| src_h--; |
| dst_w--; |
| dst_h--; |
| |
| intel_crtc->dspaddr_offset = surf_addr; |
| |
| intel_crtc->adjusted_x = src_x; |
| intel_crtc->adjusted_y = src_y; |
| |
| if (wm->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) |
| skl_write_plane_wm(intel_crtc, wm, 0); |
| |
| I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl); |
| I915_WRITE(PLANE_OFFSET(pipe, 0), (src_y << 16) | src_x); |
| I915_WRITE(PLANE_STRIDE(pipe, 0), stride); |
| I915_WRITE(PLANE_SIZE(pipe, 0), (src_h << 16) | src_w); |
| |
| if (scaler_id >= 0) { |
| uint32_t ps_ctrl = 0; |
| |
| WARN_ON(!dst_w || !dst_h); |
| ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) | |
| crtc_state->scaler_state.scalers[scaler_id].mode; |
| I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl); |
| I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0); |
| I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y); |
| I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h); |
| I915_WRITE(PLANE_POS(pipe, 0), 0); |
| } else { |
| I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x); |
| } |
| |
| I915_WRITE(PLANE_SURF(pipe, 0), |
| intel_fb_gtt_offset(fb, rotation) + surf_addr); |
| |
| POSTING_READ(PLANE_SURF(pipe, 0)); |
| } |
| |
| static void skylake_disable_primary_plane(struct drm_plane *primary, |
| struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| |
| /* |
| * We only populate skl_results on watermark updates, and if the |
| * plane's visiblity isn't actually changing neither is its watermarks. |
| */ |
| if (!crtc->primary->state->visible) |
| skl_write_plane_wm(intel_crtc, &dev_priv->wm.skl_results, 0); |
| |
| I915_WRITE(PLANE_CTL(pipe, 0), 0); |
| I915_WRITE(PLANE_SURF(pipe, 0), 0); |
| POSTING_READ(PLANE_SURF(pipe, 0)); |
| } |
| |
| /* Assume fb object is pinned & idle & fenced and just update base pointers */ |
| static int |
| intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb, |
| int x, int y, enum mode_set_atomic state) |
| { |
| /* Support for kgdboc is disabled, this needs a major rework. */ |
| DRM_ERROR("legacy panic handler not supported any more.\n"); |
| |
| return -ENODEV; |
| } |
| |
| static void intel_complete_page_flips(struct drm_i915_private *dev_priv) |
| { |
| struct intel_crtc *crtc; |
| |
| for_each_intel_crtc(&dev_priv->drm, crtc) |
| intel_finish_page_flip_cs(dev_priv, crtc->pipe); |
| } |
| |
| static void intel_update_primary_planes(struct drm_device *dev) |
| { |
| struct drm_crtc *crtc; |
| |
| for_each_crtc(dev, crtc) { |
| struct intel_plane *plane = to_intel_plane(crtc->primary); |
| struct intel_plane_state *plane_state = |
| to_intel_plane_state(plane->base.state); |
| |
| if (plane_state->base.visible) |
| plane->update_plane(&plane->base, |
| to_intel_crtc_state(crtc->state), |
| plane_state); |
| } |
| } |
| |
| static int |
| __intel_display_resume(struct drm_device *dev, |
| struct drm_atomic_state *state) |
| { |
| struct drm_crtc_state *crtc_state; |
| struct drm_crtc *crtc; |
| int i, ret; |
| |
| intel_modeset_setup_hw_state(dev); |
| i915_redisable_vga(dev); |
| |
| if (!state) |
| return 0; |
| |
| for_each_crtc_in_state(state, crtc, crtc_state, i) { |
| /* |
| * Force recalculation even if we restore |
| * current state. With fast modeset this may not result |
| * in a modeset when the state is compatible. |
| */ |
| crtc_state->mode_changed = true; |
| } |
| |
| /* ignore any reset values/BIOS leftovers in the WM registers */ |
| to_intel_atomic_state(state)->skip_intermediate_wm = true; |
| |
| ret = drm_atomic_commit(state); |
| |
| WARN_ON(ret == -EDEADLK); |
| return ret; |
| } |
| |
| static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv) |
| { |
| return intel_has_gpu_reset(dev_priv) && |
| INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv); |
| } |
| |
| void intel_prepare_reset(struct drm_i915_private *dev_priv) |
| { |
| struct drm_device *dev = &dev_priv->drm; |
| struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx; |
| struct drm_atomic_state *state; |
| int ret; |
| |
| /* |
| * Need mode_config.mutex so that we don't |
| * trample ongoing ->detect() and whatnot. |
| */ |
| mutex_lock(&dev->mode_config.mutex); |
| drm_modeset_acquire_init(ctx, 0); |
| while (1) { |
| ret = drm_modeset_lock_all_ctx(dev, ctx); |
| if (ret != -EDEADLK) |
| break; |
| |
| drm_modeset_backoff(ctx); |
| } |
| |
| /* reset doesn't touch the display, but flips might get nuked anyway, */ |
| if (!i915.force_reset_modeset_test && |
| !gpu_reset_clobbers_display(dev_priv)) |
| return; |
| |
| /* |
| * Disabling the crtcs gracefully seems nicer. Also the |
| * g33 docs say we should at least disable all the planes. |
| */ |
| state = drm_atomic_helper_duplicate_state(dev, ctx); |
| if (IS_ERR(state)) { |
| ret = PTR_ERR(state); |
| state = NULL; |
| DRM_ERROR("Duplicating state failed with %i\n", ret); |
| goto err; |
| } |
| |
| ret = drm_atomic_helper_disable_all(dev, ctx); |
| if (ret) { |
| DRM_ERROR("Suspending crtc's failed with %i\n", ret); |
| goto err; |
| } |
| |
| dev_priv->modeset_restore_state = state; |
| state->acquire_ctx = ctx; |
| return; |
| |
| err: |
| drm_atomic_state_free(state); |
| } |
| |
| void intel_finish_reset(struct drm_i915_private *dev_priv) |
| { |
| struct drm_device *dev = &dev_priv->drm; |
| struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx; |
| struct drm_atomic_state *state = dev_priv->modeset_restore_state; |
| int ret; |
| |
| /* |
| * Flips in the rings will be nuked by the reset, |
| * so complete all pending flips so that user space |
| * will get its events and not get stuck. |
| */ |
| intel_complete_page_flips(dev_priv); |
| |
| dev_priv->modeset_restore_state = NULL; |
| |
| dev_priv->modeset_restore_state = NULL; |
| |
| /* reset doesn't touch the display */ |
| if (!gpu_reset_clobbers_display(dev_priv)) { |
| if (!state) { |
| /* |
| * Flips in the rings have been nuked by the reset, |
| * so update the base address of all primary |
| * planes to the the last fb to make sure we're |
| * showing the correct fb after a reset. |
| * |
| * FIXME: Atomic will make this obsolete since we won't schedule |
| * CS-based flips (which might get lost in gpu resets) any more. |
| */ |
| intel_update_primary_planes(dev); |
| } else { |
| ret = __intel_display_resume(dev, state); |
| if (ret) |
| DRM_ERROR("Restoring old state failed with %i\n", ret); |
| } |
| } else { |
| /* |
| * The display has been reset as well, |
| * so need a full re-initialization. |
| */ |
| intel_runtime_pm_disable_interrupts(dev_priv); |
| intel_runtime_pm_enable_interrupts(dev_priv); |
| |
| intel_pps_unlock_regs_wa(dev_priv); |
| intel_modeset_init_hw(dev); |
| |
| spin_lock_irq(&dev_priv->irq_lock); |
| if (dev_priv->display.hpd_irq_setup) |
| dev_priv->display.hpd_irq_setup(dev_priv); |
| spin_unlock_irq(&dev_priv->irq_lock); |
| |
| ret = __intel_display_resume(dev, state); |
| if (ret) |
| DRM_ERROR("Restoring old state failed with %i\n", ret); |
| |
| intel_hpd_init(dev_priv); |
| } |
| |
| drm_modeset_drop_locks(ctx); |
| drm_modeset_acquire_fini(ctx); |
| mutex_unlock(&dev->mode_config.mutex); |
| } |
| |
| static bool abort_flip_on_reset(struct intel_crtc *crtc) |
| { |
| struct i915_gpu_error *error = &to_i915(crtc->base.dev)->gpu_error; |
| |
| if (i915_reset_in_progress(error)) |
| return true; |
| |
| if (crtc->reset_count != i915_reset_count(error)) |
| return true; |
| |
| return false; |
| } |
| |
| static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| bool pending; |
| |
| if (abort_flip_on_reset(intel_crtc)) |
| return false; |
| |
| spin_lock_irq(&dev->event_lock); |
| pending = to_intel_crtc(crtc)->flip_work != NULL; |
| spin_unlock_irq(&dev->event_lock); |
| |
| return pending; |
| } |
| |
| static void intel_update_pipe_config(struct intel_crtc *crtc, |
| struct intel_crtc_state *old_crtc_state) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_crtc_state *pipe_config = |
| to_intel_crtc_state(crtc->base.state); |
| |
| /* drm_atomic_helper_update_legacy_modeset_state might not be called. */ |
| crtc->base.mode = crtc->base.state->mode; |
| |
| DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n", |
| old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h, |
| pipe_config->pipe_src_w, pipe_config->pipe_src_h); |
| |
| /* |
| * Update pipe size and adjust fitter if needed: the reason for this is |
| * that in compute_mode_changes we check the native mode (not the pfit |
| * mode) to see if we can flip rather than do a full mode set. In the |
| * fastboot case, we'll flip, but if we don't update the pipesrc and |
| * pfit state, we'll end up with a big fb scanned out into the wrong |
| * sized surface. |
| */ |
| |
| I915_WRITE(PIPESRC(crtc->pipe), |
| ((pipe_config->pipe_src_w - 1) << 16) | |
| (pipe_config->pipe_src_h - 1)); |
| |
| /* on skylake this is done by detaching scalers */ |
| if (INTEL_INFO(dev)->gen >= 9) { |
| skl_detach_scalers(crtc); |
| |
| if (pipe_config->pch_pfit.enabled) |
| skylake_pfit_enable(crtc); |
| } else if (HAS_PCH_SPLIT(dev)) { |
| if (pipe_config->pch_pfit.enabled) |
| ironlake_pfit_enable(crtc); |
| else if (old_crtc_state->pch_pfit.enabled) |
| ironlake_pfit_disable(crtc, true); |
| } |
| } |
| |
| static void intel_fdi_normal_train(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| i915_reg_t reg; |
| u32 temp; |
| |
| /* enable normal train */ |
| reg = FDI_TX_CTL(pipe); |
| temp = I915_READ(reg); |
| if (IS_IVYBRIDGE(dev)) { |
| temp &= ~FDI_LINK_TRAIN_NONE_IVB; |
| temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE; |
| } else { |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE; |
| } |
| I915_WRITE(reg, temp); |
| |
| reg = FDI_RX_CTL(pipe); |
| temp = I915_READ(reg); |
| if (HAS_PCH_CPT(dev)) { |
| temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; |
| temp |= FDI_LINK_TRAIN_NORMAL_CPT; |
| } else { |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_NONE; |
| } |
| I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE); |
| |
| /* wait one idle pattern time */ |
| POSTING_READ(reg); |
| udelay(1000); |
| |
| /* IVB wants error correction enabled */ |
| if (IS_IVYBRIDGE(dev)) |
| I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE | |
| FDI_FE_ERRC_ENABLE); |
| } |
| |
| /* The FDI link training functions for ILK/Ibexpeak. */ |
| static void ironlake_fdi_link_train(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| i915_reg_t reg; |
| u32 temp, tries; |
| |
| /* FDI needs bits from pipe first */ |
| assert_pipe_enabled(dev_priv, pipe); |
| |
| /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit |
| for train result */ |
| reg = FDI_RX_IMR(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_RX_SYMBOL_LOCK; |
| temp &= ~FDI_RX_BIT_LOCK; |
| I915_WRITE(reg, temp); |
| I915_READ(reg); |
| udelay(150); |
| |
| /* enable CPU FDI TX and PCH FDI RX */ |
| reg = FDI_TX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_DP_PORT_WIDTH_MASK; |
| temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes); |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_PATTERN_1; |
| I915_WRITE(reg, temp | FDI_TX_ENABLE); |
| |
| reg = FDI_RX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_PATTERN_1; |
| I915_WRITE(reg, temp | FDI_RX_ENABLE); |
| |
| POSTING_READ(reg); |
| udelay(150); |
| |
| /* Ironlake workaround, enable clock pointer after FDI enable*/ |
| I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR); |
| I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR | |
| FDI_RX_PHASE_SYNC_POINTER_EN); |
| |
| reg = FDI_RX_IIR(pipe); |
| for (tries = 0; tries < 5; tries++) { |
| temp = I915_READ(reg); |
| DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); |
| |
| if ((temp & FDI_RX_BIT_LOCK)) { |
| DRM_DEBUG_KMS("FDI train 1 done.\n"); |
| I915_WRITE(reg, temp | FDI_RX_BIT_LOCK); |
| break; |
| } |
| } |
| if (tries == 5) |
| DRM_ERROR("FDI train 1 fail!\n"); |
| |
| /* Train 2 */ |
| reg = FDI_TX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_PATTERN_2; |
| I915_WRITE(reg, temp); |
| |
| reg = FDI_RX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_PATTERN_2; |
| I915_WRITE(reg, temp); |
| |
| POSTING_READ(reg); |
| udelay(150); |
| |
| reg = FDI_RX_IIR(pipe); |
| for (tries = 0; tries < 5; tries++) { |
| temp = I915_READ(reg); |
| DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); |
| |
| if (temp & FDI_RX_SYMBOL_LOCK) { |
| I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK); |
| DRM_DEBUG_KMS("FDI train 2 done.\n"); |
| break; |
| } |
| } |
| if (tries == 5) |
| DRM_ERROR("FDI train 2 fail!\n"); |
| |
| DRM_DEBUG_KMS("FDI train done\n"); |
| |
| } |
| |
| static const int snb_b_fdi_train_param[] = { |
| FDI_LINK_TRAIN_400MV_0DB_SNB_B, |
| FDI_LINK_TRAIN_400MV_6DB_SNB_B, |
| FDI_LINK_TRAIN_600MV_3_5DB_SNB_B, |
| FDI_LINK_TRAIN_800MV_0DB_SNB_B, |
| }; |
| |
| /* The FDI link training functions for SNB/Cougarpoint. */ |
| static void gen6_fdi_link_train(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| i915_reg_t reg; |
| u32 temp, i, retry; |
| |
| /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit |
| for train result */ |
| reg = FDI_RX_IMR(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_RX_SYMBOL_LOCK; |
| temp &= ~FDI_RX_BIT_LOCK; |
| I915_WRITE(reg, temp); |
| |
| POSTING_READ(reg); |
| udelay(150); |
| |
| /* enable CPU FDI TX and PCH FDI RX */ |
| reg = FDI_TX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_DP_PORT_WIDTH_MASK; |
| temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes); |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_PATTERN_1; |
| temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; |
| /* SNB-B */ |
| temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; |
| I915_WRITE(reg, temp | FDI_TX_ENABLE); |
| |
| I915_WRITE(FDI_RX_MISC(pipe), |
| FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90); |
| |
| reg = FDI_RX_CTL(pipe); |
| temp = I915_READ(reg); |
| if (HAS_PCH_CPT(dev)) { |
| temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; |
| temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; |
| } else { |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_PATTERN_1; |
| } |
| I915_WRITE(reg, temp | FDI_RX_ENABLE); |
| |
| POSTING_READ(reg); |
| udelay(150); |
| |
| for (i = 0; i < 4; i++) { |
| reg = FDI_TX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; |
| temp |= snb_b_fdi_train_param[i]; |
| I915_WRITE(reg, temp); |
| |
| POSTING_READ(reg); |
| udelay(500); |
| |
| for (retry = 0; retry < 5; retry++) { |
| reg = FDI_RX_IIR(pipe); |
| temp = I915_READ(reg); |
| DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); |
| if (temp & FDI_RX_BIT_LOCK) { |
| I915_WRITE(reg, temp | FDI_RX_BIT_LOCK); |
| DRM_DEBUG_KMS("FDI train 1 done.\n"); |
| break; |
| } |
| udelay(50); |
| } |
| if (retry < 5) |
| break; |
| } |
| if (i == 4) |
| DRM_ERROR("FDI train 1 fail!\n"); |
| |
| /* Train 2 */ |
| reg = FDI_TX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_PATTERN_2; |
| if (IS_GEN6(dev)) { |
| temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; |
| /* SNB-B */ |
| temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; |
| } |
| I915_WRITE(reg, temp); |
| |
| reg = FDI_RX_CTL(pipe); |
| temp = I915_READ(reg); |
| if (HAS_PCH_CPT(dev)) { |
| temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; |
| temp |= FDI_LINK_TRAIN_PATTERN_2_CPT; |
| } else { |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_PATTERN_2; |
| } |
| I915_WRITE(reg, temp); |
| |
| POSTING_READ(reg); |
| udelay(150); |
| |
| for (i = 0; i < 4; i++) { |
| reg = FDI_TX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; |
| temp |= snb_b_fdi_train_param[i]; |
| I915_WRITE(reg, temp); |
| |
| POSTING_READ(reg); |
| udelay(500); |
| |
| for (retry = 0; retry < 5; retry++) { |
| reg = FDI_RX_IIR(pipe); |
| temp = I915_READ(reg); |
| DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); |
| if (temp & FDI_RX_SYMBOL_LOCK) { |
| I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK); |
| DRM_DEBUG_KMS("FDI train 2 done.\n"); |
| break; |
| } |
| udelay(50); |
| } |
| if (retry < 5) |
| break; |
| } |
| if (i == 4) |
| DRM_ERROR("FDI train 2 fail!\n"); |
| |
| DRM_DEBUG_KMS("FDI train done.\n"); |
| } |
| |
| /* Manual link training for Ivy Bridge A0 parts */ |
| static void ivb_manual_fdi_link_train(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| i915_reg_t reg; |
| u32 temp, i, j; |
| |
| /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit |
| for train result */ |
| reg = FDI_RX_IMR(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_RX_SYMBOL_LOCK; |
| temp &= ~FDI_RX_BIT_LOCK; |
| I915_WRITE(reg, temp); |
| |
| POSTING_READ(reg); |
| udelay(150); |
| |
| DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n", |
| I915_READ(FDI_RX_IIR(pipe))); |
| |
| /* Try each vswing and preemphasis setting twice before moving on */ |
| for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) { |
| /* disable first in case we need to retry */ |
| reg = FDI_TX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB); |
| temp &= ~FDI_TX_ENABLE; |
| I915_WRITE(reg, temp); |
| |
| reg = FDI_RX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_LINK_TRAIN_AUTO; |
| temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; |
| temp &= ~FDI_RX_ENABLE; |
| I915_WRITE(reg, temp); |
| |
| /* enable CPU FDI TX and PCH FDI RX */ |
| reg = FDI_TX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_DP_PORT_WIDTH_MASK; |
| temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes); |
| temp |= FDI_LINK_TRAIN_PATTERN_1_IVB; |
| temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; |
| temp |= snb_b_fdi_train_param[j/2]; |
| temp |= FDI_COMPOSITE_SYNC; |
| I915_WRITE(reg, temp | FDI_TX_ENABLE); |
| |
| I915_WRITE(FDI_RX_MISC(pipe), |
| FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90); |
| |
| reg = FDI_RX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; |
| temp |= FDI_COMPOSITE_SYNC; |
| I915_WRITE(reg, temp | FDI_RX_ENABLE); |
| |
| POSTING_READ(reg); |
| udelay(1); /* should be 0.5us */ |
| |
| for (i = 0; i < 4; i++) { |
| reg = FDI_RX_IIR(pipe); |
| temp = I915_READ(reg); |
| DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); |
| |
| if (temp & FDI_RX_BIT_LOCK || |
| (I915_READ(reg) & FDI_RX_BIT_LOCK)) { |
| I915_WRITE(reg, temp | FDI_RX_BIT_LOCK); |
| DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", |
| i); |
| break; |
| } |
| udelay(1); /* should be 0.5us */ |
| } |
| if (i == 4) { |
| DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2); |
| continue; |
| } |
| |
| /* Train 2 */ |
| reg = FDI_TX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_LINK_TRAIN_NONE_IVB; |
| temp |= FDI_LINK_TRAIN_PATTERN_2_IVB; |
| I915_WRITE(reg, temp); |
| |
| reg = FDI_RX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; |
| temp |= FDI_LINK_TRAIN_PATTERN_2_CPT; |
| I915_WRITE(reg, temp); |
| |
| POSTING_READ(reg); |
| udelay(2); /* should be 1.5us */ |
| |
| for (i = 0; i < 4; i++) { |
| reg = FDI_RX_IIR(pipe); |
| temp = I915_READ(reg); |
| DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); |
| |
| if (temp & FDI_RX_SYMBOL_LOCK || |
| (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) { |
| I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK); |
| DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", |
| i); |
| goto train_done; |
| } |
| udelay(2); /* should be 1.5us */ |
| } |
| if (i == 4) |
| DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2); |
| } |
| |
| train_done: |
| DRM_DEBUG_KMS("FDI train done.\n"); |
| } |
| |
| static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc) |
| { |
| struct drm_device *dev = intel_crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| int pipe = intel_crtc->pipe; |
| i915_reg_t reg; |
| u32 temp; |
| |
| /* enable PCH FDI RX PLL, wait warmup plus DMI latency */ |
| reg = FDI_RX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16)); |
| temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes); |
| temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; |
| I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE); |
| |
| POSTING_READ(reg); |
| udelay(200); |
| |
| /* Switch from Rawclk to PCDclk */ |
| temp = I915_READ(reg); |
| I915_WRITE(reg, temp | FDI_PCDCLK); |
| |
| POSTING_READ(reg); |
| udelay(200); |
| |
| /* Enable CPU FDI TX PLL, always on for Ironlake */ |
| reg = FDI_TX_CTL(pipe); |
| temp = I915_READ(reg); |
| if ((temp & FDI_TX_PLL_ENABLE) == 0) { |
| I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE); |
| |
| POSTING_READ(reg); |
| udelay(100); |
| } |
| } |
| |
| static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc) |
| { |
| struct drm_device *dev = intel_crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| int pipe = intel_crtc->pipe; |
| i915_reg_t reg; |
| u32 temp; |
| |
| /* Switch from PCDclk to Rawclk */ |
| reg = FDI_RX_CTL(pipe); |
| temp = I915_READ(reg); |
| I915_WRITE(reg, temp & ~FDI_PCDCLK); |
| |
| /* Disable CPU FDI TX PLL */ |
| reg = FDI_TX_CTL(pipe); |
| temp = I915_READ(reg); |
| I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE); |
| |
| POSTING_READ(reg); |
| udelay(100); |
| |
| reg = FDI_RX_CTL(pipe); |
| temp = I915_READ(reg); |
| I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE); |
| |
| /* Wait for the clocks to turn off. */ |
| POSTING_READ(reg); |
| udelay(100); |
| } |
| |
| static void ironlake_fdi_disable(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| i915_reg_t reg; |
| u32 temp; |
| |
| /* disable CPU FDI tx and PCH FDI rx */ |
| reg = FDI_TX_CTL(pipe); |
| temp = I915_READ(reg); |
| I915_WRITE(reg, temp & ~FDI_TX_ENABLE); |
| POSTING_READ(reg); |
| |
| reg = FDI_RX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~(0x7 << 16); |
| temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; |
| I915_WRITE(reg, temp & ~FDI_RX_ENABLE); |
| |
| POSTING_READ(reg); |
| udelay(100); |
| |
| /* Ironlake workaround, disable clock pointer after downing FDI */ |
| if (HAS_PCH_IBX(dev)) |
| I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR); |
| |
| /* still set train pattern 1 */ |
| reg = FDI_TX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_PATTERN_1; |
| I915_WRITE(reg, temp); |
| |
| reg = FDI_RX_CTL(pipe); |
| temp = I915_READ(reg); |
| if (HAS_PCH_CPT(dev)) { |
| temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; |
| temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; |
| } else { |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_PATTERN_1; |
| } |
| /* BPC in FDI rx is consistent with that in PIPECONF */ |
| temp &= ~(0x07 << 16); |
| temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; |
| I915_WRITE(reg, temp); |
| |
| POSTING_READ(reg); |
| udelay(100); |
| } |
| |
| bool intel_has_pending_fb_unpin(struct drm_device *dev) |
| { |
| struct intel_crtc *crtc; |
| |
| /* Note that we don't need to be called with mode_config.lock here |
| * as our list of CRTC objects is static for the lifetime of the |
| * device and so cannot disappear as we iterate. Similarly, we can |
| * happily treat the predicates as racy, atomic checks as userspace |
| * cannot claim and pin a new fb without at least acquring the |
| * struct_mutex and so serialising with us. |
| */ |
| for_each_intel_crtc(dev, crtc) { |
| if (atomic_read(&crtc->unpin_work_count) == 0) |
| continue; |
| |
| if (crtc->flip_work) |
| intel_wait_for_vblank(dev, crtc->pipe); |
| |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static void page_flip_completed(struct intel_crtc *intel_crtc) |
| { |
| struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev); |
| struct intel_flip_work *work = intel_crtc->flip_work; |
| |
| intel_crtc->flip_work = NULL; |
| |
| if (work->event) |
| drm_crtc_send_vblank_event(&intel_crtc->base, work->event); |
| |
| drm_crtc_vblank_put(&intel_crtc->base); |
| |
| wake_up_all(&dev_priv->pending_flip_queue); |
| queue_work(dev_priv->wq, &work->unpin_work); |
| |
| trace_i915_flip_complete(intel_crtc->plane, |
| work->pending_flip_obj); |
| } |
| |
| static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| long ret; |
| |
| WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue)); |
| |
| ret = wait_event_interruptible_timeout( |
| dev_priv->pending_flip_queue, |
| !intel_crtc_has_pending_flip(crtc), |
| 60*HZ); |
| |
| if (ret < 0) |
| return ret; |
| |
| if (ret == 0) { |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct intel_flip_work *work; |
| |
| spin_lock_irq(&dev->event_lock); |
| work = intel_crtc->flip_work; |
| if (work && !is_mmio_work(work)) { |
| WARN_ONCE(1, "Removing stuck page flip\n"); |
| page_flip_completed(intel_crtc); |
| } |
| spin_unlock_irq(&dev->event_lock); |
| } |
| |
| return 0; |
| } |
| |
| void lpt_disable_iclkip(struct drm_i915_private *dev_priv) |
| { |
| u32 temp; |
| |
| I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE); |
| |
| mutex_lock(&dev_priv->sb_lock); |
| |
| temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); |
| temp |= SBI_SSCCTL_DISABLE; |
| intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); |
| |
| mutex_unlock(&dev_priv->sb_lock); |
| } |
| |
| /* Program iCLKIP clock to the desired frequency */ |
| static void lpt_program_iclkip(struct drm_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc->dev); |
| int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock; |
| u32 divsel, phaseinc, auxdiv, phasedir = 0; |
| u32 temp; |
| |
| lpt_disable_iclkip(dev_priv); |
| |
| /* The iCLK virtual clock root frequency is in MHz, |
| * but the adjusted_mode->crtc_clock in in KHz. To get the |
| * divisors, it is necessary to divide one by another, so we |
| * convert the virtual clock precision to KHz here for higher |
| * precision. |
| */ |
| for (auxdiv = 0; auxdiv < 2; auxdiv++) { |
| u32 iclk_virtual_root_freq = 172800 * 1000; |
| u32 iclk_pi_range = 64; |
| u32 desired_divisor; |
| |
| desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq, |
| clock << auxdiv); |
| divsel = (desired_divisor / iclk_pi_range) - 2; |
| phaseinc = desired_divisor % iclk_pi_range; |
| |
| /* |
| * Near 20MHz is a corner case which is |
| * out of range for the 7-bit divisor |
| */ |
| if (divsel <= 0x7f) |
| break; |
| } |
| |
| /* This should not happen with any sane values */ |
| WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) & |
| ~SBI_SSCDIVINTPHASE_DIVSEL_MASK); |
| WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) & |
| ~SBI_SSCDIVINTPHASE_INCVAL_MASK); |
| |
| DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n", |
| clock, |
| auxdiv, |
| divsel, |
| phasedir, |
| phaseinc); |
| |
| mutex_lock(&dev_priv->sb_lock); |
| |
| /* Program SSCDIVINTPHASE6 */ |
| temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); |
| temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK; |
| temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel); |
| temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK; |
| temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc); |
| temp |= SBI_SSCDIVINTPHASE_DIR(phasedir); |
| temp |= SBI_SSCDIVINTPHASE_PROPAGATE; |
| intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK); |
| |
| /* Program SSCAUXDIV */ |
| temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); |
| temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1); |
| temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv); |
| intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK); |
| |
| /* Enable modulator and associated divider */ |
| temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); |
| temp &= ~SBI_SSCCTL_DISABLE; |
| intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); |
| |
| mutex_unlock(&dev_priv->sb_lock); |
| |
| /* Wait for initialization time */ |
| udelay(24); |
| |
| I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE); |
| } |
| |
| int lpt_get_iclkip(struct drm_i915_private *dev_priv) |
| { |
| u32 divsel, phaseinc, auxdiv; |
| u32 iclk_virtual_root_freq = 172800 * 1000; |
| u32 iclk_pi_range = 64; |
| u32 desired_divisor; |
| u32 temp; |
| |
| if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0) |
| return 0; |
| |
| mutex_lock(&dev_priv->sb_lock); |
| |
| temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); |
| if (temp & SBI_SSCCTL_DISABLE) { |
| mutex_unlock(&dev_priv->sb_lock); |
| return 0; |
| } |
| |
| temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); |
| divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >> |
| SBI_SSCDIVINTPHASE_DIVSEL_SHIFT; |
| phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >> |
| SBI_SSCDIVINTPHASE_INCVAL_SHIFT; |
| |
| temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); |
| auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >> |
| SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT; |
| |
| mutex_unlock(&dev_priv->sb_lock); |
| |
| desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc; |
| |
| return DIV_ROUND_CLOSEST(iclk_virtual_root_freq, |
| desired_divisor << auxdiv); |
| } |
| |
| static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc, |
| enum pipe pch_transcoder) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| enum transcoder cpu_transcoder = crtc->config->cpu_transcoder; |
| |
| I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder), |
| I915_READ(HTOTAL(cpu_transcoder))); |
| I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder), |
| I915_READ(HBLANK(cpu_transcoder))); |
| I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder), |
| I915_READ(HSYNC(cpu_transcoder))); |
| |
| I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder), |
| I915_READ(VTOTAL(cpu_transcoder))); |
| I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder), |
| I915_READ(VBLANK(cpu_transcoder))); |
| I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder), |
| I915_READ(VSYNC(cpu_transcoder))); |
| I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder), |
| I915_READ(VSYNCSHIFT(cpu_transcoder))); |
| } |
| |
| static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| uint32_t temp; |
| |
| temp = I915_READ(SOUTH_CHICKEN1); |
| if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable) |
| return; |
| |
| WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE); |
| WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE); |
| |
| temp &= ~FDI_BC_BIFURCATION_SELECT; |
| if (enable) |
| temp |= FDI_BC_BIFURCATION_SELECT; |
| |
| DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis"); |
| I915_WRITE(SOUTH_CHICKEN1, temp); |
| POSTING_READ(SOUTH_CHICKEN1); |
| } |
| |
| static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc) |
| { |
| struct drm_device *dev = intel_crtc->base.dev; |
| |
| switch (intel_crtc->pipe) { |
| case PIPE_A: |
| break; |
| case PIPE_B: |
| if (intel_crtc->config->fdi_lanes > 2) |
| cpt_set_fdi_bc_bifurcation(dev, false); |
| else |
| cpt_set_fdi_bc_bifurcation(dev, true); |
| |
| break; |
| case PIPE_C: |
| cpt_set_fdi_bc_bifurcation(dev, true); |
| |
| break; |
| default: |
| BUG(); |
| } |
| } |
| |
| /* Return which DP Port should be selected for Transcoder DP control */ |
| static enum port |
| intel_trans_dp_port_sel(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct intel_encoder *encoder; |
| |
| for_each_encoder_on_crtc(dev, crtc, encoder) { |
| if (encoder->type == INTEL_OUTPUT_DP || |
| encoder->type == INTEL_OUTPUT_EDP) |
| return enc_to_dig_port(&encoder->base)->port; |
| } |
| |
| return -1; |
| } |
| |
| /* |
| * Enable PCH resources required for PCH ports: |
| * - PCH PLLs |
| * - FDI training & RX/TX |
| * - update transcoder timings |
| * - DP transcoding bits |
| * - transcoder |
| */ |
| static void ironlake_pch_enable(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| u32 temp; |
| |
| assert_pch_transcoder_disabled(dev_priv, pipe); |
| |
| if (IS_IVYBRIDGE(dev)) |
| ivybridge_update_fdi_bc_bifurcation(intel_crtc); |
| |
| /* Write the TU size bits before fdi link training, so that error |
| * detection works. */ |
| I915_WRITE(FDI_RX_TUSIZE1(pipe), |
| I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK); |
| |
| /* For PCH output, training FDI link */ |
| dev_priv->display.fdi_link_train(crtc); |
| |
| /* We need to program the right clock selection before writing the pixel |
| * mutliplier into the DPLL. */ |
| if (HAS_PCH_CPT(dev)) { |
| u32 sel; |
| |
| temp = I915_READ(PCH_DPLL_SEL); |
| temp |= TRANS_DPLL_ENABLE(pipe); |
| sel = TRANS_DPLLB_SEL(pipe); |
| if (intel_crtc->config->shared_dpll == |
| intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B)) |
| temp |= sel; |
| else |
| temp &= ~sel; |
| I915_WRITE(PCH_DPLL_SEL, temp); |
| } |
| |
| /* XXX: pch pll's can be enabled any time before we enable the PCH |
| * transcoder, and we actually should do this to not upset any PCH |
| * transcoder that already use the clock when we share it. |
| * |
| * Note that enable_shared_dpll tries to do the right thing, but |
| * get_shared_dpll unconditionally resets the pll - we need that to have |
| * the right LVDS enable sequence. */ |
| intel_enable_shared_dpll(intel_crtc); |
| |
| /* set transcoder timing, panel must allow it */ |
| assert_panel_unlocked(dev_priv, pipe); |
| ironlake_pch_transcoder_set_timings(intel_crtc, pipe); |
| |
| intel_fdi_normal_train(crtc); |
| |
| /* For PCH DP, enable TRANS_DP_CTL */ |
| if (HAS_PCH_CPT(dev) && intel_crtc_has_dp_encoder(intel_crtc->config)) { |
| const struct drm_display_mode *adjusted_mode = |
| &intel_crtc->config->base.adjusted_mode; |
| u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5; |
| i915_reg_t reg = TRANS_DP_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~(TRANS_DP_PORT_SEL_MASK | |
| TRANS_DP_SYNC_MASK | |
| TRANS_DP_BPC_MASK); |
| temp |= TRANS_DP_OUTPUT_ENABLE; |
| temp |= bpc << 9; /* same format but at 11:9 */ |
| |
| if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) |
| temp |= TRANS_DP_HSYNC_ACTIVE_HIGH; |
| if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) |
| temp |= TRANS_DP_VSYNC_ACTIVE_HIGH; |
| |
| switch (intel_trans_dp_port_sel(crtc)) { |
| case PORT_B: |
| temp |= TRANS_DP_PORT_SEL_B; |
| break; |
| case PORT_C: |
| temp |= TRANS_DP_PORT_SEL_C; |
| break; |
| case PORT_D: |
| temp |= TRANS_DP_PORT_SEL_D; |
| break; |
| default: |
| BUG(); |
| } |
| |
| I915_WRITE(reg, temp); |
| } |
| |
| ironlake_enable_pch_transcoder(dev_priv, pipe); |
| } |
| |
| static void lpt_pch_enable(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder; |
| |
| assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A); |
| |
| lpt_program_iclkip(crtc); |
| |
| /* Set transcoder timing. */ |
| ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A); |
| |
| lpt_enable_pch_transcoder(dev_priv, cpu_transcoder); |
| } |
| |
| static void cpt_verify_modeset(struct drm_device *dev, int pipe) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| i915_reg_t dslreg = PIPEDSL(pipe); |
| u32 temp; |
| |
| temp = I915_READ(dslreg); |
| udelay(500); |
| if (wait_for(I915_READ(dslreg) != temp, 5)) { |
| if (wait_for(I915_READ(dslreg) != temp, 5)) |
| DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe)); |
| } |
| } |
| |
| static int |
| skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach, |
| unsigned scaler_user, int *scaler_id, unsigned int rotation, |
| int src_w, int src_h, int dst_w, int dst_h) |
| { |
| struct intel_crtc_scaler_state *scaler_state = |
| &crtc_state->scaler_state; |
| struct intel_crtc *intel_crtc = |
| to_intel_crtc(crtc_state->base.crtc); |
| int need_scaling; |
| |
| need_scaling = intel_rotation_90_or_270(rotation) ? |
| (src_h != dst_w || src_w != dst_h): |
| (src_w != dst_w || src_h != dst_h); |
| |
| /* |
| * if plane is being disabled or scaler is no more required or force detach |
| * - free scaler binded to this plane/crtc |
| * - in order to do this, update crtc->scaler_usage |
| * |
| * Here scaler state in crtc_state is set free so that |
| * scaler can be assigned to other user. Actual register |
| * update to free the scaler is done in plane/panel-fit programming. |
| * For this purpose crtc/plane_state->scaler_id isn't reset here. |
| */ |
| if (force_detach || !need_scaling) { |
| if (*scaler_id >= 0) { |
| scaler_state->scaler_users &= ~(1 << scaler_user); |
| scaler_state->scalers[*scaler_id].in_use = 0; |
| |
| DRM_DEBUG_KMS("scaler_user index %u.%u: " |
| "Staged freeing scaler id %d scaler_users = 0x%x\n", |
| intel_crtc->pipe, scaler_user, *scaler_id, |
| scaler_state->scaler_users); |
| *scaler_id = -1; |
| } |
| return 0; |
| } |
| |
| /* range checks */ |
| if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H || |
| dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H || |
| |
| src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H || |
| dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) { |
| DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u " |
| "size is out of scaler range\n", |
| intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h); |
| return -EINVAL; |
| } |
| |
| /* mark this plane as a scaler user in crtc_state */ |
| scaler_state->scaler_users |= (1 << scaler_user); |
| DRM_DEBUG_KMS("scaler_user index %u.%u: " |
| "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n", |
| intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h, |
| scaler_state->scaler_users); |
| |
| return 0; |
| } |
| |
| /** |
| * skl_update_scaler_crtc - Stages update to scaler state for a given crtc. |
| * |
| * @state: crtc's scaler state |
| * |
| * Return |
| * 0 - scaler_usage updated successfully |
| * error - requested scaling cannot be supported or other error condition |
| */ |
| int skl_update_scaler_crtc(struct intel_crtc_state *state) |
| { |
| struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc); |
| const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode; |
| |
| DRM_DEBUG_KMS("Updating scaler for [CRTC:%d:%s] scaler_user index %u.%u\n", |
| intel_crtc->base.base.id, intel_crtc->base.name, |
| intel_crtc->pipe, SKL_CRTC_INDEX); |
| |
| return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX, |
| &state->scaler_state.scaler_id, DRM_ROTATE_0, |
| state->pipe_src_w, state->pipe_src_h, |
| adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay); |
| } |
| |
| /** |
| * skl_update_scaler_plane - Stages update to scaler state for a given plane. |
| * |
| * @state: crtc's scaler state |
| * @plane_state: atomic plane state to update |
| * |
| * Return |
| * 0 - scaler_usage updated successfully |
| * error - requested scaling cannot be supported or other error condition |
| */ |
| static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state, |
| struct intel_plane_state *plane_state) |
| { |
| |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc); |
| struct intel_plane *intel_plane = |
| to_intel_plane(plane_state->base.plane); |
| struct drm_framebuffer *fb = plane_state->base.fb; |
| int ret; |
| |
| bool force_detach = !fb || !plane_state->base.visible; |
| |
| DRM_DEBUG_KMS("Updating scaler for [PLANE:%d:%s] scaler_user index %u.%u\n", |
| intel_plane->base.base.id, intel_plane->base.name, |
| intel_crtc->pipe, drm_plane_index(&intel_plane->base)); |
| |
| ret = skl_update_scaler(crtc_state, force_detach, |
| drm_plane_index(&intel_plane->base), |
| &plane_state->scaler_id, |
| plane_state->base.rotation, |
| drm_rect_width(&plane_state->base.src) >> 16, |
| drm_rect_height(&plane_state->base.src) >> 16, |
| drm_rect_width(&plane_state->base.dst), |
| drm_rect_height(&plane_state->base.dst)); |
| |
| if (ret || plane_state->scaler_id < 0) |
| return ret; |
| |
| /* check colorkey */ |
| if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) { |
| DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed", |
| intel_plane->base.base.id, |
| intel_plane->base.name); |
| return -EINVAL; |
| } |
| |
| /* Check src format */ |
| switch (fb->pixel_format) { |
| case DRM_FORMAT_RGB565: |
| case DRM_FORMAT_XBGR8888: |
| case DRM_FORMAT_XRGB8888: |
| case DRM_FORMAT_ABGR8888: |
| case DRM_FORMAT_ARGB8888: |
| case DRM_FORMAT_XRGB2101010: |
| case DRM_FORMAT_XBGR2101010: |
| case DRM_FORMAT_YUYV: |
| case DRM_FORMAT_YVYU: |
| case DRM_FORMAT_UYVY: |
| case DRM_FORMAT_VYUY: |
| break; |
| default: |
| DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n", |
| intel_plane->base.base.id, intel_plane->base.name, |
| fb->base.id, fb->pixel_format); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static void skylake_scaler_disable(struct intel_crtc *crtc) |
| { |
| int i; |
| |
| for (i = 0; i < crtc->num_scalers; i++) |
| skl_detach_scaler(crtc, i); |
| } |
| |
| static void skylake_pfit_enable(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| int pipe = crtc->pipe; |
| struct intel_crtc_scaler_state *scaler_state = |
| &crtc->config->scaler_state; |
| |
| DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config); |
| |
| if (crtc->config->pch_pfit.enabled) { |
| int id; |
| |
| if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) { |
| DRM_ERROR("Requesting pfit without getting a scaler first\n"); |
| return; |
| } |
| |
| id = scaler_state->scaler_id; |
| I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN | |
| PS_FILTER_MEDIUM | scaler_state->scalers[id].mode); |
| I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos); |
| I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size); |
| |
| DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id); |
| } |
| } |
| |
| static void ironlake_pfit_enable(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| int pipe = crtc->pipe; |
| |
| if (crtc->config->pch_pfit.enabled) { |
| /* Force use of hard-coded filter coefficients |
| * as some pre-programmed values are broken, |
| * e.g. x201. |
| */ |
| if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) |
| I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 | |
| PF_PIPE_SEL_IVB(pipe)); |
| else |
| I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3); |
| I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos); |
| I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size); |
| } |
| } |
| |
| void hsw_enable_ips(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| |
| if (!crtc->config->ips_enabled) |
| return; |
| |
| /* |
| * We can only enable IPS after we enable a plane and wait for a vblank |
| * This function is called from post_plane_update, which is run after |
| * a vblank wait. |
| */ |
| |
| assert_plane_enabled(dev_priv, crtc->plane); |
| if (IS_BROADWELL(dev)) { |
| mutex_lock(&dev_priv->rps.hw_lock); |
| WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000)); |
| mutex_unlock(&dev_priv->rps.hw_lock); |
| /* Quoting Art Runyan: "its not safe to expect any particular |
| * value in IPS_CTL bit 31 after enabling IPS through the |
| * mailbox." Moreover, the mailbox may return a bogus state, |
| * so we need to just enable it and continue on. |
| */ |
| } else { |
| I915_WRITE(IPS_CTL, IPS_ENABLE); |
| /* The bit only becomes 1 in the next vblank, so this wait here |
| * is essentially intel_wait_for_vblank. If we don't have this |
| * and don't wait for vblanks until the end of crtc_enable, then |
| * the HW state readout code will complain that the expected |
| * IPS_CTL value is not the one we read. */ |
| if (intel_wait_for_register(dev_priv, |
| IPS_CTL, IPS_ENABLE, IPS_ENABLE, |
| 50)) |
| DRM_ERROR("Timed out waiting for IPS enable\n"); |
| } |
| } |
| |
| void hsw_disable_ips(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| |
| if (!crtc->config->ips_enabled) |
| return; |
| |
| assert_plane_enabled(dev_priv, crtc->plane); |
| if (IS_BROADWELL(dev)) { |
| mutex_lock(&dev_priv->rps.hw_lock); |
| WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0)); |
| mutex_unlock(&dev_priv->rps.hw_lock); |
| /* wait for pcode to finish disabling IPS, which may take up to 42ms */ |
| if (intel_wait_for_register(dev_priv, |
| IPS_CTL, IPS_ENABLE, 0, |
| 42)) |
| DRM_ERROR("Timed out waiting for IPS disable\n"); |
| } else { |
| I915_WRITE(IPS_CTL, 0); |
| POSTING_READ(IPS_CTL); |
| } |
| |
| /* We need to wait for a vblank before we can disable the plane. */ |
| intel_wait_for_vblank(dev, crtc->pipe); |
| } |
| |
| static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc) |
| { |
| if (intel_crtc->overlay) { |
| struct drm_device *dev = intel_crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| |
| mutex_lock(&dev->struct_mutex); |
| dev_priv->mm.interruptible = false; |
| (void) intel_overlay_switch_off(intel_crtc->overlay); |
| dev_priv->mm.interruptible = true; |
| mutex_unlock(&dev->struct_mutex); |
| } |
| |
| /* Let userspace switch the overlay on again. In most cases userspace |
| * has to recompute where to put it anyway. |
| */ |
| } |
| |
| /** |
| * intel_post_enable_primary - Perform operations after enabling primary plane |
| * @crtc: the CRTC whose primary plane was just enabled |
| * |
| * Performs potentially sleeping operations that must be done after the primary |
| * plane is enabled, such as updating FBC and IPS. Note that this may be |
| * called due to an explicit primary plane update, or due to an implicit |
| * re-enable that is caused when a sprite plane is updated to no longer |
| * completely hide the primary plane. |
| */ |
| static void |
| intel_post_enable_primary(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| |
| /* |
| * FIXME IPS should be fine as long as one plane is |
| * enabled, but in practice it seems to have problems |
| * when going from primary only to sprite only and vice |
| * versa. |
| */ |
| hsw_enable_ips(intel_crtc); |
| |
| /* |
| * Gen2 reports pipe underruns whenever all planes are disabled. |
| * So don't enable underrun reporting before at least some planes |
| * are enabled. |
| * FIXME: Need to fix the logic to work when we turn off all planes |
| * but leave the pipe running. |
| */ |
| if (IS_GEN2(dev)) |
| intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); |
| |
| /* Underruns don't always raise interrupts, so check manually. */ |
| intel_check_cpu_fifo_underruns(dev_priv); |
| intel_check_pch_fifo_underruns(dev_priv); |
| } |
| |
| /* FIXME move all this to pre_plane_update() with proper state tracking */ |
| static void |
| intel_pre_disable_primary(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| |
| /* |
| * Gen2 reports pipe underruns whenever all planes are disabled. |
| * So diasble underrun reporting before all the planes get disabled. |
| * FIXME: Need to fix the logic to work when we turn off all planes |
| * but leave the pipe running. |
| */ |
| if (IS_GEN2(dev)) |
| intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); |
| |
| /* |
| * FIXME IPS should be fine as long as one plane is |
| * enabled, but in practice it seems to have problems |
| * when going from primary only to sprite only and vice |
| * versa. |
| */ |
| hsw_disable_ips(intel_crtc); |
| } |
| |
| /* FIXME get rid of this and use pre_plane_update */ |
| static void |
| intel_pre_disable_primary_noatomic(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| |
| intel_pre_disable_primary(crtc); |
| |
| /* |
| * Vblank time updates from the shadow to live plane control register |
| * are blocked if the memory self-refresh mode is active at that |
| * moment. So to make sure the plane gets truly disabled, disable |
| * first the self-refresh mode. The self-refresh enable bit in turn |
| * will be checked/applied by the HW only at the next frame start |
| * event which is after the vblank start event, so we need to have a |
| * wait-for-vblank between disabling the plane and the pipe. |
| */ |
| if (HAS_GMCH_DISPLAY(dev)) { |
| intel_set_memory_cxsr(dev_priv, false); |
| dev_priv->wm.vlv.cxsr = false; |
| intel_wait_for_vblank(dev, pipe); |
| } |
| } |
| |
| static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); |
| struct drm_atomic_state *old_state = old_crtc_state->base.state; |
| struct intel_crtc_state *pipe_config = |
| to_intel_crtc_state(crtc->base.state); |
| struct drm_plane *primary = crtc->base.primary; |
| struct drm_plane_state *old_pri_state = |
| drm_atomic_get_existing_plane_state(old_state, primary); |
| |
| intel_frontbuffer_flip(to_i915(crtc->base.dev), pipe_config->fb_bits); |
| |
| crtc->wm.cxsr_allowed = true; |
| |
| if (pipe_config->update_wm_post && pipe_config->base.active) |
| intel_update_watermarks(&crtc->base); |
| |
| if (old_pri_state) { |
| struct intel_plane_state *primary_state = |
| to_intel_plane_state(primary->state); |
| struct intel_plane_state *old_primary_state = |
| to_intel_plane_state(old_pri_state); |
| |
| intel_fbc_post_update(crtc); |
| |
| if (primary_state->base.visible && |
| (needs_modeset(&pipe_config->base) || |
| !old_primary_state->base.visible)) |
| intel_post_enable_primary(&crtc->base); |
| } |
| } |
| |
| static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_crtc_state *pipe_config = |
| to_intel_crtc_state(crtc->base.state); |
| struct drm_atomic_state *old_state = old_crtc_state->base.state; |
| struct drm_plane *primary = crtc->base.primary; |
| struct drm_plane_state *old_pri_state = |
| drm_atomic_get_existing_plane_state(old_state, primary); |
| bool modeset = needs_modeset(&pipe_config->base); |
| |
| if (old_pri_state) { |
| struct intel_plane_state *primary_state = |
| to_intel_plane_state(primary->state); |
| struct intel_plane_state *old_primary_state = |
| to_intel_plane_state(old_pri_state); |
| |
| intel_fbc_pre_update(crtc, pipe_config, primary_state); |
| |
| if (old_primary_state->base.visible && |
| (modeset || !primary_state->base.visible)) |
| intel_pre_disable_primary(&crtc->base); |
| } |
| |
| if (pipe_config->disable_cxsr && HAS_GMCH_DISPLAY(dev)) { |
| crtc->wm.cxsr_allowed = false; |
| |
| /* |
| * Vblank time updates from the shadow to live plane control register |
| * are blocked if the memory self-refresh mode is active at that |
| * moment. So to make sure the plane gets truly disabled, disable |
| * first the self-refresh mode. The self-refresh enable bit in turn |
| * will be checked/applied by the HW only at the next frame start |
| * event which is after the vblank start event, so we need to have a |
| * wait-for-vblank between disabling the plane and the pipe. |
| */ |
| if (old_crtc_state->base.active) { |
| intel_set_memory_cxsr(dev_priv, false); |
| dev_priv->wm.vlv.cxsr = false; |
| intel_wait_for_vblank(dev, crtc->pipe); |
| } |
| } |
| |
| /* |
| * IVB workaround: must disable low power watermarks for at least |
| * one frame before enabling scaling. LP watermarks can be re-enabled |
| * when scaling is disabled. |
| * |
| * WaCxSRDisabledForSpriteScaling:ivb |
| */ |
| if (pipe_config->disable_lp_wm) { |
| ilk_disable_lp_wm(dev); |
| intel_wait_for_vblank(dev, crtc->pipe); |
| } |
| |
| /* |
| * If we're doing a modeset, we're done. No need to do any pre-vblank |
| * watermark programming here. |
| */ |
| if (needs_modeset(&pipe_config->base)) |
| return; |
| |
| /* |
| * For platforms that support atomic watermarks, program the |
| * 'intermediate' watermarks immediately. On pre-gen9 platforms, these |
| * will be the intermediate values that are safe for both pre- and |
| * post- vblank; when vblank happens, the 'active' values will be set |
| * to the final 'target' values and we'll do this again to get the |
| * optimal watermarks. For gen9+ platforms, the values we program here |
| * will be the final target values which will get automatically latched |
| * at vblank time; no further programming will be necessary. |
| * |
| * If a platform hasn't been transitioned to atomic watermarks yet, |
| * we'll continue to update watermarks the old way, if flags tell |
| * us to. |
| */ |
| if (dev_priv->display.initial_watermarks != NULL) |
| dev_priv->display.initial_watermarks(pipe_config); |
| else if (pipe_config->update_wm_pre) |
| intel_update_watermarks(&crtc->base); |
| } |
| |
| static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct drm_plane *p; |
| int pipe = intel_crtc->pipe; |
| |
| intel_crtc_dpms_overlay_disable(intel_crtc); |
| |
| drm_for_each_plane_mask(p, dev, plane_mask) |
| to_intel_plane(p)->disable_plane(p, crtc); |
| |
| /* |
| * FIXME: Once we grow proper nuclear flip support out of this we need |
| * to compute the mask of flip planes precisely. For the time being |
| * consider this a flip to a NULL plane. |
| */ |
| intel_frontbuffer_flip(to_i915(dev), INTEL_FRONTBUFFER_ALL_MASK(pipe)); |
| } |
| |
| static void intel_encoders_pre_pll_enable(struct drm_crtc *crtc, |
| struct intel_crtc_state *crtc_state, |
| struct drm_atomic_state *old_state) |
| { |
| struct drm_connector_state *old_conn_state; |
| struct drm_connector *conn; |
| int i; |
| |
| for_each_connector_in_state(old_state, conn, old_conn_state, i) { |
| struct drm_connector_state *conn_state = conn->state; |
| struct intel_encoder *encoder = |
| to_intel_encoder(conn_state->best_encoder); |
| |
| if (conn_state->crtc != crtc) |
| continue; |
| |
| if (encoder->pre_pll_enable) |
| encoder->pre_pll_enable(encoder, crtc_state, conn_state); |
| } |
| } |
| |
| static void intel_encoders_pre_enable(struct drm_crtc *crtc, |
| struct intel_crtc_state *crtc_state, |
| struct drm_atomic_state *old_state) |
| { |
| struct drm_connector_state *old_conn_state; |
| struct drm_connector *conn; |
| int i; |
| |
| for_each_connector_in_state(old_state, conn, old_conn_state, i) { |
| struct drm_connector_state *conn_state = conn->state; |
| struct intel_encoder *encoder = |
| to_intel_encoder(conn_state->best_encoder); |
| |
| if (conn_state->crtc != crtc) |
| continue; |
| |
| if (encoder->pre_enable) |
| encoder->pre_enable(encoder, crtc_state, conn_state); |
| } |
| } |
| |
| static void intel_encoders_enable(struct drm_crtc *crtc, |
| struct intel_crtc_state *crtc_state, |
| struct drm_atomic_state *old_state) |
| { |
| struct drm_connector_state *old_conn_state; |
| struct drm_connector *conn; |
| int i; |
| |
| for_each_connector_in_state(old_state, conn, old_conn_state, i) { |
| struct drm_connector_state *conn_state = conn->state; |
| struct intel_encoder *encoder = |
| to_intel_encoder(conn_state->best_encoder); |
| |
| if (conn_state->crtc != crtc) |
| continue; |
| |
| encoder->enable(encoder, crtc_state, conn_state); |
| intel_opregion_notify_encoder(encoder, true); |
| } |
| } |
| |
| static void intel_encoders_disable(struct drm_crtc *crtc, |
| struct intel_crtc_state *old_crtc_state, |
| struct drm_atomic_state *old_state) |
| { |
| struct drm_connector_state *old_conn_state; |
| struct drm_connector *conn; |
| int i; |
| |
| for_each_connector_in_state(old_state, conn, old_conn_state, i) { |
| struct intel_encoder *encoder = |
| to_intel_encoder(old_conn_state->best_encoder); |
| |
| if (old_conn_state->crtc != crtc) |
| continue; |
| |
| intel_opregion_notify_encoder(encoder, false); |
| encoder->disable(encoder, old_crtc_state, old_conn_state); |
| } |
| } |
| |
| static void intel_encoders_post_disable(struct drm_crtc *crtc, |
| struct intel_crtc_state *old_crtc_state, |
| struct drm_atomic_state *old_state) |
| { |
| struct drm_connector_state *old_conn_state; |
| struct drm_connector *conn; |
| int i; |
| |
| for_each_connector_in_state(old_state, conn, old_conn_state, i) { |
| struct intel_encoder *encoder = |
| to_intel_encoder(old_conn_state->best_encoder); |
| |
| if (old_conn_state->crtc != crtc) |
| continue; |
| |
| if (encoder->post_disable) |
| encoder->post_disable(encoder, old_crtc_state, old_conn_state); |
| } |
| } |
| |
| static void intel_encoders_post_pll_disable(struct drm_crtc *crtc, |
| struct intel_crtc_state *old_crtc_state, |
| struct drm_atomic_state *old_state) |
| { |
| struct drm_connector_state *old_conn_state; |
| struct drm_connector *conn; |
| int i; |
| |
| for_each_connector_in_state(old_state, conn, old_conn_state, i) { |
| struct intel_encoder *encoder = |
| to_intel_encoder(old_conn_state->best_encoder); |
| |
| if (old_conn_state->crtc != crtc) |
| continue; |
| |
| if (encoder->post_pll_disable) |
| encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state); |
| } |
| } |
| |
| static void ironlake_crtc_enable(struct intel_crtc_state *pipe_config, |
| struct drm_atomic_state *old_state) |
| { |
| struct drm_crtc *crtc = pipe_config->base.crtc; |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| |
| if (WARN_ON(intel_crtc->active)) |
| return; |
| |
| /* |
| * Sometimes spurious CPU pipe underruns happen during FDI |
| * training, at least with VGA+HDMI cloning. Suppress them. |
| * |
| * On ILK we get an occasional spurious CPU pipe underruns |
| * between eDP port A enable and vdd enable. Also PCH port |
| * enable seems to result in the occasional CPU pipe underrun. |
| * |
| * Spurious PCH underruns also occur during PCH enabling. |
| */ |
| if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv)) |
| intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); |
| if (intel_crtc->config->has_pch_encoder) |
| intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); |
| |
| if (intel_crtc->config->has_pch_encoder) |
| intel_prepare_shared_dpll(intel_crtc); |
| |
| if (intel_crtc_has_dp_encoder(intel_crtc->config)) |
| intel_dp_set_m_n(intel_crtc, M1_N1); |
| |
| intel_set_pipe_timings(intel_crtc); |
| intel_set_pipe_src_size(intel_crtc); |
| |
| if (intel_crtc->config->has_pch_encoder) { |
| intel_cpu_transcoder_set_m_n(intel_crtc, |
| &intel_crtc->config->fdi_m_n, NULL); |
| } |
| |
| ironlake_set_pipeconf(crtc); |
| |
| intel_crtc->active = true; |
| |
| intel_encoders_pre_enable(crtc, pipe_config, old_state); |
| |
| if (intel_crtc->config->has_pch_encoder) { |
| /* Note: FDI PLL enabling _must_ be done before we enable the |
| * cpu pipes, hence this is separate from all the other fdi/pch |
| * enabling. */ |
| ironlake_fdi_pll_enable(intel_crtc); |
| } else { |
| assert_fdi_tx_disabled(dev_priv, pipe); |
| assert_fdi_rx_disabled(dev_priv, pipe); |
| } |
| |
| ironlake_pfit_enable(intel_crtc); |
| |
| /* |
| * On ILK+ LUT must be loaded before the pipe is running but with |
| * clocks enabled |
| */ |
| intel_color_load_luts(&pipe_config->base); |
| |
| if (dev_priv->display.initial_watermarks != NULL) |
| dev_priv->display.initial_watermarks(intel_crtc->config); |
| intel_enable_pipe(intel_crtc); |
| |
| if (intel_crtc->config->has_pch_encoder) |
| ironlake_pch_enable(crtc); |
| |
| assert_vblank_disabled(crtc); |
| drm_crtc_vblank_on(crtc); |
| |
| intel_encoders_enable(crtc, pipe_config, old_state); |
| |
| if (HAS_PCH_CPT(dev)) |
| cpt_verify_modeset(dev, intel_crtc->pipe); |
| |
| /* Must wait for vblank to avoid spurious PCH FIFO underruns */ |
| if (intel_crtc->config->has_pch_encoder) |
| intel_wait_for_vblank(dev, pipe); |
| intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); |
| intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); |
| } |
| |
| /* IPS only exists on ULT machines and is tied to pipe A. */ |
| static bool hsw_crtc_supports_ips(struct intel_crtc *crtc) |
| { |
| return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A; |
| } |
| |
| static void haswell_crtc_enable(struct intel_crtc_state *pipe_config, |
| struct drm_atomic_state *old_state) |
| { |
| struct drm_crtc *crtc = pipe_config->base.crtc; |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe, hsw_workaround_pipe; |
| enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder; |
| |
| if (WARN_ON(intel_crtc->active)) |
| return; |
| |
| if (intel_crtc->config->has_pch_encoder) |
| intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A, |
| false); |
| |
| intel_encoders_pre_pll_enable(crtc, pipe_config, old_state); |
| |
| if (intel_crtc->config->shared_dpll) |
| intel_enable_shared_dpll(intel_crtc); |
| |
| if (intel_crtc_has_dp_encoder(intel_crtc->config)) |
| intel_dp_set_m_n(intel_crtc, M1_N1); |
| |
| if (!transcoder_is_dsi(cpu_transcoder)) |
| intel_set_pipe_timings(intel_crtc); |
| |
| intel_set_pipe_src_size(intel_crtc); |
| |
| if (cpu_transcoder != TRANSCODER_EDP && |
| !transcoder_is_dsi(cpu_transcoder)) { |
| I915_WRITE(PIPE_MULT(cpu_transcoder), |
| intel_crtc->config->pixel_multiplier - 1); |
| } |
| |
| if (intel_crtc->config->has_pch_encoder) { |
| intel_cpu_transcoder_set_m_n(intel_crtc, |
| &intel_crtc->config->fdi_m_n, NULL); |
| } |
| |
| if (!transcoder_is_dsi(cpu_transcoder)) |
| haswell_set_pipeconf(crtc); |
| |
| haswell_set_pipemisc(crtc); |
| |
| intel_color_set_csc(&pipe_config->base); |
| |
| intel_crtc->active = true; |
| |
| if (intel_crtc->config->has_pch_encoder) |
| intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); |
| else |
| intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); |
| |
| intel_encoders_pre_enable(crtc, pipe_config, old_state); |
| |
| if (intel_crtc->config->has_pch_encoder) |
| dev_priv->display.fdi_link_train(crtc); |
| |
| if (!transcoder_is_dsi(cpu_transcoder)) |
| intel_ddi_enable_pipe_clock(intel_crtc); |
| |
| if (INTEL_INFO(dev)->gen >= 9) |
| skylake_pfit_enable(intel_crtc); |
| else |
| ironlake_pfit_enable(intel_crtc); |
| |
| /* |
| * On ILK+ LUT must be loaded before the pipe is running but with |
| * clocks enabled |
| */ |
| intel_color_load_luts(&pipe_config->base); |
| |
| intel_ddi_set_pipe_settings(crtc); |
| if (!transcoder_is_dsi(cpu_transcoder)) |
| intel_ddi_enable_transcoder_func(crtc); |
| |
| if (dev_priv->display.initial_watermarks != NULL) |
| dev_priv->display.initial_watermarks(pipe_config); |
| else |
| intel_update_watermarks(crtc); |
| |
| /* XXX: Do the pipe assertions at the right place for BXT DSI. */ |
| if (!transcoder_is_dsi(cpu_transcoder)) |
| intel_enable_pipe(intel_crtc); |
| |
| if (intel_crtc->config->has_pch_encoder) |
| lpt_pch_enable(crtc); |
| |
| if (intel_crtc->config->dp_encoder_is_mst) |
| intel_ddi_set_vc_payload_alloc(crtc, true); |
| |
| assert_vblank_disabled(crtc); |
| drm_crtc_vblank_on(crtc); |
| |
| intel_encoders_enable(crtc, pipe_config, old_state); |
| |
| if (intel_crtc->config->has_pch_encoder) { |
| intel_wait_for_vblank(dev, pipe); |
| intel_wait_for_vblank(dev, pipe); |
| intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); |
| intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A, |
| true); |
| } |
| |
| /* If we change the relative order between pipe/planes enabling, we need |
| * to change the workaround. */ |
| hsw_workaround_pipe = pipe_config->hsw_workaround_pipe; |
| if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) { |
| intel_wait_for_vblank(dev, hsw_workaround_pipe); |
| intel_wait_for_vblank(dev, hsw_workaround_pipe); |
| } |
| } |
| |
| static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| int pipe = crtc->pipe; |
| |
| /* To avoid upsetting the power well on haswell only disable the pfit if |
| * it's in use. The hw state code will make sure we get this right. */ |
| if (force || crtc->config->pch_pfit.enabled) { |
| I915_WRITE(PF_CTL(pipe), 0); |
| I915_WRITE(PF_WIN_POS(pipe), 0); |
| I915_WRITE(PF_WIN_SZ(pipe), 0); |
| } |
| } |
| |
| static void ironlake_crtc_disable(struct intel_crtc_state *old_crtc_state, |
| struct drm_atomic_state *old_state) |
| { |
| struct drm_crtc *crtc = old_crtc_state->base.crtc; |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| |
| /* |
| * Sometimes spurious CPU pipe underruns happen when the |
| * pipe is already disabled, but FDI RX/TX is still enabled. |
| * Happens at least with VGA+HDMI cloning. Suppress them. |
| */ |
| if (intel_crtc->config->has_pch_encoder) { |
| intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); |
| intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); |
| } |
| |
| intel_encoders_disable(crtc, old_crtc_state, old_state); |
| |
| drm_crtc_vblank_off(crtc); |
| assert_vblank_disabled(crtc); |
| |
| intel_disable_pipe(intel_crtc); |
| |
| ironlake_pfit_disable(intel_crtc, false); |
| |
| if (intel_crtc->config->has_pch_encoder) |
| ironlake_fdi_disable(crtc); |
| |
| intel_encoders_post_disable(crtc, old_crtc_state, old_state); |
| |
| if (intel_crtc->config->has_pch_encoder) { |
| ironlake_disable_pch_transcoder(dev_priv, pipe); |
| |
| if (HAS_PCH_CPT(dev)) { |
| i915_reg_t reg; |
| u32 temp; |
| |
| /* disable TRANS_DP_CTL */ |
| reg = TRANS_DP_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~(TRANS_DP_OUTPUT_ENABLE | |
| TRANS_DP_PORT_SEL_MASK); |
| temp |= TRANS_DP_PORT_SEL_NONE; |
| I915_WRITE(reg, temp); |
| |
| /* disable DPLL_SEL */ |
| temp = I915_READ(PCH_DPLL_SEL); |
| temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe)); |
| I915_WRITE(PCH_DPLL_SEL, temp); |
| } |
| |
| ironlake_fdi_pll_disable(intel_crtc); |
| } |
| |
| intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); |
| intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); |
| } |
| |
| static void haswell_crtc_disable(struct intel_crtc_state *old_crtc_state, |
| struct drm_atomic_state *old_state) |
| { |
| struct drm_crtc *crtc = old_crtc_state->base.crtc; |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder; |
| |
| if (intel_crtc->config->has_pch_encoder) |
| intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A, |
| false); |
| |
| intel_encoders_disable(crtc, old_crtc_state, old_state); |
| |
| drm_crtc_vblank_off(crtc); |
| assert_vblank_disabled(crtc); |
| |
| /* XXX: Do the pipe assertions at the right place for BXT DSI. */ |
| if (!transcoder_is_dsi(cpu_transcoder)) |
| intel_disable_pipe(intel_crtc); |
| |
| if (intel_crtc->config->dp_encoder_is_mst) |
| intel_ddi_set_vc_payload_alloc(crtc, false); |
| |
| if (!transcoder_is_dsi(cpu_transcoder)) |
| intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder); |
| |
| if (INTEL_INFO(dev)->gen >= 9) |
| skylake_scaler_disable(intel_crtc); |
| else |
| ironlake_pfit_disable(intel_crtc, false); |
| |
| if (!transcoder_is_dsi(cpu_transcoder)) |
| intel_ddi_disable_pipe_clock(intel_crtc); |
| |
| intel_encoders_post_disable(crtc, old_crtc_state, old_state); |
| |
| if (old_crtc_state->has_pch_encoder) |
| intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A, |
| true); |
| } |
| |
| static void i9xx_pfit_enable(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_crtc_state *pipe_config = crtc->config; |
| |
| if (!pipe_config->gmch_pfit.control) |
| return; |
| |
| /* |
| * The panel fitter should only be adjusted whilst the pipe is disabled, |
| * according to register description and PRM. |
| */ |
| WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE); |
| assert_pipe_disabled(dev_priv, crtc->pipe); |
| |
| I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios); |
| I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control); |
| |
| /* Border color in case we don't scale up to the full screen. Black by |
| * default, change to something else for debugging. */ |
| I915_WRITE(BCLRPAT(crtc->pipe), 0); |
| } |
| |
| static enum intel_display_power_domain port_to_power_domain(enum port port) |
| { |
| switch (port) { |
| case PORT_A: |
| return POWER_DOMAIN_PORT_DDI_A_LANES; |
| case PORT_B: |
| return POWER_DOMAIN_PORT_DDI_B_LANES; |
| case PORT_C: |
| return POWER_DOMAIN_PORT_DDI_C_LANES; |
| case PORT_D: |
| return POWER_DOMAIN_PORT_DDI_D_LANES; |
| case PORT_E: |
| return POWER_DOMAIN_PORT_DDI_E_LANES; |
| default: |
| MISSING_CASE(port); |
| return POWER_DOMAIN_PORT_OTHER; |
| } |
| } |
| |
| static enum intel_display_power_domain port_to_aux_power_domain(enum port port) |
| { |
| switch (port) { |
| case PORT_A: |
| return POWER_DOMAIN_AUX_A; |
| case PORT_B: |
| return POWER_DOMAIN_AUX_B; |
| case PORT_C: |
| return POWER_DOMAIN_AUX_C; |
| case PORT_D: |
| return POWER_DOMAIN_AUX_D; |
| case PORT_E: |
| /* FIXME: Check VBT for actual wiring of PORT E */ |
| return POWER_DOMAIN_AUX_D; |
| default: |
| MISSING_CASE(port); |
| return POWER_DOMAIN_AUX_A; |
| } |
| } |
| |
| enum intel_display_power_domain |
| intel_display_port_power_domain(struct intel_encoder *intel_encoder) |
| { |
| struct drm_device *dev = intel_encoder->base.dev; |
| struct intel_digital_port *intel_dig_port; |
| |
| switch (intel_encoder->type) { |
| case INTEL_OUTPUT_UNKNOWN: |
| /* Only DDI platforms should ever use this output type */ |
| WARN_ON_ONCE(!HAS_DDI(dev)); |
| case INTEL_OUTPUT_DP: |
| case INTEL_OUTPUT_HDMI: |
| case INTEL_OUTPUT_EDP: |
| intel_dig_port = enc_to_dig_port(&intel_encoder->base); |
| return port_to_power_domain(intel_dig_port->port); |
| case INTEL_OUTPUT_DP_MST: |
| intel_dig_port = enc_to_mst(&intel_encoder->base)->primary; |
| return port_to_power_domain(intel_dig_port->port); |
| case INTEL_OUTPUT_ANALOG: |
| return POWER_DOMAIN_PORT_CRT; |
| case INTEL_OUTPUT_DSI: |
| return POWER_DOMAIN_PORT_DSI; |
| default: |
| return POWER_DOMAIN_PORT_OTHER; |
| } |
| } |
| |
| enum intel_display_power_domain |
| intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder) |
| { |
| struct drm_device *dev = intel_encoder->base.dev; |
| struct intel_digital_port *intel_dig_port; |
| |
| switch (intel_encoder->type) { |
| case INTEL_OUTPUT_UNKNOWN: |
| case INTEL_OUTPUT_HDMI: |
| /* |
| * Only DDI platforms should ever use these output types. |
| * We can get here after the HDMI detect code has already set |
| * the type of the shared encoder. Since we can't be sure |
| * what's the status of the given connectors, play safe and |
| * run the DP detection too. |
| */ |
| WARN_ON_ONCE(!HAS_DDI(dev)); |
| case INTEL_OUTPUT_DP: |
| case INTEL_OUTPUT_EDP: |
| intel_dig_port = enc_to_dig_port(&intel_encoder->base); |
| return port_to_aux_power_domain(intel_dig_port->port); |
| case INTEL_OUTPUT_DP_MST: |
| intel_dig_port = enc_to_mst(&intel_encoder->base)->primary; |
| return port_to_aux_power_domain(intel_dig_port->port); |
| default: |
| MISSING_CASE(intel_encoder->type); |
| return POWER_DOMAIN_AUX_A; |
| } |
| } |
| |
| static unsigned long get_crtc_power_domains(struct drm_crtc *crtc, |
| struct intel_crtc_state *crtc_state) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_encoder *encoder; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| enum pipe pipe = intel_crtc->pipe; |
| unsigned long mask; |
| enum transcoder transcoder = crtc_state->cpu_transcoder; |
| |
| if (!crtc_state->base.active) |
| return 0; |
| |
| mask = BIT(POWER_DOMAIN_PIPE(pipe)); |
| mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder)); |
| if (crtc_state->pch_pfit.enabled || |
| crtc_state->pch_pfit.force_thru) |
| mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe)); |
| |
| drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) { |
| struct intel_encoder *intel_encoder = to_intel_encoder(encoder); |
| |
| mask |= BIT(intel_display_port_power_domain(intel_encoder)); |
| } |
| |
| if (crtc_state->shared_dpll) |
| mask |= BIT(POWER_DOMAIN_PLLS); |
| |
| return mask; |
| } |
| |
| static unsigned long |
| modeset_get_crtc_power_domains(struct drm_crtc *crtc, |
| struct intel_crtc_state *crtc_state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc->dev); |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| enum intel_display_power_domain domain; |
| unsigned long domains, new_domains, old_domains; |
| |
| old_domains = intel_crtc->enabled_power_domains; |
| intel_crtc->enabled_power_domains = new_domains = |
| get_crtc_power_domains(crtc, crtc_state); |
| |
| domains = new_domains & ~old_domains; |
| |
| for_each_power_domain(domain, domains) |
| intel_display_power_get(dev_priv, domain); |
| |
| return old_domains & ~new_domains; |
| } |
| |
| static void modeset_put_power_domains(struct drm_i915_private *dev_priv, |
| unsigned long domains) |
| { |
| enum intel_display_power_domain domain; |
| |
| for_each_power_domain(domain, domains) |
| intel_display_power_put(dev_priv, domain); |
| } |
| |
| static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv) |
| { |
| int max_cdclk_freq = dev_priv->max_cdclk_freq; |
| |
| if (INTEL_INFO(dev_priv)->gen >= 9 || |
| IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) |
| return max_cdclk_freq; |
| else if (IS_CHERRYVIEW(dev_priv)) |
| return max_cdclk_freq*95/100; |
| else if (INTEL_INFO(dev_priv)->gen < 4) |
| return 2*max_cdclk_freq*90/100; |
| else |
| return max_cdclk_freq*90/100; |
| } |
| |
| static int skl_calc_cdclk(int max_pixclk, int vco); |
| |
| static void intel_update_max_cdclk(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| |
| if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) { |
| u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK; |
| int max_cdclk, vco; |
| |
| vco = dev_priv->skl_preferred_vco_freq; |
| WARN_ON(vco != 8100000 && vco != 8640000); |
| |
| /* |
| * Use the lower (vco 8640) cdclk values as a |
| * first guess. skl_calc_cdclk() will correct it |
| * if the preferred vco is 8100 instead. |
| */ |
| if (limit == SKL_DFSM_CDCLK_LIMIT_675) |
| max_cdclk = 617143; |
| else if (limit == SKL_DFSM_CDCLK_LIMIT_540) |
| max_cdclk = 540000; |
| else if (limit == SKL_DFSM_CDCLK_LIMIT_450) |
| max_cdclk = 432000; |
| else |
| max_cdclk = 308571; |
| |
| dev_priv->max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco); |
| } else if (IS_BROXTON(dev)) { |
| dev_priv->max_cdclk_freq = 624000; |
| } else if (IS_BROADWELL(dev)) { |
| /* |
| * FIXME with extra cooling we can allow |
| * 540 MHz for ULX and 675 Mhz for ULT. |
| * How can we know if extra cooling is |
| * available? PCI ID, VTB, something else? |
| */ |
| if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT) |
| dev_priv->max_cdclk_freq = 450000; |
| else if (IS_BDW_ULX(dev)) |
| dev_priv->max_cdclk_freq = 450000; |
| else if (IS_BDW_ULT(dev)) |
| dev_priv->max_cdclk_freq = 540000; |
| else |
| dev_priv->max_cdclk_freq = 675000; |
| } else if (IS_CHERRYVIEW(dev)) { |
| dev_priv->max_cdclk_freq = 320000; |
| } else if (IS_VALLEYVIEW(dev)) { |
| dev_priv->max_cdclk_freq = 400000; |
| } else { |
| /* otherwise assume cdclk is fixed */ |
| dev_priv->max_cdclk_freq = dev_priv->cdclk_freq; |
| } |
| |
| dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv); |
| |
| DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n", |
| dev_priv->max_cdclk_freq); |
| |
| DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n", |
| dev_priv->max_dotclk_freq); |
| } |
| |
| static void intel_update_cdclk(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| |
| dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev); |
| |
| if (INTEL_GEN(dev_priv) >= 9) |
| DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz, VCO: %d kHz, ref: %d kHz\n", |
| dev_priv->cdclk_freq, dev_priv->cdclk_pll.vco, |
| dev_priv->cdclk_pll.ref); |
| else |
| DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n", |
| dev_priv->cdclk_freq); |
| |
| /* |
| * 9:0 CMBUS [sic] CDCLK frequency (cdfreq): |
| * Programmng [sic] note: bit[9:2] should be programmed to the number |
| * of cdclk that generates 4MHz reference clock freq which is used to |
| * generate GMBus clock. This will vary with the cdclk freq. |
| */ |
| if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) |
| I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000)); |
| } |
| |
| /* convert from kHz to .1 fixpoint MHz with -1MHz offset */ |
| static int skl_cdclk_decimal(int cdclk) |
| { |
| return DIV_ROUND_CLOSEST(cdclk - 1000, 500); |
| } |
| |
| static int bxt_de_pll_vco(struct drm_i915_private *dev_priv, int cdclk) |
| { |
| int ratio; |
| |
| if (cdclk == dev_priv->cdclk_pll.ref) |
| return 0; |
| |
| switch (cdclk) { |
| default: |
| MISSING_CASE(cdclk); |
| case 144000: |
| case 288000: |
| case 384000: |
| case 576000: |
| ratio = 60; |
| break; |
| case 624000: |
| ratio = 65; |
| break; |
| } |
| |
| return dev_priv->cdclk_pll.ref * ratio; |
| } |
| |
| static void bxt_de_pll_disable(struct drm_i915_private *dev_priv) |
| { |
| I915_WRITE(BXT_DE_PLL_ENABLE, 0); |
| |
| /* Timeout 200us */ |
| if (intel_wait_for_register(dev_priv, |
| BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 0, |
| 1)) |
| DRM_ERROR("timeout waiting for DE PLL unlock\n"); |
| |
| dev_priv->cdclk_pll.vco = 0; |
| } |
| |
| static void bxt_de_pll_enable(struct drm_i915_private *dev_priv, int vco) |
| { |
| int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->cdclk_pll.ref); |
| u32 val; |
| |
| val = I915_READ(BXT_DE_PLL_CTL); |
| val &= ~BXT_DE_PLL_RATIO_MASK; |
| val |= BXT_DE_PLL_RATIO(ratio); |
| I915_WRITE(BXT_DE_PLL_CTL, val); |
| |
| I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE); |
| |
| /* Timeout 200us */ |
| if (intel_wait_for_register(dev_priv, |
| BXT_DE_PLL_ENABLE, |
| BXT_DE_PLL_LOCK, |
| BXT_DE_PLL_LOCK, |
| 1)) |
| DRM_ERROR("timeout waiting for DE PLL lock\n"); |
| |
| dev_priv->cdclk_pll.vco = vco; |
| } |
| |
| static void bxt_set_cdclk(struct drm_i915_private *dev_priv, int cdclk) |
| { |
| u32 val, divider; |
| int vco, ret; |
| |
| vco = bxt_de_pll_vco(dev_priv, cdclk); |
| |
| DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco); |
| |
| /* cdclk = vco / 2 / div{1,1.5,2,4} */ |
| switch (DIV_ROUND_CLOSEST(vco, cdclk)) { |
| case 8: |
| divider = BXT_CDCLK_CD2X_DIV_SEL_4; |
| break; |
| case 4: |
| divider = BXT_CDCLK_CD2X_DIV_SEL_2; |
| break; |
| case 3: |
| divider = BXT_CDCLK_CD2X_DIV_SEL_1_5; |
| break; |
| case 2: |
| divider = BXT_CDCLK_CD2X_DIV_SEL_1; |
| break; |
| default: |
| WARN_ON(cdclk != dev_priv->cdclk_pll.ref); |
| WARN_ON(vco != 0); |
| |
| divider = BXT_CDCLK_CD2X_DIV_SEL_1; |
| break; |
| } |
| |
| /* Inform power controller of upcoming frequency change */ |
| mutex_lock(&dev_priv->rps.hw_lock); |
| ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, |
| 0x80000000); |
| mutex_unlock(&dev_priv->rps.hw_lock); |
| |
| if (ret) { |
| DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n", |
| ret, cdclk); |
| return; |
| } |
| |
| if (dev_priv->cdclk_pll.vco != 0 && |
| dev_priv->cdclk_pll.vco != vco) |
| bxt_de_pll_disable(dev_priv); |
| |
| if (dev_priv->cdclk_pll.vco != vco) |
| bxt_de_pll_enable(dev_priv, vco); |
| |
| val = divider | skl_cdclk_decimal(cdclk); |
| /* |
| * FIXME if only the cd2x divider needs changing, it could be done |
| * without shutting off the pipe (if only one pipe is active). |
| */ |
| val |= BXT_CDCLK_CD2X_PIPE_NONE; |
| /* |
| * Disable SSA Precharge when CD clock frequency < 500 MHz, |
| * enable otherwise. |
| */ |
| if (cdclk >= 500000) |
| val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE; |
| I915_WRITE(CDCLK_CTL, val); |
| |
| mutex_lock(&dev_priv->rps.hw_lock); |
| ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, |
| DIV_ROUND_UP(cdclk, 25000)); |
| mutex_unlock(&dev_priv->rps.hw_lock); |
| |
| if (ret) { |
| DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n", |
| ret, cdclk); |
| return; |
| } |
| |
| intel_update_cdclk(&dev_priv->drm); |
| } |
| |
| static void bxt_sanitize_cdclk(struct drm_i915_private *dev_priv) |
| { |
| u32 cdctl, expected; |
| |
| intel_update_cdclk(&dev_priv->drm); |
| |
| if (dev_priv->cdclk_pll.vco == 0 || |
| dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref) |
| goto sanitize; |
| |
| /* DPLL okay; verify the cdclock |
| * |
| * Some BIOS versions leave an incorrect decimal frequency value and |
| * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4, |
| * so sanitize this register. |
| */ |
| cdctl = I915_READ(CDCLK_CTL); |
| /* |
| * Let's ignore the pipe field, since BIOS could have configured the |
| * dividers both synching to an active pipe, or asynchronously |
| * (PIPE_NONE). |
| */ |
| cdctl &= ~BXT_CDCLK_CD2X_PIPE_NONE; |
| |
| expected = (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) | |
| skl_cdclk_decimal(dev_priv->cdclk_freq); |
| /* |
| * Disable SSA Precharge when CD clock frequency < 500 MHz, |
| * enable otherwise. |
| */ |
| if (dev_priv->cdclk_freq >= 500000) |
| expected |= BXT_CDCLK_SSA_PRECHARGE_ENABLE; |
| |
| if (cdctl == expected) |
| /* All well; nothing to sanitize */ |
| return; |
| |
| sanitize: |
| DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n"); |
| |
| /* force cdclk programming */ |
| dev_priv->cdclk_freq = 0; |
| |
| /* force full PLL disable + enable */ |
| dev_priv->cdclk_pll.vco = -1; |
| } |
| |
| void bxt_init_cdclk(struct drm_i915_private *dev_priv) |
| { |
| bxt_sanitize_cdclk(dev_priv); |
| |
| if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0) |
| return; |
| |
| /* |
| * FIXME: |
| * - The initial CDCLK needs to be read from VBT. |
| * Need to make this change after VBT has changes for BXT. |
| */ |
| bxt_set_cdclk(dev_priv, bxt_calc_cdclk(0)); |
| } |
| |
| void bxt_uninit_cdclk(struct drm_i915_private *dev_priv) |
| { |
| bxt_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref); |
| } |
| |
| static int skl_calc_cdclk(int max_pixclk, int vco) |
| { |
| if (vco == 8640000) { |
| if (max_pixclk > 540000) |
| return 617143; |
| else if (max_pixclk > 432000) |
| return 540000; |
| else if (max_pixclk > 308571) |
| return 432000; |
| else |
| return 308571; |
| } else { |
| if (max_pixclk > 540000) |
| return 675000; |
| else if (max_pixclk > 450000) |
| return 540000; |
| else if (max_pixclk > 337500) |
| return 450000; |
| else |
| return 337500; |
| } |
| } |
| |
| static void |
| skl_dpll0_update(struct drm_i915_private *dev_priv) |
| { |
| u32 val; |
| |
| dev_priv->cdclk_pll.ref = 24000; |
| dev_priv->cdclk_pll.vco = 0; |
| |
| val = I915_READ(LCPLL1_CTL); |
| if ((val & LCPLL_PLL_ENABLE) == 0) |
| return; |
| |
| if (WARN_ON((val & LCPLL_PLL_LOCK) == 0)) |
| return; |
| |
| val = I915_READ(DPLL_CTRL1); |
| |
| if (WARN_ON((val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | |
| DPLL_CTRL1_SSC(SKL_DPLL0) | |
| DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) != |
| DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) |
| return; |
| |
| switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) { |
| case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0): |
| case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0): |
| case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0): |
| case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0): |
| dev_priv->cdclk_pll.vco = 8100000; |
| break; |
| case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0): |
| case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0): |
| dev_priv->cdclk_pll.vco = 8640000; |
| break; |
| default: |
| MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)); |
| break; |
| } |
| } |
| |
| void skl_set_preferred_cdclk_vco(struct drm_i915_private *dev_priv, int vco) |
| { |
| bool changed = dev_priv->skl_preferred_vco_freq != vco; |
| |
| dev_priv->skl_preferred_vco_freq = vco; |
| |
| if (changed) |
| intel_update_max_cdclk(&dev_priv->drm); |
| } |
| |
| static void |
| skl_dpll0_enable(struct drm_i915_private *dev_priv, int vco) |
| { |
| int min_cdclk = skl_calc_cdclk(0, vco); |
| u32 val; |
| |
| WARN_ON(vco != 8100000 && vco != 8640000); |
| |
| /* select the minimum CDCLK before enabling DPLL 0 */ |
| val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_cdclk); |
| I915_WRITE(CDCLK_CTL, val); |
| POSTING_READ(CDCLK_CTL); |
| |
| /* |
| * We always enable DPLL0 with the lowest link rate possible, but still |
| * taking into account the VCO required to operate the eDP panel at the |
| * desired frequency. The usual DP link rates operate with a VCO of |
| * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640. |
| * The modeset code is responsible for the selection of the exact link |
| * rate later on, with the constraint of choosing a frequency that |
| * works with vco. |
| */ |
| val = I915_READ(DPLL_CTRL1); |
| |
| val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) | |
| DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)); |
| val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0); |
| if (vco == 8640000) |
| val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, |
| SKL_DPLL0); |
| else |
| val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, |
| SKL_DPLL0); |
| |
| I915_WRITE(DPLL_CTRL1, val); |
| POSTING_READ(DPLL_CTRL1); |
| |
| I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE); |
| |
| if (intel_wait_for_register(dev_priv, |
| LCPLL1_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK, |
| 5)) |
| DRM_ERROR("DPLL0 not locked\n"); |
| |
| dev_priv->cdclk_pll.vco = vco; |
| |
| /* We'll want to keep using the current vco from now on. */ |
| skl_set_preferred_cdclk_vco(dev_priv, vco); |
| } |
| |
| static void |
| skl_dpll0_disable(struct drm_i915_private *dev_priv) |
| { |
| I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE); |
| if (intel_wait_for_register(dev_priv, |
| LCPLL1_CTL, LCPLL_PLL_LOCK, 0, |
| 1)) |
| DRM_ERROR("Couldn't disable DPLL0\n"); |
| |
| dev_priv->cdclk_pll.vco = 0; |
| } |
| |
| static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv) |
| { |
| int ret; |
| u32 val; |
| |
| /* inform PCU we want to change CDCLK */ |
| val = SKL_CDCLK_PREPARE_FOR_CHANGE; |
| mutex_lock(&dev_priv->rps.hw_lock); |
| ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val); |
| mutex_unlock(&dev_priv->rps.hw_lock); |
| |
| return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE); |
| } |
| |
| static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv) |
| { |
| return _wait_for(skl_cdclk_pcu_ready(dev_priv), 3000, 10) == 0; |
| } |
| |
| static void skl_set_cdclk(struct drm_i915_private *dev_priv, int cdclk, int vco) |
| { |
| struct drm_device *dev = &dev_priv->drm; |
| u32 freq_select, pcu_ack; |
| |
| WARN_ON((cdclk == 24000) != (vco == 0)); |
| |
| DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco); |
| |
| if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) { |
| DRM_ERROR("failed to inform PCU about cdclk change\n"); |
| return; |
| } |
| |
| /* set CDCLK_CTL */ |
| switch (cdclk) { |
| case 450000: |
| case 432000: |
| freq_select = CDCLK_FREQ_450_432; |
| pcu_ack = 1; |
| break; |
| case 540000: |
| freq_select = CDCLK_FREQ_540; |
| pcu_ack = 2; |
| break; |
| case 308571: |
| case 337500: |
| default: |
| freq_select = CDCLK_FREQ_337_308; |
| pcu_ack = 0; |
| break; |
| case 617143: |
| case 675000: |
| freq_select = CDCLK_FREQ_675_617; |
| pcu_ack = 3; |
| break; |
| } |
| |
| if (dev_priv->cdclk_pll.vco != 0 && |
| dev_priv->cdclk_pll.vco != vco) |
| skl_dpll0_disable(dev_priv); |
| |
| if (dev_priv->cdclk_pll.vco != vco) |
| skl_dpll0_enable(dev_priv, vco); |
| |
| I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(cdclk)); |
| POSTING_READ(CDCLK_CTL); |
| |
| /* inform PCU of the change */ |
| mutex_lock(&dev_priv->rps.hw_lock); |
| sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack); |
| mutex_unlock(&dev_priv->rps.hw_lock); |
| |
| intel_update_cdclk(dev); |
| } |
| |
| static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv); |
| |
| void skl_uninit_cdclk(struct drm_i915_private *dev_priv) |
| { |
| skl_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref, 0); |
| } |
| |
| void skl_init_cdclk(struct drm_i915_private *dev_priv) |
| { |
| int cdclk, vco; |
| |
| skl_sanitize_cdclk(dev_priv); |
| |
| if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0) { |
| /* |
| * Use the current vco as our initial |
| * guess as to what the preferred vco is. |
| */ |
| if (dev_priv->skl_preferred_vco_freq == 0) |
| skl_set_preferred_cdclk_vco(dev_priv, |
| dev_priv->cdclk_pll.vco); |
| return; |
| } |
| |
| vco = dev_priv->skl_preferred_vco_freq; |
| if (vco == 0) |
| vco = 8100000; |
| cdclk = skl_calc_cdclk(0, vco); |
| |
| skl_set_cdclk(dev_priv, cdclk, vco); |
| } |
| |
| static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv) |
| { |
| uint32_t cdctl, expected; |
| |
| /* |
| * check if the pre-os intialized the display |
| * There is SWF18 scratchpad register defined which is set by the |
| * pre-os which can be used by the OS drivers to check the status |
| */ |
| if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0) |
| goto sanitize; |
| |
| intel_update_cdclk(&dev_priv->drm); |
| /* Is PLL enabled and locked ? */ |
| if (dev_priv->cdclk_pll.vco == 0 || |
| dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref) |
| goto sanitize; |
| |
| /* DPLL okay; verify the cdclock |
| * |
| * Noticed in some instances that the freq selection is correct but |
| * decimal part is programmed wrong from BIOS where pre-os does not |
| * enable display. Verify the same as well. |
| */ |
| cdctl = I915_READ(CDCLK_CTL); |
| expected = (cdctl & CDCLK_FREQ_SEL_MASK) | |
| skl_cdclk_decimal(dev_priv->cdclk_freq); |
| if (cdctl == expected) |
| /* All well; nothing to sanitize */ |
| return; |
| |
| sanitize: |
| DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n"); |
| |
| /* force cdclk programming */ |
| dev_priv->cdclk_freq = 0; |
| /* force full PLL disable + enable */ |
| dev_priv->cdclk_pll.vco = -1; |
| } |
| |
| /* Adjust CDclk dividers to allow high res or save power if possible */ |
| static void valleyview_set_cdclk(struct drm_device *dev, int cdclk) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| u32 val, cmd; |
| |
| WARN_ON(dev_priv->display.get_display_clock_speed(dev) |
| != dev_priv->cdclk_freq); |
| |
| if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */ |
| cmd = 2; |
| else if (cdclk == 266667) |
| cmd = 1; |
| else |
| cmd = 0; |
| |
| mutex_lock(&dev_priv->rps.hw_lock); |
| val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ); |
| val &= ~DSPFREQGUAR_MASK; |
| val |= (cmd << DSPFREQGUAR_SHIFT); |
| vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val); |
| if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & |
| DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT), |
| 50)) { |
| DRM_ERROR("timed out waiting for CDclk change\n"); |
| } |
| mutex_unlock(&dev_priv->rps.hw_lock); |
| |
| mutex_lock(&dev_priv->sb_lock); |
| |
| if (cdclk == 400000) { |
| u32 divider; |
| |
| divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1; |
| |
| /* adjust cdclk divider */ |
| val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL); |
| val &= ~CCK_FREQUENCY_VALUES; |
| val |= divider; |
| vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val); |
| |
| if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) & |
| CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT), |
| 50)) |
| DRM_ERROR("timed out waiting for CDclk change\n"); |
| } |
| |
| /* adjust self-refresh exit latency value */ |
| val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC); |
| val &= ~0x7f; |
| |
| /* |
| * For high bandwidth configs, we set a higher latency in the bunit |
| * so that the core display fetch happens in time to avoid underruns. |
| */ |
| if (cdclk == 400000) |
| val |= 4500 / 250; /* 4.5 usec */ |
| else |
| val |= 3000 / 250; /* 3.0 usec */ |
| vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val); |
| |
| mutex_unlock(&dev_priv->sb_lock); |
| |
| intel_update_cdclk(dev); |
| } |
| |
| static void cherryview_set_cdclk(struct drm_device *dev, int cdclk) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| u32 val, cmd; |
| |
| WARN_ON(dev_priv->display.get_display_clock_speed(dev) |
| != dev_priv->cdclk_freq); |
| |
| switch (cdclk) { |
| case 333333: |
| case 320000: |
| case 266667: |
| case 200000: |
| break; |
| default: |
| MISSING_CASE(cdclk); |
| return; |
| } |
| |
| /* |
| * Specs are full of misinformation, but testing on actual |
| * hardware has shown that we just need to write the desired |
| * CCK divider into the Punit register. |
| */ |
| cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1; |
| |
| mutex_lock(&dev_priv->rps.hw_lock); |
| val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ); |
| val &= ~DSPFREQGUAR_MASK_CHV; |
| val |= (cmd << DSPFREQGUAR_SHIFT_CHV); |
| vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val); |
| if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & |
| DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV), |
| 50)) { |
| DRM_ERROR("timed out waiting for CDclk change\n"); |
| } |
| mutex_unlock(&dev_priv->rps.hw_lock); |
| |
| intel_update_cdclk(dev); |
| } |
| |
| static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv, |
| int max_pixclk) |
| { |
| int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000; |
| int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90; |
| |
| /* |
| * Really only a few cases to deal with, as only 4 CDclks are supported: |
| * 200MHz |
| * 267MHz |
| * 320/333MHz (depends on HPLL freq) |
| * 400MHz (VLV only) |
| * So we check to see whether we're above 90% (VLV) or 95% (CHV) |
| * of the lower bin and adjust if needed. |
| * |
| * We seem to get an unstable or solid color picture at 200MHz. |
| * Not sure what's wrong. For now use 200MHz only when all pipes |
| * are off. |
| */ |
| if (!IS_CHERRYVIEW(dev_priv) && |
| max_pixclk > freq_320*limit/100) |
| return 400000; |
| else if (max_pixclk > 266667*limit/100) |
| return freq_320; |
| else if (max_pixclk > 0) |
| return 266667; |
| else |
| return 200000; |
| } |
| |
| static int bxt_calc_cdclk(int max_pixclk) |
| { |
| if (max_pixclk > 576000) |
| return 624000; |
| else if (max_pixclk > 384000) |
| return 576000; |
| else if (max_pixclk > 288000) |
| return 384000; |
| else if (max_pixclk > 144000) |
| return 288000; |
| else |
| return 144000; |
| } |
| |
| /* Compute the max pixel clock for new configuration. */ |
| static int intel_mode_max_pixclk(struct drm_device *dev, |
| struct drm_atomic_state *state) |
| { |
| struct intel_atomic_state *intel_state = to_intel_atomic_state(state); |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct drm_crtc *crtc; |
| struct drm_crtc_state *crtc_state; |
| unsigned max_pixclk = 0, i; |
| enum pipe pipe; |
| |
| memcpy(intel_state->min_pixclk, dev_priv->min_pixclk, |
| sizeof(intel_state->min_pixclk)); |
| |
| for_each_crtc_in_state(state, crtc, crtc_state, i) { |
| int pixclk = 0; |
| |
| if (crtc_state->enable) |
| pixclk = crtc_state->adjusted_mode.crtc_clock; |
| |
| intel_state->min_pixclk[i] = pixclk; |
| } |
| |
| for_each_pipe(dev_priv, pipe) |
| max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk); |
| |
| return max_pixclk; |
| } |
| |
| static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state) |
| { |
| struct drm_device *dev = state->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| int max_pixclk = intel_mode_max_pixclk(dev, state); |
| struct intel_atomic_state *intel_state = |
| to_intel_atomic_state(state); |
| |
| intel_state->cdclk = intel_state->dev_cdclk = |
| valleyview_calc_cdclk(dev_priv, max_pixclk); |
| |
| if (!intel_state->active_crtcs) |
| intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0); |
| |
| return 0; |
| } |
| |
| static int bxt_modeset_calc_cdclk(struct drm_atomic_state *state) |
| { |
| int max_pixclk = ilk_max_pixel_rate(state); |
| struct intel_atomic_state *intel_state = |
| to_intel_atomic_state(state); |
| |
| intel_state->cdclk = intel_state->dev_cdclk = |
| bxt_calc_cdclk(max_pixclk); |
| |
| if (!intel_state->active_crtcs) |
| intel_state->dev_cdclk = bxt_calc_cdclk(0); |
| |
| return 0; |
| } |
| |
| static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv) |
| { |
| unsigned int credits, default_credits; |
| |
| if (IS_CHERRYVIEW(dev_priv)) |
| default_credits = PFI_CREDIT(12); |
| else |
| default_credits = PFI_CREDIT(8); |
| |
| if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) { |
| /* CHV suggested value is 31 or 63 */ |
| if (IS_CHERRYVIEW(dev_priv)) |
| credits = PFI_CREDIT_63; |
| else |
| credits = PFI_CREDIT(15); |
| } else { |
| credits = default_credits; |
| } |
| |
| /* |
| * WA - write default credits before re-programming |
| * FIXME: should we also set the resend bit here? |
| */ |
| I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE | |
| default_credits); |
| |
| I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE | |
| credits | PFI_CREDIT_RESEND); |
| |
| /* |
| * FIXME is this guaranteed to clear |
| * immediately or should we poll for it? |
| */ |
| WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND); |
| } |
| |
| static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state) |
| { |
| struct drm_device *dev = old_state->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_atomic_state *old_intel_state = |
| to_intel_atomic_state(old_state); |
| unsigned req_cdclk = old_intel_state->dev_cdclk; |
| |
| /* |
| * FIXME: We can end up here with all power domains off, yet |
| * with a CDCLK frequency other than the minimum. To account |
| * for this take the PIPE-A power domain, which covers the HW |
| * blocks needed for the following programming. This can be |
| * removed once it's guaranteed that we get here either with |
| * the minimum CDCLK set, or the required power domains |
| * enabled. |
| */ |
| intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A); |
| |
| if (IS_CHERRYVIEW(dev)) |
| cherryview_set_cdclk(dev, req_cdclk); |
| else |
| valleyview_set_cdclk(dev, req_cdclk); |
| |
| vlv_program_pfi_credits(dev_priv); |
| |
| intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A); |
| } |
| |
| static void valleyview_crtc_enable(struct intel_crtc_state *pipe_config, |
| struct drm_atomic_state *old_state) |
| { |
| struct drm_crtc *crtc = pipe_config->base.crtc; |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| |
| if (WARN_ON(intel_crtc->active)) |
| return; |
| |
| if (intel_crtc_has_dp_encoder(intel_crtc->config)) |
| intel_dp_set_m_n(intel_crtc, M1_N1); |
| |
| intel_set_pipe_timings(intel_crtc); |
| intel_set_pipe_src_size(intel_crtc); |
| |
| if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| |
| I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY); |
| I915_WRITE(CHV_CANVAS(pipe), 0); |
| } |
| |
| i9xx_set_pipeconf(intel_crtc); |
| |
| intel_crtc->active = true; |
| |
| intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); |
| |
| intel_encoders_pre_pll_enable(crtc, pipe_config, old_state); |
| |
| if (IS_CHERRYVIEW(dev)) { |
| chv_prepare_pll(intel_crtc, intel_crtc->config); |
| chv_enable_pll(intel_crtc, intel_crtc->config); |
| } else { |
| vlv_prepare_pll(intel_crtc, intel_crtc->config); |
| vlv_enable_pll(intel_crtc, intel_crtc->config); |
| } |
| |
| intel_encoders_pre_enable(crtc, pipe_config, old_state); |
| |
| i9xx_pfit_enable(intel_crtc); |
| |
| intel_color_load_luts(&pipe_config->base); |
| |
| intel_update_watermarks(crtc); |
| intel_enable_pipe(intel_crtc); |
| |
| assert_vblank_disabled(crtc); |
| drm_crtc_vblank_on(crtc); |
| |
| intel_encoders_enable(crtc, pipe_config, old_state); |
| } |
| |
| static void i9xx_set_pll_dividers(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| |
| I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0); |
| I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1); |
| } |
| |
| static void i9xx_crtc_enable(struct intel_crtc_state *pipe_config, |
| struct drm_atomic_state *old_state) |
| { |
| struct drm_crtc *crtc = pipe_config->base.crtc; |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| enum pipe pipe = intel_crtc->pipe; |
| |
| if (WARN_ON(intel_crtc->active)) |
| return; |
| |
| i9xx_set_pll_dividers(intel_crtc); |
| |
| if (intel_crtc_has_dp_encoder(intel_crtc->config)) |
| intel_dp_set_m_n(intel_crtc, M1_N1); |
| |
| intel_set_pipe_timings(intel_crtc); |
| intel_set_pipe_src_size(intel_crtc); |
| |
| i9xx_set_pipeconf(intel_crtc); |
| |
| intel_crtc->active = true; |
| |
| if (!IS_GEN2(dev)) |
| intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); |
| |
| intel_encoders_pre_enable(crtc, pipe_config, old_state); |
| |
| i9xx_enable_pll(intel_crtc); |
| |
| i9xx_pfit_enable(intel_crtc); |
| |
| intel_color_load_luts(&pipe_config->base); |
| |
| intel_update_watermarks(crtc); |
| intel_enable_pipe(intel_crtc); |
| |
| assert_vblank_disabled(crtc); |
| drm_crtc_vblank_on(crtc); |
| |
| intel_encoders_enable(crtc, pipe_config, old_state); |
| } |
| |
| static void i9xx_pfit_disable(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| |
| if (!crtc->config->gmch_pfit.control) |
| return; |
| |
| assert_pipe_disabled(dev_priv, crtc->pipe); |
| |
| DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n", |
| I915_READ(PFIT_CONTROL)); |
| I915_WRITE(PFIT_CONTROL, 0); |
| } |
| |
| static void i9xx_crtc_disable(struct intel_crtc_state *old_crtc_state, |
| struct drm_atomic_state *old_state) |
| { |
| struct drm_crtc *crtc = old_crtc_state->base.crtc; |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| |
| /* |
| * On gen2 planes are double buffered but the pipe isn't, so we must |
| * wait for planes to fully turn off before disabling the pipe. |
| */ |
| if (IS_GEN2(dev)) |
| intel_wait_for_vblank(dev, pipe); |
| |
| intel_encoders_disable(crtc, old_crtc_state, old_state); |
| |
| drm_crtc_vblank_off(crtc); |
| assert_vblank_disabled(crtc); |
| |
| intel_disable_pipe(intel_crtc); |
| |
| i9xx_pfit_disable(intel_crtc); |
| |
| intel_encoders_post_disable(crtc, old_crtc_state, old_state); |
| |
| if (!intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DSI)) { |
| if (IS_CHERRYVIEW(dev)) |
| chv_disable_pll(dev_priv, pipe); |
| else if (IS_VALLEYVIEW(dev)) |
| vlv_disable_pll(dev_priv, pipe); |
| else |
| i9xx_disable_pll(intel_crtc); |
| } |
| |
| intel_encoders_post_pll_disable(crtc, old_crtc_state, old_state); |
| |
| if (!IS_GEN2(dev)) |
| intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); |
| } |
| |
| static void intel_crtc_disable_noatomic(struct drm_crtc *crtc) |
| { |
| struct intel_encoder *encoder; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct drm_i915_private *dev_priv = to_i915(crtc->dev); |
| enum intel_display_power_domain domain; |
| unsigned long domains; |
| struct drm_atomic_state *state; |
| struct intel_crtc_state *crtc_state; |
| int ret; |
| |
| if (!intel_crtc->active) |
| return; |
| |
| if (to_intel_plane_state(crtc->primary->state)->base.visible) { |
| WARN_ON(intel_crtc->flip_work); |
| |
| intel_pre_disable_primary_noatomic(crtc); |
| |
| intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary)); |
| to_intel_plane_state(crtc->primary->state)->base.visible = false; |
| } |
| |
| state = drm_atomic_state_alloc(crtc->dev); |
| state->acquire_ctx = crtc->dev->mode_config.acquire_ctx; |
| |
| /* Everything's already locked, -EDEADLK can't happen. */ |
| crtc_state = intel_atomic_get_crtc_state(state, intel_crtc); |
| ret = drm_atomic_add_affected_connectors(state, crtc); |
| |
| WARN_ON(IS_ERR(crtc_state) || ret); |
| |
| dev_priv->display.crtc_disable(crtc_state, state); |
| |
| drm_atomic_state_free(state); |
| |
| DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n", |
| crtc->base.id, crtc->name); |
| |
| WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0); |
| crtc->state->active = false; |
| intel_crtc->active = false; |
| crtc->enabled = false; |
| crtc->state->connector_mask = 0; |
| crtc->state->encoder_mask = 0; |
| |
| for_each_encoder_on_crtc(crtc->dev, crtc, encoder) |
| encoder->base.crtc = NULL; |
| |
| intel_fbc_disable(intel_crtc); |
| intel_update_watermarks(crtc); |
| intel_disable_shared_dpll(intel_crtc); |
| |
| domains = intel_crtc->enabled_power_domains; |
| for_each_power_domain(domain, domains) |
| intel_display_power_put(dev_priv, domain); |
| intel_crtc->enabled_power_domains = 0; |
| |
| dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe); |
| dev_priv->min_pixclk[intel_crtc->pipe] = 0; |
| } |
| |
| /* |
| * turn all crtc's off, but do not adjust state |
| * This has to be paired with a call to intel_modeset_setup_hw_state. |
| */ |
| int intel_display_suspend(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct drm_atomic_state *state; |
| int ret; |
| |
| state = drm_atomic_helper_suspend(dev); |
| ret = PTR_ERR_OR_ZERO(state); |
| if (ret) |
| DRM_ERROR("Suspending crtc's failed with %i\n", ret); |
| else |
| dev_priv->modeset_restore_state = state; |
| return ret; |
| } |
| |
| void intel_encoder_destroy(struct drm_encoder *encoder) |
| { |
| struct intel_encoder *intel_encoder = to_intel_encoder(encoder); |
| |
| drm_encoder_cleanup(encoder); |
| kfree(intel_encoder); |
| } |
| |
| /* Cross check the actual hw state with our own modeset state tracking (and it's |
| * internal consistency). */ |
| static void intel_connector_verify_state(struct intel_connector *connector) |
| { |
| struct drm_crtc *crtc = connector->base.state->crtc; |
| |
| DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", |
| connector->base.base.id, |
| connector->base.name); |
| |
| if (connector->get_hw_state(connector)) { |
| struct intel_encoder *encoder = connector->encoder; |
| struct drm_connector_state *conn_state = connector->base.state; |
| |
| I915_STATE_WARN(!crtc, |
| "connector enabled without attached crtc\n"); |
| |
| if (!crtc) |
| return; |
| |
| I915_STATE_WARN(!crtc->state->active, |
| "connector is active, but attached crtc isn't\n"); |
| |
| if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST) |
| return; |
| |
| I915_STATE_WARN(conn_state->best_encoder != &encoder->base, |
| "atomic encoder doesn't match attached encoder\n"); |
| |
| I915_STATE_WARN(conn_state->crtc != encoder->base.crtc, |
| "attached encoder crtc differs from connector crtc\n"); |
| } else { |
| I915_STATE_WARN(crtc && crtc->state->active, |
| "attached crtc is active, but connector isn't\n"); |
| I915_STATE_WARN(!crtc && connector->base.state->best_encoder, |
| "best encoder set without crtc!\n"); |
| } |
| } |
| |
| int intel_connector_init(struct intel_connector *connector) |
| { |
| drm_atomic_helper_connector_reset(&connector->base); |
| |
| if (!connector->base.state) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| struct intel_connector *intel_connector_alloc(void) |
| { |
| struct intel_connector *connector; |
| |
| connector = kzalloc(sizeof *connector, GFP_KERNEL); |
| if (!connector) |
| return NULL; |
| |
| if (intel_connector_init(connector) < 0) { |
| kfree(connector); |
| return NULL; |
| } |
| |
| return connector; |
| } |
| |
| /* Simple connector->get_hw_state implementation for encoders that support only |
| * one connector and no cloning and hence the encoder state determines the state |
| * of the connector. */ |
| bool intel_connector_get_hw_state(struct intel_connector *connector) |
| { |
| enum pipe pipe = 0; |
| struct intel_encoder *encoder = connector->encoder; |
| |
| return encoder->get_hw_state(encoder, &pipe); |
| } |
| |
| static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state) |
| { |
| if (crtc_state->base.enable && crtc_state->has_pch_encoder) |
| return crtc_state->fdi_lanes; |
| |
| return 0; |
| } |
| |
| static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe, |
| struct intel_crtc_state *pipe_config) |
| { |
| struct drm_atomic_state *state = pipe_config->base.state; |
| struct intel_crtc *other_crtc; |
| struct intel_crtc_state *other_crtc_state; |
| |
| DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n", |
| pipe_name(pipe), pipe_config->fdi_lanes); |
| if (pipe_config->fdi_lanes > 4) { |
| DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n", |
| pipe_name(pipe), pipe_config->fdi_lanes); |
| return -EINVAL; |
| } |
| |
| if (IS_HASWELL(dev) || IS_BROADWELL(dev)) { |
| if (pipe_config->fdi_lanes > 2) { |
| DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n", |
| pipe_config->fdi_lanes); |
| return -EINVAL; |
| } else { |
| return 0; |
| } |
| } |
| |
| if (INTEL_INFO(dev)->num_pipes == 2) |
| return 0; |
| |
| /* Ivybridge 3 pipe is really complicated */ |
| switch (pipe) { |
| case PIPE_A: |
| return 0; |
| case PIPE_B: |
| if (pipe_config->fdi_lanes <= 2) |
| return 0; |
| |
| other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C)); |
| other_crtc_state = |
| intel_atomic_get_crtc_state(state, other_crtc); |
| if (IS_ERR(other_crtc_state)) |
| return PTR_ERR(other_crtc_state); |
| |
| if (pipe_required_fdi_lanes(other_crtc_state) > 0) { |
| DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n", |
| pipe_name(pipe), pipe_config->fdi_lanes); |
| return -EINVAL; |
| } |
| return 0; |
| case PIPE_C: |
| if (pipe_config->fdi_lanes > 2) { |
| DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n", |
| pipe_name(pipe), pipe_config->fdi_lanes); |
| return -EINVAL; |
| } |
| |
| other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B)); |
| other_crtc_state = |
| intel_atomic_get_crtc_state(state, other_crtc); |
| if (IS_ERR(other_crtc_state)) |
| return PTR_ERR(other_crtc_state); |
| |
| if (pipe_required_fdi_lanes(other_crtc_state) > 2) { |
| DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n"); |
| return -EINVAL; |
| } |
| return 0; |
| default: |
| BUG(); |
| } |
| } |
| |
| #define RETRY 1 |
| static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc, |
| struct intel_crtc_state *pipe_config) |
| { |
| struct drm_device *dev = intel_crtc->base.dev; |
| const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; |
| int lane, link_bw, fdi_dotclock, ret; |
| bool needs_recompute = false; |
| |
| retry: |
| /* FDI is a binary signal running at ~2.7GHz, encoding |
| * each output octet as 10 bits. The actual frequency |
| * is stored as a divider into a 100MHz clock, and the |
| * mode pixel clock is stored in units of 1KHz. |
| * Hence the bw of each lane in terms of the mode signal |
| * is: |
| */ |
| link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config); |
| |
| fdi_dotclock = adjusted_mode->crtc_clock; |
| |
| lane = ironlake_get_lanes_required(fdi_dotclock, link_bw, |
| pipe_config->pipe_bpp); |
| |
| pipe_config->fdi_lanes = lane; |
| |
| intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock, |
| link_bw, &pipe_config->fdi_m_n); |
| |
| ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config); |
| if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) { |
| pipe_config->pipe_bpp -= 2*3; |
| DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n", |
| pipe_config->pipe_bpp); |
| needs_recompute = true; |
| pipe_config->bw_constrained = true; |
| |
| goto retry; |
| } |
| |
| if (needs_recompute) |
| return RETRY; |
| |
| return ret; |
| } |
| |
| static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv, |
| struct intel_crtc_state *pipe_config) |
| { |
| if (pipe_config->pipe_bpp > 24) |
| return false; |
| |
| /* HSW can handle pixel rate up to cdclk? */ |
| if (IS_HASWELL(dev_priv)) |
| return true; |
| |
| /* |
| * We compare against max which means we must take |
| * the increased cdclk requirement into account when |
| * calculating the new cdclk. |
| * |
| * Should measure whether using a lower cdclk w/o IPS |
| */ |
| return ilk_pipe_pixel_rate(pipe_config) <= |
| dev_priv->max_cdclk_freq * 95 / 100; |
| } |
| |
| static void hsw_compute_ips_config(struct intel_crtc *crtc, |
| struct intel_crtc_state *pipe_config) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| |
| pipe_config->ips_enabled = i915.enable_ips && |
| hsw_crtc_supports_ips(crtc) && |
| pipe_config_supports_ips(dev_priv, pipe_config); |
| } |
| |
| static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc) |
| { |
| const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| |
| /* GDG double wide on either pipe, otherwise pipe A only */ |
| return INTEL_INFO(dev_priv)->gen < 4 && |
| (crtc->pipe == PIPE_A || IS_I915G(dev_priv)); |
| } |
| |
| static int intel_crtc_compute_config(struct intel_crtc *crtc, |
| struct intel_crtc_state *pipe_config) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; |
| int clock_limit = dev_priv->max_dotclk_freq; |
| |
| if (INTEL_INFO(dev)->gen < 4) { |
| clock_limit = dev_priv->max_cdclk_freq * 9 / 10; |
| |
| /* |
| * Enable double wide mode when the dot clock |
| * is > 90% of the (display) core speed. |
| */ |
| if (intel_crtc_supports_double_wide(crtc) && |
| adjusted_mode->crtc_clock > clock_limit) { |
| clock_limit = dev_priv->max_dotclk_freq; |
| pipe_config->double_wide = true; |
| } |
| } |
| |
| if (adjusted_mode->crtc_clock > clock_limit) { |
| DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n", |
| adjusted_mode->crtc_clock, clock_limit, |
| yesno(pipe_config->double_wide)); |
| return -EINVAL; |
| } |
| |
| /* |
| * Pipe horizontal size must be even in: |
| * - DVO ganged mode |
| * - LVDS dual channel mode |
| * - Double wide pipe |
| */ |
| if ((intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) && |
| intel_is_dual_link_lvds(dev)) || pipe_config->double_wide) |
| pipe_config->pipe_src_w &= ~1; |
| |
| /* Cantiga+ cannot handle modes with a hsync front porch of 0. |
| * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw. |
| */ |
| if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) && |
| adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay) |
| return -EINVAL; |
| |
| if (HAS_IPS(dev)) |
| hsw_compute_ips_config(crtc, pipe_config); |
| |
| if (pipe_config->has_pch_encoder) |
| return ironlake_fdi_compute_config(crtc, pipe_config); |
| |
| return 0; |
| } |
| |
| static int skylake_get_display_clock_speed(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| uint32_t cdctl; |
| |
| skl_dpll0_update(dev_priv); |
| |
| if (dev_priv->cdclk_pll.vco == 0) |
| return dev_priv->cdclk_pll.ref; |
| |
| cdctl = I915_READ(CDCLK_CTL); |
| |
| if (dev_priv->cdclk_pll.vco == 8640000) { |
| switch (cdctl & CDCLK_FREQ_SEL_MASK) { |
| case CDCLK_FREQ_450_432: |
| return 432000; |
| case CDCLK_FREQ_337_308: |
| return 308571; |
| case CDCLK_FREQ_540: |
| return 540000; |
| case CDCLK_FREQ_675_617: |
| return 617143; |
| default: |
| MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK); |
| } |
| } else { |
| switch (cdctl & CDCLK_FREQ_SEL_MASK) { |
| case CDCLK_FREQ_450_432: |
| return 450000; |
| case CDCLK_FREQ_337_308: |
| return 337500; |
| case CDCLK_FREQ_540: |
| return 540000; |
| case CDCLK_FREQ_675_617: |
| return 675000; |
| default: |
| MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK); |
| } |
| } |
| |
| return dev_priv->cdclk_pll.ref; |
| } |
| |
| static void bxt_de_pll_update(struct drm_i915_private *dev_priv) |
| { |
| u32 val; |
| |
| dev_priv->cdclk_pll.ref = 19200; |
| dev_priv->cdclk_pll.vco = 0; |
| |
| val = I915_READ(BXT_DE_PLL_ENABLE); |
| if ((val & BXT_DE_PLL_PLL_ENABLE) == 0) |
| return; |
| |
| if (WARN_ON((val & BXT_DE_PLL_LOCK) == 0)) |
| return; |
| |
| val = I915_READ(BXT_DE_PLL_CTL); |
| dev_priv->cdclk_pll.vco = (val & BXT_DE_PLL_RATIO_MASK) * |
| dev_priv->cdclk_pll.ref; |
| } |
| |
| static int broxton_get_display_clock_speed(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| u32 divider; |
| int div, vco; |
| |
| bxt_de_pll_update(dev_priv); |
| |
| vco = dev_priv->cdclk_pll.vco; |
| if (vco == 0) |
| return dev_priv->cdclk_pll.ref; |
| |
| divider = I915_READ(CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK; |
| |
| switch (divider) { |
| case BXT_CDCLK_CD2X_DIV_SEL_1: |
| div = 2; |
| break; |
| case BXT_CDCLK_CD2X_DIV_SEL_1_5: |
| div = 3; |
| break; |
| case BXT_CDCLK_CD2X_DIV_SEL_2: |
| div = 4; |
| break; |
| case BXT_CDCLK_CD2X_DIV_SEL_4: |
| div = 8; |
| break; |
| default: |
| MISSING_CASE(divider); |
| return dev_priv->cdclk_pll.ref; |
| } |
| |
| return DIV_ROUND_CLOSEST(vco, div); |
| } |
| |
| static int broadwell_get_display_clock_speed(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| uint32_t lcpll = I915_READ(LCPLL_CTL); |
| uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK; |
| |
| if (lcpll & LCPLL_CD_SOURCE_FCLK) |
| return 800000; |
| else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT) |
| return 450000; |
| else if (freq == LCPLL_CLK_FREQ_450) |
| return 450000; |
| else if (freq == LCPLL_CLK_FREQ_54O_BDW) |
| return 540000; |
| else if (freq == LCPLL_CLK_FREQ_337_5_BDW) |
| return 337500; |
| else |
| return 675000; |
| } |
| |
| static int haswell_get_display_clock_speed(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| uint32_t lcpll = I915_READ(LCPLL_CTL); |
| uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK; |
| |
| if (lcpll & LCPLL_CD_SOURCE_FCLK) |
| return 800000; |
| else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT) |
| return 450000; |
| else if (freq == LCPLL_CLK_FREQ_450) |
| return 450000; |
| else if (IS_HSW_ULT(dev)) |
| return 337500; |
| else |
| return 540000; |
| } |
| |
| static int valleyview_get_display_clock_speed(struct drm_device *dev) |
| { |
| return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk", |
| CCK_DISPLAY_CLOCK_CONTROL); |
| } |
| |
| static int ilk_get_display_clock_speed(struct drm_device *dev) |
| { |
| return 450000; |
| } |
| |
| static int i945_get_display_clock_speed(struct drm_device *dev) |
| { |
| return 400000; |
| } |
| |
| static int i915_get_display_clock_speed(struct drm_device *dev) |
| { |
| return 333333; |
| } |
| |
| static int i9xx_misc_get_display_clock_speed(struct drm_device *dev) |
| { |
| return 200000; |
| } |
| |
| static int pnv_get_display_clock_speed(struct drm_device *dev) |
| { |
| struct pci_dev *pdev = dev->pdev; |
| u16 gcfgc = 0; |
| |
| pci_read_config_word(pdev, GCFGC, &gcfgc); |
| |
| switch (gcfgc & GC_DISPLAY_CLOCK_MASK) { |
| case GC_DISPLAY_CLOCK_267_MHZ_PNV: |
| return 266667; |
| case GC_DISPLAY_CLOCK_333_MHZ_PNV: |
| return 333333; |
| case GC_DISPLAY_CLOCK_444_MHZ_PNV: |
| return 444444; |
| case GC_DISPLAY_CLOCK_200_MHZ_PNV: |
| return 200000; |
| default: |
| DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc); |
| case GC_DISPLAY_CLOCK_133_MHZ_PNV: |
| return 133333; |
| case GC_DISPLAY_CLOCK_167_MHZ_PNV: |
| return 166667; |
| } |
| } |
| |
| static int i915gm_get_display_clock_speed(struct drm_device *dev) |
| { |
| struct pci_dev *pdev = dev->pdev; |
| u16 gcfgc = 0; |
| |
| pci_read_config_word(pdev, GCFGC, &gcfgc); |
| |
| if (gcfgc & GC_LOW_FREQUENCY_ENABLE) |
| return 133333; |
| else { |
| switch (gcfgc & GC_DISPLAY_CLOCK_MASK) { |
| case GC_DISPLAY_CLOCK_333_MHZ: |
| return 333333; |
| default: |
| case GC_DISPLAY_CLOCK_190_200_MHZ: |
| return 190000; |
| } |
| } |
| } |
| |
| static int i865_get_display_clock_speed(struct drm_device *dev) |
| { |
| return 266667; |
| } |
| |
| static int i85x_get_display_clock_speed(struct drm_device *dev) |
| { |
| struct pci_dev *pdev = dev->pdev; |
| u16 hpllcc = 0; |
| |
| /* |
| * 852GM/852GMV only supports 133 MHz and the HPLLCC |
| * encoding is different :( |
| * FIXME is this the right way to detect 852GM/852GMV? |
| */ |
| if (pdev->revision == 0x1) |
| return 133333; |
| |
| pci_bus_read_config_word(pdev->bus, |
| PCI_DEVFN(0, 3), HPLLCC, &hpllcc); |
| |
| /* Assume that the hardware is in the high speed state. This |
| * should be the default. |
| */ |
| switch (hpllcc & GC_CLOCK_CONTROL_MASK) { |
| case GC_CLOCK_133_200: |
| case GC_CLOCK_133_200_2: |
| case GC_CLOCK_100_200: |
| return 200000; |
| case GC_CLOCK_166_250: |
| return 250000; |
| case GC_CLOCK_100_133: |
| return 133333; |
| case GC_CLOCK_133_266: |
| case GC_CLOCK_133_266_2: |
| case GC_CLOCK_166_266: |
| return 266667; |
| } |
| |
| /* Shouldn't happen */ |
| return 0; |
| } |
| |
| static int i830_get_display_clock_speed(struct drm_device *dev) |
| { |
| return 133333; |
| } |
| |
| static unsigned int intel_hpll_vco(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| static const unsigned int blb_vco[8] = { |
| [0] = 3200000, |
| [1] = 4000000, |
| [2] = 5333333, |
| [3] = 4800000, |
| [4] = 6400000, |
| }; |
| static const unsigned int pnv_vco[8] = { |
| [0] = 3200000, |
| [1] = 4000000, |
| [2] = 5333333, |
| [3] = 4800000, |
| [4] = 2666667, |
| }; |
| static const unsigned int cl_vco[8] = { |
| [0] = 3200000, |
| [1] = 4000000, |
| [2] = 5333333, |
| [3] = 6400000, |
| [4] = 3333333, |
| [5] = 3566667, |
| [6] = 4266667, |
| }; |
| static const unsigned int elk_vco[8] = { |
| [0] = 3200000, |
| [1] = 4000000, |
| [2] = 5333333, |
| [3] = 4800000, |
| }; |
| static const unsigned int ctg_vco[8] = { |
| [0] = 3200000, |
| [1] = 4000000, |
| [2] = 5333333, |
| [3] = 6400000, |
| [4] = 2666667, |
| [5] = 4266667, |
| }; |
| const unsigned int *vco_table; |
| unsigned int vco; |
| uint8_t tmp = 0; |
| |
| /* FIXME other chipsets? */ |
| if (IS_GM45(dev)) |
| vco_table = ctg_vco; |
| else if (IS_G4X(dev)) |
| vco_table = elk_vco; |
| else if (IS_CRESTLINE(dev)) |
| vco_table = cl_vco; |
| else if (IS_PINEVIEW(dev)) |
| vco_table = pnv_vco; |
| else if (IS_G33(dev)) |
| vco_table = blb_vco; |
| else |
| return 0; |
| |
| tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO); |
| |
| vco = vco_table[tmp & 0x7]; |
| if (vco == 0) |
| DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp); |
| else |
| DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco); |
| |
| return vco; |
| } |
| |
| static int gm45_get_display_clock_speed(struct drm_device *dev) |
| { |
| struct pci_dev *pdev = dev->pdev; |
| unsigned int cdclk_sel, vco = intel_hpll_vco(dev); |
| uint16_t tmp = 0; |
| |
| pci_read_config_word(pdev, GCFGC, &tmp); |
| |
| cdclk_sel = (tmp >> 12) & 0x1; |
| |
| switch (vco) { |
| case 2666667: |
| case 4000000: |
| case 5333333: |
| return cdclk_sel ? 333333 : 222222; |
| case 3200000: |
| return cdclk_sel ? 320000 : 228571; |
| default: |
| DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp); |
| return 222222; |
| } |
| } |
| |
| static int i965gm_get_display_clock_speed(struct drm_device *dev) |
| { |
| struct pci_dev *pdev = dev->pdev; |
| static const uint8_t div_3200[] = { 16, 10, 8 }; |
| static const uint8_t div_4000[] = { 20, 12, 10 }; |
| static const uint8_t div_5333[] = { 24, 16, 14 }; |
| const uint8_t *div_table; |
| unsigned int cdclk_sel, vco = intel_hpll_vco(dev); |
| uint16_t tmp = 0; |
| |
| pci_read_config_word(pdev, GCFGC, &tmp); |
| |
| cdclk_sel = ((tmp >> 8) & 0x1f) - 1; |
| |
| if (cdclk_sel >= ARRAY_SIZE(div_3200)) |
| goto fail; |
| |
| switch (vco) { |
| case 3200000: |
| div_table = div_3200; |
| break; |
| case 4000000: |
| div_table = div_4000; |
| break; |
| case 5333333: |
| div_table = div_5333; |
| break; |
| default: |
| goto fail; |
| } |
| |
| return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]); |
| |
| fail: |
| DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp); |
| return 200000; |
| } |
| |
| static int g33_get_display_clock_speed(struct drm_device *dev) |
| { |
| struct pci_dev *pdev = dev->pdev; |
| static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 }; |
| static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 }; |
| static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 }; |
| static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 }; |
| const uint8_t *div_table; |
| unsigned int cdclk_sel, vco = intel_hpll_vco(dev); |
| uint16_t tmp = 0; |
| |
| pci_read_config_word(pdev, GCFGC, &tmp); |
| |
| cdclk_sel = (tmp >> 4) & 0x7; |
| |
| if (cdclk_sel >= ARRAY_SIZE(div_3200)) |
| goto fail; |
| |
| switch (vco) { |
| case 3200000: |
| div_table = div_3200; |
| break; |
| case 4000000: |
| div_table = div_4000; |
| break; |
| case 4800000: |
| div_table = div_4800; |
| break; |
| case 5333333: |
| div_table = div_5333; |
| break; |
| default: |
| goto fail; |
| } |
| |
| return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]); |
| |
| fail: |
| DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp); |
| return 190476; |
| } |
| |
| static void |
| intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den) |
| { |
| while (*num > DATA_LINK_M_N_MASK || |
| *den > DATA_LINK_M_N_MASK) { |
| *num >>= 1; |
| *den >>= 1; |
| } |
| } |
| |
| static void compute_m_n(unsigned int m, unsigned int n, |
| uint32_t *ret_m, uint32_t *ret_n) |
| { |
| *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX); |
| *ret_m = div_u64((uint64_t) m * *ret_n, n); |
| intel_reduce_m_n_ratio(ret_m, ret_n); |
| } |
| |
| void |
| intel_link_compute_m_n(int bits_per_pixel, int nlanes, |
| int pixel_clock, int link_clock, |
| struct intel_link_m_n *m_n) |
| { |
| m_n->tu = 64; |
| |
| compute_m_n(bits_per_pixel * pixel_clock, |
| link_clock * nlanes * 8, |
| &m_n->gmch_m, &m_n->gmch_n); |
| |
| compute_m_n(pixel_clock, link_clock, |
| &m_n->link_m, &m_n->link_n); |
| } |
| |
| static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv) |
| { |
| if (i915.panel_use_ssc >= 0) |
| return i915.panel_use_ssc != 0; |
| return dev_priv->vbt.lvds_use_ssc |
| && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE); |
| } |
| |
| static uint32_t pnv_dpll_compute_fp(struct dpll *dpll) |
| { |
| return (1 << dpll->n) << 16 | dpll->m2; |
| } |
| |
| static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll) |
| { |
| return dpll->n << 16 | dpll->m1 << 8 | dpll->m2; |
| } |
| |
| static void i9xx_update_pll_dividers(struct intel_crtc *crtc, |
| struct intel_crtc_state *crtc_state, |
| struct dpll *reduced_clock) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| u32 fp, fp2 = 0; |
| |
| if (IS_PINEVIEW(dev)) { |
| fp = pnv_dpll_compute_fp(&crtc_state->dpll); |
| if (reduced_clock) |
| fp2 = pnv_dpll_compute_fp(reduced_clock); |
| } else { |
| fp = i9xx_dpll_compute_fp(&crtc_state->dpll); |
| if (reduced_clock) |
| fp2 = i9xx_dpll_compute_fp(reduced_clock); |
| } |
| |
| crtc_state->dpll_hw_state.fp0 = fp; |
| |
| crtc->lowfreq_avail = false; |
| if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && |
| reduced_clock) { |
| crtc_state->dpll_hw_state.fp1 = fp2; |
| crtc->lowfreq_avail = true; |
| } else { |
| crtc_state->dpll_hw_state.fp1 = fp; |
| } |
| } |
| |
| static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe |
| pipe) |
| { |
| u32 reg_val; |
| |
| /* |
| * PLLB opamp always calibrates to max value of 0x3f, force enable it |
| * and set it to a reasonable value instead. |
| */ |
| reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1)); |
| reg_val &= 0xffffff00; |
| reg_val |= 0x00000030; |
| vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val); |
| |
| reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13); |
| reg_val &= 0x8cffffff; |
| reg_val = 0x8c000000; |
| vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val); |
| |
| reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1)); |
| reg_val &= 0xffffff00; |
| vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val); |
| |
| reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13); |
| reg_val &= 0x00ffffff; |
| reg_val |= 0xb0000000; |
| vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val); |
| } |
| |
| static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc, |
| struct intel_link_m_n *m_n) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| int pipe = crtc->pipe; |
| |
| I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m); |
| I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n); |
| I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m); |
| I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n); |
| } |
| |
| static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc, |
| struct intel_link_m_n *m_n, |
| struct intel_link_m_n *m2_n2) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| int pipe = crtc->pipe; |
| enum transcoder transcoder = crtc->config->cpu_transcoder; |
| |
| if (INTEL_INFO(dev)->gen >= 5) { |
| I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m); |
| I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n); |
| I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m); |
| I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n); |
| /* M2_N2 registers to be set only for gen < 8 (M2_N2 available |
| * for gen < 8) and if DRRS is supported (to make sure the |
| * registers are not unnecessarily accessed). |
| */ |
| if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) && |
| crtc->config->has_drrs) { |
| I915_WRITE(PIPE_DATA_M2(transcoder), |
| TU_SIZE(m2_n2->tu) | m2_n2->gmch_m); |
| I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n); |
| I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m); |
| I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n); |
| } |
| } else { |
| I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m); |
| I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n); |
| I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m); |
| I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n); |
| } |
| } |
| |
| void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n) |
| { |
| struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL; |
| |
| if (m_n == M1_N1) { |
| dp_m_n = &crtc->config->dp_m_n; |
| dp_m2_n2 = &crtc->config->dp_m2_n2; |
| } else if (m_n == M2_N2) { |
| |
| /* |
| * M2_N2 registers are not supported. Hence m2_n2 divider value |
| * needs to be programmed into M1_N1. |
| */ |
| dp_m_n = &crtc->config->dp_m2_n2; |
| } else { |
| DRM_ERROR("Unsupported divider value\n"); |
| return; |
| } |
| |
| if (crtc->config->has_pch_encoder) |
| intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n); |
| else |
| intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2); |
| } |
| |
| static void vlv_compute_dpll(struct intel_crtc *crtc, |
| struct intel_crtc_state *pipe_config) |
| { |
| pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV | |
| DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; |
| if (crtc->pipe != PIPE_A) |
| pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; |
| |
| /* DPLL not used with DSI, but still need the rest set up */ |
| if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI)) |
| pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE | |
| DPLL_EXT_BUFFER_ENABLE_VLV; |
| |
| pipe_config->dpll_hw_state.dpll_md = |
| (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; |
| } |
| |
| static void chv_compute_dpll(struct intel_crtc *crtc, |
| struct intel_crtc_state *pipe_config) |
| { |
| pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV | |
| DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; |
| if (crtc->pipe != PIPE_A) |
| pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; |
| |
| /* DPLL not used with DSI, but still need the rest set up */ |
| if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI)) |
| pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE; |
| |
| pipe_config->dpll_hw_state.dpll_md = |
| (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; |
| } |
| |
| static void vlv_prepare_pll(struct intel_crtc *crtc, |
| const struct intel_crtc_state *pipe_config) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| enum pipe pipe = crtc->pipe; |
| u32 mdiv; |
| u32 bestn, bestm1, bestm2, bestp1, bestp2; |
| u32 coreclk, reg_val; |
| |
| /* Enable Refclk */ |
| I915_WRITE(DPLL(pipe), |
| pipe_config->dpll_hw_state.dpll & |
| ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV)); |
| |
| /* No need to actually set up the DPLL with DSI */ |
| if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) |
| return; |
| |
| mutex_lock(&dev_priv->sb_lock); |
| |
| bestn = pipe_config->dpll.n; |
| bestm1 = pipe_config->dpll.m1; |
| bestm2 = pipe_config->dpll.m2; |
| bestp1 = pipe_config->dpll.p1; |
| bestp2 = pipe_config->dpll.p2; |
| |
| /* See eDP HDMI DPIO driver vbios notes doc */ |
| |
| /* PLL B needs special handling */ |
| if (pipe == PIPE_B) |
| vlv_pllb_recal_opamp(dev_priv, pipe); |
| |
| /* Set up Tx target for periodic Rcomp update */ |
| vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f); |
| |
| /* Disable target IRef on PLL */ |
| reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe)); |
| reg_val &= 0x00ffffff; |
| vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val); |
| |
| /* Disable fast lock */ |
| vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610); |
| |
| /* Set idtafcrecal before PLL is enabled */ |
| mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK)); |
| mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT)); |
| mdiv |= ((bestn << DPIO_N_SHIFT)); |
| mdiv |= (1 << DPIO_K_SHIFT); |
| |
| /* |
| * Post divider depends on pixel clock rate, DAC vs digital (and LVDS, |
| * but we don't support that). |
| * Note: don't use the DAC post divider as it seems unstable. |
| */ |
| mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT); |
| vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv); |
| |
| mdiv |= DPIO_ENABLE_CALIBRATION; |
| vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv); |
| |
| /* Set HBR and RBR LPF coefficients */ |
| if (pipe_config->port_clock == 162000 || |
| intel_crtc_has_type(crtc->config, INTEL_OUTPUT_ANALOG) || |
| intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI)) |
| vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe), |
| 0x009f0003); |
| else |
| vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe), |
| 0x00d0000f); |
| |
| if (intel_crtc_has_dp_encoder(pipe_config)) { |
| /* Use SSC source */ |
| if (pipe == PIPE_A) |
| vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), |
| 0x0df40000); |
| else |
| vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), |
| 0x0df70000); |
| } else { /* HDMI or VGA */ |
| /* Use bend source */ |
| if (pipe == PIPE_A) |
| vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), |
| 0x0df70000); |
| else |
| vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), |
| 0x0df40000); |
| } |
| |
| coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe)); |
| coreclk = (coreclk & 0x0000ff00) | 0x01c00000; |
| if (intel_crtc_has_dp_encoder(crtc->config)) |
| coreclk |= 0x01000000; |
| vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk); |
| |
| vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000); |
| mutex_unlock(&dev_priv->sb_lock); |
| } |
| |
| static void chv_prepare_pll(struct intel_crtc *crtc, |
| const struct intel_crtc_state *pipe_config) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| enum pipe pipe = crtc->pipe; |
| enum dpio_channel port = vlv_pipe_to_channel(pipe); |
| u32 loopfilter, tribuf_calcntr; |
| u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac; |
| u32 dpio_val; |
| int vco; |
| |
| /* Enable Refclk and SSC */ |
| I915_WRITE(DPLL(pipe), |
| pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE); |
| |
| /* No need to actually set up the DPLL with DSI */ |
| if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) |
| return; |
| |
| bestn = pipe_config->dpll.n; |
| bestm2_frac = pipe_config->dpll.m2 & 0x3fffff; |
| bestm1 = pipe_config->dpll.m1; |
| bestm2 = pipe_config->dpll.m2 >> 22; |
| bestp1 = pipe_config->dpll.p1; |
| bestp2 = pipe_config->dpll.p2; |
| vco = pipe_config->dpll.vco; |
| dpio_val = 0; |
| loopfilter = 0; |
| |
| mutex_lock(&dev_priv->sb_lock); |
| |
| /* p1 and p2 divider */ |
| vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port), |
| 5 << DPIO_CHV_S1_DIV_SHIFT | |
| bestp1 << DPIO_CHV_P1_DIV_SHIFT | |
| bestp2 << DPIO_CHV_P2_DIV_SHIFT | |
| 1 << DPIO_CHV_K_DIV_SHIFT); |
| |
| /* Feedback post-divider - m2 */ |
| vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2); |
| |
| /* Feedback refclk divider - n and m1 */ |
| vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port), |
| DPIO_CHV_M1_DIV_BY_2 | |
| 1 << DPIO_CHV_N_DIV_SHIFT); |
| |
| /* M2 fraction division */ |
| vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac); |
| |
| /* M2 fraction division enable */ |
| dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port)); |
| dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN); |
| dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT); |
| if (bestm2_frac) |
| dpio_val |= DPIO_CHV_FRAC_DIV_EN; |
| vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val); |
| |
| /* Program digital lock detect threshold */ |
| dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port)); |
| dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK | |
| DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE); |
| dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT); |
| if (!bestm2_frac) |
| dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE; |
| vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val); |
| |
| /* Loop filter */ |
| if (vco == 5400000) { |
| loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT); |
| loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT); |
| loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT); |
| tribuf_calcntr = 0x9; |
| } else if (vco <= 6200000) { |
| loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT); |
| loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT); |
| loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); |
| tribuf_calcntr = 0x9; |
| } else if (vco <= 6480000) { |
| loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT); |
| loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT); |
| loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); |
| tribuf_calcntr = 0x8; |
| } else { |
| /* Not supported. Apply the same limits as in the max case */ |
| loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT); |
| loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT); |
| loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); |
| tribuf_calcntr = 0; |
| } |
| vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter); |
| |
| dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port)); |
| dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK; |
| dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT); |
| vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val); |
| |
| /* AFC Recal */ |
| vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), |
| vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) | |
| DPIO_AFC_RECAL); |
| |
| mutex_unlock(&dev_priv->sb_lock); |
| } |
| |
| /** |
| * vlv_force_pll_on - forcibly enable just the PLL |
| * @dev_priv: i915 private structure |
| * @pipe: pipe PLL to enable |
| * @dpll: PLL configuration |
| * |
| * Enable the PLL for @pipe using the supplied @dpll config. To be used |
| * in cases where we need the PLL enabled even when @pipe is not going to |
| * be enabled. |
| */ |
| int vlv_force_pll_on(struct drm_device *dev, enum pipe pipe, |
| const struct dpll *dpll) |
| { |
| struct intel_crtc *crtc = |
| to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe)); |
| struct intel_crtc_state *pipe_config; |
| |
| pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL); |
| if (!pipe_config) |
| return -ENOMEM; |
| |
| pipe_config->base.crtc = &crtc->base; |
| pipe_config->pixel_multiplier = 1; |
| pipe_config->dpll = *dpll; |
| |
| if (IS_CHERRYVIEW(dev)) { |
| chv_compute_dpll(crtc, pipe_config); |
| chv_prepare_pll(crtc, pipe_config); |
| chv_enable_pll(crtc, pipe_config); |
| } else { |
| vlv_compute_dpll(crtc, pipe_config); |
| vlv_prepare_pll(crtc, pipe_config); |
| vlv_enable_pll(crtc, pipe_config); |
| } |
| |
| kfree(pipe_config); |
| |
| return 0; |
| } |
| |
| /** |
| * vlv_force_pll_off - forcibly disable just the PLL |
| * @dev_priv: i915 private structure |
| * @pipe: pipe PLL to disable |
| * |
| * Disable the PLL for @pipe. To be used in cases where we need |
| * the PLL enabled even when @pipe is not going to be enabled. |
| */ |
| void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe) |
| { |
| if (IS_CHERRYVIEW(dev)) |
| chv_disable_pll(to_i915(dev), pipe); |
| else |
| vlv_disable_pll(to_i915(dev), pipe); |
| } |
| |
| static void i9xx_compute_dpll(struct intel_crtc *crtc, |
| struct intel_crtc_state *crtc_state, |
| struct dpll *reduced_clock) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| u32 dpll; |
| struct dpll *clock = &crtc_state->dpll; |
| |
| i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock); |
| |
| dpll = DPLL_VGA_MODE_DIS; |
| |
| if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) |
| dpll |= DPLLB_MODE_LVDS; |
| else |
| dpll |= DPLLB_MODE_DAC_SERIAL; |
| |
| if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) { |
| dpll |= (crtc_state->pixel_multiplier - 1) |
| << SDVO_MULTIPLIER_SHIFT_HIRES; |
| } |
| |
| if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) || |
| intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) |
| dpll |= DPLL_SDVO_HIGH_SPEED; |
| |
| if (intel_crtc_has_dp_encoder(crtc_state)) |
| dpll |= DPLL_SDVO_HIGH_SPEED; |
| |
| /* compute bitmask from p1 value */ |
| if (IS_PINEVIEW(dev)) |
| dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW; |
| else { |
| dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; |
| if (IS_G4X(dev) && reduced_clock) |
| dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; |
| } |
| switch (clock->p2) { |
| case 5: |
| dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; |
| break; |
| case 7: |
| dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; |
| break; |
| case 10: |
| dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; |
| break; |
| case 14: |
| dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; |
| break; |
| } |
| if (INTEL_INFO(dev)->gen >= 4) |
| dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT); |
| |
| if (crtc_state->sdvo_tv_clock) |
| dpll |= PLL_REF_INPUT_TVCLKINBC; |
| else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && |
| intel_panel_use_ssc(dev_priv)) |
| dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; |
| else |
| dpll |= PLL_REF_INPUT_DREFCLK; |
| |
| dpll |= DPLL_VCO_ENABLE; |
| crtc_state->dpll_hw_state.dpll = dpll; |
| |
| if (INTEL_INFO(dev)->gen >= 4) { |
| u32 dpll_md = (crtc_state->pixel_multiplier - 1) |
| << DPLL_MD_UDI_MULTIPLIER_SHIFT; |
| crtc_state->dpll_hw_state.dpll_md = dpll_md; |
| } |
| } |
| |
| static void i8xx_compute_dpll(struct intel_crtc *crtc, |
| struct intel_crtc_state *crtc_state, |
| struct dpll *reduced_clock) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| u32 dpll; |
| struct dpll *clock = &crtc_state->dpll; |
| |
| i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock); |
| |
| dpll = DPLL_VGA_MODE_DIS; |
| |
| if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { |
| dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; |
| } else { |
| if (clock->p1 == 2) |
| dpll |= PLL_P1_DIVIDE_BY_TWO; |
| else |
| dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT; |
| if (clock->p2 == 4) |
| dpll |= PLL_P2_DIVIDE_BY_4; |
| } |
| |
| if (!IS_I830(dev) && intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) |
| dpll |= DPLL_DVO_2X_MODE; |
| |
| if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && |
| intel_panel_use_ssc(dev_priv)) |
| dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; |
| else |
| dpll |= PLL_REF_INPUT_DREFCLK; |
| |
| dpll |= DPLL_VCO_ENABLE; |
| crtc_state->dpll_hw_state.dpll = dpll; |
| } |
| |
| static void intel_set_pipe_timings(struct intel_crtc *intel_crtc) |
| { |
| struct drm_device *dev = intel_crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| enum pipe pipe = intel_crtc->pipe; |
| enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder; |
| const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode; |
| uint32_t crtc_vtotal, crtc_vblank_end; |
| int vsyncshift = 0; |
| |
| /* We need to be careful not to changed the adjusted mode, for otherwise |
| * the hw state checker will get angry at the mismatch. */ |
| crtc_vtotal = adjusted_mode->crtc_vtotal; |
| crtc_vblank_end = adjusted_mode->crtc_vblank_end; |
| |
| if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { |
| /* the chip adds 2 halflines automatically */ |
| crtc_vtotal -= 1; |
| crtc_vblank_end -= 1; |
| |
| if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO)) |
| vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2; |
| else |
| vsyncshift = adjusted_mode->crtc_hsync_start - |
| adjusted_mode->crtc_htotal / 2; |
| if (vsyncshift < 0) |
| vsyncshift += adjusted_mode->crtc_htotal; |
| } |
| |
| if (INTEL_INFO(dev)->gen > 3) |
| I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift); |
| |
| I915_WRITE(HTOTAL(cpu_transcoder), |
| (adjusted_mode->crtc_hdisplay - 1) | |
| ((adjusted_mode->crtc_htotal - 1) << 16)); |
| I915_WRITE(HBLANK(cpu_transcoder), |
| (adjusted_mode->crtc_hblank_start - 1) | |
| ((adjusted_mode->crtc_hblank_end - 1) << 16)); |
| I915_WRITE(HSYNC(cpu_transcoder), |
| (adjusted_mode->crtc_hsync_start - 1) | |
| ((adjusted_mode->crtc_hsync_end - 1) << 16)); |
| |
| I915_WRITE(VTOTAL(cpu_transcoder), |
| (adjusted_mode->crtc_vdisplay - 1) | |
| ((crtc_vtotal - 1) << 16)); |
| I915_WRITE(VBLANK(cpu_transcoder), |
| (adjusted_mode->crtc_vblank_start - 1) | |
| ((crtc_vblank_end - 1) << 16)); |
| I915_WRITE(VSYNC(cpu_transcoder), |
| (adjusted_mode->crtc_vsync_start - 1) | |
| ((adjusted_mode->crtc_vsync_end - 1) << 16)); |
| |
| /* Workaround: when the EDP input selection is B, the VTOTAL_B must be |
| * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is |
| * documented on the DDI_FUNC_CTL register description, EDP Input Select |
| * bits. */ |
| if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP && |
| (pipe == PIPE_B || pipe == PIPE_C)) |
| I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder))); |
| |
| } |
| |
| static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc) |
| { |
| struct drm_device *dev = intel_crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| enum pipe pipe = intel_crtc->pipe; |
| |
| /* pipesrc controls the size that is scaled from, which should |
| * always be the user's requested size. |
| */ |
| I915_WRITE(PIPESRC(pipe), |
| ((intel_crtc->config->pipe_src_w - 1) << 16) | |
| (intel_crtc->config->pipe_src_h - 1)); |
| } |
| |
| static void intel_get_pipe_timings(struct intel_crtc *crtc, |
| struct intel_crtc_state *pipe_config) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; |
| uint32_t tmp; |
| |
| tmp = I915_READ(HTOTAL(cpu_transcoder)); |
| pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1; |
| pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1; |
| tmp = I915_READ(HBLANK(cpu_transcoder)); |
| pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1; |
| pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1; |
| tmp = I915_READ(HSYNC(cpu_transcoder)); |
| pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1; |
| pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1; |
| |
| tmp = I915_READ(VTOTAL(cpu_transcoder)); |
| pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1; |
| pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1; |
| tmp = I915_READ(VBLANK(cpu_transcoder)); |
| pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1; |
| pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1; |
| tmp = I915_READ(VSYNC(cpu_transcoder)); |
| pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1; |
| pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1; |
| |
| if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) { |
| pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE; |
| pipe_config->base.adjusted_mode.crtc_vtotal += 1; |
| pipe_config->base.adjusted_mode.crtc_vblank_end += 1; |
| } |
| } |
| |
| static void intel_get_pipe_src_size(struct intel_crtc *crtc, |
| struct intel_crtc_state *pipe_config) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| u32 tmp; |
| |
| tmp = I915_READ(PIPESRC(crtc->pipe)); |
| pipe_config->pipe_src_h = (tmp & 0xffff) + 1; |
| pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1; |
| |
| pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h; |
| pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w; |
| } |
| |
| void intel_mode_from_pipe_config(struct drm_display_mode *mode, |
| struct intel_crtc_state *pipe_config) |
| { |
| mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay; |
| mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal; |
| mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start; |
| mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end; |
| |
| mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay; |
| mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal; |
| mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start; |
| mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end; |
| |
| mode->flags = pipe_config->base.adjusted_mode.flags; |
| mode->type = DRM_MODE_TYPE_DRIVER; |
| |
| mode->clock = pipe_config->base.adjusted_mode.crtc_clock; |
| mode->flags |= pipe_config->base.adjusted_mode.flags; |
| |
| mode->hsync = drm_mode_hsync(mode); |
| mode->vrefresh = drm_mode_vrefresh(mode); |
| drm_mode_set_name(mode); |
| } |
| |
| static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc) |
| { |
| struct drm_device *dev = intel_crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| uint32_t pipeconf; |
| |
| pipeconf = 0; |
| |
| if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) || |
| (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)) |
| pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE; |
| |
| if (intel_crtc->config->double_wide) |
| pipeconf |= PIPECONF_DOUBLE_WIDE; |
| |
| /* only g4x and later have fancy bpc/dither controls */ |
| if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) { |
| /* Bspec claims that we can't use dithering for 30bpp pipes. */ |
| if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30) |
| pipeconf |= PIPECONF_DITHER_EN | |
| PIPECONF_DITHER_TYPE_SP; |
| |
| switch (intel_crtc->config->pipe_bpp) { |
| case 18: |
| pipeconf |= PIPECONF_6BPC; |
| break; |
| case 24: |
| pipeconf |= PIPECONF_8BPC; |
| break; |
| case 30: |
| pipeconf |= PIPECONF_10BPC; |
| break; |
| default: |
| /* Case prevented by intel_choose_pipe_bpp_dither. */ |
| BUG(); |
| } |
| } |
| |
| if (HAS_PIPE_CXSR(dev)) { |
| if (intel_crtc->lowfreq_avail) { |
| DRM_DEBUG_KMS("enabling CxSR downclocking\n"); |
| pipeconf |= PIPECONF_CXSR_DOWNCLOCK; |
| } else { |
| DRM_DEBUG_KMS("disabling CxSR downclocking\n"); |
| } |
| } |
| |
| if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) { |
| if (INTEL_INFO(dev)->gen < 4 || |
| intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO)) |
| pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION; |
| else |
| pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT; |
| } else |
| pipeconf |= PIPECONF_PROGRESSIVE; |
| |
| if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) && |
| intel_crtc->config->limited_color_range) |
| pipeconf |= PIPECONF_COLOR_RANGE_SELECT; |
| |
| I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf); |
| POSTING_READ(PIPECONF(intel_crtc->pipe)); |
| } |
| |
| static int i8xx_crtc_compute_clock(struct intel_crtc *crtc, |
| struct intel_crtc_state *crtc_state) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| const struct intel_limit *limit; |
| int refclk = 48000; |
| |
| memset(&crtc_state->dpll_hw_state, 0, |
| sizeof(crtc_state->dpll_hw_state)); |
| |
| if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { |
| if (intel_panel_use_ssc(dev_priv)) { |
| refclk = dev_priv->vbt.lvds_ssc_freq; |
| DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk); |
| } |
| |
| limit = &intel_limits_i8xx_lvds; |
| } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) { |
| limit = &intel_limits_i8xx_dvo; |
| } else { |
| limit = &intel_limits_i8xx_dac; |
| } |
| |
| if (!crtc_state->clock_set && |
| !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock, |
| refclk, NULL, &crtc_state->dpll)) { |
| DRM_ERROR("Couldn't find PLL settings for mode!\n"); |
| return -EINVAL; |
| } |
| |
| i8xx_compute_dpll(crtc, crtc_state, NULL); |
| |
| return 0; |
| } |
| |
| static int g4x_crtc_compute_clock(struct intel_crtc *crtc, |
| struct intel_crtc_state *crtc_state) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| const struct intel_limit *limit; |
| int refclk = 96000; |
| |
| memset(&crtc_state->dpll_hw_state, 0, |
| sizeof(crtc_state->dpll_hw_state)); |
| |
| if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { |
| if (intel_panel_use_ssc(dev_priv)) { |
| refclk = dev_priv->vbt.lvds_ssc_freq; |
| DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk); |
| } |
| |
| if (intel_is_dual_link_lvds(dev)) |
| limit = &intel_limits_g4x_dual_channel_lvds; |
| else |
| limit = &intel_limits_g4x_single_channel_lvds; |
| } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) || |
| intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) { |
| limit = &intel_limits_g4x_hdmi; |
| } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) { |
| limit = &intel_limits_g4x_sdvo; |
| } else { |
| /* The option is for other outputs */ |
| limit = &intel_limits_i9xx_sdvo; |
| } |
| |
| if (!crtc_state->clock_set && |
| !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock, |
| refclk, NULL, &crtc_state->dpll)) { |
| DRM_ERROR("Couldn't find PLL settings for mode!\n"); |
| return -EINVAL; |
| } |
| |
| i9xx_compute_dpll(crtc, crtc_state, NULL); |
| |
| return 0; |
| } |
| |
| static int pnv_crtc_compute_clock(struct intel_crtc *crtc, |
| struct intel_crtc_state *crtc_state) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| const struct intel_limit *limit; |
| int refclk = 96000; |
| |
| memset(&crtc_state->dpll_hw_state, 0, |
| sizeof(crtc_state->dpll_hw_state)); |
| |
| if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { |
| if (intel_panel_use_ssc(dev_priv)) { |
| refclk = dev_priv->vbt.lvds_ssc_freq; |
| DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk); |
| } |
| |
| limit = &intel_limits_pineview_lvds; |
| } else { |
| limit = &intel_limits_pineview_sdvo; |
| } |
| |
| if (!crtc_state->clock_set && |
| !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, |
| refclk, NULL, &crtc_state->dpll)) { |
| DRM_ERROR("Couldn't find PLL settings for mode!\n"); |
| return -EINVAL; |
| } |
| |
| i9xx_compute_dpll(crtc, crtc_state, NULL); |
| |
| return 0; |
| } |
| |
| static int i9xx_crtc_compute_clock(struct intel_crtc *crtc, |
| struct intel_crtc_state *crtc_state) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| const struct intel_limit *limit; |
| int refclk = 96000; |
| |
| memset(&crtc_state->dpll_hw_state, 0, |
| sizeof(crtc_state->dpll_hw_state)); |
| |
| if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { |
| if (intel_panel_use_ssc(dev_priv)) { |
| refclk = dev_priv->vbt.lvds_ssc_freq; |
| DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk); |
| } |
| |
| limit = &intel_limits_i9xx_lvds; |
| } else { |
| limit = &intel_limits_i9xx_sdvo; |
| } |
| |
| if (!crtc_state->clock_set && |
| !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock, |
| refclk, NULL, &crtc_state->dpll)) { |
| DRM_ERROR("Couldn't find PLL settings for mode!\n"); |
| return -EINVAL; |
| } |
| |
| i9xx_compute_dpll(crtc, crtc_state, NULL); |
| |
| return 0; |
| } |
| |
| static int chv_crtc_compute_clock(struct intel_crtc *crtc, |
| struct intel_crtc_state *crtc_state) |
| { |
| int refclk = 100000; |
| const struct intel_limit *limit = &intel_limits_chv; |
| |
| memset(&crtc_state->dpll_hw_state, 0, |
| sizeof(crtc_state->dpll_hw_state)); |
| |
| if (!crtc_state->clock_set && |
| !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, |
| refclk, NULL, &crtc_state->dpll)) { |
| DRM_ERROR("Couldn't find PLL settings for mode!\n"); |
| return -EINVAL; |
| } |
| |
| chv_compute_dpll(crtc, crtc_state); |
| |
| return 0; |
| } |
| |
| static int vlv_crtc_compute_clock(struct intel_crtc *crtc, |
| struct intel_crtc_state *crtc_state) |
| { |
| int refclk = 100000; |
| const struct intel_limit *limit = &intel_limits_vlv; |
| |
| memset(&crtc_state->dpll_hw_state, 0, |
| sizeof(crtc_state->dpll_hw_state)); |
| |
| if (!crtc_state->clock_set && |
| !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, |
| refclk, NULL, &crtc_state->dpll)) { |
| DRM_ERROR("Couldn't find PLL settings for mode!\n"); |
| return -EINVAL; |
| } |
| |
| vlv_compute_dpll(crtc, crtc_state); |
| |
| return 0; |
| } |
| |
| static void i9xx_get_pfit_config(struct intel_crtc *crtc, |
| struct intel_crtc_state *pipe_config) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| uint32_t tmp; |
| |
| if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev))) |
| return; |
| |
| tmp = I915_READ(PFIT_CONTROL); |
| if (!(tmp & PFIT_ENABLE)) |
| return; |
| |
| /* Check whether the pfit is attached to our pipe. */ |
| if (INTEL_INFO(dev)->gen < 4) { |
| if (crtc->pipe != PIPE_B) |
| return; |
| } else { |
| if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT)) |
| return; |
| } |
| |
| pipe_config->gmch_pfit.control = tmp; |
| pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS); |
| } |
| |
| static void vlv_crtc_clock_get(struct intel_crtc *crtc, |
| struct intel_crtc_state *pipe_config) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| int pipe = pipe_config->cpu_transcoder; |
| struct dpll clock; |
| u32 mdiv; |
| int refclk = 100000; |
| |
| /* In case of DSI, DPLL will not be used */ |
| if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) |
| return; |
| |
| mutex_lock(&dev_priv->sb_lock); |
| mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe)); |
| mutex_unlock(&dev_priv->sb_lock); |
| |
| clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7; |
| clock.m2 = mdiv & DPIO_M2DIV_MASK; |
| clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf; |
| clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7; |
| clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f; |
| |
| pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock); |
| } |
| |
| static void |
| i9xx_get_initial_plane_config(struct intel_crtc *crtc, |
| struct intel_initial_plane_config *plane_config) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| u32 val, base, offset; |
| int pipe = crtc->pipe, plane = crtc->plane; |
| int fourcc, pixel_format; |
| unsigned int aligned_height; |
| struct drm_framebuffer *fb; |
| struct intel_framebuffer *intel_fb; |
| |
| val = I915_READ(DSPCNTR(plane)); |
| if (!(val & DISPLAY_PLANE_ENABLE)) |
| return; |
| |
| intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); |
| if (!intel_fb) { |
| DRM_DEBUG_KMS("failed to alloc fb\n"); |
| return; |
| } |
| |
| fb = &intel_fb->base; |
| |
| if (INTEL_INFO(dev)->gen >= 4) { |
| if (val & DISPPLANE_TILED) { |
| plane_config->tiling = I915_TILING_X; |
| fb->modifier[0] = I915_FORMAT_MOD_X_TILED; |
| } |
| } |
| |
| pixel_format = val & DISPPLANE_PIXFORMAT_MASK; |
| fourcc = i9xx_format_to_fourcc(pixel_format); |
| fb->pixel_format = fourcc; |
| fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8; |
| |
| if (INTEL_INFO(dev)->gen >= 4) { |
| if (plane_config->tiling) |
| offset = I915_READ(DSPTILEOFF(plane)); |
| else |
| offset = I915_READ(DSPLINOFF(plane)); |
| base = I915_READ(DSPSURF(plane)) & 0xfffff000; |
| } else { |
| base = I915_READ(DSPADDR(plane)); |
| } |
| plane_config->base = base; |
| |
| val = I915_READ(PIPESRC(pipe)); |
| fb->width = ((val >> 16) & 0xfff) + 1; |
| fb->height = ((val >> 0) & 0xfff) + 1; |
| |
| val = I915_READ(DSPSTRIDE(pipe)); |
| fb->pitches[0] = val & 0xffffffc0; |
| |
| aligned_height = intel_fb_align_height(dev, fb->height, |
| fb->pixel_format, |
| fb->modifier[0]); |
| |
| plane_config->size = fb->pitches[0] * aligned_height; |
| |
| DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n", |
| pipe_name(pipe), plane, fb->width, fb->height, |
| fb->bits_per_pixel, base, fb->pitches[0], |
| plane_config->size); |
| |
| plane_config->fb = intel_fb; |
| } |
| |
| static void chv_crtc_clock_get(struct intel_crtc *crtc, |
| struct intel_crtc_state *pipe_config) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| int pipe = pipe_config->cpu_transcoder; |
| enum dpio_channel port = vlv_pipe_to_channel(pipe); |
| struct dpll clock; |
| u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3; |
| int refclk = 100000; |
| |
| /* In case of DSI, DPLL will not be used */ |
| if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) |
| return; |
| |
| mutex_lock(&dev_priv->sb_lock); |
| cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port)); |
| pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port)); |
| pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port)); |
| pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port)); |
| pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port)); |
| mutex_unlock(&dev_priv->sb_lock); |
| |
| clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0; |
| clock.m2 = (pll_dw0 & 0xff) << 22; |
| if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN) |
| clock.m2 |= pll_dw2 & 0x3fffff; |
| clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf; |
| clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7; |
| clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f; |
| |
| pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock); |
| } |
| |
| static bool i9xx_get_pipe_config(struct intel_crtc *crtc, |
| struct intel_crtc_state *pipe_config) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| enum intel_display_power_domain power_domain; |
| uint32_t tmp; |
| bool ret; |
| |
| power_domain = POWER_DOMAIN_PIPE(crtc->pipe); |
| if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) |
| return false; |
| |
| pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; |
| pipe_config->shared_dpll = NULL; |
| |
| ret = false; |
| |
| tmp = I915_READ(PIPECONF(crtc->pipe)); |
| if (!(tmp & PIPECONF_ENABLE)) |
| goto out; |
| |
| if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) { |
| switch (tmp & PIPECONF_BPC_MASK) { |
| case PIPECONF_6BPC: |
| pipe_config->pipe_bpp = 18; |
| break; |
| case PIPECONF_8BPC: |
| pipe_config->pipe_bpp = 24; |
| break; |
| case PIPECONF_10BPC: |
| pipe_config->pipe_bpp = 30; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) && |
| (tmp & PIPECONF_COLOR_RANGE_SELECT)) |
| pipe_config->limited_color_range = true; |
| |
| if (INTEL_INFO(dev)->gen < 4) |
| pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE; |
| |
| intel_get_pipe_timings(crtc, pipe_config); |
| intel_get_pipe_src_size(crtc, pipe_config); |
| |
| i9xx_get_pfit_config(crtc, pipe_config); |
| |
| if (INTEL_INFO(dev)->gen >= 4) { |
| /* No way to read it out on pipes B and C */ |
| if (IS_CHERRYVIEW(dev) && crtc->pipe != PIPE_A) |
| tmp = dev_priv->chv_dpll_md[crtc->pipe]; |
| else |
| tmp = I915_READ(DPLL_MD(crtc->pipe)); |
| pipe_config->pixel_multiplier = |
| ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK) |
| >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1; |
| pipe_config->dpll_hw_state.dpll_md = tmp; |
| } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) { |
| tmp = I915_READ(DPLL(crtc->pipe)); |
| pipe_config->pixel_multiplier = |
| ((tmp & SDVO_MULTIPLIER_MASK) |
| >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1; |
| } else { |
| /* Note that on i915G/GM the pixel multiplier is in the sdvo |
| * port and will be fixed up in the encoder->get_config |
| * function. */ |
| pipe_config->pixel_multiplier = 1; |
| } |
| pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe)); |
| if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) { |
| /* |
| * DPLL_DVO_2X_MODE must be enabled for both DPLLs |
| * on 830. Filter it out here so that we don't |
| * report errors due to that. |
| */ |
| if (IS_I830(dev)) |
| pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE; |
| |
| pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe)); |
| pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe)); |
| } else { |
| /* Mask out read-only status bits. */ |
| pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV | |
| DPLL_PORTC_READY_MASK | |
| DPLL_PORTB_READY_MASK); |
| } |
| |
| if (IS_CHERRYVIEW(dev)) |
| chv_crtc_clock_get(crtc, pipe_config); |
| else if (IS_VALLEYVIEW(dev)) |
| vlv_crtc_clock_get(crtc, pipe_config); |
| else |
| i9xx_crtc_clock_get(crtc, pipe_config); |
| |
| /* |
| * Normally the dotclock is filled in by the encoder .get_config() |
| * but in case the pipe is enabled w/o any ports we need a sane |
| * default. |
| */ |
| pipe_config->base.adjusted_mode.crtc_clock = |
| pipe_config->port_clock / pipe_config->pixel_multiplier; |
| |
| ret = true; |
| |
| out: |
| intel_display_power_put(dev_priv, power_domain); |
| |
| return ret; |
| } |
| |
| static void ironlake_init_pch_refclk(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_encoder *encoder; |
| int i; |
| u32 val, final; |
| bool has_lvds = false; |
| bool has_cpu_edp = false; |
| bool has_panel = false; |
| bool has_ck505 = false; |
| bool can_ssc = false; |
| bool using_ssc_source = false; |
| |
| /* We need to take the global config into account */ |
| for_each_intel_encoder(dev, encoder) { |
| switch (encoder->type) { |
| case INTEL_OUTPUT_LVDS: |
| has_panel = true; |
| has_lvds = true; |
| break; |
| case INTEL_OUTPUT_EDP: |
| has_panel = true; |
| if (enc_to_dig_port(&encoder->base)->port == PORT_A) |
| has_cpu_edp = true; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| if (HAS_PCH_IBX(dev)) { |
| has_ck505 = dev_priv->vbt.display_clock_mode; |
| can_ssc = has_ck505; |
| } else { |
| has_ck505 = false; |
| can_ssc = true; |
| } |
| |
| /* Check if any DPLLs are using the SSC source */ |
| for (i = 0; i < dev_priv->num_shared_dpll; i++) { |
| u32 temp = I915_READ(PCH_DPLL(i)); |
| |
| if (!(temp & DPLL_VCO_ENABLE)) |
| continue; |
| |
| if ((temp & PLL_REF_INPUT_MASK) == |
| PLLB_REF_INPUT_SPREADSPECTRUMIN) { |
| using_ssc_source = true; |
| break; |
| } |
| } |
| |
| DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n", |
| has_panel, has_lvds, has_ck505, using_ssc_source); |
| |
| /* Ironlake: try to setup display ref clock before DPLL |
| * enabling. This is only under driver's control after |
| * PCH B stepping, previous chipset stepping should be |
| * ignoring this setting. |
| */ |
| val = I915_READ(PCH_DREF_CONTROL); |
| |
| /* As we must carefully and slowly disable/enable each source in turn, |
| * compute the final state we want first and check if we need to |
| * make any changes at all. |
| */ |
| final = val; |
| final &= ~DREF_NONSPREAD_SOURCE_MASK; |
| if (has_ck505) |
| final |= DREF_NONSPREAD_CK505_ENABLE; |
| else |
| final |= DREF_NONSPREAD_SOURCE_ENABLE; |
| |
| final &= ~DREF_SSC_SOURCE_MASK; |
| final &= ~DREF_CPU_SOURCE_OUTPUT_MASK; |
| final &= ~DREF_SSC1_ENABLE; |
| |
| if (has_panel) { |
| final |= DREF_SSC_SOURCE_ENABLE; |
| |
| if (intel_panel_use_ssc(dev_priv) && can_ssc) |
| final |= DREF_SSC1_ENABLE; |
| |
| if (has_cpu_edp) { |
| if (intel_panel_use_ssc(dev_priv) && can_ssc) |
| final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; |
| else |
| final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; |
| } else |
| final |= DREF_CPU_SOURCE_OUTPUT_DISABLE; |
| } else if (using_ssc_source) { |
| final |= DREF_SSC_SOURCE_ENABLE; |
| final |= DREF_SSC1_ENABLE; |
| } |
| |
| if (final == val) |
| return; |
| |
| /* Always enable nonspread source */ |
| val &= ~DREF_NONSPREAD_SOURCE_MASK; |
| |
| if (has_ck505) |
| val |= DREF_NONSPREAD_CK505_ENABLE; |
| else |
| val |= DREF_NONSPREAD_SOURCE_ENABLE; |
| |
| if (has_panel) { |
| val &= ~DREF_SSC_SOURCE_MASK; |
| val |= DREF_SSC_SOURCE_ENABLE; |
| |
| /* SSC must be turned on before enabling the CPU output */ |
| if (intel_panel_use_ssc(dev_priv) && can_ssc) { |
| DRM_DEBUG_KMS("Using SSC on panel\n"); |
| val |= DREF_SSC1_ENABLE; |
| } else |
| val &= ~DREF_SSC1_ENABLE; |
| |
| /* Get SSC going before enabling the outputs */ |
| I915_WRITE(PCH_DREF_CONTROL, val); |
| POSTING_READ(PCH_DREF_CONTROL); |
| udelay(200); |
| |
| val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; |
| |
| /* Enable CPU source on CPU attached eDP */ |
| if (has_cpu_edp) { |
| if (intel_panel_use_ssc(dev_priv) && can_ssc) { |
| DRM_DEBUG_KMS("Using SSC on eDP\n"); |
| val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; |
| } else |
| val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; |
| } else |
| val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; |
| |
| I915_WRITE(PCH_DREF_CONTROL, val); |
| POSTING_READ(PCH_DREF_CONTROL); |
| udelay(200); |
| } else { |
| DRM_DEBUG_KMS("Disabling CPU source output\n"); |
| |
| val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; |
| |
| /* Turn off CPU output */ |
| val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; |
| |
| I915_WRITE(PCH_DREF_CONTROL, val); |
| POSTING_READ(PCH_DREF_CONTROL); |
| udelay(200); |
| |
| if (!using_ssc_source) { |
| DRM_DEBUG_KMS("Disabling SSC source\n"); |
| |
| /* Turn off the SSC source */ |
| val &= ~DREF_SSC_SOURCE_MASK; |
| val |= DREF_SSC_SOURCE_DISABLE; |
| |
| /* Turn off SSC1 */ |
| val &= ~DREF_SSC1_ENABLE; |
| |
| I915_WRITE(PCH_DREF_CONTROL, val); |
| POSTING_READ(PCH_DREF_CONTROL); |
| udelay(200); |
| } |
| } |
| |
| BUG_ON(val != final); |
| } |
| |
| static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv) |
| { |
| uint32_t tmp; |
| |
| tmp = I915_READ(SOUTH_CHICKEN2); |
| tmp |= FDI_MPHY_IOSFSB_RESET_CTL; |
| I915_WRITE(SOUTH_CHICKEN2, tmp); |
| |
| if (wait_for_us(I915_READ(SOUTH_CHICKEN2) & |
| FDI_MPHY_IOSFSB_RESET_STATUS, 100)) |
| DRM_ERROR("FDI mPHY reset assert timeout\n"); |
| |
| tmp = I915_READ(SOUTH_CHICKEN2); |
| tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL; |
| I915_WRITE(SOUTH_CHICKEN2, tmp); |
| |
| if (wait_for_us((I915_READ(SOUTH_CHICKEN2) & |
| FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100)) |
| DRM_ERROR("FDI mPHY reset de-assert timeout\n"); |
| } |
| |
| /* WaMPhyProgramming:hsw */ |
| static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv) |
| { |
| uint32_t tmp; |
| |
| tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY); |
| tmp &= ~(0xFF << 24); |
| tmp |= (0x12 << 24); |
| intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY); |
| |
| tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY); |
| tmp |= (1 << 11); |
| intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY); |
| |
| tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY); |
| tmp |= (1 << 11); |
| intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY); |
| |
| tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY); |
| tmp |= (1 << 24) | (1 << 21) | (1 << 18); |
| intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY); |
| |
| tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY); |
| tmp |= (1 << 24) | (1 << 21) | (1 << 18); |
| intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY); |
| |
| tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY); |
| tmp &= ~(7 << 13); |
| tmp |= (5 << 13); |
| intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY); |
| |
| tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY); |
| tmp &= ~(7 << 13); |
| tmp |= (5 << 13); |
| intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY); |
| |
| tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY); |
| tmp &= ~0xFF; |
| tmp |= 0x1C; |
| intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY); |
| |
| tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY); |
| tmp &= ~0xFF; |
| tmp |= 0x1C; |
| intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY); |
| |
| tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY); |
| tmp &= ~(0xFF << 16); |
| tmp |= (0x1C << 16); |
| intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY); |
| |
| tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY); |
| tmp &= ~(0xFF << 16); |
| tmp |= (0x1C << 16); |
| intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY); |
| |
| tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY); |
| tmp |= (1 << 27); |
| intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY); |
| |
| tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY); |
| tmp |= (1 << 27); |
| intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY); |
| |
| tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY); |
| tmp &= ~(0xF << 28); |
| tmp |= (4 << 28); |
| intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY); |
| |
| tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY); |
| tmp &= ~(0xF << 28); |
| tmp |= (4 << 28); |
| intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY); |
| } |
| |
| /* Implements 3 different sequences from BSpec chapter "Display iCLK |
| * Programming" based on the parameters passed: |
| * - Sequence to enable CLKOUT_DP |
| * - Sequence to enable CLKOUT_DP without spread |
| * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O |
| */ |
| static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread, |
| bool with_fdi) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| uint32_t reg, tmp; |
| |
| if (WARN(with_fdi && !with_spread, "FDI requires downspread\n")) |
| with_spread = true; |
| if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n")) |
| with_fdi = false; |
| |
| mutex_lock(&dev_priv->sb_lock); |
| |
| tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); |
| tmp &= ~SBI_SSCCTL_DISABLE; |
| tmp |= SBI_SSCCTL_PATHALT; |
| intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); |
| |
| udelay(24); |
| |
| if (with_spread) { |
| tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); |
| tmp &= ~SBI_SSCCTL_PATHALT; |
| intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); |
| |
| if (with_fdi) { |
| lpt_reset_fdi_mphy(dev_priv); |
| lpt_program_fdi_mphy(dev_priv); |
| } |
| } |
| |
| reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0; |
| tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); |
| tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE; |
| intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); |
| |
| mutex_unlock(&dev_priv->sb_lock); |
| } |
| |
| /* Sequence to disable CLKOUT_DP */ |
| static void lpt_disable_clkout_dp(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| uint32_t reg, tmp; |
| |
| mutex_lock(&dev_priv->sb_lock); |
| |
| reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0; |
| tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); |
| tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE; |
| intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); |
| |
| tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); |
| if (!(tmp & SBI_SSCCTL_DISABLE)) { |
| if (!(tmp & SBI_SSCCTL_PATHALT)) { |
| tmp |= SBI_SSCCTL_PATHALT; |
| intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); |
| udelay(32); |
| } |
| tmp |= SBI_SSCCTL_DISABLE; |
| intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); |
| } |
| |
| mutex_unlock(&dev_priv->sb_lock); |
| } |
| |
| #define BEND_IDX(steps) ((50 + (steps)) / 5) |
| |
| static const uint16_t sscdivintphase[] = { |
| [BEND_IDX( 50)] = 0x3B23, |
| [BEND_IDX( 45)] = 0x3B23, |
| [BEND_IDX( 40)] = 0x3C23, |
| [BEND_IDX( 35)] = 0x3C23, |
| [BEND_IDX( 30)] = 0x3D23, |
| [BEND_IDX( 25)] = 0x3D23, |
| [BEND_IDX( 20)] = 0x3E23, |
| [BEND_IDX( 15)] = 0x3E23, |
| [BEND_IDX( 10)] = 0x3F23, |
| [BEND_IDX( 5)] = 0x3F23, |
| [BEND_IDX( 0)] = 0x0025, |
| [BEND_IDX( -5)] = 0x0025, |
| [BEND_IDX(-10)] = 0x0125, |
| [BEND_IDX(-15)] = 0x0125, |
| [BEND_IDX(-20)] = 0x0225, |
| [BEND_IDX(-25)] = 0x0225, |
| [BEND_IDX(-30)] = 0x0325, |
| [BEND_IDX(-35)] = 0x0325, |
| [BEND_IDX(-40)] = 0x0425, |
| [BEND_IDX(-45)] = 0x0425, |
| [BEND_IDX(-50)] = 0x0525, |
| }; |
| |
| /* |
| * Bend CLKOUT_DP |
| * steps -50 to 50 inclusive, in steps of 5 |
| * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz) |
| * change in clock period = -(steps / 10) * 5.787 ps |
| */ |
| static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps) |
| { |
| uint32_t tmp; |
| int idx = BEND_IDX(steps); |
| |
| if (WARN_ON(steps % 5 != 0)) |
| return; |
| |
| if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase))) |
| return; |
| |
| mutex_lock(&dev_priv->sb_lock); |
| |
| if (steps % 10 != 0) |
| tmp = 0xAAAAAAAB; |
| else |
| tmp = 0x00000000; |
| intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK); |
| |
| tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK); |
| tmp &= 0xffff0000; |
| tmp |= sscdivintphase[idx]; |
| intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK); |
| |
| mutex_unlock(&dev_priv->sb_lock); |
| } |
| |
| #undef BEND_IDX |
| |
| static void lpt_init_pch_refclk(struct drm_device *dev) |
| { |
| struct intel_encoder *encoder; |
| bool has_vga = false; |
| |
| for_each_intel_encoder(dev, encoder) { |
| switch (encoder->type) { |
| case INTEL_OUTPUT_ANALOG: |
| has_vga = true; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| if (has_vga) { |
| lpt_bend_clkout_dp(to_i915(dev), 0); |
| lpt_enable_clkout_dp(dev, true, true); |
| } else { |
| lpt_disable_clkout_dp(dev); |
| } |
| } |
| |
| /* |
| * Initialize reference clocks when the driver loads |
| */ |
| void intel_init_pch_refclk(struct drm_device *dev) |
| { |
| if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) |
| ironlake_init_pch_refclk(dev); |
| else if (HAS_PCH_LPT(dev)) |
| lpt_init_pch_refclk(dev); |
| } |
| |
| static void ironlake_set_pipeconf(struct drm_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc->dev); |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| uint32_t val; |
| |
| val = 0; |
| |
| switch (intel_crtc->config->pipe_bpp) { |
| case 18: |
| val |= PIPECONF_6BPC; |
| break; |
| case 24: |
| val |= PIPECONF_8BPC; |
| break; |
| case 30: |
| val |= PIPECONF_10BPC; |
| break; |
| case 36: |
| val |= PIPECONF_12BPC; |
| break; |
| default: |
| /* Case prevented by intel_choose_pipe_bpp_dither. */ |
| BUG(); |
| } |
| |
| if (intel_crtc->config->dither) |
| val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); |
| |
| if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) |
| val |= PIPECONF_INTERLACED_ILK; |
| else |
| val |= PIPECONF_PROGRESSIVE; |
| |
| if (intel_crtc->config->limited_color_range) |
| val |= PIPECONF_COLOR_RANGE_SELECT; |
| |
| I915_WRITE(PIPECONF(pipe), val); |
| POSTING_READ(PIPECONF(pipe)); |
| } |
| |
| static void haswell_set_pipeconf(struct drm_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc->dev); |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder; |
| u32 val = 0; |
| |
| if (IS_HASWELL(dev_priv) && intel_crtc->config->dither) |
| val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); |
| |
| if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) |
| val |= PIPECONF_INTERLACED_ILK; |
| else |
| val |= PIPECONF_PROGRESSIVE; |
| |
| I915_WRITE(PIPECONF(cpu_transcoder), val); |
| POSTING_READ(PIPECONF(cpu_transcoder)); |
| } |
| |
| static void haswell_set_pipemisc(struct drm_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc->dev); |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| |
| if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) { |
| u32 val = 0; |
| |
| switch (intel_crtc->config->pipe_bpp) { |
| case 18: |
| val |= PIPEMISC_DITHER_6_BPC; |
| break; |
| case 24: |
| val |= PIPEMISC_DITHER_8_BPC; |
| break; |
| case 30: |
| val |= PIPEMISC_DITHER_10_BPC; |
| break; |
| case 36: |
| val |= PIPEMISC_DITHER_12_BPC; |
| break; |
| default: |
| /* Case prevented by pipe_config_set_bpp. */ |
| BUG(); |
| } |
| |
| if (intel_crtc->config->dither) |
| val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP; |
| |
| I915_WRITE(PIPEMISC(intel_crtc->pipe), val); |
| } |
| } |
| |
| int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp) |
| { |
| /* |
| * Account for spread spectrum to avoid |
| * oversubscribing the link. Max center spread |
| * is 2.5%; use 5% for safety's sake. |
| */ |
| u32 bps = target_clock * bpp * 21 / 20; |
| return DIV_ROUND_UP(bps, link_bw * 8); |
| } |
| |
| static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor) |
| { |
| return i9xx_dpll_compute_m(dpll) < factor * dpll->n; |
| } |
| |
| static void ironlake_compute_dpll(struct intel_crtc *intel_crtc, |
| struct intel_crtc_state *crtc_state, |
| struct dpll *reduced_clock) |
| { |
| struct drm_crtc *crtc = &intel_crtc->base; |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| u32 dpll, fp, fp2; |
| int factor; |
| |
| /* Enable autotuning of the PLL clock (if permissible) */ |
| factor = 21; |
| if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { |
| if ((intel_panel_use_ssc(dev_priv) && |
| dev_priv->vbt.lvds_ssc_freq == 100000) || |
| (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev))) |
| factor = 25; |
| } else if (crtc_state->sdvo_tv_clock) |
| factor = 20; |
| |
| fp = i9xx_dpll_compute_fp(&crtc_state->dpll); |
| |
| if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor)) |
| fp |= FP_CB_TUNE; |
| |
| if (reduced_clock) { |
| fp2 = i9xx_dpll_compute_fp(reduced_clock); |
| |
| if (reduced_clock->m < factor * reduced_clock->n) |
| fp2 |= FP_CB_TUNE; |
| } else { |
| fp2 = fp; |
| } |
| |
| dpll = 0; |
| |
| if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) |
| dpll |= DPLLB_MODE_LVDS; |
| else |
| dpll |= DPLLB_MODE_DAC_SERIAL; |
| |
| dpll |= (crtc_state->pixel_multiplier - 1) |
| << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT; |
| |
| if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) || |
| intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) |
| dpll |= DPLL_SDVO_HIGH_SPEED; |
| |
| if (intel_crtc_has_dp_encoder(crtc_state)) |
| dpll |= DPLL_SDVO_HIGH_SPEED; |
| |
| /* |
| * The high speed IO clock is only really required for |
| * SDVO/HDMI/DP, but we also enable it for CRT to make it |
| * possible to share the DPLL between CRT and HDMI. Enabling |
| * the clock needlessly does no real harm, except use up a |
| * bit of power potentially. |
| * |
| * We'll limit this to IVB with 3 pipes, since it has only two |
| * DPLLs and so DPLL sharing is the only way to get three pipes |
| * driving PCH ports at the same time. On SNB we could do this, |
| * and potentially avoid enabling the second DPLL, but it's not |
| * clear if it''s a win or loss power wise. No point in doing |
| * this on ILK at all since it has a fixed DPLL<->pipe mapping. |
| */ |
| if (INTEL_INFO(dev_priv)->num_pipes == 3 && |
| intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) |
| dpll |= DPLL_SDVO_HIGH_SPEED; |
| |
| /* compute bitmask from p1 value */ |
| dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; |
| /* also FPA1 */ |
| dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; |
| |
| switch (crtc_state->dpll.p2) { |
| case 5: |
| dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; |
| break; |
| case 7: |
| dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; |
| break; |
| case 10: |
| dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; |
| break; |
| case 14: |
| dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; |
| break; |
| } |
| |
| if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && |
| intel_panel_use_ssc(dev_priv)) |
| dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; |
| else |
| dpll |= PLL_REF_INPUT_DREFCLK; |
| |
| dpll |= DPLL_VCO_ENABLE; |
| |
| crtc_state->dpll_hw_state.dpll = dpll; |
| crtc_state->dpll_hw_state.fp0 = fp; |
| crtc_state->dpll_hw_state.fp1 = fp2; |
| } |
| |
| static int ironlake_crtc_compute_clock(struct intel_crtc *crtc, |
| struct intel_crtc_state *crtc_state) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct dpll reduced_clock; |
| bool has_reduced_clock = false; |
| struct intel_shared_dpll *pll; |
| const struct intel_limit *limit; |
| int refclk = 120000; |
| |
| memset(&crtc_state->dpll_hw_state, 0, |
| sizeof(crtc_state->dpll_hw_state)); |
| |
| crtc->lowfreq_avail = false; |
| |
| /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */ |
| if (!crtc_state->has_pch_encoder) |
| return 0; |
| |
| if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { |
| if (intel_panel_use_ssc(dev_priv)) { |
| DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", |
| dev_priv->vbt.lvds_ssc_freq); |
| refclk = dev_priv->vbt.lvds_ssc_freq; |
| } |
| |
| if (intel_is_dual_link_lvds(dev)) { |
| if (refclk == 100000) |
| limit = &intel_limits_ironlake_dual_lvds_100m; |
| else |
| limit = &intel_limits_ironlake_dual_lvds; |
| } else { |
| if (refclk == 100000) |
| limit = &intel_limits_ironlake_single_lvds_100m; |
| else |
| limit = &intel_limits_ironlake_single_lvds; |
| } |
| } else { |
| limit = &intel_limits_ironlake_dac; |
| } |
| |
| if (!crtc_state->clock_set && |
| !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock, |
| refclk, NULL, &crtc_state->dpll)) { |
| DRM_ERROR("Couldn't find PLL settings for mode!\n"); |
| return -EINVAL; |
| } |
| |
| ironlake_compute_dpll(crtc, crtc_state, |
| has_reduced_clock ? &reduced_clock : NULL); |
| |
| pll = intel_get_shared_dpll(crtc, crtc_state, NULL); |
| if (pll == NULL) { |
| DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n", |
| pipe_name(crtc->pipe)); |
| return -EINVAL; |
| } |
| |
| if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && |
| has_reduced_clock) |
| crtc->lowfreq_avail = true; |
| |
| return 0; |
| } |
| |
| static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc, |
| struct intel_link_m_n *m_n) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| enum pipe pipe = crtc->pipe; |
| |
| m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe)); |
| m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe)); |
| m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe)) |
| & ~TU_SIZE_MASK; |
| m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe)); |
| m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe)) |
| & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; |
| } |
| |
| static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc, |
| enum transcoder transcoder, |
| struct intel_link_m_n *m_n, |
| struct intel_link_m_n *m2_n2) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| enum pipe pipe = crtc->pipe; |
| |
| if (INTEL_INFO(dev)->gen >= 5) { |
| m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder)); |
| m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder)); |
| m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder)) |
| & ~TU_SIZE_MASK; |
| m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder)); |
| m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder)) |
| & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; |
| /* Read M2_N2 registers only for gen < 8 (M2_N2 available for |
| * gen < 8) and if DRRS is supported (to make sure the |
| * registers are not unnecessarily read). |
| */ |
| if (m2_n2 && INTEL_INFO(dev)->gen < 8 && |
| crtc->config->has_drrs) { |
| m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder)); |
| m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder)); |
| m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder)) |
| & ~TU_SIZE_MASK; |
| m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder)); |
| m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder)) |
| & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; |
| } |
| } else { |
| m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe)); |
| m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe)); |
| m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe)) |
| & ~TU_SIZE_MASK; |
| m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe)); |
| m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe)) |
| & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; |
| } |
| } |
| |
| void intel_dp_get_m_n(struct intel_crtc *crtc, |
| struct intel_crtc_state *pipe_config) |
| { |
| if (pipe_config->has_pch_encoder) |
| intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n); |
| else |
| intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, |
| &pipe_config->dp_m_n, |
| &pipe_config->dp_m2_n2); |
| } |
| |
| static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc, |
| struct intel_crtc_state *pipe_config) |
| { |
| intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, |
| &pipe_config->fdi_m_n, NULL); |
| } |
| |
| static void skylake_get_pfit_config(struct intel_crtc *crtc, |
| struct intel_crtc_state *pipe_config) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state; |
| uint32_t ps_ctrl = 0; |
| int id = -1; |
| int i; |
| |
| /* find scaler attached to this pipe */ |
| for (i = 0; i < crtc->num_scalers; i++) { |
| ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i)); |
| if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) { |
| id = i; |
| pipe_config->pch_pfit.enabled = true; |
| pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i)); |
| pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i)); |
| break; |
| } |
| } |
| |
| scaler_state->scaler_id = id; |
| if (id >= 0) { |
| scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX); |
| } else { |
| scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX); |
| } |
| } |
| |
| static void |
| skylake_get_initial_plane_config(struct intel_crtc *crtc, |
| struct intel_initial_plane_config *plane_config) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| u32 val, base, offset, stride_mult, tiling; |
| int pipe = crtc->pipe; |
| int fourcc, pixel_format; |
| unsigned int aligned_height; |
| struct drm_framebuffer *fb; |
| struct intel_framebuffer *intel_fb; |
| |
| intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); |
| if (!intel_fb) { |
| DRM_DEBUG_KMS("failed to alloc fb\n"); |
| return; |
| } |
| |
| fb = &intel_fb->base; |
| |
| val = I915_READ(PLANE_CTL(pipe, 0)); |
| if (!(val & PLANE_CTL_ENABLE)) |
| goto error; |
| |
| pixel_format = val & PLANE_CTL_FORMAT_MASK; |
| fourcc = skl_format_to_fourcc(pixel_format, |
| val & PLANE_CTL_ORDER_RGBX, |
| val & PLANE_CTL_ALPHA_MASK); |
| fb->pixel_format = fourcc; |
| fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8; |
| |
| tiling = val & PLANE_CTL_TILED_MASK; |
| switch (tiling) { |
| case PLANE_CTL_TILED_LINEAR: |
| fb->modifier[0] = DRM_FORMAT_MOD_NONE; |
| break; |
| case PLANE_CTL_TILED_X: |
| plane_config->tiling = I915_TILING_X; |
| fb->modifier[0] = I915_FORMAT_MOD_X_TILED; |
| break; |
| case PLANE_CTL_TILED_Y: |
| fb->modifier[0] = I915_FORMAT_MOD_Y_TILED; |
| break; |
| case PLANE_CTL_TILED_YF: |
| fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED; |
| break; |
| default: |
| MISSING_CASE(tiling); |
| goto error; |
| } |
| |
| base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000; |
| plane_config->base = base; |
| |
| offset = I915_READ(PLANE_OFFSET(pipe, 0)); |
| |
| val = I915_READ(PLANE_SIZE(pipe, 0)); |
| fb->height = ((val >> 16) & 0xfff) + 1; |
| fb->width = ((val >> 0) & 0x1fff) + 1; |
| |
| val = I915_READ(PLANE_STRIDE(pipe, 0)); |
| stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0], |
| fb->pixel_format); |
| fb->pitches[0] = (val & 0x3ff) * stride_mult; |
| |
| aligned_height = intel_fb_align_height(dev, fb->height, |
| fb->pixel_format, |
| fb->modifier[0]); |
| |
| plane_config->size = fb->pitches[0] * aligned_height; |
| |
| DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n", |
| pipe_name(pipe), fb->width, fb->height, |
| fb->bits_per_pixel, base, fb->pitches[0], |
| plane_config->size); |
| |
| plane_config->fb = intel_fb; |
| return; |
| |
| error: |
| kfree(intel_fb); |
| } |
| |
| static void ironlake_get_pfit_config(struct intel_crtc *crtc, |
| struct intel_crtc_state *pipe_config) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| uint32_t tmp; |
| |
| tmp = I915_READ(PF_CTL(crtc->pipe)); |
| |
| if (tmp & PF_ENABLE) { |
| pipe_config->pch_pfit.enabled = true; |
| pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe)); |
| pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe)); |
| |
| /* We currently do not free assignements of panel fitters on |
| * ivb/hsw (since we don't use the higher upscaling modes which |
| * differentiates them) so just WARN about this case for now. */ |
| if (IS_GEN7(dev)) { |
| WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) != |
| PF_PIPE_SEL_IVB(crtc->pipe)); |
| } |
| } |
| } |
| |
| static void |
| ironlake_get_initial_plane_config(struct intel_crtc *crtc, |
| struct intel_initial_plane_config *plane_config) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| u32 val, base, offset; |
| int pipe = crtc->pipe; |
| int fourcc, pixel_format; |
| unsigned int aligned_height; |
| struct drm_framebuffer *fb; |
| struct intel_framebuffer *intel_fb; |
| |
| val = I915_READ(DSPCNTR(pipe)); |
| if (!(val & DISPLAY_PLANE_ENABLE)) |
| return; |
| |
| intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); |
| if (!intel_fb) { |
| DRM_DEBUG_KMS("failed to alloc fb\n"); |
| return; |
| } |
| |
| fb = &intel_fb->base; |
| |
| if (INTEL_INFO(dev)->gen >= 4) { |
| if (val & DISPPLANE_TILED) { |
| plane_config->tiling = I915_TILING_X; |
| fb->modifier[0] = I915_FORMAT_MOD_X_TILED; |
| } |
| } |
| |
| pixel_format = val & DISPPLANE_PIXFORMAT_MASK; |
| fourcc = i9xx_format_to_fourcc(pixel_format); |
| fb->pixel_format = fourcc; |
| fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8; |
| |
| base = I915_READ(DSPSURF(pipe)) & 0xfffff000; |
| if (IS_HASWELL(dev) || IS_BROADWELL(dev)) { |
| offset = I915_READ(DSPOFFSET(pipe)); |
| } else { |
| if (plane_config->tiling) |
| offset = I915_READ(DSPTILEOFF(pipe)); |
| else |
| offset = I915_READ(DSPLINOFF(pipe)); |
| } |
| plane_config->base = base; |
| |
| val = I915_READ(PIPESRC(pipe)); |
| fb->width = ((val >> 16) & 0xfff) + 1; |
| fb->height = ((val >> 0) & 0xfff) + 1; |
| |
| val = I915_READ(DSPSTRIDE(pipe)); |
| fb->pitches[0] = val & 0xffffffc0; |
| |
| aligned_height = intel_fb_align_height(dev, fb->height, |
| fb->pixel_format, |
| fb->modifier[0]); |
| |
| plane_config->size = fb->pitches[0] * aligned_height; |
| |
| DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n", |
| pipe_name(pipe), fb->width, fb->height, |
| fb->bits_per_pixel, base, fb->pitches[0], |
| plane_config->size); |
| |
| plane_config->fb = intel_fb; |
| } |
| |
| static bool ironlake_get_pipe_config(struct intel_crtc *crtc, |
| struct intel_crtc_state *pipe_config) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| enum intel_display_power_domain power_domain; |
| uint32_t tmp; |
| bool ret; |
| |
| power_domain = POWER_DOMAIN_PIPE(crtc->pipe); |
| if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) |
| return false; |
| |
| pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; |
| pipe_config->shared_dpll = NULL; |
| |
| ret = false; |
| tmp = I915_READ(PIPECONF(crtc->pipe)); |
| if (!(tmp & PIPECONF_ENABLE)) |
| goto out; |
| |
| switch (tmp & PIPECONF_BPC_MASK) { |
| case PIPECONF_6BPC: |
| pipe_config->pipe_bpp = 18; |
| break; |
| case PIPECONF_8BPC: |
| pipe_config->pipe_bpp = 24; |
| break; |
| case PIPECONF_10BPC: |
| pipe_config->pipe_bpp = 30; |
| break; |
| case PIPECONF_12BPC: |
| pipe_config->pipe_bpp = 36; |
| break; |
| default: |
| break; |
| } |
| |
| if (tmp & PIPECONF_COLOR_RANGE_SELECT) |
| pipe_config->limited_color_range = true; |
| |
| if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) { |
| struct intel_shared_dpll *pll; |
| enum intel_dpll_id pll_id; |
| |
| pipe_config->has_pch_encoder = true; |
| |
| tmp = I915_READ(FDI_RX_CTL(crtc->pipe)); |
| pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> |
| FDI_DP_PORT_WIDTH_SHIFT) + 1; |
| |
| ironlake_get_fdi_m_n_config(crtc, pipe_config); |
| |
| if (HAS_PCH_IBX(dev_priv)) { |
| /* |
| * The pipe->pch transcoder and pch transcoder->pll |
| * mapping is fixed. |
| */ |
| pll_id = (enum intel_dpll_id) crtc->pipe; |
| } else { |
| tmp = I915_READ(PCH_DPLL_SEL); |
| if (tmp & TRANS_DPLLB_SEL(crtc->pipe)) |
| pll_id = DPLL_ID_PCH_PLL_B; |
| else |
| pll_id= DPLL_ID_PCH_PLL_A; |
| } |
| |
| pipe_config->shared_dpll = |
| intel_get_shared_dpll_by_id(dev_priv, pll_id); |
| pll = pipe_config->shared_dpll; |
| |
| WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll, |
| &pipe_config->dpll_hw_state)); |
| |
| tmp = pipe_config->dpll_hw_state.dpll; |
| pipe_config->pixel_multiplier = |
| ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK) |
| >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1; |
| |
| ironlake_pch_clock_get(crtc, pipe_config); |
| } else { |
| pipe_config->pixel_multiplier = 1; |
| } |
| |
| intel_get_pipe_timings(crtc, pipe_config); |
| intel_get_pipe_src_size(crtc, pipe_config); |
| |
| ironlake_get_pfit_config(crtc, pipe_config); |
| |
| ret = true; |
| |
| out: |
| intel_display_power_put(dev_priv, power_domain); |
| |
| return ret; |
| } |
| |
| static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv) |
| { |
| struct drm_device *dev = &dev_priv->drm; |
| struct intel_crtc *crtc; |
| |
| for_each_intel_crtc(dev, crtc) |
| I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n", |
| pipe_name(crtc->pipe)); |
| |
| I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n"); |
| I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n"); |
| I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n"); |
| I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n"); |
| I915_STATE_WARN(I915_READ(PP_STATUS(0)) & PP_ON, "Panel power on\n"); |
| I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE, |
| "CPU PWM1 enabled\n"); |
| if (IS_HASWELL(dev)) |
| I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE, |
| "CPU PWM2 enabled\n"); |
| I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE, |
| "PCH PWM1 enabled\n"); |
| I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE, |
| "Utility pin enabled\n"); |
| I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n"); |
| |
| /* |
| * In theory we can still leave IRQs enabled, as long as only the HPD |
| * interrupts remain enabled. We used to check for that, but since it's |
| * gen-specific and since we only disable LCPLL after we fully disable |
| * the interrupts, the check below should be enough. |
| */ |
| I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n"); |
| } |
| |
| static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv) |
| { |
| struct drm_device *dev = &dev_priv->drm; |
| |
| if (IS_HASWELL(dev)) |
| return I915_READ(D_COMP_HSW); |
| else |
| return I915_READ(D_COMP_BDW); |
| } |
| |
| static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val) |
| { |
| struct drm_device *dev = &dev_priv->drm; |
| |
| if (IS_HASWELL(dev)) { |
| mutex_lock(&dev_priv->rps.hw_lock); |
| if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, |
| val)) |
| DRM_DEBUG_KMS("Failed to write to D_COMP\n"); |
| mutex_unlock(&dev_priv->rps.hw_lock); |
| } else { |
| I915_WRITE(D_COMP_BDW, val); |
| POSTING_READ(D_COMP_BDW); |
| } |
| } |
| |
| /* |
| * This function implements pieces of two sequences from BSpec: |
| * - Sequence for display software to disable LCPLL |
| * - Sequence for display software to allow package C8+ |
| * The steps implemented here are just the steps that actually touch the LCPLL |
| * register. Callers should take care of disabling all the display engine |
| * functions, doing the mode unset, fixing interrupts, etc. |
| */ |
| static void hsw_disable_lcpll(struct drm_i915_private *dev_priv, |
| bool switch_to_fclk, bool allow_power_down) |
| { |
| uint32_t val; |
| |
| assert_can_disable_lcpll(dev_priv); |
| |
| val = I915_READ(LCPLL_CTL); |
| |
| if (switch_to_fclk) { |
| val |= LCPLL_CD_SOURCE_FCLK; |
| I915_WRITE(LCPLL_CTL, val); |
| |
| if (wait_for_us(I915_READ(LCPLL_CTL) & |
| LCPLL_CD_SOURCE_FCLK_DONE, 1)) |
| DRM_ERROR("Switching to FCLK failed\n"); |
| |
| val = I915_READ(LCPLL_CTL); |
| } |
| |
| val |= LCPLL_PLL_DISABLE; |
| I915_WRITE(LCPLL_CTL, val); |
| POSTING_READ(LCPLL_CTL); |
| |
| if (intel_wait_for_register(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 0, 1)) |
| DRM_ERROR("LCPLL still locked\n"); |
| |
| val = hsw_read_dcomp(dev_priv); |
| val |= D_COMP_COMP_DISABLE; |
| hsw_write_dcomp(dev_priv, val); |
| ndelay(100); |
| |
| if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0, |
| 1)) |
| DRM_ERROR("D_COMP RCOMP still in progress\n"); |
| |
| if (allow_power_down) { |
| val = I915_READ(LCPLL_CTL); |
| val |= LCPLL_POWER_DOWN_ALLOW; |
| I915_WRITE(LCPLL_CTL, val); |
| POSTING_READ(LCPLL_CTL); |
| } |
| } |
| |
| /* |
| * Fully restores LCPLL, disallowing power down and switching back to LCPLL |
| * source. |
| */ |
| static void hsw_restore_lcpll(struct drm_i915_private *dev_priv) |
| { |
| uint32_t val; |
| |
| val = I915_READ(LCPLL_CTL); |
| |
| if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK | |
| LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK) |
| return; |
| |
| /* |
| * Make sure we're not on PC8 state before disabling PC8, otherwise |
| * we'll hang the machine. To prevent PC8 state, just enable force_wake. |
| */ |
| intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); |
| |
| if (val & LCPLL_POWER_DOWN_ALLOW) { |
| val &= ~LCPLL_POWER_DOWN_ALLOW; |
| I915_WRITE(LCPLL_CTL, val); |
| POSTING_READ(LCPLL_CTL); |
| } |
| |
| val = hsw_read_dcomp(dev_priv); |
| val |= D_COMP_COMP_FORCE; |
| val &= ~D_COMP_COMP_DISABLE; |
| hsw_write_dcomp(dev_priv, val); |
| |
| val = I915_READ(LCPLL_CTL); |
| val &= ~LCPLL_PLL_DISABLE; |
| I915_WRITE(LCPLL_CTL, val); |
| |
| if (intel_wait_for_register(dev_priv, |
| LCPLL_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK, |
| 5)) |
| DRM_ERROR("LCPLL not locked yet\n"); |
| |
| if (val & LCPLL_CD_SOURCE_FCLK) { |
| val = I915_READ(LCPLL_CTL); |
| val &= ~LCPLL_CD_SOURCE_FCLK; |
| I915_WRITE(LCPLL_CTL, val); |
| |
| if (wait_for_us((I915_READ(LCPLL_CTL) & |
| LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1)) |
| DRM_ERROR("Switching back to LCPLL failed\n"); |
| } |
| |
| intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); |
| intel_update_cdclk(&dev_priv->drm); |
| } |
| |
| /* |
| * Package states C8 and deeper are really deep PC states that can only be |
| * reached when all the devices on the system allow it, so even if the graphics |
| * device allows PC8+, it doesn't mean the system will actually get to these |
| * states. Our driver only allows PC8+ when going into runtime PM. |
| * |
| * The requirements for PC8+ are that all the outputs are disabled, the power |
| * well is disabled and most interrupts are disabled, and these are also |
| * requirements for runtime PM. When these conditions are met, we manually do |
| * the other conditions: disable the interrupts, clocks and switch LCPLL refclk |
| * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard |
| * hang the machine. |
| * |
| * When we really reach PC8 or deeper states (not just when we allow it) we lose |
| * the state of some registers, so when we come back from PC8+ we need to |
| * restore this state. We don't get into PC8+ if we're not in RC6, so we don't |
| * need to take care of the registers kept by RC6. Notice that this happens even |
| * if we don't put the device in PCI D3 state (which is what currently happens |
| * because of the runtime PM support). |
| * |
| * For more, read "Display Sequences for Package C8" on the hardware |
| * documentation. |
| */ |
| void hsw_enable_pc8(struct drm_i915_private *dev_priv) |
| { |
| struct drm_device *dev = &dev_priv->drm; |
| uint32_t val; |
| |
| DRM_DEBUG_KMS("Enabling package C8+\n"); |
| |
| if (HAS_PCH_LPT_LP(dev)) { |
| val = I915_READ(SOUTH_DSPCLK_GATE_D); |
| val &= ~PCH_LP_PARTITION_LEVEL_DISABLE; |
| I915_WRITE(SOUTH_DSPCLK_GATE_D, val); |
| } |
| |
| lpt_disable_clkout_dp(dev); |
| hsw_disable_lcpll(dev_priv, true, true); |
| } |
| |
| void hsw_disable_pc8(struct drm_i915_private *dev_priv) |
| { |
| struct drm_device *dev = &dev_priv->drm; |
| uint32_t val; |
| |
| DRM_DEBUG_KMS("Disabling package C8+\n"); |
| |
| hsw_restore_lcpll(dev_priv); |
| lpt_init_pch_refclk(dev); |
| |
| if (HAS_PCH_LPT_LP(dev)) { |
| val = I915_READ(SOUTH_DSPCLK_GATE_D); |
| val |= PCH_LP_PARTITION_LEVEL_DISABLE; |
| I915_WRITE(SOUTH_DSPCLK_GATE_D, val); |
| } |
| } |
| |
| static void bxt_modeset_commit_cdclk(struct drm_atomic_state *old_state) |
| { |
| struct drm_device *dev = old_state->dev; |
| struct intel_atomic_state *old_intel_state = |
| to_intel_atomic_state(old_state); |
| unsigned int req_cdclk = old_intel_state->dev_cdclk; |
| |
| bxt_set_cdclk(to_i915(dev), req_cdclk); |
| } |
| |
| static int bdw_adjust_min_pipe_pixel_rate(struct intel_crtc_state *crtc_state, |
| int pixel_rate) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); |
| |
| /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */ |
| if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled) |
| pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95); |
| |
| /* BSpec says "Do not use DisplayPort with CDCLK less than |
| * 432 MHz, audio enabled, port width x4, and link rate |
| * HBR2 (5.4 GHz), or else there may be audio corruption or |
| * screen corruption." |
| */ |
| if (intel_crtc_has_dp_encoder(crtc_state) && |
| crtc_state->has_audio && |
| crtc_state->port_clock >= 540000 && |
| crtc_state->lane_count == 4) |
| pixel_rate = max(432000, pixel_rate); |
| |
| return pixel_rate; |
| } |
| |
| /* compute the max rate for new configuration */ |
| static int ilk_max_pixel_rate(struct drm_atomic_state *state) |
| { |
| struct intel_atomic_state *intel_state = to_intel_atomic_state(state); |
| struct drm_i915_private *dev_priv = to_i915(state->dev); |
| struct drm_crtc *crtc; |
| struct drm_crtc_state *cstate; |
| struct intel_crtc_state *crtc_state; |
| unsigned max_pixel_rate = 0, i; |
| enum pipe pipe; |
| |
| memcpy(intel_state->min_pixclk, dev_priv->min_pixclk, |
| sizeof(intel_state->min_pixclk)); |
| |
| for_each_crtc_in_state(state, crtc, cstate, i) { |
| int pixel_rate; |
| |
| crtc_state = to_intel_crtc_state(cstate); |
| if (!crtc_state->base.enable) { |
| intel_state->min_pixclk[i] = 0; |
| continue; |
| } |
| |
| pixel_rate = ilk_pipe_pixel_rate(crtc_state); |
| |
| if (IS_BROADWELL(dev_priv) || IS_GEN9(dev_priv)) |
| pixel_rate = bdw_adjust_min_pipe_pixel_rate(crtc_state, |
| pixel_rate); |
| |
| intel_state->min_pixclk[i] = pixel_rate; |
| } |
| |
| for_each_pipe(dev_priv, pipe) |
| max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate); |
| |
| return max_pixel_rate; |
| } |
| |
| static void broadwell_set_cdclk(struct drm_device *dev, int cdclk) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| uint32_t val, data; |
| int ret; |
| |
| if (WARN((I915_READ(LCPLL_CTL) & |
| (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK | |
| LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE | |
| LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW | |
| LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK, |
| "trying to change cdclk frequency with cdclk not enabled\n")) |
| return; |
| |
| mutex_lock(&dev_priv->rps.hw_lock); |
| ret = sandybridge_pcode_write(dev_priv, |
| BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0); |
| mutex_unlock(&dev_priv->rps.hw_lock); |
| if (ret) { |
| DRM_ERROR("failed to inform pcode about cdclk change\n"); |
| return; |
| } |
| |
| val = I915_READ(LCPLL_CTL); |
| val |= LCPLL_CD_SOURCE_FCLK; |
| I915_WRITE(LCPLL_CTL, val); |
| |
| if (wait_for_us(I915_READ(LCPLL_CTL) & |
| LCPLL_CD_SOURCE_FCLK_DONE, 1)) |
| DRM_ERROR("Switching to FCLK failed\n"); |
| |
| val = I915_READ(LCPLL_CTL); |
| val &= ~LCPLL_CLK_FREQ_MASK; |
| |
| switch (cdclk) { |
| case 450000: |
| val |= LCPLL_CLK_FREQ_450; |
| data = 0; |
| break; |
| case 540000: |
| val |= LCPLL_CLK_FREQ_54O_BDW; |
| data = 1; |
| break; |
| case 337500: |
| val |= LCPLL_CLK_FREQ_337_5_BDW; |
| data = 2; |
| break; |
| case 675000: |
| val |= LCPLL_CLK_FREQ_675_BDW; |
| data = 3; |
| break; |
| default: |
| WARN(1, "invalid cdclk frequency\n"); |
| return; |
| } |
| |
| I915_WRITE(LCPLL_CTL, val); |
| |
| val = I915_READ(LCPLL_CTL); |
| val &= ~LCPLL_CD_SOURCE_FCLK; |
| I915_WRITE(LCPLL_CTL, val); |
| |
| if (wait_for_us((I915_READ(LCPLL_CTL) & |
| LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1)) |
| DRM_ERROR("Switching back to LCPLL failed\n"); |
| |
| mutex_lock(&dev_priv->rps.hw_lock); |
| sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data); |
| mutex_unlock(&dev_priv->rps.hw_lock); |
| |
| I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1); |
| |
| intel_update_cdclk(dev); |
| |
| WARN(cdclk != dev_priv->cdclk_freq, |
| "cdclk requested %d kHz but got %d kHz\n", |
| cdclk, dev_priv->cdclk_freq); |
| } |
| |
| static int broadwell_calc_cdclk(int max_pixclk) |
| { |
| if (max_pixclk > 540000) |
| return 675000; |
| else if (max_pixclk > 450000) |
| return 540000; |
| else if (max_pixclk > 337500) |
| return 450000; |
| else |
| return 337500; |
| } |
| |
| static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(state->dev); |
| struct intel_atomic_state *intel_state = to_intel_atomic_state(state); |
| int max_pixclk = ilk_max_pixel_rate(state); |
| int cdclk; |
| |
| /* |
| * FIXME should also account for plane ratio |
| * once 64bpp pixel formats are supported. |
| */ |
| cdclk = broadwell_calc_cdclk(max_pixclk); |
| |
| if (cdclk > dev_priv->max_cdclk_freq) { |
| DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n", |
| cdclk, dev_priv->max_cdclk_freq); |
| return -EINVAL; |
| } |
| |
| intel_state->cdclk = intel_state->dev_cdclk = cdclk; |
| if (!intel_state->active_crtcs) |
| intel_state->dev_cdclk = broadwell_calc_cdclk(0); |
| |
| return 0; |
| } |
| |
| static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state) |
| { |
| struct drm_device *dev = old_state->dev; |
| struct intel_atomic_state *old_intel_state = |
| to_intel_atomic_state(old_state); |
| unsigned req_cdclk = old_intel_state->dev_cdclk; |
| |
| broadwell_set_cdclk(dev, req_cdclk); |
| } |
| |
| static int skl_modeset_calc_cdclk(struct drm_atomic_state *state) |
| { |
| struct intel_atomic_state *intel_state = to_intel_atomic_state(state); |
| struct drm_i915_private *dev_priv = to_i915(state->dev); |
| const int max_pixclk = ilk_max_pixel_rate(state); |
| int vco = intel_state->cdclk_pll_vco; |
| int cdclk; |
| |
| /* |
| * FIXME should also account for plane ratio |
| * once 64bpp pixel formats are supported. |
| */ |
| cdclk = skl_calc_cdclk(max_pixclk, vco); |
| |
| /* |
| * FIXME move the cdclk caclulation to |
| * compute_config() so we can fail gracegully. |
| */ |
| if (cdclk > dev_priv->max_cdclk_freq) { |
| DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n", |
| cdclk, dev_priv->max_cdclk_freq); |
| cdclk = dev_priv->max_cdclk_freq; |
| } |
| |
| intel_state->cdclk = intel_state->dev_cdclk = cdclk; |
| if (!intel_state->active_crtcs) |
| intel_state->dev_cdclk = skl_calc_cdclk(0, vco); |
| |
| return 0; |
| } |
| |
| static void skl_modeset_commit_cdclk(struct drm_atomic_state *old_state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(old_state->dev); |
| struct intel_atomic_state *intel_state = to_intel_atomic_state(old_state); |
| unsigned int req_cdclk = intel_state->dev_cdclk; |
| unsigned int req_vco = intel_state->cdclk_pll_vco; |
| |
| skl_set_cdclk(dev_priv, req_cdclk, req_vco); |
| } |
| |
| static int haswell_crtc_compute_clock(struct intel_crtc *crtc, |
| struct intel_crtc_state *crtc_state) |
| { |
| if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) { |
| if (!intel_ddi_pll_select(crtc, crtc_state)) |
| return -EINVAL; |
| } |
| |
| crtc->lowfreq_avail = false; |
| |
| return 0; |
| } |
| |
| static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv, |
| enum port port, |
| struct intel_crtc_state *pipe_config) |
| { |
| enum intel_dpll_id id; |
| |
| switch (port) { |
| case PORT_A: |
| id = DPLL_ID_SKL_DPLL0; |
| break; |
| case PORT_B: |
| id = DPLL_ID_SKL_DPLL1; |
| break; |
| case PORT_C: |
| id = DPLL_ID_SKL_DPLL2; |
| break; |
| default: |
| DRM_ERROR("Incorrect port type\n"); |
| return; |
| } |
| |
| pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); |
| } |
| |
| static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv, |
| enum port port, |
| struct intel_crtc_state *pipe_config) |
| { |
| enum intel_dpll_id id; |
| u32 temp; |
| |
| temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port); |
| id = temp >> (port * 3 + 1); |
| |
| if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL3)) |
| return; |
| |
| pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); |
| } |
| |
| static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv, |
| enum port port, |
| struct intel_crtc_state *pipe_config) |
| { |
| enum intel_dpll_id id; |
| uint32_t ddi_pll_sel = I915_READ(PORT_CLK_SEL(port)); |
| |
| switch (ddi_pll_sel) { |
| case PORT_CLK_SEL_WRPLL1: |
| id = DPLL_ID_WRPLL1; |
| break; |
| case PORT_CLK_SEL_WRPLL2: |
| id = DPLL_ID_WRPLL2; |
| break; |
| case PORT_CLK_SEL_SPLL: |
| id = DPLL_ID_SPLL; |
| break; |
| case PORT_CLK_SEL_LCPLL_810: |
| id = DPLL_ID_LCPLL_810; |
| break; |
| case PORT_CLK_SEL_LCPLL_1350: |
| id = DPLL_ID_LCPLL_1350; |
| break; |
| case PORT_CLK_SEL_LCPLL_2700: |
| id = DPLL_ID_LCPLL_2700; |
| break; |
| default: |
| MISSING_CASE(ddi_pll_sel); |
| /* fall through */ |
| case PORT_CLK_SEL_NONE: |
| return; |
| } |
| |
| pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); |
| } |
| |
| static bool hsw_get_transcoder_state(struct intel_crtc *crtc, |
| struct intel_crtc_state *pipe_config, |
| unsigned long *power_domain_mask) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| enum intel_display_power_domain power_domain; |
| u32 tmp; |
| |
| /* |
| * The pipe->transcoder mapping is fixed with the exception of the eDP |
| * transcoder handled below. |
| */ |
| pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; |
| |
| /* |
| * XXX: Do intel_display_power_get_if_enabled before reading this (for |
| * consistency and less surprising code; it's in always on power). |
| */ |
| tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP)); |
| if (tmp & TRANS_DDI_FUNC_ENABLE) { |
| enum pipe trans_edp_pipe; |
| switch (tmp & TRANS_DDI_EDP_INPUT_MASK) { |
| default: |
| WARN(1, "unknown pipe linked to edp transcoder\n"); |
| case TRANS_DDI_EDP_INPUT_A_ONOFF: |
| case TRANS_DDI_EDP_INPUT_A_ON: |
| trans_edp_pipe = PIPE_A; |
| break; |
| case TRANS_DDI_EDP_INPUT_B_ONOFF: |
| trans_edp_pipe = PIPE_B; |
| break; |
| case TRANS_DDI_EDP_INPUT_C_ONOFF: |
| trans_edp_pipe = PIPE_C; |
| break; |
| } |
| |
| if (trans_edp_pipe == crtc->pipe) |
| pipe_config->cpu_transcoder = TRANSCODER_EDP; |
| } |
| |
| power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder); |
| if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) |
| return false; |
| *power_domain_mask |= BIT(power_domain); |
| |
| tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder)); |
| |
| return tmp & PIPECONF_ENABLE; |
| } |
| |
| static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc, |
| struct intel_crtc_state *pipe_config, |
| unsigned long *power_domain_mask) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| enum intel_display_power_domain power_domain; |
| enum port port; |
| enum transcoder cpu_transcoder; |
| u32 tmp; |
| |
| for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) { |
| if (port == PORT_A) |
| cpu_transcoder = TRANSCODER_DSI_A; |
| else |
| cpu_transcoder = TRANSCODER_DSI_C; |
| |
| power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); |
| if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) |
| continue; |
| *power_domain_mask |= BIT(power_domain); |
| |
| /* |
| * The PLL needs to be enabled with a valid divider |
| * configuration, otherwise accessing DSI registers will hang |
| * the machine. See BSpec North Display Engine |
| * registers/MIPI[BXT]. We can break out here early, since we |
| * need the same DSI PLL to be enabled for both DSI ports. |
| */ |
| if (!intel_dsi_pll_is_enabled(dev_priv)) |
| break; |
| |
| /* XXX: this works for video mode only */ |
| tmp = I915_READ(BXT_MIPI_PORT_CTRL(port)); |
| if (!(tmp & DPI_ENABLE)) |
| continue; |
| |
| tmp = I915_READ(MIPI_CTRL(port)); |
| if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe)) |
| continue; |
| |
| pipe_config->cpu_transcoder = cpu_transcoder; |
| break; |
| } |
| |
| return transcoder_is_dsi(pipe_config->cpu_transcoder); |
| } |
| |
| static void haswell_get_ddi_port_state(struct intel_crtc *crtc, |
| struct intel_crtc_state *pipe_config) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_shared_dpll *pll; |
| enum port port; |
| uint32_t tmp; |
| |
| tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder)); |
| |
| port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT; |
| |
| if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) |
| skylake_get_ddi_pll(dev_priv, port, pipe_config); |
| else if (IS_BROXTON(dev)) |
| bxt_get_ddi_pll(dev_priv, port, pipe_config); |
| else |
| haswell_get_ddi_pll(dev_priv, port, pipe_config); |
| |
| pll = pipe_config->shared_dpll; |
| if (pll) { |
| WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll, |
| &pipe_config->dpll_hw_state)); |
| } |
| |
| /* |
| * Haswell has only FDI/PCH transcoder A. It is which is connected to |
| * DDI E. So just check whether this pipe is wired to DDI E and whether |
| * the PCH transcoder is on. |
| */ |
| if (INTEL_INFO(dev)->gen < 9 && |
| (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) { |
| pipe_config->has_pch_encoder = true; |
| |
| tmp = I915_READ(FDI_RX_CTL(PIPE_A)); |
| pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> |
| FDI_DP_PORT_WIDTH_SHIFT) + 1; |
| |
| ironlake_get_fdi_m_n_config(crtc, pipe_config); |
| } |
| } |
| |
| static bool haswell_get_pipe_config(struct intel_crtc *crtc, |
| struct intel_crtc_state *pipe_config) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| enum intel_display_power_domain power_domain; |
| unsigned long power_domain_mask; |
| bool active; |
| |
| power_domain = POWER_DOMAIN_PIPE(crtc->pipe); |
| if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) |
| return false; |
| power_domain_mask = BIT(power_domain); |
| |
| pipe_config->shared_dpll = NULL; |
| |
| active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask); |
| |
| if (IS_BROXTON(dev_priv) && |
| bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_mask)) { |
| WARN_ON(active); |
| active = true; |
| } |
| |
| if (!active) |
| goto out; |
| |
| if (!transcoder_is_dsi(pipe_config->cpu_transcoder)) { |
| haswell_get_ddi_port_state(crtc, pipe_config); |
| intel_get_pipe_timings(crtc, pipe_config); |
| } |
| |
| intel_get_pipe_src_size(crtc, pipe_config); |
| |
| pipe_config->gamma_mode = |
| I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK; |
| |
| if (INTEL_INFO(dev)->gen >= 9) { |
| skl_init_scalers(dev, crtc, pipe_config); |
| } |
| |
| if (INTEL_INFO(dev)->gen >= 9) { |
| pipe_config->scaler_state.scaler_id = -1; |
| pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX); |
| } |
| |
| power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe); |
| if (intel_display_power_get_if_enabled(dev_priv, power_domain)) { |
| power_domain_mask |= BIT(power_domain); |
| if (INTEL_INFO(dev)->gen >= 9) |
| skylake_get_pfit_config(crtc, pipe_config); |
| else |
| ironlake_get_pfit_config(crtc, pipe_config); |
| } |
| |
| if (IS_HASWELL(dev)) |
| pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) && |
| (I915_READ(IPS_CTL) & IPS_ENABLE); |
| |
| if (pipe_config->cpu_transcoder != TRANSCODER_EDP && |
| !transcoder_is_dsi(pipe_config->cpu_transcoder)) { |
| pipe_config->pixel_multiplier = |
| I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1; |
| } else { |
| pipe_config->pixel_multiplier = 1; |
| } |
| |
| out: |
| for_each_power_domain(power_domain, power_domain_mask) |
| intel_display_power_put(dev_priv, power_domain); |
| |
| return active; |
| } |
| |
| static void i845_update_cursor(struct drm_crtc *crtc, u32 base, |
| const struct intel_plane_state *plane_state) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| uint32_t cntl = 0, size = 0; |
| |
| if (plane_state && plane_state->base.visible) { |
| unsigned int width = plane_state->base.crtc_w; |
| unsigned int height = plane_state->base.crtc_h; |
| unsigned int stride = roundup_pow_of_two(width) * 4; |
| |
| switch (stride) { |
| default: |
| WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n", |
| width, stride); |
| stride = 256; |
| /* fallthrough */ |
| case 256: |
| case 512: |
| case 1024: |
| case 2048: |
| break; |
| } |
| |
| cntl |= CURSOR_ENABLE | |
| CURSOR_GAMMA_ENABLE | |
| CURSOR_FORMAT_ARGB | |
| CURSOR_STRIDE(stride); |
| |
| size = (height << 12) | width; |
| } |
| |
| if (intel_crtc->cursor_cntl != 0 && |
| (intel_crtc->cursor_base != base || |
| intel_crtc->cursor_size != size || |
| intel_crtc->cursor_cntl != cntl)) { |
| /* On these chipsets we can only modify the base/size/stride |
| * whilst the cursor is disabled. |
| */ |
| I915_WRITE(CURCNTR(PIPE_A), 0); |
| POSTING_READ(CURCNTR(PIPE_A)); |
| intel_crtc->cursor_cntl = 0; |
| } |
| |
| if (intel_crtc->cursor_base != base) { |
| I915_WRITE(CURBASE(PIPE_A), base); |
| intel_crtc->cursor_base = base; |
| } |
| |
| if (intel_crtc->cursor_size != size) { |
| I915_WRITE(CURSIZE, size); |
| intel_crtc->cursor_size = size; |
| } |
| |
| if (intel_crtc->cursor_cntl != cntl) { |
| I915_WRITE(CURCNTR(PIPE_A), cntl); |
| POSTING_READ(CURCNTR(PIPE_A)); |
| intel_crtc->cursor_cntl = cntl; |
| } |
| } |
| |
| static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base, |
| const struct intel_plane_state *plane_state) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| const struct skl_wm_values *wm = &dev_priv->wm.skl_results; |
| int pipe = intel_crtc->pipe; |
| uint32_t cntl = 0; |
| |
| if (INTEL_GEN(dev_priv) >= 9 && wm->dirty_pipes & drm_crtc_mask(crtc)) |
| skl_write_cursor_wm(intel_crtc, wm); |
| |
| if (plane_state && plane_state->base.visible) { |
| cntl = MCURSOR_GAMMA_ENABLE; |
| switch (plane_state->base.crtc_w) { |
| case 64: |
| cntl |= CURSOR_MODE_64_ARGB_AX; |
| break; |
| case 128: |
| cntl |= CURSOR_MODE_128_ARGB_AX; |
| break; |
| case 256: |
| cntl |= CURSOR_MODE_256_ARGB_AX; |
| break; |
| default: |
| MISSING_CASE(plane_state->base.crtc_w); |
| return; |
| } |
| cntl |= pipe << 28; /* Connect to correct pipe */ |
| |
| if (HAS_DDI(dev)) |
| cntl |= CURSOR_PIPE_CSC_ENABLE; |
| |
| if (plane_state->base.rotation == DRM_ROTATE_180) |
| cntl |= CURSOR_ROTATE_180; |
| } |
| |
| if (intel_crtc->cursor_cntl != cntl) { |
| I915_WRITE(CURCNTR(pipe), cntl); |
| POSTING_READ(CURCNTR(pipe)); |
| intel_crtc->cursor_cntl = cntl; |
| } |
| |
| /* and commit changes on next vblank */ |
| I915_WRITE(CURBASE(pipe), base); |
| POSTING_READ(CURBASE(pipe)); |
| |
| intel_crtc->cursor_base = base; |
| } |
| |
| /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */ |
| static void intel_crtc_update_cursor(struct drm_crtc *crtc, |
| const struct intel_plane_state *plane_state) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| u32 base = intel_crtc->cursor_addr; |
| u32 pos = 0; |
| |
| if (plane_state) { |
| int x = plane_state->base.crtc_x; |
| int y = plane_state->base.crtc_y; |
| |
| if (x < 0) { |
| pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT; |
| x = -x; |
| } |
| pos |= x << CURSOR_X_SHIFT; |
| |
| if (y < 0) { |
| pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT; |
| y = -y; |
| } |
| pos |= y << CURSOR_Y_SHIFT; |
| |
| /* ILK+ do this automagically */ |
| if (HAS_GMCH_DISPLAY(dev) && |
| plane_state->base.rotation == DRM_ROTATE_180) { |
| base += (plane_state->base.crtc_h * |
| plane_state->base.crtc_w - 1) * 4; |
| } |
| } |
| |
| I915_WRITE(CURPOS(pipe), pos); |
| |
| if (IS_845G(dev) || IS_I865G(dev)) |
| i845_update_cursor(crtc, base, plane_state); |
| else |
| i9xx_update_cursor(crtc, base, plane_state); |
| } |
| |
| static bool cursor_size_ok(struct drm_device *dev, |
| uint32_t width, uint32_t height) |
| { |
| if (width == 0 || height == 0) |
| return false; |
| |
| /* |
| * 845g/865g are special in that they are only limited by |
| * the width of their cursors, the height is arbitrary up to |
| * the precision of the register. Everything else requires |
| * square cursors, limited to a few power-of-two sizes. |
| */ |
| if (IS_845G(dev) || IS_I865G(dev)) { |
| if ((width & 63) != 0) |
| return false; |
| |
| if (width > (IS_845G(dev) ? 64 : 512)) |
| return false; |
| |
| if (height > 1023) |
| return false; |
| } else { |
| switch (width | height) { |
| case 256: |
| case 128: |
| if (IS_GEN2(dev)) |
| return false; |
| case 64: |
| break; |
| default: |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| /* VESA 640x480x72Hz mode to set on the pipe */ |
| static struct drm_display_mode load_detect_mode = { |
| DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664, |
| 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), |
| }; |
| |
| struct drm_framebuffer * |
| __intel_framebuffer_create(struct drm_device *dev, |
| struct drm_mode_fb_cmd2 *mode_cmd, |
| struct drm_i915_gem_object *obj) |
| { |
| struct intel_framebuffer *intel_fb; |
| int ret; |
| |
| intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); |
| if (!intel_fb) |
| return ERR_PTR(-ENOMEM); |
| |
| ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj); |
| if (ret) |
| goto err; |
| |
| return &intel_fb->base; |
| |
| err: |
| kfree(intel_fb); |
| return ERR_PTR(ret); |
| } |
| |
| static struct drm_framebuffer * |
| intel_framebuffer_create(struct drm_device *dev, |
| struct drm_mode_fb_cmd2 *mode_cmd, |
| struct drm_i915_gem_object *obj) |
| { |
| struct drm_framebuffer *fb; |
| int ret; |
| |
| ret = i915_mutex_lock_interruptible(dev); |
| if (ret) |
| return ERR_PTR(ret); |
| fb = __intel_framebuffer_create(dev, mode_cmd, obj); |
| mutex_unlock(&dev->struct_mutex); |
| |
| return fb; |
| } |
| |
| static u32 |
| intel_framebuffer_pitch_for_width(int width, int bpp) |
| { |
| u32 pitch = DIV_ROUND_UP(width * bpp, 8); |
| return ALIGN(pitch, 64); |
| } |
| |
| static u32 |
| intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp) |
| { |
| u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp); |
| return PAGE_ALIGN(pitch * mode->vdisplay); |
| } |
| |
| static struct drm_framebuffer * |
| intel_framebuffer_create_for_mode(struct drm_device *dev, |
| struct drm_display_mode *mode, |
| int depth, int bpp) |
| { |
| struct drm_framebuffer *fb; |
| struct drm_i915_gem_object *obj; |
| struct drm_mode_fb_cmd2 mode_cmd = { 0 }; |
| |
| obj = i915_gem_object_create(dev, |
| intel_framebuffer_size_for_mode(mode, bpp)); |
| if (IS_ERR(obj)) |
| return ERR_CAST(obj); |
| |
| mode_cmd.width = mode->hdisplay; |
| mode_cmd.height = mode->vdisplay; |
| mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width, |
| bpp); |
| mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth); |
| |
| fb = intel_framebuffer_create(dev, &mode_cmd, obj); |
| if (IS_ERR(fb)) |
| i915_gem_object_put_unlocked(obj); |
| |
| return fb; |
| } |
| |
| static struct drm_framebuffer * |
| mode_fits_in_fbdev(struct drm_device *dev, |
| struct drm_display_mode *mode) |
| { |
| #ifdef CONFIG_DRM_FBDEV_EMULATION |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct drm_i915_gem_object *obj; |
| struct drm_framebuffer *fb; |
| |
| if (!dev_priv->fbdev) |
| return NULL; |
| |
| if (!dev_priv->fbdev->fb) |
| return NULL; |
| |
| obj = dev_priv->fbdev->fb->obj; |
| BUG_ON(!obj); |
| |
| fb = &dev_priv->fbdev->fb->base; |
| if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay, |
| fb->bits_per_pixel)) |
| return NULL; |
| |
| if (obj->base.size < mode->vdisplay * fb->pitches[0]) |
| return NULL; |
| |
| drm_framebuffer_reference(fb); |
| return fb; |
| #else |
| return NULL; |
| #endif |
| } |
| |
| static int intel_modeset_setup_plane_state(struct drm_atomic_state *state, |
| struct drm_crtc *crtc, |
| struct drm_display_mode *mode, |
| struct drm_framebuffer *fb, |
| int x, int y) |
| { |
| struct drm_plane_state *plane_state; |
| int hdisplay, vdisplay; |
| int ret; |
| |
| plane_state = drm_atomic_get_plane_state(state, crtc->primary); |
| if (IS_ERR(plane_state)) |
| return PTR_ERR(plane_state); |
| |
| if (mode) |
| drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay); |
| else |
| hdisplay = vdisplay = 0; |
| |
| ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL); |
| if (ret) |
| return ret; |
| drm_atomic_set_fb_for_plane(plane_state, fb); |
| plane_state->crtc_x = 0; |
| plane_state->crtc_y = 0; |
| plane_state->crtc_w = hdisplay; |
| plane_state->crtc_h = vdisplay; |
| plane_state->src_x = x << 16; |
| plane_state->src_y = y << 16; |
| plane_state->src_w = hdisplay << 16; |
| plane_state->src_h = vdisplay << 16; |
| |
| return 0; |
| } |
| |
| bool intel_get_load_detect_pipe(struct drm_connector *connector, |
| struct drm_display_mode *mode, |
| struct intel_load_detect_pipe *old, |
| struct drm_modeset_acquire_ctx *ctx) |
| { |
| struct intel_crtc *intel_crtc; |
| struct intel_encoder *intel_encoder = |
| intel_attached_encoder(connector); |
| struct drm_crtc *possible_crtc; |
| struct drm_encoder *encoder = &intel_encoder->base; |
| struct drm_crtc *crtc = NULL; |
| struct drm_device *dev = encoder->dev; |
| struct drm_framebuffer *fb; |
| struct drm_mode_config *config = &dev->mode_config; |
| struct drm_atomic_state *state = NULL, *restore_state = NULL; |
| struct drm_connector_state *connector_state; |
| struct intel_crtc_state *crtc_state; |
| int ret, i = -1; |
| |
| DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", |
| connector->base.id, connector->name, |
| encoder->base.id, encoder->name); |
| |
| old->restore_state = NULL; |
| |
| retry: |
| ret = drm_modeset_lock(&config->connection_mutex, ctx); |
| if (ret) |
| goto fail; |
| |
| /* |
| * Algorithm gets a little messy: |
| * |
| * - if the connector already has an assigned crtc, use it (but make |
| * sure it's on first) |
| * |
| * - try to find the first unused crtc that can drive this connector, |
| * and use that if we find one |
| */ |
| |
| /* See if we already have a CRTC for this connector */ |
| if (connector->state->crtc) { |
| crtc = connector->state->crtc; |
| |
| ret = drm_modeset_lock(&crtc->mutex, ctx); |
| if (ret) |
| goto fail; |
| |
| /* Make sure the crtc and connector are running */ |
| goto found; |
| } |
| |
| /* Find an unused one (if possible) */ |
| for_each_crtc(dev, possible_crtc) { |
| i++; |
| if (!(encoder->possible_crtcs & (1 << i))) |
| continue; |
| |
| ret = drm_modeset_lock(&possible_crtc->mutex, ctx); |
| if (ret) |
| goto fail; |
| |
| if (possible_crtc->state->enable) { |
| drm_modeset_unlock(&possible_crtc->mutex); |
| continue; |
| } |
| |
| crtc = possible_crtc; |
| break; |
| } |
| |
| /* |
| * If we didn't find an unused CRTC, don't use any. |
| */ |
| if (!crtc) { |
| DRM_DEBUG_KMS("no pipe available for load-detect\n"); |
| goto fail; |
| } |
| |
| found: |
| intel_crtc = to_intel_crtc(crtc); |
| |
| ret = drm_modeset_lock(&crtc->primary->mutex, ctx); |
| if (ret) |
| goto fail; |
| |
| state = drm_atomic_state_alloc(dev); |
| restore_state = drm_atomic_state_alloc(dev); |
| if (!state || !restore_state) { |
| ret = -ENOMEM; |
| goto fail; |
| } |
| |
| state->acquire_ctx = ctx; |
| restore_state->acquire_ctx = ctx; |
| |
| connector_state = drm_atomic_get_connector_state(state, connector); |
| if (IS_ERR(connector_state)) { |
| ret = PTR_ERR(connector_state); |
| goto fail; |
| } |
| |
| ret = drm_atomic_set_crtc_for_connector(connector_state, crtc); |
| if (ret) |
| goto fail; |
| |
| crtc_state = intel_atomic_get_crtc_state(state, intel_crtc); |
| if (IS_ERR(crtc_state)) { |
| ret = PTR_ERR(crtc_state); |
| goto fail; |
| } |
| |
| crtc_state->base.active = crtc_state->base.enable = true; |
| |
| if (!mode) |
| mode = &load_detect_mode; |
| |
| /* We need a framebuffer large enough to accommodate all accesses |
| * that the plane may generate whilst we perform load detection. |
| * We can not rely on the fbcon either being present (we get called |
| * during its initialisation to detect all boot displays, or it may |
| * not even exist) or that it is large enough to satisfy the |
| * requested mode. |
| */ |
| fb = mode_fits_in_fbdev(dev, mode); |
| if (fb == NULL) { |
| DRM_DEBUG_KMS("creating tmp fb for load-detection\n"); |
| fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32); |
| } else |
| DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n"); |
| if (IS_ERR(fb)) { |
| DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n"); |
| goto fail; |
| } |
| |
| ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0); |
| if (ret) |
| goto fail; |
| |
| drm_framebuffer_unreference(fb); |
| |
| ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode); |
| if (ret) |
| goto fail; |
| |
| ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector)); |
| if (!ret) |
| ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc)); |
| if (!ret) |
| ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary)); |
| if (ret) { |
| DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret); |
| goto fail; |
| } |
| |
| ret = drm_atomic_commit(state); |
| if (ret) { |
| DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n"); |
| goto fail; |
| } |
| |
| old->restore_state = restore_state; |
| |
| /* let the connector get through one full cycle before testing */ |
| intel_wait_for_vblank(dev, intel_crtc->pipe); |
| return true; |
| |
| fail: |
| drm_atomic_state_free(state); |
| drm_atomic_state_free(restore_state); |
| restore_state = state = NULL; |
| |
| if (ret == -EDEADLK) { |
| drm_modeset_backoff(ctx); |
| goto retry; |
| } |
| |
| return false; |
| } |
| |
| void intel_release_load_detect_pipe(struct drm_connector *connector, |
| struct intel_load_detect_pipe *old, |
| struct drm_modeset_acquire_ctx *ctx) |
| { |
| struct intel_encoder *intel_encoder = |
| intel_attached_encoder(connector); |
| struct drm_encoder *encoder = &intel_encoder->base; |
| struct drm_atomic_state *state = old->restore_state; |
| int ret; |
| |
| DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", |
| connector->base.id, connector->name, |
| encoder->base.id, encoder->name); |
| |
| if (!state) |
| return; |
| |
| ret = drm_atomic_commit(state); |
| if (ret) { |
| DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret); |
| drm_atomic_state_free(state); |
| } |
| } |
| |
| static int i9xx_pll_refclk(struct drm_device *dev, |
| const struct intel_crtc_state *pipe_config) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| u32 dpll = pipe_config->dpll_hw_state.dpll; |
| |
| if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN) |
| return dev_priv->vbt.lvds_ssc_freq; |
| else if (HAS_PCH_SPLIT(dev)) |
| return 120000; |
| else if (!IS_GEN2(dev)) |
| return 96000; |
| else |
| return 48000; |
| } |
| |
| /* Returns the clock of the currently programmed mode of the given pipe. */ |
| static void i9xx_crtc_clock_get(struct intel_crtc *crtc, |
| struct intel_crtc_state *pipe_config) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| int pipe = pipe_config->cpu_transcoder; |
| u32 dpll = pipe_config->dpll_hw_state.dpll; |
| u32 fp; |
| struct dpll clock; |
| int port_clock; |
| int refclk = i9xx_pll_refclk(dev, pipe_config); |
| |
| if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) |
| fp = pipe_config->dpll_hw_state.fp0; |
| else |
| fp = pipe_config->dpll_hw_state.fp1; |
| |
| clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; |
| if (IS_PINEVIEW(dev)) { |
| clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1; |
| clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT; |
| } else { |
| clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; |
| clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; |
| } |
| |
| if (!IS_GEN2(dev)) { |
| if (IS_PINEVIEW(dev)) |
| clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >> |
| DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW); |
| else |
| clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >> |
| DPLL_FPA01_P1_POST_DIV_SHIFT); |
| |
| switch (dpll & DPLL_MODE_MASK) { |
| case DPLLB_MODE_DAC_SERIAL: |
| clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ? |
| 5 : 10; |
| break; |
| case DPLLB_MODE_LVDS: |
| clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ? |
| 7 : 14; |
| break; |
| default: |
| DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed " |
| "mode\n", (int)(dpll & DPLL_MODE_MASK)); |
| return; |
| } |
| |
| if (IS_PINEVIEW(dev)) |
| port_clock = pnv_calc_dpll_params(refclk, &clock); |
| else |
| port_clock = i9xx_calc_dpll_params(refclk, &clock); |
| } else { |
| u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS); |
| bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN); |
| |
| if (is_lvds) { |
| clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> |
| DPLL_FPA01_P1_POST_DIV_SHIFT); |
| |
| if (lvds & LVDS_CLKB_POWER_UP) |
| clock.p2 = 7; |
| else |
| clock.p2 = 14; |
| } else { |
| if (dpll & PLL_P1_DIVIDE_BY_TWO) |
| clock.p1 = 2; |
| else { |
| clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >> |
| DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; |
| } |
| if (dpll & PLL_P2_DIVIDE_BY_4) |
| clock.p2 = 4; |
| else |
| clock.p2 = 2; |
| } |
| |
| port_clock = i9xx_calc_dpll_params(refclk, &clock); |
| } |
| |
| /* |
| * This value includes pixel_multiplier. We will use |
| * port_clock to compute adjusted_mode.crtc_clock in the |
| * encoder's get_config() function. |
| */ |
| pipe_config->port_clock = port_clock; |
| } |
| |
| int intel_dotclock_calculate(int link_freq, |
| const struct intel_link_m_n *m_n) |
| { |
| /* |
| * The calculation for the data clock is: |
| * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp |
| * But we want to avoid losing precison if possible, so: |
| * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp)) |
| * |
| * and the link clock is simpler: |
| * link_clock = (m * link_clock) / n |
| */ |
| |
| if (!m_n->link_n) |
| return 0; |
| |
| return div_u64((u64)m_n->link_m * link_freq, m_n->link_n); |
| } |
| |
| static void ironlake_pch_clock_get(struct intel_crtc *crtc, |
| struct intel_crtc_state *pipe_config) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| |
| /* read out port_clock from the DPLL */ |
| i9xx_crtc_clock_get(crtc, pipe_config); |
| |
| /* |
| * In case there is an active pipe without active ports, |
| * we may need some idea for the dotclock anyway. |
| * Calculate one based on the FDI configuration. |
| */ |
| pipe_config->base.adjusted_mode.crtc_clock = |
| intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), |
| &pipe_config->fdi_m_n); |
| } |
| |
| /** Returns the currently programmed mode of the given pipe. */ |
| struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev, |
| struct drm_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder; |
| struct drm_display_mode *mode; |
| struct intel_crtc_state *pipe_config; |
| int htot = I915_READ(HTOTAL(cpu_transcoder)); |
| int hsync = I915_READ(HSYNC(cpu_transcoder)); |
| int vtot = I915_READ(VTOTAL(cpu_transcoder)); |
| int vsync = I915_READ(VSYNC(cpu_transcoder)); |
| enum pipe pipe = intel_crtc->pipe; |
| |
| mode = kzalloc(sizeof(*mode), GFP_KERNEL); |
| if (!mode) |
| return NULL; |
| |
| pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL); |
| if (!pipe_config) { |
| kfree(mode); |
| return NULL; |
| } |
| |
| /* |
| * Construct a pipe_config sufficient for getting the clock info |
| * back out of crtc_clock_get. |
| * |
| * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need |
| * to use a real value here instead. |
| */ |
| pipe_config->cpu_transcoder = (enum transcoder) pipe; |
| pipe_config->pixel_multiplier = 1; |
| pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe)); |
| pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe)); |
| pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe)); |
| i9xx_crtc_clock_get(intel_crtc, pipe_config); |
| |
| mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier; |
| mode->hdisplay = (htot & 0xffff) + 1; |
| mode->htotal = ((htot & 0xffff0000) >> 16) + 1; |
| mode->hsync_start = (hsync & 0xffff) + 1; |
| mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1; |
| mode->vdisplay = (vtot & 0xffff) + 1; |
| mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1; |
| mode->vsync_start = (vsync & 0xffff) + 1; |
| mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1; |
| |
| drm_mode_set_name(mode); |
| |
| kfree(pipe_config); |
| |
| return mode; |
| } |
| |
| static void intel_crtc_destroy(struct drm_crtc *crtc) |
| { |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct drm_device *dev = crtc->dev; |
| struct intel_flip_work *work; |
| |
| spin_lock_irq(&dev->event_lock); |
| work = intel_crtc->flip_work; |
| intel_crtc->flip_work = NULL; |
| spin_unlock_irq(&dev->event_lock); |
| |
| if (work) { |
| cancel_work_sync(&work->mmio_work); |
| cancel_work_sync(&work->unpin_work); |
| kfree(work); |
| } |
| |
| drm_crtc_cleanup(crtc); |
| |
| kfree(intel_crtc); |
| } |
| |
| static void intel_unpin_work_fn(struct work_struct *__work) |
| { |
| struct intel_flip_work *work = |
| container_of(__work, struct intel_flip_work, unpin_work); |
| struct intel_crtc *crtc = to_intel_crtc(work->crtc); |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_plane *primary = crtc->base.primary; |
| |
| if (is_mmio_work(work)) |
| flush_work(&work->mmio_work); |
| |
| mutex_lock(&dev->struct_mutex); |
| intel_unpin_fb_obj(work->old_fb, primary->state->rotation); |
| i915_gem_object_put(work->pending_flip_obj); |
| mutex_unlock(&dev->struct_mutex); |
| |
| i915_gem_request_put(work->flip_queued_req); |
| |
| intel_frontbuffer_flip_complete(to_i915(dev), |
| to_intel_plane(primary)->frontbuffer_bit); |
| intel_fbc_post_update(crtc); |
| drm_framebuffer_unreference(work->old_fb); |
| |
| BUG_ON(atomic_read(&crtc->unpin_work_count) == 0); |
| atomic_dec(&crtc->unpin_work_count); |
| |
| kfree(work); |
| } |
| |
| /* Is 'a' after or equal to 'b'? */ |
| static bool g4x_flip_count_after_eq(u32 a, u32 b) |
| { |
| return !((a - b) & 0x80000000); |
| } |
| |
| static bool __pageflip_finished_cs(struct intel_crtc *crtc, |
| struct intel_flip_work *work) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| |
| if (abort_flip_on_reset(crtc)) |
| return true; |
| |
| /* |
| * The relevant registers doen't exist on pre-ctg. |
| * As the flip done interrupt doesn't trigger for mmio |
| * flips on gmch platforms, a flip count check isn't |
| * really needed there. But since ctg has the registers, |
| * include it in the check anyway. |
| */ |
| if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev)) |
| return true; |
| |
| /* |
| * BDW signals flip done immediately if the plane |
| * is disabled, even if the plane enable is already |
| * armed to occur at the next vblank :( |
| */ |
| |
| /* |
| * A DSPSURFLIVE check isn't enough in case the mmio and CS flips |
| * used the same base address. In that case the mmio flip might |
| * have completed, but the CS hasn't even executed the flip yet. |
| * |
| * A flip count check isn't enough as the CS might have updated |
| * the base address just after start of vblank, but before we |
| * managed to process the interrupt. This means we'd complete the |
| * CS flip too soon. |
| * |
| * Combining both checks should get us a good enough result. It may |
| * still happen that the CS flip has been executed, but has not |
| * yet actually completed. But in case the base address is the same |
| * anyway, we don't really care. |
| */ |
| return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) == |
| crtc->flip_work->gtt_offset && |
| g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)), |
| crtc->flip_work->flip_count); |
| } |
| |
| static bool |
| __pageflip_finished_mmio(struct intel_crtc *crtc, |
| struct intel_flip_work *work) |
| { |
| /* |
| * MMIO work completes when vblank is different from |
| * flip_queued_vblank. |
| * |
| * Reset counter value doesn't matter, this is handled by |
| * i915_wait_request finishing early, so no need to handle |
| * reset here. |
| */ |
| return intel_crtc_get_vblank_counter(crtc) != work->flip_queued_vblank; |
| } |
| |
| |
| static bool pageflip_finished(struct intel_crtc *crtc, |
| struct intel_flip_work *work) |
| { |
| if (!atomic_read(&work->pending)) |
| return false; |
| |
| smp_rmb(); |
| |
| if (is_mmio_work(work)) |
| return __pageflip_finished_mmio(crtc, work); |
| else |
| return __pageflip_finished_cs(crtc, work); |
| } |
| |
| void intel_finish_page_flip_cs(struct drm_i915_private *dev_priv, int pipe) |
| { |
| struct drm_device *dev = &dev_priv->drm; |
| struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct intel_flip_work *work; |
| unsigned long flags; |
| |
| /* Ignore early vblank irqs */ |
| if (!crtc) |
| return; |
| |
| /* |
| * This is called both by irq handlers and the reset code (to complete |
| * lost pageflips) so needs the full irqsave spinlocks. |
| */ |
| spin_lock_irqsave(&dev->event_lock, flags); |
| work = intel_crtc->flip_work; |
| |
| if (work != NULL && |
| !is_mmio_work(work) && |
| pageflip_finished(intel_crtc, work)) |
| page_flip_completed(intel_crtc); |
| |
| spin_unlock_irqrestore(&dev->event_lock, flags); |
| } |
| |
| void intel_finish_page_flip_mmio(struct drm_i915_private *dev_priv, int pipe) |
| { |
| struct drm_device *dev = &dev_priv->drm; |
| struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct intel_flip_work *work; |
| unsigned long flags; |
| |
| /* Ignore early vblank irqs */ |
| if (!crtc) |
| return; |
| |
| /* |
| * This is called both by irq handlers and the reset code (to complete |
| * lost pageflips) so needs the full irqsave spinlocks. |
| */ |
| spin_lock_irqsave(&dev->event_lock, flags); |
| work = intel_crtc->flip_work; |
| |
| if (work != NULL && |
| is_mmio_work(work) && |
| pageflip_finished(intel_crtc, work)) |
| page_flip_completed(intel_crtc); |
| |
| spin_unlock_irqrestore(&dev->event_lock, flags); |
| } |
| |
| static inline void intel_mark_page_flip_active(struct intel_crtc *crtc, |
| struct intel_flip_work *work) |
| { |
| work->flip_queued_vblank = intel_crtc_get_vblank_counter(crtc); |
| |
| /* Ensure that the work item is consistent when activating it ... */ |
| smp_mb__before_atomic(); |
| atomic_set(&work->pending, 1); |
| } |
| |
| static int intel_gen2_queue_flip(struct drm_device *dev, |
| struct drm_crtc *crtc, |
| struct drm_framebuffer *fb, |
| struct drm_i915_gem_object *obj, |
| struct drm_i915_gem_request *req, |
| uint32_t flags) |
| { |
| struct intel_ring *ring = req->ring; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| u32 flip_mask; |
| int ret; |
| |
| ret = intel_ring_begin(req, 6); |
| if (ret) |
| return ret; |
| |
| /* Can't queue multiple flips, so wait for the previous |
| * one to finish before executing the next. |
| */ |
| if (intel_crtc->plane) |
| flip_mask = MI_WAIT_FOR_PLANE_B_FLIP; |
| else |
| flip_mask = MI_WAIT_FOR_PLANE_A_FLIP; |
| intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask); |
| intel_ring_emit(ring, MI_NOOP); |
| intel_ring_emit(ring, MI_DISPLAY_FLIP | |
| MI_DISPLAY_FLIP_PLANE(intel_crtc->plane)); |
| intel_ring_emit(ring, fb->pitches[0]); |
| intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset); |
| intel_ring_emit(ring, 0); /* aux display base address, unused */ |
| |
| return 0; |
| } |
| |
| static int intel_gen3_queue_flip(struct drm_device *dev, |
| struct drm_crtc *crtc, |
| struct drm_framebuffer *fb, |
| struct drm_i915_gem_object *obj, |
| struct drm_i915_gem_request *req, |
| uint32_t flags) |
| { |
| struct intel_ring *ring = req->ring; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| u32 flip_mask; |
| int ret; |
| |
| ret = intel_ring_begin(req, 6); |
| if (ret) |
| return ret; |
| |
| if (intel_crtc->plane) |
| flip_mask = MI_WAIT_FOR_PLANE_B_FLIP; |
| else |
| flip_mask = MI_WAIT_FOR_PLANE_A_FLIP; |
| intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask); |
| intel_ring_emit(ring, MI_NOOP); |
| intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | |
| MI_DISPLAY_FLIP_PLANE(intel_crtc->plane)); |
| intel_ring_emit(ring, fb->pitches[0]); |
| intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset); |
| intel_ring_emit(ring, MI_NOOP); |
| |
| return 0; |
| } |
| |
| static int intel_gen4_queue_flip(struct drm_device *dev, |
| struct drm_crtc *crtc, |
| struct drm_framebuffer *fb, |
| struct drm_i915_gem_object *obj, |
| struct drm_i915_gem_request *req, |
| uint32_t flags) |
| { |
| struct intel_ring *ring = req->ring; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| uint32_t pf, pipesrc; |
| int ret; |
| |
| ret = intel_ring_begin(req, 4); |
| if (ret) |
| return ret; |
| |
| /* i965+ uses the linear or tiled offsets from the |
| * Display Registers (which do not change across a page-flip) |
| * so we need only reprogram the base address. |
| */ |
| intel_ring_emit(ring, MI_DISPLAY_FLIP | |
| MI_DISPLAY_FLIP_PLANE(intel_crtc->plane)); |
| intel_ring_emit(ring, fb->pitches[0]); |
| intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset | |
| intel_fb_modifier_to_tiling(fb->modifier[0])); |
| |
| /* XXX Enabling the panel-fitter across page-flip is so far |
| * untested on non-native modes, so ignore it for now. |
| * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE; |
| */ |
| pf = 0; |
| pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff; |
| intel_ring_emit(ring, pf | pipesrc); |
| |
| return 0; |
| } |
| |
| static int intel_gen6_queue_flip(struct drm_device *dev, |
| struct drm_crtc *crtc, |
| struct drm_framebuffer *fb, |
| struct drm_i915_gem_object *obj, |
| struct drm_i915_gem_request *req, |
| uint32_t flags) |
| { |
| struct intel_ring *ring = req->ring; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| uint32_t pf, pipesrc; |
| int ret; |
| |
| ret = intel_ring_begin(req, 4); |
| if (ret) |
| return ret; |
| |
| intel_ring_emit(ring, MI_DISPLAY_FLIP | |
| MI_DISPLAY_FLIP_PLANE(intel_crtc->plane)); |
| intel_ring_emit(ring, fb->pitches[0] | |
| intel_fb_modifier_to_tiling(fb->modifier[0])); |
| intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset); |
| |
| /* Contrary to the suggestions in the documentation, |
| * "Enable Panel Fitter" does not seem to be required when page |
| * flipping with a non-native mode, and worse causes a normal |
| * modeset to fail. |
| * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE; |
| */ |
| pf = 0; |
| pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff; |
| intel_ring_emit(ring, pf | pipesrc); |
| |
| return 0; |
| } |
| |
| static int intel_gen7_queue_flip(struct drm_device *dev, |
| struct drm_crtc *crtc, |
| struct drm_framebuffer *fb, |
| struct drm_i915_gem_object *obj, |
| struct drm_i915_gem_request *req, |
| uint32_t flags) |
| { |
| struct intel_ring *ring = req->ring; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| uint32_t plane_bit = 0; |
| int len, ret; |
| |
| switch (intel_crtc->plane) { |
| case PLANE_A: |
| plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A; |
| break; |
| case PLANE_B: |
| plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B; |
| break; |
| case PLANE_C: |
| plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C; |
| break; |
| default: |
| WARN_ONCE(1, "unknown plane in flip command\n"); |
| return -ENODEV; |
| } |
| |
| len = 4; |
| if (req->engine->id == RCS) { |
| len += 6; |
| /* |
| * On Gen 8, SRM is now taking an extra dword to accommodate |
| * 48bits addresses, and we need a NOOP for the batch size to |
| * stay even. |
| */ |
| if (IS_GEN8(dev)) |
| len += 2; |
| } |
| |
| /* |
| * BSpec MI_DISPLAY_FLIP for IVB: |
| * "The full packet must be contained within the same cache line." |
| * |
| * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same |
| * cacheline, if we ever start emitting more commands before |
| * the MI_DISPLAY_FLIP we may need to first emit everything else, |
| * then do the cacheline alignment, and finally emit the |
| * MI_DISPLAY_FLIP. |
| */ |
| ret = intel_ring_cacheline_align(req); |
| if (ret) |
| return ret; |
| |
| ret = intel_ring_begin(req, len); |
| if (ret) |
| return ret; |
| |
| /* Unmask the flip-done completion message. Note that the bspec says that |
| * we should do this for both the BCS and RCS, and that we must not unmask |
| * more than one flip event at any time (or ensure that one flip message |
| * can be sent by waiting for flip-done prior to queueing new flips). |
| * Experimentation says that BCS works despite DERRMR masking all |
| * flip-done completion events and that unmasking all planes at once |
| * for the RCS also doesn't appear to drop events. Setting the DERRMR |
| * to zero does lead to lockups within MI_DISPLAY_FLIP. |
| */ |
| if (req->engine->id == RCS) { |
| intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); |
| intel_ring_emit_reg(ring, DERRMR); |
| intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE | |
| DERRMR_PIPEB_PRI_FLIP_DONE | |
| DERRMR_PIPEC_PRI_FLIP_DONE)); |
| if (IS_GEN8(dev)) |
| intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 | |
| MI_SRM_LRM_GLOBAL_GTT); |
| else |
| intel_ring_emit(ring, MI_STORE_REGISTER_MEM | |
| MI_SRM_LRM_GLOBAL_GTT); |
| intel_ring_emit_reg(ring, DERRMR); |
| intel_ring_emit(ring, |
| i915_ggtt_offset(req->engine->scratch) + 256); |
| if (IS_GEN8(dev)) { |
| intel_ring_emit(ring, 0); |
| intel_ring_emit(ring, MI_NOOP); |
| } |
| } |
| |
| intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit); |
| intel_ring_emit(ring, fb->pitches[0] | |
| intel_fb_modifier_to_tiling(fb->modifier[0])); |
| intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset); |
| intel_ring_emit(ring, (MI_NOOP)); |
| |
| return 0; |
| } |
| |
| static bool use_mmio_flip(struct intel_engine_cs *engine, |
| struct drm_i915_gem_object *obj) |
| { |
| struct reservation_object *resv; |
| |
| /* |
| * This is not being used for older platforms, because |
| * non-availability of flip done interrupt forces us to use |
| * CS flips. Older platforms derive flip done using some clever |
| * tricks involving the flip_pending status bits and vblank irqs. |
| * So using MMIO flips there would disrupt this mechanism. |
| */ |
| |
| if (engine == NULL) |
| return true; |
| |
| if (INTEL_GEN(engine->i915) < 5) |
| return false; |
| |
| if (i915.use_mmio_flip < 0) |
| return false; |
| else if (i915.use_mmio_flip > 0) |
| return true; |
| else if (i915.enable_execlists) |
| return true; |
| |
| resv = i915_gem_object_get_dmabuf_resv(obj); |
| if (resv && !reservation_object_test_signaled_rcu(resv, false)) |
| return true; |
| |
| return engine != i915_gem_active_get_engine(&obj->last_write, |
| &obj->base.dev->struct_mutex); |
| } |
| |
| static void skl_do_mmio_flip(struct intel_crtc *intel_crtc, |
| unsigned int rotation, |
| struct intel_flip_work *work) |
| { |
| struct drm_device *dev = intel_crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct drm_framebuffer *fb = intel_crtc->base.primary->fb; |
| const enum pipe pipe = intel_crtc->pipe; |
| u32 ctl, stride = skl_plane_stride(fb, 0, rotation); |
| |
| ctl = I915_READ(PLANE_CTL(pipe, 0)); |
| ctl &= ~PLANE_CTL_TILED_MASK; |
| switch (fb->modifier[0]) { |
| case DRM_FORMAT_MOD_NONE: |
| break; |
| case I915_FORMAT_MOD_X_TILED: |
| ctl |= PLANE_CTL_TILED_X; |
| break; |
| case I915_FORMAT_MOD_Y_TILED: |
| ctl |= PLANE_CTL_TILED_Y; |
| break; |
| case I915_FORMAT_MOD_Yf_TILED: |
| ctl |= PLANE_CTL_TILED_YF; |
| break; |
| default: |
| MISSING_CASE(fb->modifier[0]); |
| } |
| |
| /* |
| * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on |
| * PLANE_SURF updates, the update is then guaranteed to be atomic. |
| */ |
| I915_WRITE(PLANE_CTL(pipe, 0), ctl); |
| I915_WRITE(PLANE_STRIDE(pipe, 0), stride); |
| |
| I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset); |
| POSTING_READ(PLANE_SURF(pipe, 0)); |
| } |
| |
| static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc, |
| struct intel_flip_work *work) |
| { |
| struct drm_device *dev = intel_crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct drm_framebuffer *fb = intel_crtc->base.primary->fb; |
| i915_reg_t reg = DSPCNTR(intel_crtc->plane); |
| u32 dspcntr; |
| |
| dspcntr = I915_READ(reg); |
| |
| if (fb->modifier[0] == I915_FORMAT_MOD_X_TILED) |
| dspcntr |= DISPPLANE_TILED; |
| else |
| dspcntr &= ~DISPPLANE_TILED; |
| |
| I915_WRITE(reg, dspcntr); |
| |
| I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset); |
| POSTING_READ(DSPSURF(intel_crtc->plane)); |
| } |
| |
| static void intel_mmio_flip_work_func(struct work_struct *w) |
| { |
| struct intel_flip_work *work = |
| container_of(w, struct intel_flip_work, mmio_work); |
| struct intel_crtc *crtc = to_intel_crtc(work->crtc); |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| struct intel_framebuffer *intel_fb = |
| to_intel_framebuffer(crtc->base.primary->fb); |
| struct drm_i915_gem_object *obj = intel_fb->obj; |
| struct reservation_object *resv; |
| |
| if (work->flip_queued_req) |
| WARN_ON(i915_wait_request(work->flip_queued_req, |
| 0, NULL, NO_WAITBOOST)); |
| |
| /* For framebuffer backed by dmabuf, wait for fence */ |
| resv = i915_gem_object_get_dmabuf_resv(obj); |
| if (resv) |
| WARN_ON(reservation_object_wait_timeout_rcu(resv, false, false, |
| MAX_SCHEDULE_TIMEOUT) < 0); |
| |
| intel_pipe_update_start(crtc); |
| |
| if (INTEL_GEN(dev_priv) >= 9) |
| skl_do_mmio_flip(crtc, work->rotation, work); |
| else |
| /* use_mmio_flip() retricts MMIO flips to ilk+ */ |
| ilk_do_mmio_flip(crtc, work); |
| |
| intel_pipe_update_end(crtc, work); |
| } |
| |
| static int intel_default_queue_flip(struct drm_device *dev, |
| struct drm_crtc *crtc, |
| struct drm_framebuffer *fb, |
| struct drm_i915_gem_object *obj, |
| struct drm_i915_gem_request *req, |
| uint32_t flags) |
| { |
| return -ENODEV; |
| } |
| |
| static bool __pageflip_stall_check_cs(struct drm_i915_private *dev_priv, |
| struct intel_crtc *intel_crtc, |
| struct intel_flip_work *work) |
| { |
| u32 addr, vblank; |
| |
| if (!atomic_read(&work->pending)) |
| return false; |
| |
| smp_rmb(); |
| |
| vblank = intel_crtc_get_vblank_counter(intel_crtc); |
| if (work->flip_ready_vblank == 0) { |
| if (work->flip_queued_req && |
| !i915_gem_request_completed(work->flip_queued_req)) |
| return false; |
| |
| work->flip_ready_vblank = vblank; |
| } |
| |
| if (vblank - work->flip_ready_vblank < 3) |
| return false; |
| |
| /* Potential stall - if we see that the flip has happened, |
| * assume a missed interrupt. */ |
| if (INTEL_GEN(dev_priv) >= 4) |
| addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane))); |
| else |
| addr = I915_READ(DSPADDR(intel_crtc->plane)); |
| |
| /* There is a potential issue here with a false positive after a flip |
| * to the same address. We could address this by checking for a |
| * non-incrementing frame counter. |
| */ |
| return addr == work->gtt_offset; |
| } |
| |
| void intel_check_page_flip(struct drm_i915_private *dev_priv, int pipe) |
| { |
| struct drm_device *dev = &dev_priv->drm; |
| struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct intel_flip_work *work; |
| |
| WARN_ON(!in_interrupt()); |
| |
| if (crtc == NULL) |
| return; |
| |
| spin_lock(&dev->event_lock); |
| work = intel_crtc->flip_work; |
| |
| if (work != NULL && !is_mmio_work(work) && |
| __pageflip_stall_check_cs(dev_priv, intel_crtc, work)) { |
| WARN_ONCE(1, |
| "Kicking stuck page flip: queued at %d, now %d\n", |
| work->flip_queued_vblank, intel_crtc_get_vblank_counter(intel_crtc)); |
| page_flip_completed(intel_crtc); |
| work = NULL; |
| } |
| |
| if (work != NULL && !is_mmio_work(work) && |
| intel_crtc_get_vblank_counter(intel_crtc) - work->flip_queued_vblank > 1) |
| intel_queue_rps_boost_for_request(work->flip_queued_req); |
| spin_unlock(&dev->event_lock); |
| } |
| |
| static int intel_crtc_page_flip(struct drm_crtc *crtc, |
| struct drm_framebuffer *fb, |
| struct drm_pending_vblank_event *event, |
| uint32_t page_flip_flags) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct drm_framebuffer *old_fb = crtc->primary->fb; |
| struct drm_i915_gem_object *obj = intel_fb_obj(fb); |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct drm_plane *primary = crtc->primary; |
| enum pipe pipe = intel_crtc->pipe; |
| struct intel_flip_work *work; |
| struct intel_engine_cs *engine; |
| bool mmio_flip; |
| struct drm_i915_gem_request *request; |
| struct i915_vma *vma; |
| int ret; |
| |
| /* |
| * drm_mode_page_flip_ioctl() should already catch this, but double |
| * check to be safe. In the future we may enable pageflipping from |
| * a disabled primary plane. |
| */ |
| if (WARN_ON(intel_fb_obj(old_fb) == NULL)) |
| return -EBUSY; |
| |
| /* Can't change pixel format via MI display flips. */ |
| if (fb->pixel_format != crtc->primary->fb->pixel_format) |
| return -EINVAL; |
| |
| /* |
| * TILEOFF/LINOFF registers can't be changed via MI display flips. |
| * Note that pitch changes could also affect these register. |
| */ |
| if (INTEL_INFO(dev)->gen > 3 && |
| (fb->offsets[0] != crtc->primary->fb->offsets[0] || |
| fb->pitches[0] != crtc->primary->fb->pitches[0])) |
| return -EINVAL; |
| |
| if (i915_terminally_wedged(&dev_priv->gpu_error)) |
| goto out_hang; |
| |
| work = kzalloc(sizeof(*work), GFP_KERNEL); |
| if (work == NULL) |
| return -ENOMEM; |
| |
| work->event = event; |
| work->crtc = crtc; |
| work->old_fb = old_fb; |
| INIT_WORK(&work->unpin_work, intel_unpin_work_fn); |
| |
| ret = drm_crtc_vblank_get(crtc); |
| if (ret) |
| goto free_work; |
| |
| /* We borrow the event spin lock for protecting flip_work */ |
| spin_lock_irq(&dev->event_lock); |
| if (intel_crtc->flip_work) { |
| /* Before declaring the flip queue wedged, check if |
| * the hardware completed the operation behind our backs. |
| */ |
| if (pageflip_finished(intel_crtc, intel_crtc->flip_work)) { |
| DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n"); |
| page_flip_completed(intel_crtc); |
| } else { |
| DRM_DEBUG_DRIVER("flip queue: crtc already busy\n"); |
| spin_unlock_irq(&dev->event_lock); |
| |
| drm_crtc_vblank_put(crtc); |
| kfree(work); |
| return -EBUSY; |
| } |
| } |
| intel_crtc->flip_work = work; |
| spin_unlock_irq(&dev->event_lock); |
| |
| if (atomic_read(&intel_crtc->unpin_work_count) >= 2) |
| flush_workqueue(dev_priv->wq); |
| |
| /* Reference the objects for the scheduled work. */ |
| drm_framebuffer_reference(work->old_fb); |
| |
| crtc->primary->fb = fb; |
| update_state_fb(crtc->primary); |
| |
| work->pending_flip_obj = i915_gem_object_get(obj); |
| |
| ret = i915_mutex_lock_interruptible(dev); |
| if (ret) |
| goto cleanup; |
| |
| intel_crtc->reset_count = i915_reset_count(&dev_priv->gpu_error); |
| if (i915_reset_in_progress_or_wedged(&dev_priv->gpu_error)) { |
| ret = -EIO; |
| goto cleanup; |
| } |
| |
| atomic_inc(&intel_crtc->unpin_work_count); |
| |
| if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) |
| work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1; |
| |
| if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) { |
| engine = &dev_priv->engine[BCS]; |
| if (fb->modifier[0] != old_fb->modifier[0]) |
| /* vlv: DISPLAY_FLIP fails to change tiling */ |
| engine = NULL; |
| } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) { |
| engine = &dev_priv->engine[BCS]; |
| } else if (INTEL_INFO(dev)->gen >= 7) { |
| engine = i915_gem_active_get_engine(&obj->last_write, |
| &obj->base.dev->struct_mutex); |
| if (engine == NULL || engine->id != RCS) |
| engine = &dev_priv->engine[BCS]; |
| } else { |
| engine = &dev_priv->engine[RCS]; |
| } |
| |
| mmio_flip = use_mmio_flip(engine, obj); |
| |
| vma = intel_pin_and_fence_fb_obj(fb, primary->state->rotation); |
| if (IS_ERR(vma)) { |
| ret = PTR_ERR(vma); |
| goto cleanup_pending; |
| } |
| |
| work->gtt_offset = intel_fb_gtt_offset(fb, primary->state->rotation); |
| work->gtt_offset += intel_crtc->dspaddr_offset; |
| work->rotation = crtc->primary->state->rotation; |
| |
| /* |
| * There's the potential that the next frame will not be compatible with |
| * FBC, so we want to call pre_update() before the actual page flip. |
| * The problem is that pre_update() caches some information about the fb |
| * object, so we want to do this only after the object is pinned. Let's |
| * be on the safe side and do this immediately before scheduling the |
| * flip. |
| */ |
| intel_fbc_pre_update(intel_crtc, intel_crtc->config, |
| to_intel_plane_state(primary->state)); |
| |
| if (mmio_flip) { |
| INIT_WORK(&work->mmio_work, intel_mmio_flip_work_func); |
| |
| work->flip_queued_req = i915_gem_active_get(&obj->last_write, |
| &obj->base.dev->struct_mutex); |
| schedule_work(&work->mmio_work); |
| } else { |
| request = i915_gem_request_alloc(engine, engine->last_context); |
| if (IS_ERR(request)) { |
| ret = PTR_ERR(request); |
| goto cleanup_unpin; |
| } |
| |
| ret = i915_gem_request_await_object(request, obj, false); |
| if (ret) |
| goto cleanup_request; |
| |
| ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request, |
| page_flip_flags); |
| if (ret) |
| goto cleanup_request; |
| |
| intel_mark_page_flip_active(intel_crtc, work); |
| |
| work->flip_queued_req = i915_gem_request_get(request); |
| i915_add_request_no_flush(request); |
| } |
| |
| i915_gem_track_fb(intel_fb_obj(old_fb), obj, |
| to_intel_plane(primary)->frontbuffer_bit); |
| mutex_unlock(&dev->struct_mutex); |
| |
| intel_frontbuffer_flip_prepare(to_i915(dev), |
| to_intel_plane(primary)->frontbuffer_bit); |
| |
| trace_i915_flip_request(intel_crtc->plane, obj); |
| |
| return 0; |
| |
| cleanup_request: |
| i915_add_request_no_flush(request); |
| cleanup_unpin: |
| intel_unpin_fb_obj(fb, crtc->primary->state->rotation); |
| cleanup_pending: |
| atomic_dec(&intel_crtc->unpin_work_count); |
| mutex_unlock(&dev->struct_mutex); |
| cleanup: |
| crtc->primary->fb = old_fb; |
| update_state_fb(crtc->primary); |
| |
| i915_gem_object_put_unlocked(obj); |
| drm_framebuffer_unreference(work->old_fb); |
| |
| spin_lock_irq(&dev->event_lock); |
| intel_crtc->flip_work = NULL; |
| spin_unlock_irq(&dev->event_lock); |
| |
| drm_crtc_vblank_put(crtc); |
| free_work: |
| kfree(work); |
| |
| if (ret == -EIO) { |
| struct drm_atomic_state *state; |
| struct drm_plane_state *plane_state; |
| |
| out_hang: |
| state = drm_atomic_state_alloc(dev); |
| if (!state) |
| return -ENOMEM; |
| state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc); |
| |
| retry: |
| plane_state = drm_atomic_get_plane_state(state, primary); |
| ret = PTR_ERR_OR_ZERO(plane_state); |
| if (!ret) { |
| drm_atomic_set_fb_for_plane(plane_state, fb); |
| |
| ret = drm_atomic_set_crtc_for_plane(plane_state, crtc); |
| if (!ret) |
| ret = drm_atomic_commit(state); |
| } |
| |
| if (ret == -EDEADLK) { |
| drm_modeset_backoff(state->acquire_ctx); |
| drm_atomic_state_clear(state); |
| goto retry; |
| } |
| |
| if (ret) |
| drm_atomic_state_free(state); |
| |
| if (ret == 0 && event) { |
| spin_lock_irq(&dev->event_lock); |
| drm_crtc_send_vblank_event(crtc, event); |
| spin_unlock_irq(&dev->event_lock); |
| } |
| } |
| return ret; |
| } |
| |
| |
| /** |
| * intel_wm_need_update - Check whether watermarks need updating |
| * @plane: drm plane |
| * @state: new plane state |
| * |
| * Check current plane state versus the new one to determine whether |
| * watermarks need to be recalculated. |
| * |
| * Returns true or false. |
| */ |
| static bool intel_wm_need_update(struct drm_plane *plane, |
| struct drm_plane_state *state) |
| { |
| struct intel_plane_state *new = to_intel_plane_state(state); |
| struct intel_plane_state *cur = to_intel_plane_state(plane->state); |
| |
| /* Update watermarks on tiling or size changes. */ |
| if (new->base.visible != cur->base.visible) |
| return true; |
| |
| if (!cur->base.fb || !new->base.fb) |
| return false; |
| |
| if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] || |
| cur->base.rotation != new->base.rotation || |
| drm_rect_width(&new->base.src) != drm_rect_width(&cur->base.src) || |
| drm_rect_height(&new->base.src) != drm_rect_height(&cur->base.src) || |
| drm_rect_width(&new->base.dst) != drm_rect_width(&cur->base.dst) || |
| drm_rect_height(&new->base.dst) != drm_rect_height(&cur->base.dst)) |
| return true; |
| |
| return false; |
| } |
| |
| static bool needs_scaling(struct intel_plane_state *state) |
| { |
| int src_w = drm_rect_width(&state->base.src) >> 16; |
| int src_h = drm_rect_height(&state->base.src) >> 16; |
| int dst_w = drm_rect_width(&state->base.dst); |
| int dst_h = drm_rect_height(&state->base.dst); |
| |
| return (src_w != dst_w || src_h != dst_h); |
| } |
| |
| int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state, |
| struct drm_plane_state *plane_state) |
| { |
| struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state); |
| struct drm_crtc *crtc = crtc_state->crtc; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct drm_plane *plane = plane_state->plane; |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_plane_state *old_plane_state = |
| to_intel_plane_state(plane->state); |
| bool mode_changed = needs_modeset(crtc_state); |
| bool was_crtc_enabled = crtc->state->active; |
| bool is_crtc_enabled = crtc_state->active; |
| bool turn_off, turn_on, visible, was_visible; |
| struct drm_framebuffer *fb = plane_state->fb; |
| int ret; |
| |
| if (INTEL_GEN(dev) >= 9 && plane->type != DRM_PLANE_TYPE_CURSOR) { |
| ret = skl_update_scaler_plane( |
| to_intel_crtc_state(crtc_state), |
| to_intel_plane_state(plane_state)); |
| if (ret) |
| return ret; |
| } |
| |
| was_visible = old_plane_state->base.visible; |
| visible = to_intel_plane_state(plane_state)->base.visible; |
| |
| if (!was_crtc_enabled && WARN_ON(was_visible)) |
| was_visible = false; |
| |
| /* |
| * Visibility is calculated as if the crtc was on, but |
| * after scaler setup everything depends on it being off |
| * when the crtc isn't active. |
| * |
| * FIXME this is wrong for watermarks. Watermarks should also |
| * be computed as if the pipe would be active. Perhaps move |
| * per-plane wm computation to the .check_plane() hook, and |
| * only combine the results from all planes in the current place? |
| */ |
| if (!is_crtc_enabled) |
| to_intel_plane_state(plane_state)->base.visible = visible = false; |
| |
| if (!was_visible && !visible) |
| return 0; |
| |
| if (fb != old_plane_state->base.fb) |
| pipe_config->fb_changed = true; |
| |
| turn_off = was_visible && (!visible || mode_changed); |
| turn_on = visible && (!was_visible || mode_changed); |
| |
| DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n", |
| intel_crtc->base.base.id, |
| intel_crtc->base.name, |
| plane->base.id, plane->name, |
| fb ? fb->base.id : -1); |
| |
| DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n", |
| plane->base.id, plane->name, |
| was_visible, visible, |
| turn_off, turn_on, mode_changed); |
| |
| if (turn_on) { |
| pipe_config->update_wm_pre = true; |
| |
| /* must disable cxsr around plane enable/disable */ |
| if (plane->type != DRM_PLANE_TYPE_CURSOR) |
| pipe_config->disable_cxsr = true; |
| } else if (turn_off) { |
| pipe_config->update_wm_post = true; |
| |
| /* must disable cxsr around plane enable/disable */ |
| if (plane->type != DRM_PLANE_TYPE_CURSOR) |
| pipe_config->disable_cxsr = true; |
| } else if (intel_wm_need_update(plane, plane_state)) { |
| /* FIXME bollocks */ |
| pipe_config->update_wm_pre = true; |
| pipe_config->update_wm_post = true; |
| } |
| |
| /* Pre-gen9 platforms need two-step watermark updates */ |
| if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) && |
| INTEL_INFO(dev)->gen < 9 && dev_priv->display.optimize_watermarks) |
| to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true; |
| |
| if (visible || was_visible) |
| pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit; |
| |
| /* |
| * WaCxSRDisabledForSpriteScaling:ivb |
| * |
| * cstate->update_wm was already set above, so this flag will |
| * take effect when we commit and program watermarks. |
| */ |
| if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev) && |
| needs_scaling(to_intel_plane_state(plane_state)) && |
| !needs_scaling(old_plane_state)) |
| pipe_config->disable_lp_wm = true; |
| |
| return 0; |
| } |
| |
| static bool encoders_cloneable(const struct intel_encoder *a, |
| const struct intel_encoder *b) |
| { |
| /* masks could be asymmetric, so check both ways */ |
| return a == b || (a->cloneable & (1 << b->type) && |
| b->cloneable & (1 << a->type)); |
| } |
| |
| static bool check_single_encoder_cloning(struct drm_atomic_state *state, |
| struct intel_crtc *crtc, |
| struct intel_encoder *encoder) |
| { |
| struct intel_encoder *source_encoder; |
| struct drm_connector *connector; |
| struct drm_connector_state *connector_state; |
| int i; |
| |
| for_each_connector_in_state(state, connector, connector_state, i) { |
| if (connector_state->crtc != &crtc->base) |
| continue; |
| |
| source_encoder = |
| to_intel_encoder(connector_state->best_encoder); |
| if (!encoders_cloneable(encoder, source_encoder)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static int intel_crtc_atomic_check(struct drm_crtc *crtc, |
| struct drm_crtc_state *crtc_state) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct intel_crtc_state *pipe_config = |
| to_intel_crtc_state(crtc_state); |
| struct drm_atomic_state *state = crtc_state->state; |
| int ret; |
| bool mode_changed = needs_modeset(crtc_state); |
| |
| if (mode_changed && !crtc_state->active) |
| pipe_config->update_wm_post = true; |
| |
| if (mode_changed && crtc_state->enable && |
| dev_priv->display.crtc_compute_clock && |
| !WARN_ON(pipe_config->shared_dpll)) { |
| ret = dev_priv->display.crtc_compute_clock(intel_crtc, |
| pipe_config); |
| if (ret) |
| return ret; |
| } |
| |
| if (crtc_state->color_mgmt_changed) { |
| ret = intel_color_check(crtc, crtc_state); |
| if (ret) |
| return ret; |
| |
| /* |
| * Changing color management on Intel hardware is |
| * handled as part of planes update. |
| */ |
| crtc_state->planes_changed = true; |
| } |
| |
| ret = 0; |
| if (dev_priv->display.compute_pipe_wm) { |
| ret = dev_priv->display.compute_pipe_wm(pipe_config); |
| if (ret) { |
| DRM_DEBUG_KMS("Target pipe watermarks are invalid\n"); |
| return ret; |
| } |
| } |
| |
| if (dev_priv->display.compute_intermediate_wm && |
| !to_intel_atomic_state(state)->skip_intermediate_wm) { |
| if (WARN_ON(!dev_priv->display.compute_pipe_wm)) |
| return 0; |
| |
| /* |
| * Calculate 'intermediate' watermarks that satisfy both the |
| * old state and the new state. We can program these |
| * immediately. |
| */ |
| ret = dev_priv->display.compute_intermediate_wm(crtc->dev, |
| intel_crtc, |
| pipe_config); |
| if (ret) { |
| DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n"); |
| return ret; |
| } |
| } else if (dev_priv->display.compute_intermediate_wm) { |
| if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9) |
| pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal; |
| } |
| |
| if (INTEL_INFO(dev)->gen >= 9) { |
| if (mode_changed) |
| ret = skl_update_scaler_crtc(pipe_config); |
| |
| if (!ret) |
| ret = intel_atomic_setup_scalers(dev, intel_crtc, |
| pipe_config); |
| } |
| |
| return ret; |
| } |
| |
| static const struct drm_crtc_helper_funcs intel_helper_funcs = { |
| .mode_set_base_atomic = intel_pipe_set_base_atomic, |
| .atomic_begin = intel_begin_crtc_commit, |
| .atomic_flush = intel_finish_crtc_commit, |
| .atomic_check = intel_crtc_atomic_check, |
| }; |
| |
| static void intel_modeset_update_connector_atomic_state(struct drm_device *dev) |
| { |
| struct intel_connector *connector; |
| |
| for_each_intel_connector(dev, connector) { |
| if (connector->base.state->crtc) |
| drm_connector_unreference(&connector->base); |
| |
| if (connector->base.encoder) { |
| connector->base.state->best_encoder = |
| connector->base.encoder; |
| connector->base.state->crtc = |
| connector->base.encoder->crtc; |
| |
| drm_connector_reference(&connector->base); |
| } else { |
| connector->base.state->best_encoder = NULL; |
| connector->base.state->crtc = NULL; |
| } |
| } |
| } |
| |
| static void |
| connected_sink_compute_bpp(struct intel_connector *connector, |
| struct intel_crtc_state *pipe_config) |
| { |
| const struct drm_display_info *info = &connector->base.display_info; |
| int bpp = pipe_config->pipe_bpp; |
| |
| DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n", |
| connector->base.base.id, |
| connector->base.name); |
| |
| /* Don't use an invalid EDID bpc value */ |
| if (info->bpc != 0 && info->bpc * 3 < bpp) { |
| DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n", |
| bpp, info->bpc * 3); |
| pipe_config->pipe_bpp = info->bpc * 3; |
| } |
| |
| /* Clamp bpp to 8 on screens without EDID 1.4 */ |
| if (info->bpc == 0 && bpp > 24) { |
| DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n", |
| bpp); |
| pipe_config->pipe_bpp = 24; |
| } |
| } |
| |
| static int |
| compute_baseline_pipe_bpp(struct intel_crtc *crtc, |
| struct intel_crtc_state *pipe_config) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_atomic_state *state; |
| struct drm_connector *connector; |
| struct drm_connector_state *connector_state; |
| int bpp, i; |
| |
| if ((IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))) |
| bpp = 10*3; |
| else if (INTEL_INFO(dev)->gen >= 5) |
| bpp = 12*3; |
| else |
| bpp = 8*3; |
| |
| |
| pipe_config->pipe_bpp = bpp; |
| |
| state = pipe_config->base.state; |
| |
| /* Clamp display bpp to EDID value */ |
| for_each_connector_in_state(state, connector, connector_state, i) { |
| if (connector_state->crtc != &crtc->base) |
| continue; |
| |
| connected_sink_compute_bpp(to_intel_connector(connector), |
| pipe_config); |
| } |
| |
| return bpp; |
| } |
| |
| static void intel_dump_crtc_timings(const struct drm_display_mode *mode) |
| { |
| DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, " |
| "type: 0x%x flags: 0x%x\n", |
| mode->crtc_clock, |
| mode->crtc_hdisplay, mode->crtc_hsync_start, |
| mode->crtc_hsync_end, mode->crtc_htotal, |
| mode->crtc_vdisplay, mode->crtc_vsync_start, |
| mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags); |
| } |
| |
| static void intel_dump_pipe_config(struct intel_crtc *crtc, |
| struct intel_crtc_state *pipe_config, |
| const char *context) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_plane *plane; |
| struct intel_plane *intel_plane; |
| struct intel_plane_state *state; |
| struct drm_framebuffer *fb; |
| |
| DRM_DEBUG_KMS("[CRTC:%d:%s]%s config %p for pipe %c\n", |
| crtc->base.base.id, crtc->base.name, |
| context, pipe_config, pipe_name(crtc->pipe)); |
| |
| DRM_DEBUG_KMS("cpu_transcoder: %s\n", transcoder_name(pipe_config->cpu_transcoder)); |
| DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n", |
| pipe_config->pipe_bpp, pipe_config->dither); |
| DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n", |
| pipe_config->has_pch_encoder, |
| pipe_config->fdi_lanes, |
| pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n, |
| pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n, |
| pipe_config->fdi_m_n.tu); |
| DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n", |
| intel_crtc_has_dp_encoder(pipe_config), |
| pipe_config->lane_count, |
| pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n, |
| pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n, |
| pipe_config->dp_m_n.tu); |
| |
| DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n", |
| intel_crtc_has_dp_encoder(pipe_config), |
| pipe_config->lane_count, |
| pipe_config->dp_m2_n2.gmch_m, |
| pipe_config->dp_m2_n2.gmch_n, |
| pipe_config->dp_m2_n2.link_m, |
| pipe_config->dp_m2_n2.link_n, |
| pipe_config->dp_m2_n2.tu); |
| |
| DRM_DEBUG_KMS("audio: %i, infoframes: %i\n", |
| pipe_config->has_audio, |
| pipe_config->has_infoframe); |
| |
| DRM_DEBUG_KMS("requested mode:\n"); |
| drm_mode_debug_printmodeline(&pipe_config->base.mode); |
| DRM_DEBUG_KMS("adjusted mode:\n"); |
| drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode); |
| intel_dump_crtc_timings(&pipe_config->base.adjusted_mode); |
| DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock); |
| DRM_DEBUG_KMS("pipe src size: %dx%d\n", |
| pipe_config->pipe_src_w, pipe_config->pipe_src_h); |
| DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n", |
| crtc->num_scalers, |
| pipe_config->scaler_state.scaler_users, |
| pipe_config->scaler_state.scaler_id); |
| DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n", |
| pipe_config->gmch_pfit.control, |
| pipe_config->gmch_pfit.pgm_ratios, |
| pipe_config->gmch_pfit.lvds_border_bits); |
| DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n", |
| pipe_config->pch_pfit.pos, |
| pipe_config->pch_pfit.size, |
| pipe_config->pch_pfit.enabled ? "enabled" : "disabled"); |
| DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled); |
| DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide); |
| |
| if (IS_BROXTON(dev)) { |
| DRM_DEBUG_KMS("dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x," |
| "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, " |
| "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n", |
| pipe_config->dpll_hw_state.ebb0, |
| pipe_config->dpll_hw_state.ebb4, |
| pipe_config->dpll_hw_state.pll0, |
| pipe_config->dpll_hw_state.pll1, |
| pipe_config->dpll_hw_state.pll2, |
| pipe_config->dpll_hw_state.pll3, |
| pipe_config->dpll_hw_state.pll6, |
| pipe_config->dpll_hw_state.pll8, |
| pipe_config->dpll_hw_state.pll9, |
| pipe_config->dpll_hw_state.pll10, |
| pipe_config->dpll_hw_state.pcsdw12); |
| } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) { |
| DRM_DEBUG_KMS("dpll_hw_state: " |
| "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n", |
| pipe_config->dpll_hw_state.ctrl1, |
| pipe_config->dpll_hw_state.cfgcr1, |
| pipe_config->dpll_hw_state.cfgcr2); |
| } else if (HAS_DDI(dev)) { |
| DRM_DEBUG_KMS("dpll_hw_state: wrpll: 0x%x spll: 0x%x\n", |
| pipe_config->dpll_hw_state.wrpll, |
| pipe_config->dpll_hw_state.spll); |
| } else { |
| DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, " |
| "fp0: 0x%x, fp1: 0x%x\n", |
| pipe_config->dpll_hw_state.dpll, |
| pipe_config->dpll_hw_state.dpll_md, |
| pipe_config->dpll_hw_state.fp0, |
| pipe_config->dpll_hw_state.fp1); |
| } |
| |
| DRM_DEBUG_KMS("planes on this crtc\n"); |
| list_for_each_entry(plane, &dev->mode_config.plane_list, head) { |
| char *format_name; |
| intel_plane = to_intel_plane(plane); |
| if (intel_plane->pipe != crtc->pipe) |
| continue; |
| |
| state = to_intel_plane_state(plane->state); |
| fb = state->base.fb; |
| if (!fb) { |
| DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n", |
| plane->base.id, plane->name, state->scaler_id); |
| continue; |
| } |
| |
| format_name = drm_get_format_name(fb->pixel_format); |
| |
| DRM_DEBUG_KMS("[PLANE:%d:%s] enabled", |
| plane->base.id, plane->name); |
| DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = %s", |
| fb->base.id, fb->width, fb->height, format_name); |
| DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n", |
| state->scaler_id, |
| state->base.src.x1 >> 16, |
| state->base.src.y1 >> 16, |
| drm_rect_width(&state->base.src) >> 16, |
| drm_rect_height(&state->base.src) >> 16, |
| state->base.dst.x1, state->base.dst.y1, |
| drm_rect_width(&state->base.dst), |
| drm_rect_height(&state->base.dst)); |
| |
| kfree(format_name); |
| } |
| } |
| |
| static bool check_digital_port_conflicts(struct drm_atomic_state *state) |
| { |
| struct drm_device *dev = state->dev; |
| struct drm_connector *connector; |
| unsigned int used_ports = 0; |
| unsigned int used_mst_ports = 0; |
| |
| /* |
| * Walk the connector list instead of the encoder |
| * list to detect the problem on ddi platforms |
| * where there's just one encoder per digital port. |
| */ |
| drm_for_each_connector(connector, dev) { |
| struct drm_connector_state *connector_state; |
| struct intel_encoder *encoder; |
| |
| connector_state = drm_atomic_get_existing_connector_state(state, connector); |
| if (!connector_state) |
| connector_state = connector->state; |
| |
| if (!connector_state->best_encoder) |
| continue; |
| |
| encoder = to_intel_encoder(connector_state->best_encoder); |
| |
| WARN_ON(!connector_state->crtc); |
| |
| switch (encoder->type) { |
| unsigned int port_mask; |
| case INTEL_OUTPUT_UNKNOWN: |
| if (WARN_ON(!HAS_DDI(dev))) |
| break; |
| case INTEL_OUTPUT_DP: |
| case INTEL_OUTPUT_HDMI: |
| case INTEL_OUTPUT_EDP: |
| port_mask = 1 << enc_to_dig_port(&encoder->base)->port; |
| |
| /* the same port mustn't appear more than once */ |
| if (used_ports & port_mask) |
| return false; |
| |
| used_ports |= port_mask; |
| break; |
| case INTEL_OUTPUT_DP_MST: |
| used_mst_ports |= |
| 1 << enc_to_mst(&encoder->base)->primary->port; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /* can't mix MST and SST/HDMI on the same port */ |
| if (used_ports & used_mst_ports) |
| return false; |
| |
| return true; |
| } |
| |
| static void |
| clear_intel_crtc_state(struct intel_crtc_state *crtc_state) |
| { |
| struct drm_crtc_state tmp_state; |
| struct intel_crtc_scaler_state scaler_state; |
| struct intel_dpll_hw_state dpll_hw_state; |
| struct intel_shared_dpll *shared_dpll; |
| bool force_thru; |
| |
| /* FIXME: before the switch to atomic started, a new pipe_config was |
| * kzalloc'd. Code that depends on any field being zero should be |
| * fixed, so that the crtc_state can be safely duplicated. For now, |
| * only fields that are know to not cause problems are preserved. */ |
| |
| tmp_state = crtc_state->base; |
| scaler_state = crtc_state->scaler_state; |
| shared_dpll = crtc_state->shared_dpll; |
| dpll_hw_state = crtc_state->dpll_hw_state; |
| force_thru = crtc_state->pch_pfit.force_thru; |
| |
| memset(crtc_state, 0, sizeof *crtc_state); |
| |
| crtc_state->base = tmp_state; |
| crtc_state->scaler_state = scaler_state; |
| crtc_state->shared_dpll = shared_dpll; |
| crtc_state->dpll_hw_state = dpll_hw_state; |
| crtc_state->pch_pfit.force_thru = force_thru; |
| } |
| |
| static int |
| intel_modeset_pipe_config(struct drm_crtc *crtc, |
| struct intel_crtc_state *pipe_config) |
| { |
| struct drm_atomic_state *state = pipe_config->base.state; |
| struct intel_encoder *encoder; |
| struct drm_connector *connector; |
| struct drm_connector_state *connector_state; |
| int base_bpp, ret = -EINVAL; |
| int i; |
| bool retry = true; |
| |
| clear_intel_crtc_state(pipe_config); |
| |
| pipe_config->cpu_transcoder = |
| (enum transcoder) to_intel_crtc(crtc)->pipe; |
| |
| /* |
| * Sanitize sync polarity flags based on requested ones. If neither |
| * positive or negative polarity is requested, treat this as meaning |
| * negative polarity. |
| */ |
| if (!(pipe_config->base.adjusted_mode.flags & |
| (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC))) |
| pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC; |
| |
| if (!(pipe_config->base.adjusted_mode.flags & |
| (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC))) |
| pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC; |
| |
| base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc), |
| pipe_config); |
| if (base_bpp < 0) |
| goto fail; |
| |
| /* |
| * Determine the real pipe dimensions. Note that stereo modes can |
| * increase the actual pipe size due to the frame doubling and |
| * insertion of additional space for blanks between the frame. This |
| * is stored in the crtc timings. We use the requested mode to do this |
| * computation to clearly distinguish it from the adjusted mode, which |
| * can be changed by the connectors in the below retry loop. |
| */ |
| drm_crtc_get_hv_timing(&pipe_config->base.mode, |
| &pipe_config->pipe_src_w, |
| &pipe_config->pipe_src_h); |
| |
| for_each_connector_in_state(state, connector, connector_state, i) { |
| if (connector_state->crtc != crtc) |
| continue; |
| |
| encoder = to_intel_encoder(connector_state->best_encoder); |
| |
| if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) { |
| DRM_DEBUG_KMS("rejecting invalid cloning configuration\n"); |
| goto fail; |
| } |
| |
| /* |
| * Determine output_types before calling the .compute_config() |
| * hooks so that the hooks can use this information safely. |
| */ |
| pipe_config->output_types |= 1 << encoder->type; |
| } |
| |
| encoder_retry: |
| /* Ensure the port clock defaults are reset when retrying. */ |
| pipe_config->port_clock = 0; |
| pipe_config->pixel_multiplier = 1; |
| |
| /* Fill in default crtc timings, allow encoders to overwrite them. */ |
| drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode, |
| CRTC_STEREO_DOUBLE); |
| |
| /* Pass our mode to the connectors and the CRTC to give them a chance to |
| * adjust it according to limitations or connector properties, and also |
| * a chance to reject the mode entirely. |
| */ |
| for_each_connector_in_state(state, connector, connector_state, i) { |
| if (connector_state->crtc != crtc) |
| continue; |
| |
| encoder = to_intel_encoder(connector_state->best_encoder); |
| |
| if (!(encoder->compute_config(encoder, pipe_config, connector_state))) { |
| DRM_DEBUG_KMS("Encoder config failure\n"); |
| goto fail; |
| } |
| } |
| |
| /* Set default port clock if not overwritten by the encoder. Needs to be |
| * done afterwards in case the encoder adjusts the mode. */ |
| if (!pipe_config->port_clock) |
| pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock |
| * pipe_config->pixel_multiplier; |
| |
| ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config); |
| if (ret < 0) { |
| DRM_DEBUG_KMS("CRTC fixup failed\n"); |
| goto fail; |
| } |
| |
| if (ret == RETRY) { |
| if (WARN(!retry, "loop in pipe configuration computation\n")) { |
| ret = -EINVAL; |
| goto fail; |
| } |
| |
| DRM_DEBUG_KMS("CRTC bw constrained, retrying\n"); |
| retry = false; |
| goto encoder_retry; |
| } |
| |
| /* Dithering seems to not pass-through bits correctly when it should, so |
| * only enable it on 6bpc panels. */ |
| pipe_config->dither = pipe_config->pipe_bpp == 6*3; |
| DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n", |
| base_bpp, pipe_config->pipe_bpp, pipe_config->dither); |
| |
| fail: |
| return ret; |
| } |
| |
| static void |
| intel_modeset_update_crtc_state(struct drm_atomic_state *state) |
| { |
| struct drm_crtc *crtc; |
| struct drm_crtc_state *crtc_state; |
| int i; |
| |
| /* Double check state. */ |
| for_each_crtc_in_state(state, crtc, crtc_state, i) { |
| to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state); |
| |
| /* Update hwmode for vblank functions */ |
| if (crtc->state->active) |
| crtc->hwmode = crtc->state->adjusted_mode; |
| else |
| crtc->hwmode.crtc_clock = 0; |
| |
| /* |
| * Update legacy state to satisfy fbc code. This can |
| * be removed when fbc uses the atomic state. |
| */ |
| if (drm_atomic_get_existing_plane_state(state, crtc->primary)) { |
| struct drm_plane_state *plane_state = crtc->primary->state; |
| |
| crtc->primary->fb = plane_state->fb; |
| crtc->x = plane_state->src_x >> 16; |
| crtc->y = plane_state->src_y >> 16; |
| } |
| } |
| } |
| |
| static bool intel_fuzzy_clock_check(int clock1, int clock2) |
| { |
| int diff; |
| |
| if (clock1 == clock2) |
| return true; |
| |
| if (!clock1 || !clock2) |
| return false; |
| |
| diff = abs(clock1 - clock2); |
| |
| if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105) |
| return true; |
| |
| return false; |
| } |
| |
| static bool |
| intel_compare_m_n(unsigned int m, unsigned int n, |
| unsigned int m2, unsigned int n2, |
| bool exact) |
| { |
| if (m == m2 && n == n2) |
| return true; |
| |
| if (exact || !m || !n || !m2 || !n2) |
| return false; |
| |
| BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX); |
| |
| if (n > n2) { |
| while (n > n2) { |
| m2 <<= 1; |
| n2 <<= 1; |
| } |
| } else if (n < n2) { |
| while (n < n2) { |
| m <<= 1; |
| n <<= 1; |
| } |
| } |
| |
| if (n != n2) |
| return false; |
| |
| return intel_fuzzy_clock_check(m, m2); |
| } |
| |
| static bool |
| intel_compare_link_m_n(const struct intel_link_m_n *m_n, |
| struct intel_link_m_n *m2_n2, |
| bool adjust) |
| { |
| if (m_n->tu == m2_n2->tu && |
| intel_compare_m_n(m_n->gmch_m, m_n->gmch_n, |
| m2_n2->gmch_m, m2_n2->gmch_n, !adjust) && |
| intel_compare_m_n(m_n->link_m, m_n->link_n, |
| m2_n2->link_m, m2_n2->link_n, !adjust)) { |
| if (adjust) |
| *m2_n2 = *m_n; |
| |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static bool |
| intel_pipe_config_compare(struct drm_device *dev, |
| struct intel_crtc_state *current_config, |
| struct intel_crtc_state *pipe_config, |
| bool adjust) |
| { |
| bool ret = true; |
| |
| #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \ |
| do { \ |
| if (!adjust) \ |
| DRM_ERROR(fmt, ##__VA_ARGS__); \ |
| else \ |
| DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \ |
| } while (0) |
| |
| #define PIPE_CONF_CHECK_X(name) \ |
| if (current_config->name != pipe_config->name) { \ |
| INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \ |
| "(expected 0x%08x, found 0x%08x)\n", \ |
| current_config->name, \ |
| pipe_config->name); \ |
| ret = false; \ |
| } |
| |
| #define PIPE_CONF_CHECK_I(name) \ |
| if (current_config->name != pipe_config->name) { \ |
| INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \ |
| "(expected %i, found %i)\n", \ |
| current_config->name, \ |
| pipe_config->name); \ |
| ret = false; \ |
| } |
| |
| #define PIPE_CONF_CHECK_P(name) \ |
| if (current_config->name != pipe_config->name) { \ |
| INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \ |
| "(expected %p, found %p)\n", \ |
| current_config->name, \ |
| pipe_config->name); \ |
| ret = false; \ |
| } |
| |
| #define PIPE_CONF_CHECK_M_N(name) \ |
| if (!intel_compare_link_m_n(¤t_config->name, \ |
| &pipe_config->name,\ |
| adjust)) { \ |
| INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \ |
| "(expected tu %i gmch %i/%i link %i/%i, " \ |
| "found tu %i, gmch %i/%i link %i/%i)\n", \ |
| current_config->name.tu, \ |
| current_config->name.gmch_m, \ |
| current_config->name.gmch_n, \ |
| current_config->name.link_m, \ |
| current_config->name.link_n, \ |
| pipe_config->name.tu, \ |
| pipe_config->name.gmch_m, \ |
| pipe_config->name.gmch_n, \ |
| pipe_config->name.link_m, \ |
| pipe_config->name.link_n); \ |
| ret = false; \ |
| } |
| |
| /* This is required for BDW+ where there is only one set of registers for |
| * switching between high and low RR. |
| * This macro can be used whenever a comparison has to be made between one |
| * hw state and multiple sw state variables. |
| */ |
| #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \ |
| if (!intel_compare_link_m_n(¤t_config->name, \ |
| &pipe_config->name, adjust) && \ |
| !intel_compare_link_m_n(¤t_config->alt_name, \ |
| &pipe_config->name, adjust)) { \ |
| INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \ |
| "(expected tu %i gmch %i/%i link %i/%i, " \ |
| "or tu %i gmch %i/%i link %i/%i, " \ |
| "found tu %i, gmch %i/%i link %i/%i)\n", \ |
| current_config->name.tu, \ |
| current_config->name.gmch_m, \ |
| current_config->name.gmch_n, \ |
| current_config->name.link_m, \ |
| current_config->name.link_n, \ |
| current_config->alt_name.tu, \ |
| current_config->alt_name.gmch_m, \ |
| current_config->alt_name.gmch_n, \ |
| current_config->alt_name.link_m, \ |
| current_config->alt_name.link_n, \ |
| pipe_config->name.tu, \ |
| pipe_config->name.gmch_m, \ |
| pipe_config->name.gmch_n, \ |
| pipe_config->name.link_m, \ |
| pipe_config->name.link_n); \ |
| ret = false; \ |
| } |
| |
| #define PIPE_CONF_CHECK_FLAGS(name, mask) \ |
| if ((current_config->name ^ pipe_config->name) & (mask)) { \ |
| INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \ |
| "(expected %i, found %i)\n", \ |
| current_config->name & (mask), \ |
| pipe_config->name & (mask)); \ |
| ret = false; \ |
| } |
| |
| #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \ |
| if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \ |
| INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \ |
| "(expected %i, found %i)\n", \ |
| current_config->name, \ |
| pipe_config->name); \ |
| ret = false; \ |
| } |
| |
| #define PIPE_CONF_QUIRK(quirk) \ |
| ((current_config->quirks | pipe_config->quirks) & (quirk)) |
| |
| PIPE_CONF_CHECK_I(cpu_transcoder); |
| |
| PIPE_CONF_CHECK_I(has_pch_encoder); |
| PIPE_CONF_CHECK_I(fdi_lanes); |
| PIPE_CONF_CHECK_M_N(fdi_m_n); |
| |
| PIPE_CONF_CHECK_I(lane_count); |
| PIPE_CONF_CHECK_X(lane_lat_optim_mask); |
| |
| if (INTEL_INFO(dev)->gen < 8) { |
| PIPE_CONF_CHECK_M_N(dp_m_n); |
| |
| if (current_config->has_drrs) |
| PIPE_CONF_CHECK_M_N(dp_m2_n2); |
| } else |
| PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2); |
| |
| PIPE_CONF_CHECK_X(output_types); |
| |
| PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay); |
| PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal); |
| PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start); |
| PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end); |
| PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start); |
| PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end); |
| |
| PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay); |
| PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal); |
| PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start); |
| PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end); |
| PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start); |
| PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end); |
| |
| PIPE_CONF_CHECK_I(pixel_multiplier); |
| PIPE_CONF_CHECK_I(has_hdmi_sink); |
| if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) || |
| IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) |
| PIPE_CONF_CHECK_I(limited_color_range); |
| PIPE_CONF_CHECK_I(has_infoframe); |
| |
| PIPE_CONF_CHECK_I(has_audio); |
| |
| PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags, |
| DRM_MODE_FLAG_INTERLACE); |
| |
| if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) { |
| PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags, |
| DRM_MODE_FLAG_PHSYNC); |
| PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags, |
| DRM_MODE_FLAG_NHSYNC); |
| PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags, |
| DRM_MODE_FLAG_PVSYNC); |
| PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags, |
| DRM_MODE_FLAG_NVSYNC); |
| } |
| |
| PIPE_CONF_CHECK_X(gmch_pfit.control); |
| /* pfit ratios are autocomputed by the hw on gen4+ */ |
| if (INTEL_INFO(dev)->gen < 4) |
| PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios); |
| PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits); |
| |
| if (!adjust) { |
| PIPE_CONF_CHECK_I(pipe_src_w); |
| PIPE_CONF_CHECK_I(pipe_src_h); |
| |
| PIPE_CONF_CHECK_I(pch_pfit.enabled); |
| if (current_config->pch_pfit.enabled) { |
| PIPE_CONF_CHECK_X(pch_pfit.pos); |
| PIPE_CONF_CHECK_X(pch_pfit.size); |
| } |
| |
| PIPE_CONF_CHECK_I(scaler_state.scaler_id); |
| } |
| |
| /* BDW+ don't expose a synchronous way to read the state */ |
| if (IS_HASWELL(dev)) |
| PIPE_CONF_CHECK_I(ips_enabled); |
| |
| PIPE_CONF_CHECK_I(double_wide); |
| |
| PIPE_CONF_CHECK_P(shared_dpll); |
| PIPE_CONF_CHECK_X(dpll_hw_state.dpll); |
| PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md); |
| PIPE_CONF_CHECK_X(dpll_hw_state.fp0); |
| PIPE_CONF_CHECK_X(dpll_hw_state.fp1); |
| PIPE_CONF_CHECK_X(dpll_hw_state.wrpll); |
| PIPE_CONF_CHECK_X(dpll_hw_state.spll); |
| PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1); |
| PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1); |
| PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2); |
| |
| PIPE_CONF_CHECK_X(dsi_pll.ctrl); |
| PIPE_CONF_CHECK_X(dsi_pll.div); |
| |
| if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) |
| PIPE_CONF_CHECK_I(pipe_bpp); |
| |
| PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock); |
| PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock); |
| |
| #undef PIPE_CONF_CHECK_X |
| #undef PIPE_CONF_CHECK_I |
| #undef PIPE_CONF_CHECK_P |
| #undef PIPE_CONF_CHECK_FLAGS |
| #undef PIPE_CONF_CHECK_CLOCK_FUZZY |
| #undef PIPE_CONF_QUIRK |
| #undef INTEL_ERR_OR_DBG_KMS |
| |
| return ret; |
| } |
| |
| static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv, |
| const struct intel_crtc_state *pipe_config) |
| { |
| if (pipe_config->has_pch_encoder) { |
| int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), |
| &pipe_config->fdi_m_n); |
| int dotclock = pipe_config->base.adjusted_mode.crtc_clock; |
| |
| /* |
| * FDI already provided one idea for the dotclock. |
| * Yell if the encoder disagrees. |
| */ |
| WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock), |
| "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n", |
| fdi_dotclock, dotclock); |
| } |
| } |
| |
| static void verify_wm_state(struct drm_crtc *crtc, |
| struct drm_crtc_state *new_state) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct skl_ddb_allocation hw_ddb, *sw_ddb; |
| struct skl_ddb_entry *hw_entry, *sw_entry; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| const enum pipe pipe = intel_crtc->pipe; |
| int plane; |
| |
| if (INTEL_INFO(dev)->gen < 9 || !new_state->active) |
| return; |
| |
| skl_ddb_get_hw_state(dev_priv, &hw_ddb); |
| sw_ddb = &dev_priv->wm.skl_hw.ddb; |
| |
| /* planes */ |
| for_each_plane(dev_priv, pipe, plane) { |
| hw_entry = &hw_ddb.plane[pipe][plane]; |
| sw_entry = &sw_ddb->plane[pipe][plane]; |
| |
| if (skl_ddb_entry_equal(hw_entry, sw_entry)) |
| continue; |
| |
| DRM_ERROR("mismatch in DDB state pipe %c plane %d " |
| "(expected (%u,%u), found (%u,%u))\n", |
| pipe_name(pipe), plane + 1, |
| sw_entry->start, sw_entry->end, |
| hw_entry->start, hw_entry->end); |
| } |
| |
| /* |
| * cursor |
| * If the cursor plane isn't active, we may not have updated it's ddb |
| * allocation. In that case since the ddb allocation will be updated |
| * once the plane becomes visible, we can skip this check |
| */ |
| if (intel_crtc->cursor_addr) { |
| hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR]; |
| sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR]; |
| |
| if (!skl_ddb_entry_equal(hw_entry, sw_entry)) { |
| DRM_ERROR("mismatch in DDB state pipe %c cursor " |
| "(expected (%u,%u), found (%u,%u))\n", |
| pipe_name(pipe), |
| sw_entry->start, sw_entry->end, |
| hw_entry->start, hw_entry->end); |
| } |
| } |
| } |
| |
| static void |
| verify_connector_state(struct drm_device *dev, struct drm_crtc *crtc) |
| { |
| struct drm_connector *connector; |
| |
| drm_for_each_connector(connector, dev) { |
| struct drm_encoder *encoder = connector->encoder; |
| struct drm_connector_state *state = connector->state; |
| |
| if (state->crtc != crtc) |
| continue; |
| |
| intel_connector_verify_state(to_intel_connector(connector)); |
| |
| I915_STATE_WARN(state->best_encoder != encoder, |
| "connector's atomic encoder doesn't match legacy encoder\n"); |
| } |
| } |
| |
| static void |
| verify_encoder_state(struct drm_device *dev) |
| { |
| struct intel_encoder *encoder; |
| struct intel_connector *connector; |
| |
| for_each_intel_encoder(dev, encoder) { |
| bool enabled = false; |
| enum pipe pipe; |
| |
| DRM_DEBUG_KMS("[ENCODER:%d:%s]\n", |
| encoder->base.base.id, |
| encoder->base.name); |
| |
| for_each_intel_connector(dev, connector) { |
| if (connector->base.state->best_encoder != &encoder->base) |
| continue; |
| enabled = true; |
| |
| I915_STATE_WARN(connector->base.state->crtc != |
| encoder->base.crtc, |
| "connector's crtc doesn't match encoder crtc\n"); |
| } |
| |
| I915_STATE_WARN(!!encoder->base.crtc != enabled, |
| "encoder's enabled state mismatch " |
| "(expected %i, found %i)\n", |
| !!encoder->base.crtc, enabled); |
| |
| if (!encoder->base.crtc) { |
| bool active; |
| |
| active = encoder->get_hw_state(encoder, &pipe); |
| I915_STATE_WARN(active, |
| "encoder detached but still enabled on pipe %c.\n", |
| pipe_name(pipe)); |
| } |
| } |
| } |
| |
| static void |
| verify_crtc_state(struct drm_crtc *crtc, |
| struct drm_crtc_state *old_crtc_state, |
| struct drm_crtc_state *new_crtc_state) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_encoder *encoder; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct intel_crtc_state *pipe_config, *sw_config; |
| struct drm_atomic_state *old_state; |
| bool active; |
| |
| old_state = old_crtc_state->state; |
| __drm_atomic_helper_crtc_destroy_state(old_crtc_state); |
| pipe_config = to_intel_crtc_state(old_crtc_state); |
| memset(pipe_config, 0, sizeof(*pipe_config)); |
| pipe_config->base.crtc = crtc; |
| pipe_config->base.state = old_state; |
| |
| DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name); |
| |
| active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config); |
| |
| /* hw state is inconsistent with the pipe quirk */ |
| if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) || |
| (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)) |
| active = new_crtc_state->active; |
| |
| I915_STATE_WARN(new_crtc_state->active != active, |
| "crtc active state doesn't match with hw state " |
| "(expected %i, found %i)\n", new_crtc_state->active, active); |
| |
| I915_STATE_WARN(intel_crtc->active != new_crtc_state->active, |
| "transitional active state does not match atomic hw state " |
| "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active); |
| |
| for_each_encoder_on_crtc(dev, crtc, encoder) { |
| enum pipe pipe; |
| |
| active = encoder->get_hw_state(encoder, &pipe); |
| I915_STATE_WARN(active != new_crtc_state->active, |
| "[ENCODER:%i] active %i with crtc active %i\n", |
| encoder->base.base.id, active, new_crtc_state->active); |
| |
| I915_STATE_WARN(active && intel_crtc->pipe != pipe, |
| "Encoder connected to wrong pipe %c\n", |
| pipe_name(pipe)); |
| |
| if (active) { |
| pipe_config->output_types |= 1 << encoder->type; |
| encoder->get_config(encoder, pipe_config); |
| } |
| } |
| |
| if (!new_crtc_state->active) |
| return; |
| |
| intel_pipe_config_sanity_check(dev_priv, pipe_config); |
| |
| sw_config = to_intel_crtc_state(crtc->state); |
| if (!intel_pipe_config_compare(dev, sw_config, |
| pipe_config, false)) { |
| I915_STATE_WARN(1, "pipe state doesn't match!\n"); |
| intel_dump_pipe_config(intel_crtc, pipe_config, |
| "[hw state]"); |
| intel_dump_pipe_config(intel_crtc, sw_config, |
| "[sw state]"); |
| } |
| } |
| |
| static void |
| verify_single_dpll_state(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll, |
| struct drm_crtc *crtc, |
| struct drm_crtc_state *new_state) |
| { |
| struct intel_dpll_hw_state dpll_hw_state; |
| unsigned crtc_mask; |
| bool active; |
| |
| memset(&dpll_hw_state, 0, sizeof(dpll_hw_state)); |
| |
| DRM_DEBUG_KMS("%s\n", pll->name); |
| |
| active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state); |
| |
| if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) { |
| I915_STATE_WARN(!pll->on && pll->active_mask, |
| "pll in active use but not on in sw tracking\n"); |
| I915_STATE_WARN(pll->on && !pll->active_mask, |
| "pll is on but not used by any active crtc\n"); |
| I915_STATE_WARN(pll->on != active, |
| "pll on state mismatch (expected %i, found %i)\n", |
| pll->on, active); |
| } |
| |
| if (!crtc) { |
| I915_STATE_WARN(pll->active_mask & ~pll->config.crtc_mask, |
| "more active pll users than references: %x vs %x\n", |
| pll->active_mask, pll->config.crtc_mask); |
| |
| return; |
| } |
| |
| crtc_mask = 1 << drm_crtc_index(crtc); |
| |
| if (new_state->active) |
| I915_STATE_WARN(!(pll->active_mask & crtc_mask), |
| "pll active mismatch (expected pipe %c in active mask 0x%02x)\n", |
| pipe_name(drm_crtc_index(crtc)), pll->active_mask); |
| else |
| I915_STATE_WARN(pll->active_mask & crtc_mask, |
| "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n", |
| pipe_name(drm_crtc_index(crtc)), pll->active_mask); |
| |
| I915_STATE_WARN(!(pll->config.crtc_mask & crtc_mask), |
| "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n", |
| crtc_mask, pll->config.crtc_mask); |
| |
| I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, |
| &dpll_hw_state, |
| sizeof(dpll_hw_state)), |
| "pll hw state mismatch\n"); |
| } |
| |
| static void |
| verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc, |
| struct drm_crtc_state *old_crtc_state, |
| struct drm_crtc_state *new_crtc_state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state); |
| struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state); |
| |
| if (new_state->shared_dpll) |
| verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state); |
| |
| if (old_state->shared_dpll && |
| old_state->shared_dpll != new_state->shared_dpll) { |
| unsigned crtc_mask = 1 << drm_crtc_index(crtc); |
| struct intel_shared_dpll *pll = old_state->shared_dpll; |
| |
| I915_STATE_WARN(pll->active_mask & crtc_mask, |
| "pll active mismatch (didn't expect pipe %c in active mask)\n", |
| pipe_name(drm_crtc_index(crtc))); |
| I915_STATE_WARN(pll->config.crtc_mask & crtc_mask, |
| "pll enabled crtcs mismatch (found %x in enabled mask)\n", |
| pipe_name(drm_crtc_index(crtc))); |
| } |
| } |
| |
| static void |
| intel_modeset_verify_crtc(struct drm_crtc *crtc, |
| struct drm_crtc_state *old_state, |
| struct drm_crtc_state *new_state) |
| { |
| if (!needs_modeset(new_state) && |
| !to_intel_crtc_state(new_state)->update_pipe) |
| return; |
| |
| verify_wm_state(crtc, new_state); |
| verify_connector_state(crtc->dev, crtc); |
| verify_crtc_state(crtc, old_state, new_state); |
| verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state); |
| } |
| |
| static void |
| verify_disabled_dpll_state(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| int i; |
| |
| for (i = 0; i < dev_priv->num_shared_dpll; i++) |
| verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL); |
| } |
| |
| static void |
| intel_modeset_verify_disabled(struct drm_device *dev) |
| { |
| verify_encoder_state(dev); |
| verify_connector_state(dev, NULL); |
| verify_disabled_dpll_state(dev); |
| } |
| |
| static void update_scanline_offset(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| |
| /* |
| * The scanline counter increments at the leading edge of hsync. |
| * |
| * On most platforms it starts counting from vtotal-1 on the |
| * first active line. That means the scanline counter value is |
| * always one less than what we would expect. Ie. just after |
| * start of vblank, which also occurs at start of hsync (on the |
| * last active line), the scanline counter will read vblank_start-1. |
| * |
| * On gen2 the scanline counter starts counting from 1 instead |
| * of vtotal-1, so we have to subtract one (or rather add vtotal-1 |
| * to keep the value positive), instead of adding one. |
| * |
| * On HSW+ the behaviour of the scanline counter depends on the output |
| * type. For DP ports it behaves like most other platforms, but on HDMI |
| * there's an extra 1 line difference. So we need to add two instead of |
| * one to the value. |
| */ |
| if (IS_GEN2(dev)) { |
| const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode; |
| int vtotal; |
| |
| vtotal = adjusted_mode->crtc_vtotal; |
| if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) |
| vtotal /= 2; |
| |
| crtc->scanline_offset = vtotal - 1; |
| } else if (HAS_DDI(dev) && |
| intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI)) { |
| crtc->scanline_offset = 2; |
| } else |
| crtc->scanline_offset = 1; |
| } |
| |
| static void intel_modeset_clear_plls(struct drm_atomic_state *state) |
| { |
| struct drm_device *dev = state->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_shared_dpll_config *shared_dpll = NULL; |
| struct drm_crtc *crtc; |
| struct drm_crtc_state *crtc_state; |
| int i; |
| |
| if (!dev_priv->display.crtc_compute_clock) |
| return; |
| |
| for_each_crtc_in_state(state, crtc, crtc_state, i) { |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct intel_shared_dpll *old_dpll = |
| to_intel_crtc_state(crtc->state)->shared_dpll; |
| |
| if (!needs_modeset(crtc_state)) |
| continue; |
| |
| to_intel_crtc_state(crtc_state)->shared_dpll = NULL; |
| |
| if (!old_dpll) |
| continue; |
| |
| if (!shared_dpll) |
| shared_dpll = intel_atomic_get_shared_dpll_state(state); |
| |
| intel_shared_dpll_config_put(shared_dpll, old_dpll, intel_crtc); |
| } |
| } |
| |
| /* |
| * This implements the workaround described in the "notes" section of the mode |
| * set sequence documentation. When going from no pipes or single pipe to |
| * multiple pipes, and planes are enabled after the pipe, we need to wait at |
| * least 2 vblanks on the first pipe before enabling planes on the second pipe. |
| */ |
| static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state) |
| { |
| struct drm_crtc_state *crtc_state; |
| struct intel_crtc *intel_crtc; |
| struct drm_crtc *crtc; |
| struct intel_crtc_state *first_crtc_state = NULL; |
| struct intel_crtc_state *other_crtc_state = NULL; |
| enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE; |
| int i; |
| |
| /* look at all crtc's that are going to be enabled in during modeset */ |
| for_each_crtc_in_state(state, crtc, crtc_state, i) { |
| intel_crtc = to_intel_crtc(crtc); |
| |
| if (!crtc_state->active || !needs_modeset(crtc_state)) |
| continue; |
| |
| if (first_crtc_state) { |
| other_crtc_state = to_intel_crtc_state(crtc_state); |
| break; |
| } else { |
| first_crtc_state = to_intel_crtc_state(crtc_state); |
| first_pipe = intel_crtc->pipe; |
| } |
| } |
| |
| /* No workaround needed? */ |
| if (!first_crtc_state) |
| return 0; |
| |
| /* w/a possibly needed, check how many crtc's are already enabled. */ |
| for_each_intel_crtc(state->dev, intel_crtc) { |
| struct intel_crtc_state *pipe_config; |
| |
| pipe_config = intel_atomic_get_crtc_state(state, intel_crtc); |
| if (IS_ERR(pipe_config)) |
| return PTR_ERR(pipe_config); |
| |
| pipe_config->hsw_workaround_pipe = INVALID_PIPE; |
| |
| if (!pipe_config->base.active || |
| needs_modeset(&pipe_config->base)) |
| continue; |
| |
| /* 2 or more enabled crtcs means no need for w/a */ |
| if (enabled_pipe != INVALID_PIPE) |
| return 0; |
| |
| enabled_pipe = intel_crtc->pipe; |
| } |
| |
| if (enabled_pipe != INVALID_PIPE) |
| first_crtc_state->hsw_workaround_pipe = enabled_pipe; |
| else if (other_crtc_state) |
| other_crtc_state->hsw_workaround_pipe = first_pipe; |
| |
| return 0; |
| } |
| |
| static int intel_modeset_all_pipes(struct drm_atomic_state *state) |
| { |
| struct drm_crtc *crtc; |
| struct drm_crtc_state *crtc_state; |
| int ret = 0; |
| |
| /* add all active pipes to the state */ |
| for_each_crtc(state->dev, crtc) { |
| crtc_state = drm_atomic_get_crtc_state(state, crtc); |
| if (IS_ERR(crtc_state)) |
| return PTR_ERR(crtc_state); |
| |
| if (!crtc_state->active || needs_modeset(crtc_state)) |
| continue; |
| |
| crtc_state->mode_changed = true; |
| |
| ret = drm_atomic_add_affected_connectors(state, crtc); |
| if (ret) |
| break; |
| |
| ret = drm_atomic_add_affected_planes(state, crtc); |
| if (ret) |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static int intel_modeset_checks(struct drm_atomic_state *state) |
| { |
| struct intel_atomic_state *intel_state = to_intel_atomic_state(state); |
| struct drm_i915_private *dev_priv = to_i915(state->dev); |
| struct drm_crtc *crtc; |
| struct drm_crtc_state *crtc_state; |
| int ret = 0, i; |
| |
| if (!check_digital_port_conflicts(state)) { |
| DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n"); |
| return -EINVAL; |
| } |
| |
| intel_state->modeset = true; |
| intel_state->active_crtcs = dev_priv->active_crtcs; |
| |
| for_each_crtc_in_state(state, crtc, crtc_state, i) { |
| if (crtc_state->active) |
| intel_state->active_crtcs |= 1 << i; |
| else |
| intel_state->active_crtcs &= ~(1 << i); |
| |
| if (crtc_state->active != crtc->state->active) |
| intel_state->active_pipe_changes |= drm_crtc_mask(crtc); |
| } |
| |
| /* |
| * See if the config requires any additional preparation, e.g. |
| * to adjust global state with pipes off. We need to do this |
| * here so we can get the modeset_pipe updated config for the new |
| * mode set on this crtc. For other crtcs we need to use the |
| * adjusted_mode bits in the crtc directly. |
| */ |
| if (dev_priv->display.modeset_calc_cdclk) { |
| if (!intel_state->cdclk_pll_vco) |
| intel_state->cdclk_pll_vco = dev_priv->cdclk_pll.vco; |
| if (!intel_state->cdclk_pll_vco) |
| intel_state->cdclk_pll_vco = dev_priv->skl_preferred_vco_freq; |
| |
| ret = dev_priv->display.modeset_calc_cdclk(state); |
| if (ret < 0) |
| return ret; |
| |
| if (intel_state->dev_cdclk != dev_priv->cdclk_freq || |
| intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco) |
| ret = intel_modeset_all_pipes(state); |
| |
| if (ret < 0) |
| return ret; |
| |
| DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n", |
| intel_state->cdclk, intel_state->dev_cdclk); |
| } else |
| to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq; |
| |
| intel_modeset_clear_plls(state); |
| |
| if (IS_HASWELL(dev_priv)) |
| return haswell_mode_set_planes_workaround(state); |
| |
| return 0; |
| } |
| |
| /* |
| * Handle calculation of various watermark data at the end of the atomic check |
| * phase. The code here should be run after the per-crtc and per-plane 'check' |
| * handlers to ensure that all derived state has been updated. |
| */ |
| static int calc_watermark_data(struct drm_atomic_state *state) |
| { |
| struct drm_device *dev = state->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| |
| /* Is there platform-specific watermark information to calculate? */ |
| if (dev_priv->display.compute_global_watermarks) |
| return dev_priv->display.compute_global_watermarks(state); |
| |
| return 0; |
| } |
| |
| /** |
| * intel_atomic_check - validate state object |
| * @dev: drm device |
| * @state: state to validate |
| */ |
| static int intel_atomic_check(struct drm_device *dev, |
| struct drm_atomic_state *state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_atomic_state *intel_state = to_intel_atomic_state(state); |
| struct drm_crtc *crtc; |
| struct drm_crtc_state *crtc_state; |
| int ret, i; |
| bool any_ms = false; |
| |
| ret = drm_atomic_helper_check_modeset(dev, state); |
| if (ret) |
| return ret; |
| |
| for_each_crtc_in_state(state, crtc, crtc_state, i) { |
| struct intel_crtc_state *pipe_config = |
| to_intel_crtc_state(crtc_state); |
| |
| /* Catch I915_MODE_FLAG_INHERITED */ |
| if (crtc_state->mode.private_flags != crtc->state->mode.private_flags) |
| crtc_state->mode_changed = true; |
| |
| if (!needs_modeset(crtc_state)) |
| continue; |
| |
| if (!crtc_state->enable) { |
| any_ms = true; |
| continue; |
| } |
| |
| /* FIXME: For only active_changed we shouldn't need to do any |
| * state recomputation at all. */ |
| |
| ret = drm_atomic_add_affected_connectors(state, crtc); |
| if (ret) |
| return ret; |
| |
| ret = intel_modeset_pipe_config(crtc, pipe_config); |
| if (ret) { |
| intel_dump_pipe_config(to_intel_crtc(crtc), |
| pipe_config, "[failed]"); |
| return ret; |
| } |
| |
| if (i915.fastboot && |
| intel_pipe_config_compare(dev, |
| to_intel_crtc_state(crtc->state), |
| pipe_config, true)) { |
| crtc_state->mode_changed = false; |
| to_intel_crtc_state(crtc_state)->update_pipe = true; |
| } |
| |
| if (needs_modeset(crtc_state)) |
| any_ms = true; |
| |
| ret = drm_atomic_add_affected_planes(state, crtc); |
| if (ret) |
| return ret; |
| |
| intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config, |
| needs_modeset(crtc_state) ? |
| "[modeset]" : "[fastset]"); |
| } |
| |
| if (any_ms) { |
| ret = intel_modeset_checks(state); |
| |
| if (ret) |
| return ret; |
| } else |
| intel_state->cdclk = dev_priv->cdclk_freq; |
| |
| ret = drm_atomic_helper_check_planes(dev, state); |
| if (ret) |
| return ret; |
| |
| intel_fbc_choose_crtc(dev_priv, state); |
| return calc_watermark_data(state); |
| } |
| |
| static int intel_atomic_prepare_commit(struct drm_device *dev, |
| struct drm_atomic_state *state, |
| bool nonblock) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct drm_plane_state *plane_state; |
| struct drm_crtc_state *crtc_state; |
| struct drm_plane *plane; |
| struct drm_crtc *crtc; |
| int i, ret; |
| |
| for_each_crtc_in_state(state, crtc, crtc_state, i) { |
| if (state->legacy_cursor_update) |
| continue; |
| |
| ret = intel_crtc_wait_for_pending_flips(crtc); |
| if (ret) |
| return ret; |
| |
| if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2) |
| flush_workqueue(dev_priv->wq); |
| } |
| |
| ret = mutex_lock_interruptible(&dev->struct_mutex); |
| if (ret) |
| return ret; |
| |
| ret = drm_atomic_helper_prepare_planes(dev, state); |
| mutex_unlock(&dev->struct_mutex); |
| |
| if (!ret && !nonblock) { |
| for_each_plane_in_state(state, plane, plane_state, i) { |
| struct intel_plane_state *intel_plane_state = |
| to_intel_plane_state(plane_state); |
| |
| if (!intel_plane_state->wait_req) |
| continue; |
| |
| ret = i915_wait_request(intel_plane_state->wait_req, |
| I915_WAIT_INTERRUPTIBLE, |
| NULL, NULL); |
| if (ret) { |
| /* Any hang should be swallowed by the wait */ |
| WARN_ON(ret == -EIO); |
| mutex_lock(&dev->struct_mutex); |
| drm_atomic_helper_cleanup_planes(dev, state); |
| mutex_unlock(&dev->struct_mutex); |
| break; |
| } |
| } |
| } |
| |
| return ret; |
| } |
| |
| u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| |
| if (!dev->max_vblank_count) |
| return drm_accurate_vblank_count(&crtc->base); |
| |
| return dev->driver->get_vblank_counter(dev, crtc->pipe); |
| } |
| |
| static void intel_atomic_wait_for_vblanks(struct drm_device *dev, |
| struct drm_i915_private *dev_priv, |
| unsigned crtc_mask) |
| { |
| unsigned last_vblank_count[I915_MAX_PIPES]; |
| enum pipe pipe; |
| int ret; |
| |
| if (!crtc_mask) |
| return; |
| |
| for_each_pipe(dev_priv, pipe) { |
| struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; |
| |
| if (!((1 << pipe) & crtc_mask)) |
| continue; |
| |
| ret = drm_crtc_vblank_get(crtc); |
| if (WARN_ON(ret != 0)) { |
| crtc_mask &= ~(1 << pipe); |
| continue; |
| } |
| |
| last_vblank_count[pipe] = drm_crtc_vblank_count(crtc); |
| } |
| |
| for_each_pipe(dev_priv, pipe) { |
| struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; |
| long lret; |
| |
| if (!((1 << pipe) & crtc_mask)) |
| continue; |
| |
| lret = wait_event_timeout(dev->vblank[pipe].queue, |
| last_vblank_count[pipe] != |
| drm_crtc_vblank_count(crtc), |
| msecs_to_jiffies(50)); |
| |
| WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe)); |
| |
| drm_crtc_vblank_put(crtc); |
| } |
| } |
| |
| static bool needs_vblank_wait(struct intel_crtc_state *crtc_state) |
| { |
| /* fb updated, need to unpin old fb */ |
| if (crtc_state->fb_changed) |
| return true; |
| |
| /* wm changes, need vblank before final wm's */ |
| if (crtc_state->update_wm_post) |
| return true; |
| |
| /* |
| * cxsr is re-enabled after vblank. |
| * This is already handled by crtc_state->update_wm_post, |
| * but added for clarity. |
| */ |
| if (crtc_state->disable_cxsr) |
| return true; |
| |
| return false; |
| } |
| |
| static void intel_update_crtc(struct drm_crtc *crtc, |
| struct drm_atomic_state *state, |
| struct drm_crtc_state *old_crtc_state, |
| unsigned int *crtc_vblank_mask) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc->state); |
| bool modeset = needs_modeset(crtc->state); |
| |
| if (modeset) { |
| update_scanline_offset(intel_crtc); |
| dev_priv->display.crtc_enable(pipe_config, state); |
| } else { |
| intel_pre_plane_update(to_intel_crtc_state(old_crtc_state)); |
| } |
| |
| if (drm_atomic_get_existing_plane_state(state, crtc->primary)) { |
| intel_fbc_enable( |
| intel_crtc, pipe_config, |
| to_intel_plane_state(crtc->primary->state)); |
| } |
| |
| drm_atomic_helper_commit_planes_on_crtc(old_crtc_state); |
| |
| if (needs_vblank_wait(pipe_config)) |
| *crtc_vblank_mask |= drm_crtc_mask(crtc); |
| } |
| |
| static void intel_update_crtcs(struct drm_atomic_state *state, |
| unsigned int *crtc_vblank_mask) |
| { |
| struct drm_crtc *crtc; |
| struct drm_crtc_state *old_crtc_state; |
| int i; |
| |
| for_each_crtc_in_state(state, crtc, old_crtc_state, i) { |
| if (!crtc->state->active) |
| continue; |
| |
| intel_update_crtc(crtc, state, old_crtc_state, |
| crtc_vblank_mask); |
| } |
| } |
| |
| static void skl_update_crtcs(struct drm_atomic_state *state, |
| unsigned int *crtc_vblank_mask) |
| { |
| struct drm_device *dev = state->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_atomic_state *intel_state = to_intel_atomic_state(state); |
| struct drm_crtc *crtc; |
| struct drm_crtc_state *old_crtc_state; |
| struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb; |
| struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb; |
| unsigned int updated = 0; |
| bool progress; |
| enum pipe pipe; |
| |
| /* |
| * Whenever the number of active pipes changes, we need to make sure we |
| * update the pipes in the right order so that their ddb allocations |
| * never overlap with eachother inbetween CRTC updates. Otherwise we'll |
| * cause pipe underruns and other bad stuff. |
| */ |
| do { |
| int i; |
| progress = false; |
| |
| for_each_crtc_in_state(state, crtc, old_crtc_state, i) { |
| bool vbl_wait = false; |
| unsigned int cmask = drm_crtc_mask(crtc); |
| pipe = to_intel_crtc(crtc)->pipe; |
| |
| if (updated & cmask || !crtc->state->active) |
| continue; |
| if (skl_ddb_allocation_overlaps(state, cur_ddb, new_ddb, |
| pipe)) |
| continue; |
| |
| updated |= cmask; |
| |
| /* |
| * If this is an already active pipe, it's DDB changed, |
| * and this isn't the last pipe that needs updating |
| * then we need to wait for a vblank to pass for the |
| * new ddb allocation to take effect. |
| */ |
| if (!skl_ddb_allocation_equals(cur_ddb, new_ddb, pipe) && |
| !crtc->state->active_changed && |
| intel_state->wm_results.dirty_pipes != updated) |
| vbl_wait = true; |
| |
| intel_update_crtc(crtc, state, old_crtc_state, |
| crtc_vblank_mask); |
| |
| if (vbl_wait) |
| intel_wait_for_vblank(dev, pipe); |
| |
| progress = true; |
| } |
| } while (progress); |
| } |
| |
| static void intel_atomic_commit_tail(struct drm_atomic_state *state) |
| { |
| struct drm_device *dev = state->dev; |
| struct intel_atomic_state *intel_state = to_intel_atomic_state(state); |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct drm_crtc_state *old_crtc_state; |
| struct drm_crtc *crtc; |
| struct intel_crtc_state *intel_cstate; |
| struct drm_plane *plane; |
| struct drm_plane_state *plane_state; |
| bool hw_check = intel_state->modeset; |
| unsigned long put_domains[I915_MAX_PIPES] = {}; |
| unsigned crtc_vblank_mask = 0; |
| int i, ret; |
| |
| for_each_plane_in_state(state, plane, plane_state, i) { |
| struct intel_plane_state *intel_plane_state = |
| to_intel_plane_state(plane->state); |
| |
| if (!intel_plane_state->wait_req) |
| continue; |
| |
| ret = i915_wait_request(intel_plane_state->wait_req, |
| 0, NULL, NULL); |
| /* EIO should be eaten, and we can't get interrupted in the |
| * worker, and blocking commits have waited already. */ |
| WARN_ON(ret); |
| } |
| |
| drm_atomic_helper_wait_for_dependencies(state); |
| |
| if (intel_state->modeset) { |
| memcpy(dev_priv->min_pixclk, intel_state->min_pixclk, |
| sizeof(intel_state->min_pixclk)); |
| dev_priv->active_crtcs = intel_state->active_crtcs; |
| dev_priv->atomic_cdclk_freq = intel_state->cdclk; |
| |
| intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET); |
| } |
| |
| for_each_crtc_in_state(state, crtc, old_crtc_state, i) { |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| |
| if (needs_modeset(crtc->state) || |
| to_intel_crtc_state(crtc->state)->update_pipe) { |
| hw_check = true; |
| |
| put_domains[to_intel_crtc(crtc)->pipe] = |
| modeset_get_crtc_power_domains(crtc, |
| to_intel_crtc_state(crtc->state)); |
| } |
| |
| if (!needs_modeset(crtc->state)) |
| continue; |
| |
| intel_pre_plane_update(to_intel_crtc_state(old_crtc_state)); |
| |
| if (old_crtc_state->active) { |
| intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask); |
| dev_priv->display.crtc_disable(to_intel_crtc_state(old_crtc_state), state); |
| intel_crtc->active = false; |
| intel_fbc_disable(intel_crtc); |
| intel_disable_shared_dpll(intel_crtc); |
| |
| /* |
| * Underruns don't always raise |
| * interrupts, so check manually. |
| */ |
| intel_check_cpu_fifo_underruns(dev_priv); |
| intel_check_pch_fifo_underruns(dev_priv); |
| |
| if (!crtc->state->active) |
| intel_update_watermarks(crtc); |
| } |
| } |
| |
| /* Only after disabling all output pipelines that will be changed can we |
| * update the the output configuration. */ |
| intel_modeset_update_crtc_state(state); |
| |
| if (intel_state->modeset) { |
| drm_atomic_helper_update_legacy_modeset_state(state->dev, state); |
| |
| if (dev_priv->display.modeset_commit_cdclk && |
| (intel_state->dev_cdclk != dev_priv->cdclk_freq || |
| intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco)) |
| dev_priv->display.modeset_commit_cdclk(state); |
| |
| /* |
| * SKL workaround: bspec recommends we disable the SAGV when we |
| * have more then one pipe enabled |
| */ |
| if (!intel_can_enable_sagv(state)) |
| intel_disable_sagv(dev_priv); |
| |
| intel_modeset_verify_disabled(dev); |
| } |
| |
| /* Complete the events for pipes that have now been disabled */ |
| for_each_crtc_in_state(state, crtc, old_crtc_state, i) { |
| bool modeset = needs_modeset(crtc->state); |
| |
| /* Complete events for now disable pipes here. */ |
| if (modeset && !crtc->state->active && crtc->state->event) { |
| spin_lock_irq(&dev->event_lock); |
| drm_crtc_send_vblank_event(crtc, crtc->state->event); |
| spin_unlock_irq(&dev->event_lock); |
| |
| crtc->state->event = NULL; |
| } |
| } |
| |
| /* Now enable the clocks, plane, pipe, and connectors that we set up. */ |
| dev_priv->display.update_crtcs(state, &crtc_vblank_mask); |
| |
| /* FIXME: We should call drm_atomic_helper_commit_hw_done() here |
| * already, but still need the state for the delayed optimization. To |
| * fix this: |
| * - wrap the optimization/post_plane_update stuff into a per-crtc work. |
| * - schedule that vblank worker _before_ calling hw_done |
| * - at the start of commit_tail, cancel it _synchrously |
| * - switch over to the vblank wait helper in the core after that since |
| * we don't need out special handling any more. |
| */ |
| if (!state->legacy_cursor_update) |
| intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask); |
| |
| /* |
| * Now that the vblank has passed, we can go ahead and program the |
| * optimal watermarks on platforms that need two-step watermark |
| * programming. |
| * |
| * TODO: Move this (and other cleanup) to an async worker eventually. |
| */ |
| for_each_crtc_in_state(state, crtc, old_crtc_state, i) { |
| intel_cstate = to_intel_crtc_state(crtc->state); |
| |
| if (dev_priv->display.optimize_watermarks) |
| dev_priv->display.optimize_watermarks(intel_cstate); |
| } |
| |
| for_each_crtc_in_state(state, crtc, old_crtc_state, i) { |
| intel_post_plane_update(to_intel_crtc_state(old_crtc_state)); |
| |
| if (put_domains[i]) |
| modeset_put_power_domains(dev_priv, put_domains[i]); |
| |
| intel_modeset_verify_crtc(crtc, old_crtc_state, crtc->state); |
| } |
| |
| if (intel_state->modeset && intel_can_enable_sagv(state)) |
| intel_enable_sagv(dev_priv); |
| |
| drm_atomic_helper_commit_hw_done(state); |
| |
| if (intel_state->modeset) |
| intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET); |
| |
| mutex_lock(&dev->struct_mutex); |
| drm_atomic_helper_cleanup_planes(dev, state); |
| mutex_unlock(&dev->struct_mutex); |
| |
| drm_atomic_helper_commit_cleanup_done(state); |
| |
| drm_atomic_state_free(state); |
| |
| /* As one of the primary mmio accessors, KMS has a high likelihood |
| * of triggering bugs in unclaimed access. After we finish |
| * modesetting, see if an error has been flagged, and if so |
| * enable debugging for the next modeset - and hope we catch |
| * the culprit. |
| * |
| * XXX note that we assume display power is on at this point. |
| * This might hold true now but we need to add pm helper to check |
| * unclaimed only when the hardware is on, as atomic commits |
| * can happen also when the device is completely off. |
| */ |
| intel_uncore_arm_unclaimed_mmio_detection(dev_priv); |
| } |
| |
| static void intel_atomic_commit_work(struct work_struct *work) |
| { |
| struct drm_atomic_state *state = container_of(work, |
| struct drm_atomic_state, |
| commit_work); |
| intel_atomic_commit_tail(state); |
| } |
| |
| static void intel_atomic_track_fbs(struct drm_atomic_state *state) |
| { |
| struct drm_plane_state *old_plane_state; |
| struct drm_plane *plane; |
| int i; |
| |
| for_each_plane_in_state(state, plane, old_plane_state, i) |
| i915_gem_track_fb(intel_fb_obj(old_plane_state->fb), |
| intel_fb_obj(plane->state->fb), |
| to_intel_plane(plane)->frontbuffer_bit); |
| } |
| |
| /** |
| * intel_atomic_commit - commit validated state object |
| * @dev: DRM device |
| * @state: the top-level driver state object |
| * @nonblock: nonblocking commit |
| * |
| * This function commits a top-level state object that has been validated |
| * with drm_atomic_helper_check(). |
| * |
| * FIXME: Atomic modeset support for i915 is not yet complete. At the moment |
| * nonblocking commits are only safe for pure plane updates. Everything else |
| * should work though. |
| * |
| * RETURNS |
| * Zero for success or -errno. |
| */ |
| static int intel_atomic_commit(struct drm_device *dev, |
| struct drm_atomic_state *state, |
| bool nonblock) |
| { |
| struct intel_atomic_state *intel_state = to_intel_atomic_state(state); |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| int ret = 0; |
| |
| if (intel_state->modeset && nonblock) { |
| DRM_DEBUG_KMS("nonblocking commit for modeset not yet implemented.\n"); |
| return -EINVAL; |
| } |
| |
| ret = drm_atomic_helper_setup_commit(state, nonblock); |
| if (ret) |
| return ret; |
| |
| INIT_WORK(&state->commit_work, intel_atomic_commit_work); |
| |
| ret = intel_atomic_prepare_commit(dev, state, nonblock); |
| if (ret) { |
| DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret); |
| return ret; |
| } |
| |
| drm_atomic_helper_swap_state(state, true); |
| dev_priv->wm.distrust_bios_wm = false; |
| dev_priv->wm.skl_results = intel_state->wm_results; |
| intel_shared_dpll_commit(state); |
| intel_atomic_track_fbs(state); |
| |
| if (nonblock) |
| queue_work(system_unbound_wq, &state->commit_work); |
| else |
| intel_atomic_commit_tail(state); |
| |
| return 0; |
| } |
| |
| void intel_crtc_restore_mode(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_atomic_state *state; |
| struct drm_crtc_state *crtc_state; |
| int ret; |
| |
| state = drm_atomic_state_alloc(dev); |
| if (!state) { |
| DRM_DEBUG_KMS("[CRTC:%d:%s] crtc restore failed, out of memory", |
| crtc->base.id, crtc->name); |
| return; |
| } |
| |
| state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc); |
| |
| retry: |
| crtc_state = drm_atomic_get_crtc_state(state, crtc); |
| ret = PTR_ERR_OR_ZERO(crtc_state); |
| if (!ret) { |
| if (!crtc_state->active) |
| goto out; |
| |
| crtc_state->mode_changed = true; |
| ret = drm_atomic_commit(state); |
| } |
| |
| if (ret == -EDEADLK) { |
| drm_atomic_state_clear(state); |
| drm_modeset_backoff(state->acquire_ctx); |
| goto retry; |
| } |
| |
| if (ret) |
| out: |
| drm_atomic_state_free(state); |
| } |
| |
| /* |
| * FIXME: Remove this once i915 is fully DRIVER_ATOMIC by calling |
| * drm_atomic_helper_legacy_gamma_set() directly. |
| */ |
| static int intel_atomic_legacy_gamma_set(struct drm_crtc *crtc, |
| u16 *red, u16 *green, u16 *blue, |
| uint32_t size) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_mode_config *config = &dev->mode_config; |
| struct drm_crtc_state *state; |
| int ret; |
| |
| ret = drm_atomic_helper_legacy_gamma_set(crtc, red, green, blue, size); |
| if (ret) |
| return ret; |
| |
| /* |
| * Make sure we update the legacy properties so this works when |
| * atomic is not enabled. |
| */ |
| |
| state = crtc->state; |
| |
| drm_object_property_set_value(&crtc->base, |
| config->degamma_lut_property, |
| (state->degamma_lut) ? |
| state->degamma_lut->base.id : 0); |
| |
| drm_object_property_set_value(&crtc->base, |
| config->ctm_property, |
| (state->ctm) ? |
| state->ctm->base.id : 0); |
| |
| drm_object_property_set_value(&crtc->base, |
| config->gamma_lut_property, |
| (state->gamma_lut) ? |
| state->gamma_lut->base.id : 0); |
| |
| return 0; |
| } |
| |
| static const struct drm_crtc_funcs intel_crtc_funcs = { |
| .gamma_set = intel_atomic_legacy_gamma_set, |
| .set_config = drm_atomic_helper_set_config, |
| .set_property = drm_atomic_helper_crtc_set_property, |
| .destroy = intel_crtc_destroy, |
| .page_flip = intel_crtc_page_flip, |
| .atomic_duplicate_state = intel_crtc_duplicate_state, |
| .atomic_destroy_state = intel_crtc_destroy_state, |
| }; |
| |
| /** |
| * intel_prepare_plane_fb - Prepare fb for usage on plane |
| * @plane: drm plane to prepare for |
| * @fb: framebuffer to prepare for presentation |
| * |
| * Prepares a framebuffer for usage on a display plane. Generally this |
| * involves pinning the underlying object and updating the frontbuffer tracking |
| * bits. Some older platforms need special physical address handling for |
| * cursor planes. |
| * |
| * Must be called with struct_mutex held. |
| * |
| * Returns 0 on success, negative error code on failure. |
| */ |
| int |
| intel_prepare_plane_fb(struct drm_plane *plane, |
| struct drm_plane_state *new_state) |
| { |
| struct drm_device *dev = plane->dev; |
| struct drm_framebuffer *fb = new_state->fb; |
| struct drm_i915_gem_object *obj = intel_fb_obj(fb); |
| struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb); |
| struct reservation_object *resv; |
| int ret = 0; |
| |
| if (!obj && !old_obj) |
| return 0; |
| |
| if (old_obj) { |
| struct drm_crtc_state *crtc_state = |
| drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc); |
| |
| /* Big Hammer, we also need to ensure that any pending |
| * MI_WAIT_FOR_EVENT inside a user batch buffer on the |
| * current scanout is retired before unpinning the old |
| * framebuffer. Note that we rely on userspace rendering |
| * into the buffer attached to the pipe they are waiting |
| * on. If not, userspace generates a GPU hang with IPEHR |
| * point to the MI_WAIT_FOR_EVENT. |
| * |
| * This should only fail upon a hung GPU, in which case we |
| * can safely continue. |
| */ |
| if (needs_modeset(crtc_state)) |
| ret = i915_gem_object_wait_rendering(old_obj, true); |
| if (ret) { |
| /* GPU hangs should have been swallowed by the wait */ |
| WARN_ON(ret == -EIO); |
| return ret; |
| } |
| } |
| |
| if (!obj) |
| return 0; |
| |
| /* For framebuffer backed by dmabuf, wait for fence */ |
| resv = i915_gem_object_get_dmabuf_resv(obj); |
| if (resv) { |
| long lret; |
| |
| lret = reservation_object_wait_timeout_rcu(resv, false, true, |
| MAX_SCHEDULE_TIMEOUT); |
| if (lret == -ERESTARTSYS) |
| return lret; |
| |
| WARN(lret < 0, "waiting returns %li\n", lret); |
| } |
| |
| if (plane->type == DRM_PLANE_TYPE_CURSOR && |
| INTEL_INFO(dev)->cursor_needs_physical) { |
| int align = IS_I830(dev) ? 16 * 1024 : 256; |
| ret = i915_gem_object_attach_phys(obj, align); |
| if (ret) |
| DRM_DEBUG_KMS("failed to attach phys object\n"); |
| } else { |
| struct i915_vma *vma; |
| |
| vma = intel_pin_and_fence_fb_obj(fb, new_state->rotation); |
| if (IS_ERR(vma)) |
| ret = PTR_ERR(vma); |
| } |
| |
| if (ret == 0) { |
| to_intel_plane_state(new_state)->wait_req = |
| i915_gem_active_get(&obj->last_write, |
| &obj->base.dev->struct_mutex); |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * intel_cleanup_plane_fb - Cleans up an fb after plane use |
| * @plane: drm plane to clean up for |
| * @fb: old framebuffer that was on plane |
| * |
| * Cleans up a framebuffer that has just been removed from a plane. |
| * |
| * Must be called with struct_mutex held. |
| */ |
| void |
| intel_cleanup_plane_fb(struct drm_plane *plane, |
| struct drm_plane_state *old_state) |
| { |
| struct drm_device *dev = plane->dev; |
| struct intel_plane_state *old_intel_state; |
| struct intel_plane_state *intel_state = to_intel_plane_state(plane->state); |
| struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb); |
| struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb); |
| |
| old_intel_state = to_intel_plane_state(old_state); |
| |
| if (!obj && !old_obj) |
| return; |
| |
| if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR || |
| !INTEL_INFO(dev)->cursor_needs_physical)) |
| intel_unpin_fb_obj(old_state->fb, old_state->rotation); |
| |
| i915_gem_request_assign(&intel_state->wait_req, NULL); |
| i915_gem_request_assign(&old_intel_state->wait_req, NULL); |
| } |
| |
| int |
| skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state) |
| { |
| int max_scale; |
| int crtc_clock, cdclk; |
| |
| if (!intel_crtc || !crtc_state->base.enable) |
| return DRM_PLANE_HELPER_NO_SCALING; |
| |
| crtc_clock = crtc_state->base.adjusted_mode.crtc_clock; |
| cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk; |
| |
| if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock)) |
| return DRM_PLANE_HELPER_NO_SCALING; |
| |
| /* |
| * skl max scale is lower of: |
| * close to 3 but not 3, -1 is for that purpose |
| * or |
| * cdclk/crtc_clock |
| */ |
| max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock)); |
| |
| return max_scale; |
| } |
| |
| static int |
| intel_check_primary_plane(struct drm_plane *plane, |
| struct intel_crtc_state *crtc_state, |
| struct intel_plane_state *state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(plane->dev); |
| struct drm_crtc *crtc = state->base.crtc; |
| int min_scale = DRM_PLANE_HELPER_NO_SCALING; |
| int max_scale = DRM_PLANE_HELPER_NO_SCALING; |
| bool can_position = false; |
| int ret; |
| |
| if (INTEL_GEN(dev_priv) >= 9) { |
| /* use scaler when colorkey is not required */ |
| if (state->ckey.flags == I915_SET_COLORKEY_NONE) { |
| min_scale = 1; |
| max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state); |
| } |
| can_position = true; |
| } |
| |
| ret = drm_plane_helper_check_state(&state->base, |
| &state->clip, |
| min_scale, max_scale, |
| can_position, true); |
| if (ret) |
| return ret; |
| |
| if (!state->base.fb) |
| return 0; |
| |
| if (INTEL_GEN(dev_priv) >= 9) { |
| ret = skl_check_plane_surface(state); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static void intel_begin_crtc_commit(struct drm_crtc *crtc, |
| struct drm_crtc_state *old_crtc_state) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct intel_crtc_state *old_intel_state = |
| to_intel_crtc_state(old_crtc_state); |
| bool modeset = needs_modeset(crtc->state); |
| enum pipe pipe = intel_crtc->pipe; |
| |
| /* Perform vblank evasion around commit operation */ |
| intel_pipe_update_start(intel_crtc); |
| |
| if (modeset) |
| return; |
| |
| if (crtc->state->color_mgmt_changed || to_intel_crtc_state(crtc->state)->update_pipe) { |
| intel_color_set_csc(crtc->state); |
| intel_color_load_luts(crtc->state); |
| } |
| |
| if (to_intel_crtc_state(crtc->state)->update_pipe) |
| intel_update_pipe_config(intel_crtc, old_intel_state); |
| else if (INTEL_GEN(dev_priv) >= 9) { |
| skl_detach_scalers(intel_crtc); |
| |
| I915_WRITE(PIPE_WM_LINETIME(pipe), |
| dev_priv->wm.skl_hw.wm_linetime[pipe]); |
| } |
| } |
| |
| static void intel_finish_crtc_commit(struct drm_crtc *crtc, |
| struct drm_crtc_state *old_crtc_state) |
| { |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| |
| intel_pipe_update_end(intel_crtc, NULL); |
| } |
| |
| /** |
| * intel_plane_destroy - destroy a plane |
| * @plane: plane to destroy |
| * |
| * Common destruction function for all types of planes (primary, cursor, |
| * sprite). |
| */ |
| void intel_plane_destroy(struct drm_plane *plane) |
| { |
| if (!plane) |
| return; |
| |
| drm_plane_cleanup(plane); |
| kfree(to_intel_plane(plane)); |
| } |
| |
| const struct drm_plane_funcs intel_plane_funcs = { |
| .update_plane = drm_atomic_helper_update_plane, |
| .disable_plane = drm_atomic_helper_disable_plane, |
| .destroy = intel_plane_destroy, |
| .set_property = drm_atomic_helper_plane_set_property, |
| .atomic_get_property = intel_plane_atomic_get_property, |
| .atomic_set_property = intel_plane_atomic_set_property, |
| .atomic_duplicate_state = intel_plane_duplicate_state, |
| .atomic_destroy_state = intel_plane_destroy_state, |
| |
| }; |
| |
| static struct drm_plane *intel_primary_plane_create(struct drm_device *dev, |
| int pipe) |
| { |
| struct intel_plane *primary = NULL; |
| struct intel_plane_state *state = NULL; |
| const uint32_t *intel_primary_formats; |
| unsigned int num_formats; |
| int ret; |
| |
| primary = kzalloc(sizeof(*primary), GFP_KERNEL); |
| if (!primary) |
| goto fail; |
| |
| state = intel_create_plane_state(&primary->base); |
| if (!state) |
| goto fail; |
| primary->base.state = &state->base; |
| |
| primary->can_scale = false; |
| primary->max_downscale = 1; |
| if (INTEL_INFO(dev)->gen >= 9) { |
| primary->can_scale = true; |
| state->scaler_id = -1; |
| } |
| primary->pipe = pipe; |
| primary->plane = pipe; |
| primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe); |
| primary->check_plane = intel_check_primary_plane; |
| if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) |
| primary->plane = !pipe; |
| |
| if (INTEL_INFO(dev)->gen >= 9) { |
| intel_primary_formats = skl_primary_formats; |
| num_formats = ARRAY_SIZE(skl_primary_formats); |
| |
| primary->update_plane = skylake_update_primary_plane; |
| primary->disable_plane = skylake_disable_primary_plane; |
| } else if (HAS_PCH_SPLIT(dev)) { |
| intel_primary_formats = i965_primary_formats; |
| num_formats = ARRAY_SIZE(i965_primary_formats); |
| |
| primary->update_plane = ironlake_update_primary_plane; |
| primary->disable_plane = i9xx_disable_primary_plane; |
| } else if (INTEL_INFO(dev)->gen >= 4) { |
| intel_primary_formats = i965_primary_formats; |
| num_formats = ARRAY_SIZE(i965_primary_formats); |
| |
| primary->update_plane = i9xx_update_primary_plane; |
| primary->disable_plane = i9xx_disable_primary_plane; |
| } else { |
| intel_primary_formats = i8xx_primary_formats; |
| num_formats = ARRAY_SIZE(i8xx_primary_formats); |
| |
| primary->update_plane = i9xx_update_primary_plane; |
| primary->disable_plane = i9xx_disable_primary_plane; |
| } |
| |
| if (INTEL_INFO(dev)->gen >= 9) |
| ret = drm_universal_plane_init(dev, &primary->base, 0, |
| &intel_plane_funcs, |
| intel_primary_formats, num_formats, |
| DRM_PLANE_TYPE_PRIMARY, |
| "plane 1%c", pipe_name(pipe)); |
| else if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) |
| ret = drm_universal_plane_init(dev, &primary->base, 0, |
| &intel_plane_funcs, |
| intel_primary_formats, num_formats, |
| DRM_PLANE_TYPE_PRIMARY, |
| "primary %c", pipe_name(pipe)); |
| else |
| ret = drm_universal_plane_init(dev, &primary->base, 0, |
| &intel_plane_funcs, |
| intel_primary_formats, num_formats, |
| DRM_PLANE_TYPE_PRIMARY, |
| "plane %c", plane_name(primary->plane)); |
| if (ret) |
| goto fail; |
| |
| if (INTEL_INFO(dev)->gen >= 4) |
| intel_create_rotation_property(dev, primary); |
| |
| drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs); |
| |
| return &primary->base; |
| |
| fail: |
| kfree(state); |
| kfree(primary); |
| |
| return NULL; |
| } |
| |
| void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane) |
| { |
| if (!dev->mode_config.rotation_property) { |
| unsigned long flags = DRM_ROTATE_0 | |
| DRM_ROTATE_180; |
| |
| if (INTEL_INFO(dev)->gen >= 9) |
| flags |= DRM_ROTATE_90 | DRM_ROTATE_270; |
| |
| dev->mode_config.rotation_property = |
| drm_mode_create_rotation_property(dev, flags); |
| } |
| if (dev->mode_config.rotation_property) |
| drm_object_attach_property(&plane->base.base, |
| dev->mode_config.rotation_property, |
| plane->base.state->rotation); |
| } |
| |
| static int |
| intel_check_cursor_plane(struct drm_plane *plane, |
| struct intel_crtc_state *crtc_state, |
| struct intel_plane_state *state) |
| { |
| struct drm_framebuffer *fb = state->base.fb; |
| struct drm_i915_gem_object *obj = intel_fb_obj(fb); |
| enum pipe pipe = to_intel_plane(plane)->pipe; |
| unsigned stride; |
| int ret; |
| |
| ret = drm_plane_helper_check_state(&state->base, |
| &state->clip, |
| DRM_PLANE_HELPER_NO_SCALING, |
| DRM_PLANE_HELPER_NO_SCALING, |
| true, true); |
| if (ret) |
| return ret; |
| |
| /* if we want to turn off the cursor ignore width and height */ |
| if (!obj) |
| return 0; |
| |
| /* Check for which cursor types we support */ |
| if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) { |
| DRM_DEBUG("Cursor dimension %dx%d not supported\n", |
| state->base.crtc_w, state->base.crtc_h); |
| return -EINVAL; |
| } |
| |
| stride = roundup_pow_of_two(state->base.crtc_w) * 4; |
| if (obj->base.size < stride * state->base.crtc_h) { |
| DRM_DEBUG_KMS("buffer is too small\n"); |
| return -ENOMEM; |
| } |
| |
| if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) { |
| DRM_DEBUG_KMS("cursor cannot be tiled\n"); |
| return -EINVAL; |
| } |
| |
| /* |
| * There's something wrong with the cursor on CHV pipe C. |
| * If it straddles the left edge of the screen then |
| * moving it away from the edge or disabling it often |
| * results in a pipe underrun, and often that can lead to |
| * dead pipe (constant underrun reported, and it scans |
| * out just a solid color). To recover from that, the |
| * display power well must be turned off and on again. |
| * Refuse the put the cursor into that compromised position. |
| */ |
| if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C && |
| state->base.visible && state->base.crtc_x < 0) { |
| DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static void |
| intel_disable_cursor_plane(struct drm_plane *plane, |
| struct drm_crtc *crtc) |
| { |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| |
| intel_crtc->cursor_addr = 0; |
| intel_crtc_update_cursor(crtc, NULL); |
| } |
| |
| static void |
| intel_update_cursor_plane(struct drm_plane *plane, |
| const struct intel_crtc_state *crtc_state, |
| const struct intel_plane_state *state) |
| { |
| struct drm_crtc *crtc = crtc_state->base.crtc; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct drm_device *dev = plane->dev; |
| struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb); |
| uint32_t addr; |
| |
| if (!obj) |
| addr = 0; |
| else if (!INTEL_INFO(dev)->cursor_needs_physical) |
| addr = i915_gem_object_ggtt_offset(obj, NULL); |
| else |
| addr = obj->phys_handle->busaddr; |
| |
| intel_crtc->cursor_addr = addr; |
| intel_crtc_update_cursor(crtc, state); |
| } |
| |
| static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev, |
| int pipe) |
| { |
| struct intel_plane *cursor = NULL; |
| struct intel_plane_state *state = NULL; |
| int ret; |
| |
| cursor = kzalloc(sizeof(*cursor), GFP_KERNEL); |
| if (!cursor) |
| goto fail; |
| |
| state = intel_create_plane_state(&cursor->base); |
| if (!state) |
| goto fail; |
| cursor->base.state = &state->base; |
| |
| cursor->can_scale = false; |
| cursor->max_downscale = 1; |
| cursor->pipe = pipe; |
| cursor->plane = pipe; |
| cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe); |
| cursor->check_plane = intel_check_cursor_plane; |
| cursor->update_plane = intel_update_cursor_plane; |
| cursor->disable_plane = intel_disable_cursor_plane; |
| |
| ret = drm_universal_plane_init(dev, &cursor->base, 0, |
| &intel_plane_funcs, |
| intel_cursor_formats, |
| ARRAY_SIZE(intel_cursor_formats), |
| DRM_PLANE_TYPE_CURSOR, |
| "cursor %c", pipe_name(pipe)); |
| if (ret) |
| goto fail; |
| |
| if (INTEL_INFO(dev)->gen >= 4) { |
| if (!dev->mode_config.rotation_property) |
| dev->mode_config.rotation_property = |
| drm_mode_create_rotation_property(dev, |
| DRM_ROTATE_0 | |
| DRM_ROTATE_180); |
| if (dev->mode_config.rotation_property) |
| drm_object_attach_property(&cursor->base.base, |
| dev->mode_config.rotation_property, |
| state->base.rotation); |
| } |
| |
| if (INTEL_INFO(dev)->gen >=9) |
| state->scaler_id = -1; |
| |
| drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs); |
| |
| return &cursor->base; |
| |
| fail: |
| kfree(state); |
| kfree(cursor); |
| |
| return NULL; |
| } |
| |
| static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc, |
| struct intel_crtc_state *crtc_state) |
| { |
| int i; |
| struct intel_scaler *intel_scaler; |
| struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state; |
| |
| for (i = 0; i < intel_crtc->num_scalers; i++) { |
| intel_scaler = &scaler_state->scalers[i]; |
| intel_scaler->in_use = 0; |
| intel_scaler->mode = PS_SCALER_MODE_DYN; |
| } |
| |
| scaler_state->scaler_id = -1; |
| } |
| |
| static void intel_crtc_init(struct drm_device *dev, int pipe) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_crtc *intel_crtc; |
| struct intel_crtc_state *crtc_state = NULL; |
| struct drm_plane *primary = NULL; |
| struct drm_plane *cursor = NULL; |
| int ret; |
| |
| intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL); |
| if (intel_crtc == NULL) |
| return; |
| |
| crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL); |
| if (!crtc_state) |
| goto fail; |
| intel_crtc->config = crtc_state; |
| intel_crtc->base.state = &crtc_state->base; |
| crtc_state->base.crtc = &intel_crtc->base; |
| |
| /* initialize shared scalers */ |
| if (INTEL_INFO(dev)->gen >= 9) { |
| if (pipe == PIPE_C) |
| intel_crtc->num_scalers = 1; |
| else |
| intel_crtc->num_scalers = SKL_NUM_SCALERS; |
| |
| skl_init_scalers(dev, intel_crtc, crtc_state); |
| } |
| |
| primary = intel_primary_plane_create(dev, pipe); |
| if (!primary) |
| goto fail; |
| |
| cursor = intel_cursor_plane_create(dev, pipe); |
| if (!cursor) |
| goto fail; |
| |
| ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary, |
| cursor, &intel_crtc_funcs, |
| "pipe %c", pipe_name(pipe)); |
| if (ret) |
| goto fail; |
| |
| /* |
| * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port |
| * is hooked to pipe B. Hence we want plane A feeding pipe B. |
| */ |
| intel_crtc->pipe = pipe; |
| intel_crtc->plane = pipe; |
| if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) { |
| DRM_DEBUG_KMS("swapping pipes & planes for FBC\n"); |
| intel_crtc->plane = !pipe; |
| } |
| |
| intel_crtc->cursor_base = ~0; |
| intel_crtc->cursor_cntl = ~0; |
| intel_crtc->cursor_size = ~0; |
| |
| intel_crtc->wm.cxsr_allowed = true; |
| |
| BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) || |
| dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL); |
| dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base; |
| dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base; |
| |
| drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs); |
| |
| intel_color_init(&intel_crtc->base); |
| |
| WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe); |
| return; |
| |
| fail: |
| intel_plane_destroy(primary); |
| intel_plane_destroy(cursor); |
| kfree(crtc_state); |
| kfree(intel_crtc); |
| } |
| |
| enum pipe intel_get_pipe_from_connector(struct intel_connector *connector) |
| { |
| struct drm_encoder *encoder = connector->base.encoder; |
| struct drm_device *dev = connector->base.dev; |
| |
| WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex)); |
| |
| if (!encoder || WARN_ON(!encoder->crtc)) |
| return INVALID_PIPE; |
| |
| return to_intel_crtc(encoder->crtc)->pipe; |
| } |
| |
| int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data; |
| struct drm_crtc *drmmode_crtc; |
| struct intel_crtc *crtc; |
| |
| drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id); |
| if (!drmmode_crtc) |
| return -ENOENT; |
| |
| crtc = to_intel_crtc(drmmode_crtc); |
| pipe_from_crtc_id->pipe = crtc->pipe; |
| |
| return 0; |
| } |
| |
| static int intel_encoder_clones(struct intel_encoder *encoder) |
| { |
| struct drm_device *dev = encoder->base.dev; |
| struct intel_encoder *source_encoder; |
| int index_mask = 0; |
| int entry = 0; |
| |
| for_each_intel_encoder(dev, source_encoder) { |
| if (encoders_cloneable(encoder, source_encoder)) |
| index_mask |= (1 << entry); |
| |
| entry++; |
| } |
| |
| return index_mask; |
| } |
| |
| static bool has_edp_a(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| |
| if (!IS_MOBILE(dev)) |
| return false; |
| |
| if ((I915_READ(DP_A) & DP_DETECTED) == 0) |
| return false; |
| |
| if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE)) |
| return false; |
| |
| return true; |
| } |
| |
| static bool intel_crt_present(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| |
| if (INTEL_INFO(dev)->gen >= 9) |
| return false; |
| |
| if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev)) |
| return false; |
| |
| if (IS_CHERRYVIEW(dev)) |
| return false; |
| |
| if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED) |
| return false; |
| |
| /* DDI E can't be used if DDI A requires 4 lanes */ |
| if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES) |
| return false; |
| |
| if (!dev_priv->vbt.int_crt_support) |
| return false; |
| |
| return true; |
| } |
| |
| void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv) |
| { |
| int pps_num; |
| int pps_idx; |
| |
| if (HAS_DDI(dev_priv)) |
| return; |
| /* |
| * This w/a is needed at least on CPT/PPT, but to be sure apply it |
| * everywhere where registers can be write protected. |
| */ |
| if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) |
| pps_num = 2; |
| else |
| pps_num = 1; |
| |
| for (pps_idx = 0; pps_idx < pps_num; pps_idx++) { |
| u32 val = I915_READ(PP_CONTROL(pps_idx)); |
| |
| val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS; |
| I915_WRITE(PP_CONTROL(pps_idx), val); |
| } |
| } |
| |
| static void intel_pps_init(struct drm_i915_private *dev_priv) |
| { |
| if (HAS_PCH_SPLIT(dev_priv) || IS_BROXTON(dev_priv)) |
| dev_priv->pps_mmio_base = PCH_PPS_BASE; |
| else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) |
| dev_priv->pps_mmio_base = VLV_PPS_BASE; |
| else |
| dev_priv->pps_mmio_base = PPS_BASE; |
| |
| intel_pps_unlock_regs_wa(dev_priv); |
| } |
| |
| static void intel_setup_outputs(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_encoder *encoder; |
| bool dpd_is_edp = false; |
| |
| intel_pps_init(dev_priv); |
| |
| /* |
| * intel_edp_init_connector() depends on this completing first, to |
| * prevent the registeration of both eDP and LVDS and the incorrect |
| * sharing of the PPS. |
| */ |
| intel_lvds_init(dev); |
| |
| if (intel_crt_present(dev)) |
| intel_crt_init(dev); |
| |
| if (IS_BROXTON(dev)) { |
| /* |
| * FIXME: Broxton doesn't support port detection via the |
| * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to |
| * detect the ports. |
| */ |
| intel_ddi_init(dev, PORT_A); |
| intel_ddi_init(dev, PORT_B); |
| intel_ddi_init(dev, PORT_C); |
| |
| intel_dsi_init(dev); |
| } else if (HAS_DDI(dev)) { |
| int found; |
| |
| /* |
| * Haswell uses DDI functions to detect digital outputs. |
| * On SKL pre-D0 the strap isn't connected, so we assume |
| * it's there. |
| */ |
| found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED; |
| /* WaIgnoreDDIAStrap: skl */ |
| if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) |
| intel_ddi_init(dev, PORT_A); |
| |
| /* DDI B, C and D detection is indicated by the SFUSE_STRAP |
| * register */ |
| found = I915_READ(SFUSE_STRAP); |
| |
| if (found & SFUSE_STRAP_DDIB_DETECTED) |
| intel_ddi_init(dev, PORT_B); |
| if (found & SFUSE_STRAP_DDIC_DETECTED) |
| intel_ddi_init(dev, PORT_C); |
| if (found & SFUSE_STRAP_DDID_DETECTED) |
| intel_ddi_init(dev, PORT_D); |
| /* |
| * On SKL we don't have a way to detect DDI-E so we rely on VBT. |
| */ |
| if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) && |
| (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp || |
| dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi || |
| dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi)) |
| intel_ddi_init(dev, PORT_E); |
| |
| } else if (HAS_PCH_SPLIT(dev)) { |
| int found; |
| dpd_is_edp = intel_dp_is_edp(dev, PORT_D); |
| |
| if (has_edp_a(dev)) |
| intel_dp_init(dev, DP_A, PORT_A); |
| |
| if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) { |
| /* PCH SDVOB multiplex with HDMIB */ |
| found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B); |
| if (!found) |
| intel_hdmi_init(dev, PCH_HDMIB, PORT_B); |
| if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED)) |
| intel_dp_init(dev, PCH_DP_B, PORT_B); |
| } |
| |
| if (I915_READ(PCH_HDMIC) & SDVO_DETECTED) |
| intel_hdmi_init(dev, PCH_HDMIC, PORT_C); |
| |
| if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED) |
| intel_hdmi_init(dev, PCH_HDMID, PORT_D); |
| |
| if (I915_READ(PCH_DP_C) & DP_DETECTED) |
| intel_dp_init(dev, PCH_DP_C, PORT_C); |
| |
| if (I915_READ(PCH_DP_D) & DP_DETECTED) |
| intel_dp_init(dev, PCH_DP_D, PORT_D); |
| } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) { |
| bool has_edp, has_port; |
| |
| /* |
| * The DP_DETECTED bit is the latched state of the DDC |
| * SDA pin at boot. However since eDP doesn't require DDC |
| * (no way to plug in a DP->HDMI dongle) the DDC pins for |
| * eDP ports may have been muxed to an alternate function. |
| * Thus we can't rely on the DP_DETECTED bit alone to detect |
| * eDP ports. Consult the VBT as well as DP_DETECTED to |
| * detect eDP ports. |
| * |
| * Sadly the straps seem to be missing sometimes even for HDMI |
| * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap |
| * and VBT for the presence of the port. Additionally we can't |
| * trust the port type the VBT declares as we've seen at least |
| * HDMI ports that the VBT claim are DP or eDP. |
| */ |
| has_edp = intel_dp_is_edp(dev, PORT_B); |
| has_port = intel_bios_is_port_present(dev_priv, PORT_B); |
| if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port) |
| has_edp &= intel_dp_init(dev, VLV_DP_B, PORT_B); |
| if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp) |
| intel_hdmi_init(dev, VLV_HDMIB, PORT_B); |
| |
| has_edp = intel_dp_is_edp(dev, PORT_C); |
| has_port = intel_bios_is_port_present(dev_priv, PORT_C); |
| if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port) |
| has_edp &= intel_dp_init(dev, VLV_DP_C, PORT_C); |
| if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp) |
| intel_hdmi_init(dev, VLV_HDMIC, PORT_C); |
| |
| if (IS_CHERRYVIEW(dev)) { |
| /* |
| * eDP not supported on port D, |
| * so no need to worry about it |
| */ |
| has_port = intel_bios_is_port_present(dev_priv, PORT_D); |
| if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port) |
| intel_dp_init(dev, CHV_DP_D, PORT_D); |
| if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port) |
| intel_hdmi_init(dev, CHV_HDMID, PORT_D); |
| } |
| |
| intel_dsi_init(dev); |
| } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) { |
| bool found = false; |
| |
| if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) { |
| DRM_DEBUG_KMS("probing SDVOB\n"); |
| found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B); |
| if (!found && IS_G4X(dev)) { |
| DRM_DEBUG_KMS("probing HDMI on SDVOB\n"); |
| intel_hdmi_init(dev, GEN4_HDMIB, PORT_B); |
| } |
| |
| if (!found && IS_G4X(dev)) |
| intel_dp_init(dev, DP_B, PORT_B); |
| } |
| |
| /* Before G4X SDVOC doesn't have its own detect register */ |
| |
| if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) { |
| DRM_DEBUG_KMS("probing SDVOC\n"); |
| found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C); |
| } |
| |
| if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) { |
| |
| if (IS_G4X(dev)) { |
| DRM_DEBUG_KMS("probing HDMI on SDVOC\n"); |
| intel_hdmi_init(dev, GEN4_HDMIC, PORT_C); |
| } |
| if (IS_G4X(dev)) |
| intel_dp_init(dev, DP_C, PORT_C); |
| } |
| |
| if (IS_G4X(dev) && |
| (I915_READ(DP_D) & DP_DETECTED)) |
| intel_dp_init(dev, DP_D, PORT_D); |
| } else if (IS_GEN2(dev)) |
| intel_dvo_init(dev); |
| |
| if (SUPPORTS_TV(dev)) |
| intel_tv_init(dev); |
| |
| intel_psr_init(dev); |
| |
| for_each_intel_encoder(dev, encoder) { |
| encoder->base.possible_crtcs = encoder->crtc_mask; |
| encoder->base.possible_clones = |
| intel_encoder_clones(encoder); |
| } |
| |
| intel_init_pch_refclk(dev); |
| |
| drm_helper_move_panel_connectors_to_head(dev); |
| } |
| |
| static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb) |
| { |
| struct drm_device *dev = fb->dev; |
| struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); |
| |
| drm_framebuffer_cleanup(fb); |
| mutex_lock(&dev->struct_mutex); |
| WARN_ON(!intel_fb->obj->framebuffer_references--); |
| i915_gem_object_put(intel_fb->obj); |
| mutex_unlock(&dev->struct_mutex); |
| kfree(intel_fb); |
| } |
| |
| static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb, |
| struct drm_file *file, |
| unsigned int *handle) |
| { |
| struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); |
| struct drm_i915_gem_object *obj = intel_fb->obj; |
| |
| if (obj->userptr.mm) { |
| DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n"); |
| return -EINVAL; |
| } |
| |
| return drm_gem_handle_create(file, &obj->base, handle); |
| } |
| |
| static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb, |
| struct drm_file *file, |
| unsigned flags, unsigned color, |
| struct drm_clip_rect *clips, |
| unsigned num_clips) |
| { |
| struct drm_device *dev = fb->dev; |
| struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); |
| struct drm_i915_gem_object *obj = intel_fb->obj; |
| |
| mutex_lock(&dev->struct_mutex); |
| intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB); |
| mutex_unlock(&dev->struct_mutex); |
| |
| return 0; |
| } |
| |
| static const struct drm_framebuffer_funcs intel_fb_funcs = { |
| .destroy = intel_user_framebuffer_destroy, |
| .create_handle = intel_user_framebuffer_create_handle, |
| .dirty = intel_user_framebuffer_dirty, |
| }; |
| |
| static |
| u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier, |
| uint32_t pixel_format) |
| { |
| u32 gen = INTEL_INFO(dev)->gen; |
| |
| if (gen >= 9) { |
| int cpp = drm_format_plane_cpp(pixel_format, 0); |
| |
| /* "The stride in bytes must not exceed the of the size of 8K |
| * pixels and 32K bytes." |
| */ |
| return min(8192 * cpp, 32768); |
| } else if (gen >= 5 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) { |
| return 32*1024; |
| } else if (gen >= 4) { |
| if (fb_modifier == I915_FORMAT_MOD_X_TILED) |
| return 16*1024; |
| else |
| return 32*1024; |
| } else if (gen >= 3) { |
| if (fb_modifier == I915_FORMAT_MOD_X_TILED) |
| return 8*1024; |
| else |
| return 16*1024; |
| } else { |
| /* XXX DSPC is limited to 4k tiled */ |
| return 8*1024; |
| } |
| } |
| |
| static int intel_framebuffer_init(struct drm_device *dev, |
| struct intel_framebuffer *intel_fb, |
| struct drm_mode_fb_cmd2 *mode_cmd, |
| struct drm_i915_gem_object *obj) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| unsigned int tiling = i915_gem_object_get_tiling(obj); |
| int ret; |
| u32 pitch_limit, stride_alignment; |
| char *format_name; |
| |
| WARN_ON(!mutex_is_locked(&dev->struct_mutex)); |
| |
| if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) { |
| /* |
| * If there's a fence, enforce that |
| * the fb modifier and tiling mode match. |
| */ |
| if (tiling != I915_TILING_NONE && |
| tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) { |
| DRM_DEBUG("tiling_mode doesn't match fb modifier\n"); |
| return -EINVAL; |
| } |
| } else { |
| if (tiling == I915_TILING_X) { |
| mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED; |
| } else if (tiling == I915_TILING_Y) { |
| DRM_DEBUG("No Y tiling for legacy addfb\n"); |
| return -EINVAL; |
| } |
| } |
| |
| /* Passed in modifier sanity checking. */ |
| switch (mode_cmd->modifier[0]) { |
| case I915_FORMAT_MOD_Y_TILED: |
| case I915_FORMAT_MOD_Yf_TILED: |
| if (INTEL_INFO(dev)->gen < 9) { |
| DRM_DEBUG("Unsupported tiling 0x%llx!\n", |
| mode_cmd->modifier[0]); |
| return -EINVAL; |
| } |
| case DRM_FORMAT_MOD_NONE: |
| case I915_FORMAT_MOD_X_TILED: |
| break; |
| default: |
| DRM_DEBUG("Unsupported fb modifier 0x%llx!\n", |
| mode_cmd->modifier[0]); |
| return -EINVAL; |
| } |
| |
| /* |
| * gen2/3 display engine uses the fence if present, |
| * so the tiling mode must match the fb modifier exactly. |
| */ |
| if (INTEL_INFO(dev_priv)->gen < 4 && |
| tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) { |
| DRM_DEBUG("tiling_mode must match fb modifier exactly on gen2/3\n"); |
| return -EINVAL; |
| } |
| |
| stride_alignment = intel_fb_stride_alignment(dev_priv, |
| mode_cmd->modifier[0], |
| mode_cmd->pixel_format); |
| if (mode_cmd->pitches[0] & (stride_alignment - 1)) { |
| DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n", |
| mode_cmd->pitches[0], stride_alignment); |
| return -EINVAL; |
| } |
| |
| pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0], |
| mode_cmd->pixel_format); |
| if (mode_cmd->pitches[0] > pitch_limit) { |
| DRM_DEBUG("%s pitch (%u) must be at less than %d\n", |
| mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ? |
| "tiled" : "linear", |
| mode_cmd->pitches[0], pitch_limit); |
| return -EINVAL; |
| } |
| |
| /* |
| * If there's a fence, enforce that |
| * the fb pitch and fence stride match. |
| */ |
| if (tiling != I915_TILING_NONE && |
| mode_cmd->pitches[0] != i915_gem_object_get_stride(obj)) { |
| DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n", |
| mode_cmd->pitches[0], |
| i915_gem_object_get_stride(obj)); |
| return -EINVAL; |
| } |
| |
| /* Reject formats not supported by any plane early. */ |
| switch (mode_cmd->pixel_format) { |
| case DRM_FORMAT_C8: |
| case DRM_FORMAT_RGB565: |
| case DRM_FORMAT_XRGB8888: |
| case DRM_FORMAT_ARGB8888: |
| break; |
| case DRM_FORMAT_XRGB1555: |
| if (INTEL_INFO(dev)->gen > 3) { |
| format_name = drm_get_format_name(mode_cmd->pixel_format); |
| DRM_DEBUG("unsupported pixel format: %s\n", format_name); |
| kfree(format_name); |
| return -EINVAL; |
| } |
| break; |
| case DRM_FORMAT_ABGR8888: |
| if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && |
| INTEL_INFO(dev)->gen < 9) { |
| format_name = drm_get_format_name(mode_cmd->pixel_format); |
| DRM_DEBUG("unsupported pixel format: %s\n", format_name); |
| kfree(format_name); |
| return -EINVAL; |
| } |
| break; |
| case DRM_FORMAT_XBGR8888: |
| case DRM_FORMAT_XRGB2101010: |
| case DRM_FORMAT_XBGR2101010: |
| if (INTEL_INFO(dev)->gen < 4) { |
| format_name = drm_get_format_name(mode_cmd->pixel_format); |
| DRM_DEBUG("unsupported pixel format: %s\n", format_name); |
| kfree(format_name); |
| return -EINVAL; |
| } |
| break; |
| case DRM_FORMAT_ABGR2101010: |
| if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) { |
| format_name = drm_get_format_name(mode_cmd->pixel_format); |
| DRM_DEBUG("unsupported pixel format: %s\n", format_name); |
| kfree(format_name); |
| return -EINVAL; |
| } |
| break; |
| case DRM_FORMAT_YUYV: |
| case DRM_FORMAT_UYVY: |
| case DRM_FORMAT_YVYU: |
| case DRM_FORMAT_VYUY: |
| if (INTEL_INFO(dev)->gen < 5) { |
| format_name = drm_get_format_name(mode_cmd->pixel_format); |
| DRM_DEBUG("unsupported pixel format: %s\n", format_name); |
| kfree(format_name); |
| return -EINVAL; |
| } |
| break; |
| default: |
| format_name = drm_get_format_name(mode_cmd->pixel_format); |
| DRM_DEBUG("unsupported pixel format: %s\n", format_name); |
| kfree(format_name); |
| return -EINVAL; |
| } |
| |
| /* FIXME need to adjust LINOFF/TILEOFF accordingly. */ |
| if (mode_cmd->offsets[0] != 0) |
| return -EINVAL; |
| |
| drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd); |
| intel_fb->obj = obj; |
| |
| ret = intel_fill_fb_info(dev_priv, &intel_fb->base); |
| if (ret) |
| return ret; |
| |
| ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs); |
| if (ret) { |
| DRM_ERROR("framebuffer init failed %d\n", ret); |
| return ret; |
| } |
| |
| intel_fb->obj->framebuffer_references++; |
| |
| return 0; |
| } |
| |
| static struct drm_framebuffer * |
| intel_user_framebuffer_create(struct drm_device *dev, |
| struct drm_file *filp, |
| const struct drm_mode_fb_cmd2 *user_mode_cmd) |
| { |
| struct drm_framebuffer *fb; |
| struct drm_i915_gem_object *obj; |
| struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd; |
| |
| obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]); |
| if (!obj) |
| return ERR_PTR(-ENOENT); |
| |
| fb = intel_framebuffer_create(dev, &mode_cmd, obj); |
| if (IS_ERR(fb)) |
| i915_gem_object_put_unlocked(obj); |
| |
| return fb; |
| } |
| |
| #ifndef CONFIG_DRM_FBDEV_EMULATION |
| static inline void intel_fbdev_output_poll_changed(struct drm_device *dev) |
| { |
| } |
| #endif |
| |
| static const struct drm_mode_config_funcs intel_mode_funcs = { |
| .fb_create = intel_user_framebuffer_create, |
| .output_poll_changed = intel_fbdev_output_poll_changed, |
| .atomic_check = intel_atomic_check, |
| .atomic_commit = intel_atomic_commit, |
| .atomic_state_alloc = intel_atomic_state_alloc, |
| .atomic_state_clear = intel_atomic_state_clear, |
| }; |
| |
| /** |
| * intel_init_display_hooks - initialize the display modesetting hooks |
| * @dev_priv: device private |
| */ |
| void intel_init_display_hooks(struct drm_i915_private *dev_priv) |
| { |
| if (INTEL_INFO(dev_priv)->gen >= 9) { |
| dev_priv->display.get_pipe_config = haswell_get_pipe_config; |
| dev_priv->display.get_initial_plane_config = |
| skylake_get_initial_plane_config; |
| dev_priv->display.crtc_compute_clock = |
| haswell_crtc_compute_clock; |
| dev_priv->display.crtc_enable = haswell_crtc_enable; |
| dev_priv->display.crtc_disable = haswell_crtc_disable; |
| } else if (HAS_DDI(dev_priv)) { |
| dev_priv->display.get_pipe_config = haswell_get_pipe_config; |
| dev_priv->display.get_initial_plane_config = |
| ironlake_get_initial_plane_config; |
| dev_priv->display.crtc_compute_clock = |
| haswell_crtc_compute_clock; |
| dev_priv->display.crtc_enable = haswell_crtc_enable; |
| dev_priv->display.crtc_disable = haswell_crtc_disable; |
| } else if (HAS_PCH_SPLIT(dev_priv)) { |
| dev_priv->display.get_pipe_config = ironlake_get_pipe_config; |
| dev_priv->display.get_initial_plane_config = |
| ironlake_get_initial_plane_config; |
| dev_priv->display.crtc_compute_clock = |
| ironlake_crtc_compute_clock; |
| dev_priv->display.crtc_enable = ironlake_crtc_enable; |
| dev_priv->display.crtc_disable = ironlake_crtc_disable; |
| } else if (IS_CHERRYVIEW(dev_priv)) { |
| dev_priv->display.get_pipe_config = i9xx_get_pipe_config; |
| dev_priv->display.get_initial_plane_config = |
| i9xx_get_initial_plane_config; |
| dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock; |
| dev_priv->display.crtc_enable = valleyview_crtc_enable; |
| dev_priv->display.crtc_disable = i9xx_crtc_disable; |
| } else if (IS_VALLEYVIEW(dev_priv)) { |
| dev_priv->display.get_pipe_config = i9xx_get_pipe_config; |
| dev_priv->display.get_initial_plane_config = |
| i9xx_get_initial_plane_config; |
| dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock; |
| dev_priv->display.crtc_enable = valleyview_crtc_enable; |
| dev_priv->display.crtc_disable = i9xx_crtc_disable; |
| } else if (IS_G4X(dev_priv)) { |
| dev_priv->display.get_pipe_config = i9xx_get_pipe_config; |
| dev_priv->display.get_initial_plane_config = |
| i9xx_get_initial_plane_config; |
| dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock; |
| dev_priv->display.crtc_enable = i9xx_crtc_enable; |
| dev_priv->display.crtc_disable = i9xx_crtc_disable; |
| } else if (IS_PINEVIEW(dev_priv)) { |
| dev_priv->display.get_pipe_config = i9xx_get_pipe_config; |
| dev_priv->display.get_initial_plane_config = |
| i9xx_get_initial_plane_config; |
| dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock; |
| dev_priv->display.crtc_enable = i9xx_crtc_enable; |
| dev_priv->display.crtc_disable = i9xx_crtc_disable; |
| } else if (!IS_GEN2(dev_priv)) { |
| dev_priv->display.get_pipe_config = i9xx_get_pipe_config; |
| dev_priv->display.get_initial_plane_config = |
| i9xx_get_initial_plane_config; |
| dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock; |
| dev_priv->display.crtc_enable = i9xx_crtc_enable; |
| dev_priv->display.crtc_disable = i9xx_crtc_disable; |
| } else { |
| dev_priv->display.get_pipe_config = i9xx_get_pipe_config; |
| dev_priv->display.get_initial_plane_config = |
| i9xx_get_initial_plane_config; |
| dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock; |
| dev_priv->display.crtc_enable = i9xx_crtc_enable; |
| dev_priv->display.crtc_disable = i9xx_crtc_disable; |
| } |
| |
| /* Returns the core display clock speed */ |
| if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) |
| dev_priv->display.get_display_clock_speed = |
| skylake_get_display_clock_speed; |
| else if (IS_BROXTON(dev_priv)) |
| dev_priv->display.get_display_clock_speed = |
| broxton_get_display_clock_speed; |
| else if (IS_BROADWELL(dev_priv)) |
| dev_priv->display.get_display_clock_speed = |
| broadwell_get_display_clock_speed; |
| else if (IS_HASWELL(dev_priv)) |
| dev_priv->display.get_display_clock_speed = |
| haswell_get_display_clock_speed; |
| else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) |
| dev_priv->display.get_display_clock_speed = |
| valleyview_get_display_clock_speed; |
| else if (IS_GEN5(dev_priv)) |
| dev_priv->display.get_display_clock_speed = |
| ilk_get_display_clock_speed; |
| else if (IS_I945G(dev_priv) || IS_BROADWATER(dev_priv) || |
| IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv)) |
| dev_priv->display.get_display_clock_speed = |
| i945_get_display_clock_speed; |
| else if (IS_GM45(dev_priv)) |
| dev_priv->display.get_display_clock_speed = |
| gm45_get_display_clock_speed; |
| else if (IS_CRESTLINE(dev_priv)) |
| dev_priv->display.get_display_clock_speed = |
| i965gm_get_display_clock_speed; |
| else if (IS_PINEVIEW(dev_priv)) |
| dev_priv->display.get_display_clock_speed = |
| pnv_get_display_clock_speed; |
| else if (IS_G33(dev_priv) || IS_G4X(dev_priv)) |
| dev_priv->display.get_display_clock_speed = |
| g33_get_display_clock_speed; |
| else if (IS_I915G(dev_priv)) |
| dev_priv->display.get_display_clock_speed = |
| i915_get_display_clock_speed; |
| else if (IS_I945GM(dev_priv) || IS_845G(dev_priv)) |
| dev_priv->display.get_display_clock_speed = |
| i9xx_misc_get_display_clock_speed; |
| else if (IS_I915GM(dev_priv)) |
| dev_priv->display.get_display_clock_speed = |
| i915gm_get_display_clock_speed; |
| else if (IS_I865G(dev_priv)) |
| dev_priv->display.get_display_clock_speed = |
| i865_get_display_clock_speed; |
| else if (IS_I85X(dev_priv)) |
| dev_priv->display.get_display_clock_speed = |
| i85x_get_display_clock_speed; |
| else { /* 830 */ |
| WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n"); |
| dev_priv->display.get_display_clock_speed = |
| i830_get_display_clock_speed; |
| } |
| |
| if (IS_GEN5(dev_priv)) { |
| dev_priv->display.fdi_link_train = ironlake_fdi_link_train; |
| } else if (IS_GEN6(dev_priv)) { |
| dev_priv->display.fdi_link_train = gen6_fdi_link_train; |
| } else if (IS_IVYBRIDGE(dev_priv)) { |
| /* FIXME: detect B0+ stepping and use auto training */ |
| dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train; |
| } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { |
| dev_priv->display.fdi_link_train = hsw_fdi_link_train; |
| } |
| |
| if (IS_BROADWELL(dev_priv)) { |
| dev_priv->display.modeset_commit_cdclk = |
| broadwell_modeset_commit_cdclk; |
| dev_priv->display.modeset_calc_cdclk = |
| broadwell_modeset_calc_cdclk; |
| } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { |
| dev_priv->display.modeset_commit_cdclk = |
| valleyview_modeset_commit_cdclk; |
| dev_priv->display.modeset_calc_cdclk = |
| valleyview_modeset_calc_cdclk; |
| } else if (IS_BROXTON(dev_priv)) { |
| dev_priv->display.modeset_commit_cdclk = |
| bxt_modeset_commit_cdclk; |
| dev_priv->display.modeset_calc_cdclk = |
| bxt_modeset_calc_cdclk; |
| } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) { |
| dev_priv->display.modeset_commit_cdclk = |
| skl_modeset_commit_cdclk; |
| dev_priv->display.modeset_calc_cdclk = |
| skl_modeset_calc_cdclk; |
| } |
| |
| if (dev_priv->info.gen >= 9) |
| dev_priv->display.update_crtcs = skl_update_crtcs; |
| else |
| dev_priv->display.update_crtcs = intel_update_crtcs; |
| |
| switch (INTEL_INFO(dev_priv)->gen) { |
| case 2: |
| dev_priv->display.queue_flip = intel_gen2_queue_flip; |
| break; |
| |
| case 3: |
| dev_priv->display.queue_flip = intel_gen3_queue_flip; |
| break; |
| |
| case 4: |
| case 5: |
| dev_priv->display.queue_flip = intel_gen4_queue_flip; |
| break; |
| |
| case 6: |
| dev_priv->display.queue_flip = intel_gen6_queue_flip; |
| break; |
| case 7: |
| case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */ |
| dev_priv->display.queue_flip = intel_gen7_queue_flip; |
| break; |
| case 9: |
| /* Drop through - unsupported since execlist only. */ |
| default: |
| /* Default just returns -ENODEV to indicate unsupported */ |
| dev_priv->display.queue_flip = intel_default_queue_flip; |
| } |
| } |
| |
| /* |
| * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend, |
| * resume, or other times. This quirk makes sure that's the case for |
| * affected systems. |
| */ |
| static void quirk_pipea_force(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| |
| dev_priv->quirks |= QUIRK_PIPEA_FORCE; |
| DRM_INFO("applying pipe a force quirk\n"); |
| } |
| |
| static void quirk_pipeb_force(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| |
| dev_priv->quirks |= QUIRK_PIPEB_FORCE; |
| DRM_INFO("applying pipe b force quirk\n"); |
| } |
| |
| /* |
| * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason |
| */ |
| static void quirk_ssc_force_disable(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE; |
| DRM_INFO("applying lvds SSC disable quirk\n"); |
| } |
| |
| /* |
| * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight |
| * brightness value |
| */ |
| static void quirk_invert_brightness(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS; |
| DRM_INFO("applying inverted panel brightness quirk\n"); |
| } |
| |
| /* Some VBT's incorrectly indicate no backlight is present */ |
| static void quirk_backlight_present(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT; |
| DRM_INFO("applying backlight present quirk\n"); |
| } |
| |
| struct intel_quirk { |
| int device; |
| int subsystem_vendor; |
| int subsystem_device; |
| void (*hook)(struct drm_device *dev); |
| }; |
| |
| /* For systems that don't have a meaningful PCI subdevice/subvendor ID */ |
| struct intel_dmi_quirk { |
| void (*hook)(struct drm_device *dev); |
| const struct dmi_system_id (*dmi_id_list)[]; |
| }; |
| |
| static int intel_dmi_reverse_brightness(const struct dmi_system_id *id) |
| { |
| DRM_INFO("Backlight polarity reversed on %s\n", id->ident); |
| return 1; |
| } |
| |
| static const struct intel_dmi_quirk intel_dmi_quirks[] = { |
| { |
| .dmi_id_list = &(const struct dmi_system_id[]) { |
| { |
| .callback = intel_dmi_reverse_brightness, |
| .ident = "NCR Corporation", |
| .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"), |
| DMI_MATCH(DMI_PRODUCT_NAME, ""), |
| }, |
| }, |
| { } /* terminating entry */ |
| }, |
| .hook = quirk_invert_brightness, |
| }, |
| }; |
| |
| static struct intel_quirk intel_quirks[] = { |
| /* Toshiba Protege R-205, S-209 needs pipe A force quirk */ |
| { 0x2592, 0x1179, 0x0001, quirk_pipea_force }, |
| |
| /* ThinkPad T60 needs pipe A force quirk (bug #16494) */ |
| { 0x2782, 0x17aa, 0x201a, quirk_pipea_force }, |
| |
| /* 830 needs to leave pipe A & dpll A up */ |
| { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force }, |
| |
| /* 830 needs to leave pipe B & dpll B up */ |
| { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force }, |
| |
| /* Lenovo U160 cannot use SSC on LVDS */ |
| { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable }, |
| |
| /* Sony Vaio Y cannot use SSC on LVDS */ |
| { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable }, |
| |
| /* Acer Aspire 5734Z must invert backlight brightness */ |
| { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness }, |
| |
| /* Acer/eMachines G725 */ |
| { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness }, |
| |
| /* Acer/eMachines e725 */ |
| { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness }, |
| |
| /* Acer/Packard Bell NCL20 */ |
| { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness }, |
| |
| /* Acer Aspire 4736Z */ |
| { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness }, |
| |
| /* Acer Aspire 5336 */ |
| { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness }, |
| |
| /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */ |
| { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present }, |
| |
| /* Acer C720 Chromebook (Core i3 4005U) */ |
| { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present }, |
| |
| /* Apple Macbook 2,1 (Core 2 T7400) */ |
| { 0x27a2, 0x8086, 0x7270, quirk_backlight_present }, |
| |
| /* Apple Macbook 4,1 */ |
| { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present }, |
| |
| /* Toshiba CB35 Chromebook (Celeron 2955U) */ |
| { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present }, |
| |
| /* HP Chromebook 14 (Celeron 2955U) */ |
| { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present }, |
| |
| /* Dell Chromebook 11 */ |
| { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present }, |
| |
| /* Dell Chromebook 11 (2015 version) */ |
| { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present }, |
| }; |
| |
| static void intel_init_quirks(struct drm_device *dev) |
| { |
| struct pci_dev *d = dev->pdev; |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) { |
| struct intel_quirk *q = &intel_quirks[i]; |
| |
| if (d->device == q->device && |
| (d->subsystem_vendor == q->subsystem_vendor || |
| q->subsystem_vendor == PCI_ANY_ID) && |
| (d->subsystem_device == q->subsystem_device || |
| q->subsystem_device == PCI_ANY_ID)) |
| q->hook(dev); |
| } |
| for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) { |
| if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0) |
| intel_dmi_quirks[i].hook(dev); |
| } |
| } |
| |
| /* Disable the VGA plane that we never use */ |
| static void i915_disable_vga(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct pci_dev *pdev = dev_priv->drm.pdev; |
| u8 sr1; |
| i915_reg_t vga_reg = i915_vgacntrl_reg(dev); |
| |
| /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */ |
| vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO); |
| outb(SR01, VGA_SR_INDEX); |
| sr1 = inb(VGA_SR_DATA); |
| outb(sr1 | 1<<5, VGA_SR_DATA); |
| vga_put(pdev, VGA_RSRC_LEGACY_IO); |
| udelay(300); |
| |
| I915_WRITE(vga_reg, VGA_DISP_DISABLE); |
| POSTING_READ(vga_reg); |
| } |
| |
| void intel_modeset_init_hw(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| |
| intel_update_cdclk(dev); |
| |
| dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq; |
| |
| intel_init_clock_gating(dev); |
| } |
| |
| /* |
| * Calculate what we think the watermarks should be for the state we've read |
| * out of the hardware and then immediately program those watermarks so that |
| * we ensure the hardware settings match our internal state. |
| * |
| * We can calculate what we think WM's should be by creating a duplicate of the |
| * current state (which was constructed during hardware readout) and running it |
| * through the atomic check code to calculate new watermark values in the |
| * state object. |
| */ |
| static void sanitize_watermarks(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct drm_atomic_state *state; |
| struct drm_crtc *crtc; |
| struct drm_crtc_state *cstate; |
| struct drm_modeset_acquire_ctx ctx; |
| int ret; |
| int i; |
| |
| /* Only supported on platforms that use atomic watermark design */ |
| if (!dev_priv->display.optimize_watermarks) |
| return; |
| |
| /* |
| * We need to hold connection_mutex before calling duplicate_state so |
| * that the connector loop is protected. |
| */ |
| drm_modeset_acquire_init(&ctx, 0); |
| retry: |
| ret = drm_modeset_lock_all_ctx(dev, &ctx); |
| if (ret == -EDEADLK) { |
| drm_modeset_backoff(&ctx); |
| goto retry; |
| } else if (WARN_ON(ret)) { |
| goto fail; |
| } |
| |
| state = drm_atomic_helper_duplicate_state(dev, &ctx); |
| if (WARN_ON(IS_ERR(state))) |
| goto fail; |
| |
| /* |
| * Hardware readout is the only time we don't want to calculate |
| * intermediate watermarks (since we don't trust the current |
| * watermarks). |
| */ |
| to_intel_atomic_state(state)->skip_intermediate_wm = true; |
| |
| ret = intel_atomic_check(dev, state); |
| if (ret) { |
| /* |
| * If we fail here, it means that the hardware appears to be |
| * programmed in a way that shouldn't be possible, given our |
| * understanding of watermark requirements. This might mean a |
| * mistake in the hardware readout code or a mistake in the |
| * watermark calculations for a given platform. Raise a WARN |
| * so that this is noticeable. |
| * |
| * If this actually happens, we'll have to just leave the |
| * BIOS-programmed watermarks untouched and hope for the best. |
| */ |
| WARN(true, "Could not determine valid watermarks for inherited state\n"); |
| goto fail; |
| } |
| |
| /* Write calculated watermark values back */ |
| for_each_crtc_in_state(state, crtc, cstate, i) { |
| struct intel_crtc_state *cs = to_intel_crtc_state(cstate); |
| |
| cs->wm.need_postvbl_update = true; |
| dev_priv->display.optimize_watermarks(cs); |
| } |
| |
| drm_atomic_state_free(state); |
| fail: |
| drm_modeset_drop_locks(&ctx); |
| drm_modeset_acquire_fini(&ctx); |
| } |
| |
| void intel_modeset_init(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct i915_ggtt *ggtt = &dev_priv->ggtt; |
| int sprite, ret; |
| enum pipe pipe; |
| struct intel_crtc *crtc; |
| |
| drm_mode_config_init(dev); |
| |
| dev->mode_config.min_width = 0; |
| dev->mode_config.min_height = 0; |
| |
| dev->mode_config.preferred_depth = 24; |
| dev->mode_config.prefer_shadow = 1; |
| |
| dev->mode_config.allow_fb_modifiers = true; |
| |
| dev->mode_config.funcs = &intel_mode_funcs; |
| |
| intel_init_quirks(dev); |
| |
| intel_init_pm(dev); |
| |
| if (INTEL_INFO(dev)->num_pipes == 0) |
| return; |
| |
| /* |
| * There may be no VBT; and if the BIOS enabled SSC we can |
| * just keep using it to avoid unnecessary flicker. Whereas if the |
| * BIOS isn't using it, don't assume it will work even if the VBT |
| * indicates as much. |
| */ |
| if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) { |
| bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) & |
| DREF_SSC1_ENABLE); |
| |
| if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) { |
| DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n", |
| bios_lvds_use_ssc ? "en" : "dis", |
| dev_priv->vbt.lvds_use_ssc ? "en" : "dis"); |
| dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc; |
| } |
| } |
| |
| if (IS_GEN2(dev)) { |
| dev->mode_config.max_width = 2048; |
| dev->mode_config.max_height = 2048; |
| } else if (IS_GEN3(dev)) { |
| dev->mode_config.max_width = 4096; |
| dev->mode_config.max_height = 4096; |
| } else { |
| dev->mode_config.max_width = 8192; |
| dev->mode_config.max_height = 8192; |
| } |
| |
| if (IS_845G(dev) || IS_I865G(dev)) { |
| dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512; |
| dev->mode_config.cursor_height = 1023; |
| } else if (IS_GEN2(dev)) { |
| dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH; |
| dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT; |
| } else { |
| dev->mode_config.cursor_width = MAX_CURSOR_WIDTH; |
| dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT; |
| } |
| |
| dev->mode_config.fb_base = ggtt->mappable_base; |
| |
| DRM_DEBUG_KMS("%d display pipe%s available.\n", |
| INTEL_INFO(dev)->num_pipes, |
| INTEL_INFO(dev)->num_pipes > 1 ? "s" : ""); |
| |
| for_each_pipe(dev_priv, pipe) { |
| intel_crtc_init(dev, pipe); |
| for_each_sprite(dev_priv, pipe, sprite) { |
| ret = intel_plane_init(dev, pipe, sprite); |
| if (ret) |
| DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n", |
| pipe_name(pipe), sprite_name(pipe, sprite), ret); |
| } |
| } |
| |
| intel_update_czclk(dev_priv); |
| intel_update_cdclk(dev); |
| |
| intel_shared_dpll_init(dev); |
| |
| if (dev_priv->max_cdclk_freq == 0) |
| intel_update_max_cdclk(dev); |
| |
| /* Just disable it once at startup */ |
| i915_disable_vga(dev); |
| intel_setup_outputs(dev); |
| |
| drm_modeset_lock_all(dev); |
| intel_modeset_setup_hw_state(dev); |
| drm_modeset_unlock_all(dev); |
| |
| for_each_intel_crtc(dev, crtc) { |
| struct intel_initial_plane_config plane_config = {}; |
| |
| if (!crtc->active) |
| continue; |
| |
| /* |
| * Note that reserving the BIOS fb up front prevents us |
| * from stuffing other stolen allocations like the ring |
| * on top. This prevents some ugliness at boot time, and |
| * can even allow for smooth boot transitions if the BIOS |
| * fb is large enough for the active pipe configuration. |
| */ |
| dev_priv->display.get_initial_plane_config(crtc, |
| &plane_config); |
| |
| /* |
| * If the fb is shared between multiple heads, we'll |
| * just get the first one. |
| */ |
| intel_find_initial_plane_obj(crtc, &plane_config); |
| } |
| |
| /* |
| * Make sure hardware watermarks really match the state we read out. |
| * Note that we need to do this after reconstructing the BIOS fb's |
| * since the watermark calculation done here will use pstate->fb. |
| */ |
| sanitize_watermarks(dev); |
| } |
| |
| static void intel_enable_pipe_a(struct drm_device *dev) |
| { |
| struct intel_connector *connector; |
| struct drm_connector *crt = NULL; |
| struct intel_load_detect_pipe load_detect_temp; |
| struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx; |
| |
| /* We can't just switch on the pipe A, we need to set things up with a |
| * proper mode and output configuration. As a gross hack, enable pipe A |
| * by enabling the load detect pipe once. */ |
| for_each_intel_connector(dev, connector) { |
| if (connector->encoder->type == INTEL_OUTPUT_ANALOG) { |
| crt = &connector->base; |
| break; |
| } |
| } |
| |
| if (!crt) |
| return; |
| |
| if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx)) |
| intel_release_load_detect_pipe(crt, &load_detect_temp, ctx); |
| } |
| |
| static bool |
| intel_check_plane_mapping(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| u32 val; |
| |
| if (INTEL_INFO(dev)->num_pipes == 1) |
| return true; |
| |
| val = I915_READ(DSPCNTR(!crtc->plane)); |
| |
| if ((val & DISPLAY_PLANE_ENABLE) && |
| (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe)) |
| return false; |
| |
| return true; |
| } |
| |
| static bool intel_crtc_has_encoders(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct intel_encoder *encoder; |
| |
| for_each_encoder_on_crtc(dev, &crtc->base, encoder) |
| return true; |
| |
| return false; |
| } |
| |
| static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder) |
| { |
| struct drm_device *dev = encoder->base.dev; |
| struct intel_connector *connector; |
| |
| for_each_connector_on_encoder(dev, &encoder->base, connector) |
| return connector; |
| |
| return NULL; |
| } |
| |
| static bool has_pch_trancoder(struct drm_i915_private *dev_priv, |
| enum transcoder pch_transcoder) |
| { |
| return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) || |
| (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == TRANSCODER_A); |
| } |
| |
| static void intel_sanitize_crtc(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| enum transcoder cpu_transcoder = crtc->config->cpu_transcoder; |
| |
| /* Clear any frame start delays used for debugging left by the BIOS */ |
| if (!transcoder_is_dsi(cpu_transcoder)) { |
| i915_reg_t reg = PIPECONF(cpu_transcoder); |
| |
| I915_WRITE(reg, |
| I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK); |
| } |
| |
| /* restore vblank interrupts to correct state */ |
| drm_crtc_vblank_reset(&crtc->base); |
| if (crtc->active) { |
| struct intel_plane *plane; |
| |
| drm_crtc_vblank_on(&crtc->base); |
| |
| /* Disable everything but the primary plane */ |
| for_each_intel_plane_on_crtc(dev, crtc, plane) { |
| if (plane->base.type == DRM_PLANE_TYPE_PRIMARY) |
| continue; |
| |
| plane->disable_plane(&plane->base, &crtc->base); |
| } |
| } |
| |
| /* We need to sanitize the plane -> pipe mapping first because this will |
| * disable the crtc (and hence change the state) if it is wrong. Note |
| * that gen4+ has a fixed plane -> pipe mapping. */ |
| if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) { |
| bool plane; |
| |
| DRM_DEBUG_KMS("[CRTC:%d:%s] wrong plane connection detected!\n", |
| crtc->base.base.id, crtc->base.name); |
| |
| /* Pipe has the wrong plane attached and the plane is active. |
| * Temporarily change the plane mapping and disable everything |
| * ... */ |
| plane = crtc->plane; |
| to_intel_plane_state(crtc->base.primary->state)->base.visible = true; |
| crtc->plane = !plane; |
| intel_crtc_disable_noatomic(&crtc->base); |
| crtc->plane = plane; |
| } |
| |
| if (dev_priv->quirks & QUIRK_PIPEA_FORCE && |
| crtc->pipe == PIPE_A && !crtc->active) { |
| /* BIOS forgot to enable pipe A, this mostly happens after |
| * resume. Force-enable the pipe to fix this, the update_dpms |
| * call below we restore the pipe to the right state, but leave |
| * the required bits on. */ |
| intel_enable_pipe_a(dev); |
| } |
| |
| /* Adjust the state of the output pipe according to whether we |
| * have active connectors/encoders. */ |
| if (crtc->active && !intel_crtc_has_encoders(crtc)) |
| intel_crtc_disable_noatomic(&crtc->base); |
| |
| if (crtc->active || HAS_GMCH_DISPLAY(dev)) { |
| /* |
| * We start out with underrun reporting disabled to avoid races. |
| * For correct bookkeeping mark this on active crtcs. |
| * |
| * Also on gmch platforms we dont have any hardware bits to |
| * disable the underrun reporting. Which means we need to start |
| * out with underrun reporting disabled also on inactive pipes, |
| * since otherwise we'll complain about the garbage we read when |
| * e.g. coming up after runtime pm. |
| * |
| * No protection against concurrent access is required - at |
| * worst a fifo underrun happens which also sets this to false. |
| */ |
| crtc->cpu_fifo_underrun_disabled = true; |
| /* |
| * We track the PCH trancoder underrun reporting state |
| * within the crtc. With crtc for pipe A housing the underrun |
| * reporting state for PCH transcoder A, crtc for pipe B housing |
| * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A, |
| * and marking underrun reporting as disabled for the non-existing |
| * PCH transcoders B and C would prevent enabling the south |
| * error interrupt (see cpt_can_enable_serr_int()). |
| */ |
| if (has_pch_trancoder(dev_priv, (enum transcoder)crtc->pipe)) |
| crtc->pch_fifo_underrun_disabled = true; |
| } |
| } |
| |
| static void intel_sanitize_encoder(struct intel_encoder *encoder) |
| { |
| struct intel_connector *connector; |
| |
| /* We need to check both for a crtc link (meaning that the |
| * encoder is active and trying to read from a pipe) and the |
| * pipe itself being active. */ |
| bool has_active_crtc = encoder->base.crtc && |
| to_intel_crtc(encoder->base.crtc)->active; |
| |
| connector = intel_encoder_find_connector(encoder); |
| if (connector && !has_active_crtc) { |
| DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n", |
| encoder->base.base.id, |
| encoder->base.name); |
| |
| /* Connector is active, but has no active pipe. This is |
| * fallout from our resume register restoring. Disable |
| * the encoder manually again. */ |
| if (encoder->base.crtc) { |
| struct drm_crtc_state *crtc_state = encoder->base.crtc->state; |
| |
| DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n", |
| encoder->base.base.id, |
| encoder->base.name); |
| encoder->disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state); |
| if (encoder->post_disable) |
| encoder->post_disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state); |
| } |
| encoder->base.crtc = NULL; |
| |
| /* Inconsistent output/port/pipe state happens presumably due to |
| * a bug in one of the get_hw_state functions. Or someplace else |
| * in our code, like the register restore mess on resume. Clamp |
| * things to off as a safer default. */ |
| |
| connector->base.dpms = DRM_MODE_DPMS_OFF; |
| connector->base.encoder = NULL; |
| } |
| /* Enabled encoders without active connectors will be fixed in |
| * the crtc fixup. */ |
| } |
| |
| void i915_redisable_vga_power_on(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| i915_reg_t vga_reg = i915_vgacntrl_reg(dev); |
| |
| if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) { |
| DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n"); |
| i915_disable_vga(dev); |
| } |
| } |
| |
| void i915_redisable_vga(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| |
| /* This function can be called both from intel_modeset_setup_hw_state or |
| * at a very early point in our resume sequence, where the power well |
| * structures are not yet restored. Since this function is at a very |
| * paranoid "someone might have enabled VGA while we were not looking" |
| * level, just check if the power well is enabled instead of trying to |
| * follow the "don't touch the power well if we don't need it" policy |
| * the rest of the driver uses. */ |
| if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA)) |
| return; |
| |
| i915_redisable_vga_power_on(dev); |
| |
| intel_display_power_put(dev_priv, POWER_DOMAIN_VGA); |
| } |
| |
| static bool primary_get_hw_state(struct intel_plane *plane) |
| { |
| struct drm_i915_private *dev_priv = to_i915(plane->base.dev); |
| |
| return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE; |
| } |
| |
| /* FIXME read out full plane state for all planes */ |
| static void readout_plane_state(struct intel_crtc *crtc) |
| { |
| struct drm_plane *primary = crtc->base.primary; |
| struct intel_plane_state *plane_state = |
| to_intel_plane_state(primary->state); |
| |
| plane_state->base.visible = crtc->active && |
| primary_get_hw_state(to_intel_plane(primary)); |
| |
| if (plane_state->base.visible) |
| crtc->base.state->plane_mask |= 1 << drm_plane_index(primary); |
| } |
| |
| static void intel_modeset_readout_hw_state(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| enum pipe pipe; |
| struct intel_crtc *crtc; |
| struct intel_encoder *encoder; |
| struct intel_connector *connector; |
| int i; |
| |
| dev_priv->active_crtcs = 0; |
| |
| for_each_intel_crtc(dev, crtc) { |
| struct intel_crtc_state *crtc_state = crtc->config; |
| int pixclk = 0; |
| |
| __drm_atomic_helper_crtc_destroy_state(&crtc_state->base); |
| memset(crtc_state, 0, sizeof(*crtc_state)); |
| crtc_state->base.crtc = &crtc->base; |
| |
| crtc_state->base.active = crtc_state->base.enable = |
| dev_priv->display.get_pipe_config(crtc, crtc_state); |
| |
| crtc->base.enabled = crtc_state->base.enable; |
| crtc->active = crtc_state->base.active; |
| |
| if (crtc_state->base.active) { |
| dev_priv->active_crtcs |= 1 << crtc->pipe; |
| |
| if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv)) |
| pixclk = ilk_pipe_pixel_rate(crtc_state); |
| else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) |
| pixclk = crtc_state->base.adjusted_mode.crtc_clock; |
| else |
| WARN_ON(dev_priv->display.modeset_calc_cdclk); |
| |
| /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */ |
| if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled) |
| pixclk = DIV_ROUND_UP(pixclk * 100, 95); |
| } |
| |
| dev_priv->min_pixclk[crtc->pipe] = pixclk; |
| |
| readout_plane_state(crtc); |
| |
| DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n", |
| crtc->base.base.id, crtc->base.name, |
| crtc->active ? "enabled" : "disabled"); |
| } |
| |
| for (i = 0; i < dev_priv->num_shared_dpll; i++) { |
| struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i]; |
| |
| pll->on = pll->funcs.get_hw_state(dev_priv, pll, |
| &pll->config.hw_state); |
| pll->config.crtc_mask = 0; |
| for_each_intel_crtc(dev, crtc) { |
| if (crtc->active && crtc->config->shared_dpll == pll) |
| pll->config.crtc_mask |= 1 << crtc->pipe; |
| } |
| pll->active_mask = pll->config.crtc_mask; |
| |
| DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n", |
| pll->name, pll->config.crtc_mask, pll->on); |
| } |
| |
| for_each_intel_encoder(dev, encoder) { |
| pipe = 0; |
| |
| if (encoder->get_hw_state(encoder, &pipe)) { |
| crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]); |
| encoder->base.crtc = &crtc->base; |
| crtc->config->output_types |= 1 << encoder->type; |
| encoder->get_config(encoder, crtc->config); |
| } else { |
| encoder->base.crtc = NULL; |
| } |
| |
| DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n", |
| encoder->base.base.id, |
| encoder->base.name, |
| encoder->base.crtc ? "enabled" : "disabled", |
| pipe_name(pipe)); |
| } |
| |
| for_each_intel_connector(dev, connector) { |
| if (connector->get_hw_state(connector)) { |
| connector->base.dpms = DRM_MODE_DPMS_ON; |
| |
| encoder = connector->encoder; |
| connector->base.encoder = &encoder->base; |
| |
| if (encoder->base.crtc && |
| encoder->base.crtc->state->active) { |
| /* |
| * This has to be done during hardware readout |
| * because anything calling .crtc_disable may |
| * rely on the connector_mask being accurate. |
| */ |
| encoder->base.crtc->state->connector_mask |= |
| 1 << drm_connector_index(&connector->base); |
| encoder->base.crtc->state->encoder_mask |= |
| 1 << drm_encoder_index(&encoder->base); |
| } |
| |
| } else { |
| connector->base.dpms = DRM_MODE_DPMS_OFF; |
| connector->base.encoder = NULL; |
| } |
| DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n", |
| connector->base.base.id, |
| connector->base.name, |
| connector->base.encoder ? "enabled" : "disabled"); |
| } |
| |
| for_each_intel_crtc(dev, crtc) { |
| crtc->base.hwmode = crtc->config->base.adjusted_mode; |
| |
| memset(&crtc->base.mode, 0, sizeof(crtc->base.mode)); |
| if (crtc->base.state->active) { |
| intel_mode_from_pipe_config(&crtc->base.mode, crtc->config); |
| intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config); |
| WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode)); |
| |
| /* |
| * The initial mode needs to be set in order to keep |
| * the atomic core happy. It wants a valid mode if the |
| * crtc's enabled, so we do the above call. |
| * |
| * At this point some state updated by the connectors |
| * in their ->detect() callback has not run yet, so |
| * no recalculation can be done yet. |
| * |
| * Even if we could do a recalculation and modeset |
| * right now it would cause a double modeset if |
| * fbdev or userspace chooses a different initial mode. |
| * |
| * If that happens, someone indicated they wanted a |
| * mode change, which means it's safe to do a full |
| * recalculation. |
| */ |
| crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED; |
| |
| drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode); |
| update_scanline_offset(crtc); |
| } |
| |
| intel_pipe_config_sanity_check(dev_priv, crtc->config); |
| } |
| } |
| |
| /* Scan out the current hw modeset state, |
| * and sanitizes it to the current state |
| */ |
| static void |
| intel_modeset_setup_hw_state(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| enum pipe pipe; |
| struct intel_crtc *crtc; |
| struct intel_encoder *encoder; |
| int i; |
| |
| intel_modeset_readout_hw_state(dev); |
| |
| /* HW state is read out, now we need to sanitize this mess. */ |
| for_each_intel_encoder(dev, encoder) { |
| intel_sanitize_encoder(encoder); |
| } |
| |
| for_each_pipe(dev_priv, pipe) { |
| crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]); |
| intel_sanitize_crtc(crtc); |
| intel_dump_pipe_config(crtc, crtc->config, |
| "[setup_hw_state]"); |
| } |
| |
| intel_modeset_update_connector_atomic_state(dev); |
| |
| for (i = 0; i < dev_priv->num_shared_dpll; i++) { |
| struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i]; |
| |
| if (!pll->on || pll->active_mask) |
| continue; |
| |
| DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name); |
| |
| pll->funcs.disable(dev_priv, pll); |
| pll->on = false; |
| } |
| |
| if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) |
| vlv_wm_get_hw_state(dev); |
| else if (IS_GEN9(dev)) |
| skl_wm_get_hw_state(dev); |
| else if (HAS_PCH_SPLIT(dev)) |
| ilk_wm_get_hw_state(dev); |
| |
| for_each_intel_crtc(dev, crtc) { |
| unsigned long put_domains; |
| |
| put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config); |
| if (WARN_ON(put_domains)) |
| modeset_put_power_domains(dev_priv, put_domains); |
| } |
| intel_display_set_init_power(dev_priv, false); |
| |
| intel_fbc_init_pipe_state(dev_priv); |
| } |
| |
| void intel_display_resume(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct drm_atomic_state *state = dev_priv->modeset_restore_state; |
| struct drm_modeset_acquire_ctx ctx; |
| int ret; |
| |
| dev_priv->modeset_restore_state = NULL; |
| if (state) |
| state->acquire_ctx = &ctx; |
| |
| /* |
| * This is a cludge because with real atomic modeset mode_config.mutex |
| * won't be taken. Unfortunately some probed state like |
| * audio_codec_enable is still protected by mode_config.mutex, so lock |
| * it here for now. |
| */ |
| mutex_lock(&dev->mode_config.mutex); |
| drm_modeset_acquire_init(&ctx, 0); |
| |
| while (1) { |
| ret = drm_modeset_lock_all_ctx(dev, &ctx); |
| if (ret != -EDEADLK) |
| break; |
| |
| drm_modeset_backoff(&ctx); |
| } |
| |
| if (!ret) |
| ret = __intel_display_resume(dev, state); |
| |
| drm_modeset_drop_locks(&ctx); |
| drm_modeset_acquire_fini(&ctx); |
| mutex_unlock(&dev->mode_config.mutex); |
| |
| if (ret) { |
| DRM_ERROR("Restoring old state failed with %i\n", ret); |
| drm_atomic_state_free(state); |
| } |
| } |
| |
| void intel_modeset_gem_init(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct drm_crtc *c; |
| struct drm_i915_gem_object *obj; |
| |
| intel_init_gt_powersave(dev_priv); |
| |
| intel_modeset_init_hw(dev); |
| |
| intel_setup_overlay(dev_priv); |
| |
| /* |
| * Make sure any fbs we allocated at startup are properly |
| * pinned & fenced. When we do the allocation it's too early |
| * for this. |
| */ |
| for_each_crtc(dev, c) { |
| struct i915_vma *vma; |
| |
| obj = intel_fb_obj(c->primary->fb); |
| if (obj == NULL) |
| continue; |
| |
| mutex_lock(&dev->struct_mutex); |
| vma = intel_pin_and_fence_fb_obj(c->primary->fb, |
| c->primary->state->rotation); |
| mutex_unlock(&dev->struct_mutex); |
| if (IS_ERR(vma)) { |
| DRM_ERROR("failed to pin boot fb on pipe %d\n", |
| to_intel_crtc(c)->pipe); |
| drm_framebuffer_unreference(c->primary->fb); |
| c->primary->fb = NULL; |
| c->primary->crtc = c->primary->state->crtc = NULL; |
| update_state_fb(c->primary); |
| c->state->plane_mask &= ~(1 << drm_plane_index(c->primary)); |
| } |
| } |
| } |
| |
| int intel_connector_register(struct drm_connector *connector) |
| { |
| struct intel_connector *intel_connector = to_intel_connector(connector); |
| int ret; |
| |
| ret = intel_backlight_device_register(intel_connector); |
| if (ret) |
| goto err; |
| |
| return 0; |
| |
| err: |
| return ret; |
| } |
| |
| void intel_connector_unregister(struct drm_connector *connector) |
| { |
| struct intel_connector *intel_connector = to_intel_connector(connector); |
| |
| intel_backlight_device_unregister(intel_connector); |
| intel_panel_destroy_backlight(connector); |
| } |
| |
| void intel_modeset_cleanup(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| |
| intel_disable_gt_powersave(dev_priv); |
| |
| /* |
| * Interrupts and polling as the first thing to avoid creating havoc. |
| * Too much stuff here (turning of connectors, ...) would |
| * experience fancy races otherwise. |
| */ |
| intel_irq_uninstall(dev_priv); |
| |
| /* |
| * Due to the hpd irq storm handling the hotplug work can re-arm the |
| * poll handlers. Hence disable polling after hpd handling is shut down. |
| */ |
| drm_kms_helper_poll_fini(dev); |
| |
| intel_unregister_dsm_handler(); |
| |
| intel_fbc_global_disable(dev_priv); |
| |
| /* flush any delayed tasks or pending work */ |
| flush_scheduled_work(); |
| |
| drm_mode_config_cleanup(dev); |
| |
| intel_cleanup_overlay(dev_priv); |
| |
| intel_cleanup_gt_powersave(dev_priv); |
| |
| intel_teardown_gmbus(dev); |
| } |
| |
| void intel_connector_attach_encoder(struct intel_connector *connector, |
| struct intel_encoder *encoder) |
| { |
| connector->encoder = encoder; |
| drm_mode_connector_attach_encoder(&connector->base, |
| &encoder->base); |
| } |
| |
| /* |
| * set vga decode state - true == enable VGA decode |
| */ |
| int intel_modeset_vga_set_state(struct drm_device *dev, bool state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL; |
| u16 gmch_ctrl; |
| |
| if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) { |
| DRM_ERROR("failed to read control word\n"); |
| return -EIO; |
| } |
| |
| if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state) |
| return 0; |
| |
| if (state) |
| gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE; |
| else |
| gmch_ctrl |= INTEL_GMCH_VGA_DISABLE; |
| |
| if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) { |
| DRM_ERROR("failed to write control word\n"); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| struct intel_display_error_state { |
| |
| u32 power_well_driver; |
| |
| int num_transcoders; |
| |
| struct intel_cursor_error_state { |
| u32 control; |
| u32 position; |
| u32 base; |
| u32 size; |
| } cursor[I915_MAX_PIPES]; |
| |
| struct intel_pipe_error_state { |
| bool power_domain_on; |
| u32 source; |
| u32 stat; |
| } pipe[I915_MAX_PIPES]; |
| |
| struct intel_plane_error_state { |
| u32 control; |
| u32 stride; |
| u32 size; |
| u32 pos; |
| u32 addr; |
| u32 surface; |
| u32 tile_offset; |
| } plane[I915_MAX_PIPES]; |
| |
| struct intel_transcoder_error_state { |
| bool power_domain_on; |
| enum transcoder cpu_transcoder; |
| |
| u32 conf; |
| |
| u32 htotal; |
| u32 hblank; |
| u32 hsync; |
| u32 vtotal; |
| u32 vblank; |
| u32 vsync; |
| } transcoder[4]; |
| }; |
| |
| struct intel_display_error_state * |
| intel_display_capture_error_state(struct drm_i915_private *dev_priv) |
| { |
| struct intel_display_error_state *error; |
| int transcoders[] = { |
| TRANSCODER_A, |
| TRANSCODER_B, |
| TRANSCODER_C, |
| TRANSCODER_EDP, |
| }; |
| int i; |
| |
| if (INTEL_INFO(dev_priv)->num_pipes == 0) |
| return NULL; |
| |
| error = kzalloc(sizeof(*error), GFP_ATOMIC); |
| if (error == NULL) |
| return NULL; |
| |
| if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) |
| error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER); |
| |
| for_each_pipe(dev_priv, i) { |
| error->pipe[i].power_domain_on = |
| __intel_display_power_is_enabled(dev_priv, |
| POWER_DOMAIN_PIPE(i)); |
| if (!error->pipe[i].power_domain_on) |
| continue; |
| |
| error->cursor[i].control = I915_READ(CURCNTR(i)); |
| error->cursor[i].position = I915_READ(CURPOS(i)); |
| error->cursor[i].base = I915_READ(CURBASE(i)); |
| |
| error->plane[i].control = I915_READ(DSPCNTR(i)); |
| error->plane[i].stride = I915_READ(DSPSTRIDE(i)); |
| if (INTEL_GEN(dev_priv) <= 3) { |
| error->plane[i].size = I915_READ(DSPSIZE(i)); |
| error->plane[i].pos = I915_READ(DSPPOS(i)); |
| } |
| if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv)) |
| error->plane[i].addr = I915_READ(DSPADDR(i)); |
| if (INTEL_GEN(dev_priv) >= 4) { |
| error->plane[i].surface = I915_READ(DSPSURF(i)); |
| error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i)); |
| } |
| |
| error->pipe[i].source = I915_READ(PIPESRC(i)); |
| |
| if (HAS_GMCH_DISPLAY(dev_priv)) |
| error->pipe[i].stat = I915_READ(PIPESTAT(i)); |
| } |
| |
| /* Note: this does not include DSI transcoders. */ |
| error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes; |
| if (HAS_DDI(dev_priv)) |
| error->num_transcoders++; /* Account for eDP. */ |
| |
| for (i = 0; i < error->num_transcoders; i++) { |
| enum transcoder cpu_transcoder = transcoders[i]; |
| |
| error->transcoder[i].power_domain_on = |
| __intel_display_power_is_enabled(dev_priv, |
| POWER_DOMAIN_TRANSCODER(cpu_transcoder)); |
| if (!error->transcoder[i].power_domain_on) |
| continue; |
| |
| error->transcoder[i].cpu_transcoder = cpu_transcoder; |
| |
| error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder)); |
| error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder)); |
| error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder)); |
| error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder)); |
| error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder)); |
| error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder)); |
| error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder)); |
| } |
| |
| return error; |
| } |
| |
| #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__) |
| |
| void |
| intel_display_print_error_state(struct drm_i915_error_state_buf *m, |
| struct drm_device *dev, |
| struct intel_display_error_state *error) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| int i; |
| |
| if (!error) |
| return; |
| |
| err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes); |
| if (IS_HASWELL(dev) || IS_BROADWELL(dev)) |
| err_printf(m, "PWR_WELL_CTL2: %08x\n", |
| error->power_well_driver); |
| for_each_pipe(dev_priv, i) { |
| err_printf(m, "Pipe [%d]:\n", i); |
| err_printf(m, " Power: %s\n", |
| onoff(error->pipe[i].power_domain_on)); |
| err_printf(m, " SRC: %08x\n", error->pipe[i].source); |
| err_printf(m, " STAT: %08x\n", error->pipe[i].stat); |
| |
| err_printf(m, "Plane [%d]:\n", i); |
| err_printf(m, " CNTR: %08x\n", error->plane[i].control); |
| err_printf(m, " STRIDE: %08x\n", error->plane[i].stride); |
| if (INTEL_INFO(dev)->gen <= 3) { |
| err_printf(m, " SIZE: %08x\n", error->plane[i].size); |
| err_printf(m, " POS: %08x\n", error->plane[i].pos); |
| } |
| if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) |
| err_printf(m, " ADDR: %08x\n", error->plane[i].addr); |
| if (INTEL_INFO(dev)->gen >= 4) { |
| err_printf(m, " SURF: %08x\n", error->plane[i].surface); |
| err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset); |
| } |
| |
| err_printf(m, "Cursor [%d]:\n", i); |
| err_printf(m, " CNTR: %08x\n", error->cursor[i].control); |
| err_printf(m, " POS: %08x\n", error->cursor[i].position); |
| err_printf(m, " BASE: %08x\n", error->cursor[i].base); |
| } |
| |
| for (i = 0; i < error->num_transcoders; i++) { |
| err_printf(m, "CPU transcoder: %s\n", |
| transcoder_name(error->transcoder[i].cpu_transcoder)); |
| err_printf(m, " Power: %s\n", |
| onoff(error->transcoder[i].power_domain_on)); |
| err_printf(m, " CONF: %08x\n", error->transcoder[i].conf); |
| err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal); |
| err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank); |
| err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync); |
| err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal); |
| err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank); |
| err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync); |
| } |
| } |