|  | /* | 
|  | * kexec.c - kexec system call core code. | 
|  | * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com> | 
|  | * | 
|  | * This source code is licensed under the GNU General Public License, | 
|  | * Version 2.  See the file COPYING for more details. | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/capability.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/kexec.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/reboot.h> | 
|  | #include <linux/ioport.h> | 
|  | #include <linux/hardirq.h> | 
|  | #include <linux/elf.h> | 
|  | #include <linux/elfcore.h> | 
|  | #include <linux/utsname.h> | 
|  | #include <linux/numa.h> | 
|  | #include <linux/suspend.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/freezer.h> | 
|  | #include <linux/pm.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/console.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/syscore_ops.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/frame.h> | 
|  |  | 
|  | #include <asm/page.h> | 
|  | #include <asm/sections.h> | 
|  |  | 
|  | #include <crypto/hash.h> | 
|  | #include <crypto/sha.h> | 
|  | #include "kexec_internal.h" | 
|  |  | 
|  | DEFINE_MUTEX(kexec_mutex); | 
|  |  | 
|  | /* Per cpu memory for storing cpu states in case of system crash. */ | 
|  | note_buf_t __percpu *crash_notes; | 
|  |  | 
|  | /* Flag to indicate we are going to kexec a new kernel */ | 
|  | bool kexec_in_progress = false; | 
|  |  | 
|  |  | 
|  | /* Location of the reserved area for the crash kernel */ | 
|  | struct resource crashk_res = { | 
|  | .name  = "Crash kernel", | 
|  | .start = 0, | 
|  | .end   = 0, | 
|  | .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, | 
|  | .desc  = IORES_DESC_CRASH_KERNEL | 
|  | }; | 
|  | struct resource crashk_low_res = { | 
|  | .name  = "Crash kernel", | 
|  | .start = 0, | 
|  | .end   = 0, | 
|  | .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, | 
|  | .desc  = IORES_DESC_CRASH_KERNEL | 
|  | }; | 
|  |  | 
|  | int kexec_should_crash(struct task_struct *p) | 
|  | { | 
|  | /* | 
|  | * If crash_kexec_post_notifiers is enabled, don't run | 
|  | * crash_kexec() here yet, which must be run after panic | 
|  | * notifiers in panic(). | 
|  | */ | 
|  | if (crash_kexec_post_notifiers) | 
|  | return 0; | 
|  | /* | 
|  | * There are 4 panic() calls in do_exit() path, each of which | 
|  | * corresponds to each of these 4 conditions. | 
|  | */ | 
|  | if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kexec_crash_loaded(void) | 
|  | { | 
|  | return !!kexec_crash_image; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kexec_crash_loaded); | 
|  |  | 
|  | /* | 
|  | * When kexec transitions to the new kernel there is a one-to-one | 
|  | * mapping between physical and virtual addresses.  On processors | 
|  | * where you can disable the MMU this is trivial, and easy.  For | 
|  | * others it is still a simple predictable page table to setup. | 
|  | * | 
|  | * In that environment kexec copies the new kernel to its final | 
|  | * resting place.  This means I can only support memory whose | 
|  | * physical address can fit in an unsigned long.  In particular | 
|  | * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. | 
|  | * If the assembly stub has more restrictive requirements | 
|  | * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be | 
|  | * defined more restrictively in <asm/kexec.h>. | 
|  | * | 
|  | * The code for the transition from the current kernel to the | 
|  | * the new kernel is placed in the control_code_buffer, whose size | 
|  | * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single | 
|  | * page of memory is necessary, but some architectures require more. | 
|  | * Because this memory must be identity mapped in the transition from | 
|  | * virtual to physical addresses it must live in the range | 
|  | * 0 - TASK_SIZE, as only the user space mappings are arbitrarily | 
|  | * modifiable. | 
|  | * | 
|  | * The assembly stub in the control code buffer is passed a linked list | 
|  | * of descriptor pages detailing the source pages of the new kernel, | 
|  | * and the destination addresses of those source pages.  As this data | 
|  | * structure is not used in the context of the current OS, it must | 
|  | * be self-contained. | 
|  | * | 
|  | * The code has been made to work with highmem pages and will use a | 
|  | * destination page in its final resting place (if it happens | 
|  | * to allocate it).  The end product of this is that most of the | 
|  | * physical address space, and most of RAM can be used. | 
|  | * | 
|  | * Future directions include: | 
|  | *  - allocating a page table with the control code buffer identity | 
|  | *    mapped, to simplify machine_kexec and make kexec_on_panic more | 
|  | *    reliable. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * KIMAGE_NO_DEST is an impossible destination address..., for | 
|  | * allocating pages whose destination address we do not care about. | 
|  | */ | 
|  | #define KIMAGE_NO_DEST (-1UL) | 
|  | #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT) | 
|  |  | 
|  | static struct page *kimage_alloc_page(struct kimage *image, | 
|  | gfp_t gfp_mask, | 
|  | unsigned long dest); | 
|  |  | 
|  | int sanity_check_segment_list(struct kimage *image) | 
|  | { | 
|  | int i; | 
|  | unsigned long nr_segments = image->nr_segments; | 
|  | unsigned long total_pages = 0; | 
|  | unsigned long nr_pages = totalram_pages(); | 
|  |  | 
|  | /* | 
|  | * Verify we have good destination addresses.  The caller is | 
|  | * responsible for making certain we don't attempt to load | 
|  | * the new image into invalid or reserved areas of RAM.  This | 
|  | * just verifies it is an address we can use. | 
|  | * | 
|  | * Since the kernel does everything in page size chunks ensure | 
|  | * the destination addresses are page aligned.  Too many | 
|  | * special cases crop of when we don't do this.  The most | 
|  | * insidious is getting overlapping destination addresses | 
|  | * simply because addresses are changed to page size | 
|  | * granularity. | 
|  | */ | 
|  | for (i = 0; i < nr_segments; i++) { | 
|  | unsigned long mstart, mend; | 
|  |  | 
|  | mstart = image->segment[i].mem; | 
|  | mend   = mstart + image->segment[i].memsz; | 
|  | if (mstart > mend) | 
|  | return -EADDRNOTAVAIL; | 
|  | if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) | 
|  | return -EADDRNOTAVAIL; | 
|  | if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) | 
|  | return -EADDRNOTAVAIL; | 
|  | } | 
|  |  | 
|  | /* Verify our destination addresses do not overlap. | 
|  | * If we alloed overlapping destination addresses | 
|  | * through very weird things can happen with no | 
|  | * easy explanation as one segment stops on another. | 
|  | */ | 
|  | for (i = 0; i < nr_segments; i++) { | 
|  | unsigned long mstart, mend; | 
|  | unsigned long j; | 
|  |  | 
|  | mstart = image->segment[i].mem; | 
|  | mend   = mstart + image->segment[i].memsz; | 
|  | for (j = 0; j < i; j++) { | 
|  | unsigned long pstart, pend; | 
|  |  | 
|  | pstart = image->segment[j].mem; | 
|  | pend   = pstart + image->segment[j].memsz; | 
|  | /* Do the segments overlap ? */ | 
|  | if ((mend > pstart) && (mstart < pend)) | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Ensure our buffer sizes are strictly less than | 
|  | * our memory sizes.  This should always be the case, | 
|  | * and it is easier to check up front than to be surprised | 
|  | * later on. | 
|  | */ | 
|  | for (i = 0; i < nr_segments; i++) { | 
|  | if (image->segment[i].bufsz > image->segment[i].memsz) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Verify that no more than half of memory will be consumed. If the | 
|  | * request from userspace is too large, a large amount of time will be | 
|  | * wasted allocating pages, which can cause a soft lockup. | 
|  | */ | 
|  | for (i = 0; i < nr_segments; i++) { | 
|  | if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2) | 
|  | return -EINVAL; | 
|  |  | 
|  | total_pages += PAGE_COUNT(image->segment[i].memsz); | 
|  | } | 
|  |  | 
|  | if (total_pages > nr_pages / 2) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Verify we have good destination addresses.  Normally | 
|  | * the caller is responsible for making certain we don't | 
|  | * attempt to load the new image into invalid or reserved | 
|  | * areas of RAM.  But crash kernels are preloaded into a | 
|  | * reserved area of ram.  We must ensure the addresses | 
|  | * are in the reserved area otherwise preloading the | 
|  | * kernel could corrupt things. | 
|  | */ | 
|  |  | 
|  | if (image->type == KEXEC_TYPE_CRASH) { | 
|  | for (i = 0; i < nr_segments; i++) { | 
|  | unsigned long mstart, mend; | 
|  |  | 
|  | mstart = image->segment[i].mem; | 
|  | mend = mstart + image->segment[i].memsz - 1; | 
|  | /* Ensure we are within the crash kernel limits */ | 
|  | if ((mstart < phys_to_boot_phys(crashk_res.start)) || | 
|  | (mend > phys_to_boot_phys(crashk_res.end))) | 
|  | return -EADDRNOTAVAIL; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct kimage *do_kimage_alloc_init(void) | 
|  | { | 
|  | struct kimage *image; | 
|  |  | 
|  | /* Allocate a controlling structure */ | 
|  | image = kzalloc(sizeof(*image), GFP_KERNEL); | 
|  | if (!image) | 
|  | return NULL; | 
|  |  | 
|  | image->head = 0; | 
|  | image->entry = &image->head; | 
|  | image->last_entry = &image->head; | 
|  | image->control_page = ~0; /* By default this does not apply */ | 
|  | image->type = KEXEC_TYPE_DEFAULT; | 
|  |  | 
|  | /* Initialize the list of control pages */ | 
|  | INIT_LIST_HEAD(&image->control_pages); | 
|  |  | 
|  | /* Initialize the list of destination pages */ | 
|  | INIT_LIST_HEAD(&image->dest_pages); | 
|  |  | 
|  | /* Initialize the list of unusable pages */ | 
|  | INIT_LIST_HEAD(&image->unusable_pages); | 
|  |  | 
|  | return image; | 
|  | } | 
|  |  | 
|  | int kimage_is_destination_range(struct kimage *image, | 
|  | unsigned long start, | 
|  | unsigned long end) | 
|  | { | 
|  | unsigned long i; | 
|  |  | 
|  | for (i = 0; i < image->nr_segments; i++) { | 
|  | unsigned long mstart, mend; | 
|  |  | 
|  | mstart = image->segment[i].mem; | 
|  | mend = mstart + image->segment[i].memsz; | 
|  | if ((end > mstart) && (start < mend)) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) | 
|  | { | 
|  | struct page *pages; | 
|  |  | 
|  | pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order); | 
|  | if (pages) { | 
|  | unsigned int count, i; | 
|  |  | 
|  | pages->mapping = NULL; | 
|  | set_page_private(pages, order); | 
|  | count = 1 << order; | 
|  | for (i = 0; i < count; i++) | 
|  | SetPageReserved(pages + i); | 
|  |  | 
|  | arch_kexec_post_alloc_pages(page_address(pages), count, | 
|  | gfp_mask); | 
|  |  | 
|  | if (gfp_mask & __GFP_ZERO) | 
|  | for (i = 0; i < count; i++) | 
|  | clear_highpage(pages + i); | 
|  | } | 
|  |  | 
|  | return pages; | 
|  | } | 
|  |  | 
|  | static void kimage_free_pages(struct page *page) | 
|  | { | 
|  | unsigned int order, count, i; | 
|  |  | 
|  | order = page_private(page); | 
|  | count = 1 << order; | 
|  |  | 
|  | arch_kexec_pre_free_pages(page_address(page), count); | 
|  |  | 
|  | for (i = 0; i < count; i++) | 
|  | ClearPageReserved(page + i); | 
|  | __free_pages(page, order); | 
|  | } | 
|  |  | 
|  | void kimage_free_page_list(struct list_head *list) | 
|  | { | 
|  | struct page *page, *next; | 
|  |  | 
|  | list_for_each_entry_safe(page, next, list, lru) { | 
|  | list_del(&page->lru); | 
|  | kimage_free_pages(page); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct page *kimage_alloc_normal_control_pages(struct kimage *image, | 
|  | unsigned int order) | 
|  | { | 
|  | /* Control pages are special, they are the intermediaries | 
|  | * that are needed while we copy the rest of the pages | 
|  | * to their final resting place.  As such they must | 
|  | * not conflict with either the destination addresses | 
|  | * or memory the kernel is already using. | 
|  | * | 
|  | * The only case where we really need more than one of | 
|  | * these are for architectures where we cannot disable | 
|  | * the MMU and must instead generate an identity mapped | 
|  | * page table for all of the memory. | 
|  | * | 
|  | * At worst this runs in O(N) of the image size. | 
|  | */ | 
|  | struct list_head extra_pages; | 
|  | struct page *pages; | 
|  | unsigned int count; | 
|  |  | 
|  | count = 1 << order; | 
|  | INIT_LIST_HEAD(&extra_pages); | 
|  |  | 
|  | /* Loop while I can allocate a page and the page allocated | 
|  | * is a destination page. | 
|  | */ | 
|  | do { | 
|  | unsigned long pfn, epfn, addr, eaddr; | 
|  |  | 
|  | pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order); | 
|  | if (!pages) | 
|  | break; | 
|  | pfn   = page_to_boot_pfn(pages); | 
|  | epfn  = pfn + count; | 
|  | addr  = pfn << PAGE_SHIFT; | 
|  | eaddr = epfn << PAGE_SHIFT; | 
|  | if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || | 
|  | kimage_is_destination_range(image, addr, eaddr)) { | 
|  | list_add(&pages->lru, &extra_pages); | 
|  | pages = NULL; | 
|  | } | 
|  | } while (!pages); | 
|  |  | 
|  | if (pages) { | 
|  | /* Remember the allocated page... */ | 
|  | list_add(&pages->lru, &image->control_pages); | 
|  |  | 
|  | /* Because the page is already in it's destination | 
|  | * location we will never allocate another page at | 
|  | * that address.  Therefore kimage_alloc_pages | 
|  | * will not return it (again) and we don't need | 
|  | * to give it an entry in image->segment[]. | 
|  | */ | 
|  | } | 
|  | /* Deal with the destination pages I have inadvertently allocated. | 
|  | * | 
|  | * Ideally I would convert multi-page allocations into single | 
|  | * page allocations, and add everything to image->dest_pages. | 
|  | * | 
|  | * For now it is simpler to just free the pages. | 
|  | */ | 
|  | kimage_free_page_list(&extra_pages); | 
|  |  | 
|  | return pages; | 
|  | } | 
|  |  | 
|  | static struct page *kimage_alloc_crash_control_pages(struct kimage *image, | 
|  | unsigned int order) | 
|  | { | 
|  | /* Control pages are special, they are the intermediaries | 
|  | * that are needed while we copy the rest of the pages | 
|  | * to their final resting place.  As such they must | 
|  | * not conflict with either the destination addresses | 
|  | * or memory the kernel is already using. | 
|  | * | 
|  | * Control pages are also the only pags we must allocate | 
|  | * when loading a crash kernel.  All of the other pages | 
|  | * are specified by the segments and we just memcpy | 
|  | * into them directly. | 
|  | * | 
|  | * The only case where we really need more than one of | 
|  | * these are for architectures where we cannot disable | 
|  | * the MMU and must instead generate an identity mapped | 
|  | * page table for all of the memory. | 
|  | * | 
|  | * Given the low demand this implements a very simple | 
|  | * allocator that finds the first hole of the appropriate | 
|  | * size in the reserved memory region, and allocates all | 
|  | * of the memory up to and including the hole. | 
|  | */ | 
|  | unsigned long hole_start, hole_end, size; | 
|  | struct page *pages; | 
|  |  | 
|  | pages = NULL; | 
|  | size = (1 << order) << PAGE_SHIFT; | 
|  | hole_start = (image->control_page + (size - 1)) & ~(size - 1); | 
|  | hole_end   = hole_start + size - 1; | 
|  | while (hole_end <= crashk_res.end) { | 
|  | unsigned long i; | 
|  |  | 
|  | cond_resched(); | 
|  |  | 
|  | if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT) | 
|  | break; | 
|  | /* See if I overlap any of the segments */ | 
|  | for (i = 0; i < image->nr_segments; i++) { | 
|  | unsigned long mstart, mend; | 
|  |  | 
|  | mstart = image->segment[i].mem; | 
|  | mend   = mstart + image->segment[i].memsz - 1; | 
|  | if ((hole_end >= mstart) && (hole_start <= mend)) { | 
|  | /* Advance the hole to the end of the segment */ | 
|  | hole_start = (mend + (size - 1)) & ~(size - 1); | 
|  | hole_end   = hole_start + size - 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | /* If I don't overlap any segments I have found my hole! */ | 
|  | if (i == image->nr_segments) { | 
|  | pages = pfn_to_page(hole_start >> PAGE_SHIFT); | 
|  | image->control_page = hole_end; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Ensure that these pages are decrypted if SME is enabled. */ | 
|  | if (pages) | 
|  | arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0); | 
|  |  | 
|  | return pages; | 
|  | } | 
|  |  | 
|  |  | 
|  | struct page *kimage_alloc_control_pages(struct kimage *image, | 
|  | unsigned int order) | 
|  | { | 
|  | struct page *pages = NULL; | 
|  |  | 
|  | switch (image->type) { | 
|  | case KEXEC_TYPE_DEFAULT: | 
|  | pages = kimage_alloc_normal_control_pages(image, order); | 
|  | break; | 
|  | case KEXEC_TYPE_CRASH: | 
|  | pages = kimage_alloc_crash_control_pages(image, order); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return pages; | 
|  | } | 
|  |  | 
|  | int kimage_crash_copy_vmcoreinfo(struct kimage *image) | 
|  | { | 
|  | struct page *vmcoreinfo_page; | 
|  | void *safecopy; | 
|  |  | 
|  | if (image->type != KEXEC_TYPE_CRASH) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * For kdump, allocate one vmcoreinfo safe copy from the | 
|  | * crash memory. as we have arch_kexec_protect_crashkres() | 
|  | * after kexec syscall, we naturally protect it from write | 
|  | * (even read) access under kernel direct mapping. But on | 
|  | * the other hand, we still need to operate it when crash | 
|  | * happens to generate vmcoreinfo note, hereby we rely on | 
|  | * vmap for this purpose. | 
|  | */ | 
|  | vmcoreinfo_page = kimage_alloc_control_pages(image, 0); | 
|  | if (!vmcoreinfo_page) { | 
|  | pr_warn("Could not allocate vmcoreinfo buffer\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL); | 
|  | if (!safecopy) { | 
|  | pr_warn("Could not vmap vmcoreinfo buffer\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | image->vmcoreinfo_data_copy = safecopy; | 
|  | crash_update_vmcoreinfo_safecopy(safecopy); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) | 
|  | { | 
|  | if (*image->entry != 0) | 
|  | image->entry++; | 
|  |  | 
|  | if (image->entry == image->last_entry) { | 
|  | kimage_entry_t *ind_page; | 
|  | struct page *page; | 
|  |  | 
|  | page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); | 
|  | if (!page) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ind_page = page_address(page); | 
|  | *image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION; | 
|  | image->entry = ind_page; | 
|  | image->last_entry = ind_page + | 
|  | ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); | 
|  | } | 
|  | *image->entry = entry; | 
|  | image->entry++; | 
|  | *image->entry = 0; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kimage_set_destination(struct kimage *image, | 
|  | unsigned long destination) | 
|  | { | 
|  | int result; | 
|  |  | 
|  | destination &= PAGE_MASK; | 
|  | result = kimage_add_entry(image, destination | IND_DESTINATION); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int kimage_add_page(struct kimage *image, unsigned long page) | 
|  | { | 
|  | int result; | 
|  |  | 
|  | page &= PAGE_MASK; | 
|  | result = kimage_add_entry(image, page | IND_SOURCE); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  | static void kimage_free_extra_pages(struct kimage *image) | 
|  | { | 
|  | /* Walk through and free any extra destination pages I may have */ | 
|  | kimage_free_page_list(&image->dest_pages); | 
|  |  | 
|  | /* Walk through and free any unusable pages I have cached */ | 
|  | kimage_free_page_list(&image->unusable_pages); | 
|  |  | 
|  | } | 
|  | void kimage_terminate(struct kimage *image) | 
|  | { | 
|  | if (*image->entry != 0) | 
|  | image->entry++; | 
|  |  | 
|  | *image->entry = IND_DONE; | 
|  | } | 
|  |  | 
|  | #define for_each_kimage_entry(image, ptr, entry) \ | 
|  | for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ | 
|  | ptr = (entry & IND_INDIRECTION) ? \ | 
|  | boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1) | 
|  |  | 
|  | static void kimage_free_entry(kimage_entry_t entry) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | page = boot_pfn_to_page(entry >> PAGE_SHIFT); | 
|  | kimage_free_pages(page); | 
|  | } | 
|  |  | 
|  | void kimage_free(struct kimage *image) | 
|  | { | 
|  | kimage_entry_t *ptr, entry; | 
|  | kimage_entry_t ind = 0; | 
|  |  | 
|  | if (!image) | 
|  | return; | 
|  |  | 
|  | if (image->vmcoreinfo_data_copy) { | 
|  | crash_update_vmcoreinfo_safecopy(NULL); | 
|  | vunmap(image->vmcoreinfo_data_copy); | 
|  | } | 
|  |  | 
|  | kimage_free_extra_pages(image); | 
|  | for_each_kimage_entry(image, ptr, entry) { | 
|  | if (entry & IND_INDIRECTION) { | 
|  | /* Free the previous indirection page */ | 
|  | if (ind & IND_INDIRECTION) | 
|  | kimage_free_entry(ind); | 
|  | /* Save this indirection page until we are | 
|  | * done with it. | 
|  | */ | 
|  | ind = entry; | 
|  | } else if (entry & IND_SOURCE) | 
|  | kimage_free_entry(entry); | 
|  | } | 
|  | /* Free the final indirection page */ | 
|  | if (ind & IND_INDIRECTION) | 
|  | kimage_free_entry(ind); | 
|  |  | 
|  | /* Handle any machine specific cleanup */ | 
|  | machine_kexec_cleanup(image); | 
|  |  | 
|  | /* Free the kexec control pages... */ | 
|  | kimage_free_page_list(&image->control_pages); | 
|  |  | 
|  | /* | 
|  | * Free up any temporary buffers allocated. This might hit if | 
|  | * error occurred much later after buffer allocation. | 
|  | */ | 
|  | if (image->file_mode) | 
|  | kimage_file_post_load_cleanup(image); | 
|  |  | 
|  | kfree(image); | 
|  | } | 
|  |  | 
|  | static kimage_entry_t *kimage_dst_used(struct kimage *image, | 
|  | unsigned long page) | 
|  | { | 
|  | kimage_entry_t *ptr, entry; | 
|  | unsigned long destination = 0; | 
|  |  | 
|  | for_each_kimage_entry(image, ptr, entry) { | 
|  | if (entry & IND_DESTINATION) | 
|  | destination = entry & PAGE_MASK; | 
|  | else if (entry & IND_SOURCE) { | 
|  | if (page == destination) | 
|  | return ptr; | 
|  | destination += PAGE_SIZE; | 
|  | } | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct page *kimage_alloc_page(struct kimage *image, | 
|  | gfp_t gfp_mask, | 
|  | unsigned long destination) | 
|  | { | 
|  | /* | 
|  | * Here we implement safeguards to ensure that a source page | 
|  | * is not copied to its destination page before the data on | 
|  | * the destination page is no longer useful. | 
|  | * | 
|  | * To do this we maintain the invariant that a source page is | 
|  | * either its own destination page, or it is not a | 
|  | * destination page at all. | 
|  | * | 
|  | * That is slightly stronger than required, but the proof | 
|  | * that no problems will not occur is trivial, and the | 
|  | * implementation is simply to verify. | 
|  | * | 
|  | * When allocating all pages normally this algorithm will run | 
|  | * in O(N) time, but in the worst case it will run in O(N^2) | 
|  | * time.   If the runtime is a problem the data structures can | 
|  | * be fixed. | 
|  | */ | 
|  | struct page *page; | 
|  | unsigned long addr; | 
|  |  | 
|  | /* | 
|  | * Walk through the list of destination pages, and see if I | 
|  | * have a match. | 
|  | */ | 
|  | list_for_each_entry(page, &image->dest_pages, lru) { | 
|  | addr = page_to_boot_pfn(page) << PAGE_SHIFT; | 
|  | if (addr == destination) { | 
|  | list_del(&page->lru); | 
|  | return page; | 
|  | } | 
|  | } | 
|  | page = NULL; | 
|  | while (1) { | 
|  | kimage_entry_t *old; | 
|  |  | 
|  | /* Allocate a page, if we run out of memory give up */ | 
|  | page = kimage_alloc_pages(gfp_mask, 0); | 
|  | if (!page) | 
|  | return NULL; | 
|  | /* If the page cannot be used file it away */ | 
|  | if (page_to_boot_pfn(page) > | 
|  | (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { | 
|  | list_add(&page->lru, &image->unusable_pages); | 
|  | continue; | 
|  | } | 
|  | addr = page_to_boot_pfn(page) << PAGE_SHIFT; | 
|  |  | 
|  | /* If it is the destination page we want use it */ | 
|  | if (addr == destination) | 
|  | break; | 
|  |  | 
|  | /* If the page is not a destination page use it */ | 
|  | if (!kimage_is_destination_range(image, addr, | 
|  | addr + PAGE_SIZE)) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * I know that the page is someones destination page. | 
|  | * See if there is already a source page for this | 
|  | * destination page.  And if so swap the source pages. | 
|  | */ | 
|  | old = kimage_dst_used(image, addr); | 
|  | if (old) { | 
|  | /* If so move it */ | 
|  | unsigned long old_addr; | 
|  | struct page *old_page; | 
|  |  | 
|  | old_addr = *old & PAGE_MASK; | 
|  | old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT); | 
|  | copy_highpage(page, old_page); | 
|  | *old = addr | (*old & ~PAGE_MASK); | 
|  |  | 
|  | /* The old page I have found cannot be a | 
|  | * destination page, so return it if it's | 
|  | * gfp_flags honor the ones passed in. | 
|  | */ | 
|  | if (!(gfp_mask & __GFP_HIGHMEM) && | 
|  | PageHighMem(old_page)) { | 
|  | kimage_free_pages(old_page); | 
|  | continue; | 
|  | } | 
|  | addr = old_addr; | 
|  | page = old_page; | 
|  | break; | 
|  | } | 
|  | /* Place the page on the destination list, to be used later */ | 
|  | list_add(&page->lru, &image->dest_pages); | 
|  | } | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | static int kimage_load_normal_segment(struct kimage *image, | 
|  | struct kexec_segment *segment) | 
|  | { | 
|  | unsigned long maddr; | 
|  | size_t ubytes, mbytes; | 
|  | int result; | 
|  | unsigned char __user *buf = NULL; | 
|  | unsigned char *kbuf = NULL; | 
|  |  | 
|  | result = 0; | 
|  | if (image->file_mode) | 
|  | kbuf = segment->kbuf; | 
|  | else | 
|  | buf = segment->buf; | 
|  | ubytes = segment->bufsz; | 
|  | mbytes = segment->memsz; | 
|  | maddr = segment->mem; | 
|  |  | 
|  | result = kimage_set_destination(image, maddr); | 
|  | if (result < 0) | 
|  | goto out; | 
|  |  | 
|  | while (mbytes) { | 
|  | struct page *page; | 
|  | char *ptr; | 
|  | size_t uchunk, mchunk; | 
|  |  | 
|  | page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); | 
|  | if (!page) { | 
|  | result  = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | result = kimage_add_page(image, page_to_boot_pfn(page) | 
|  | << PAGE_SHIFT); | 
|  | if (result < 0) | 
|  | goto out; | 
|  |  | 
|  | ptr = kmap(page); | 
|  | /* Start with a clear page */ | 
|  | clear_page(ptr); | 
|  | ptr += maddr & ~PAGE_MASK; | 
|  | mchunk = min_t(size_t, mbytes, | 
|  | PAGE_SIZE - (maddr & ~PAGE_MASK)); | 
|  | uchunk = min(ubytes, mchunk); | 
|  |  | 
|  | /* For file based kexec, source pages are in kernel memory */ | 
|  | if (image->file_mode) | 
|  | memcpy(ptr, kbuf, uchunk); | 
|  | else | 
|  | result = copy_from_user(ptr, buf, uchunk); | 
|  | kunmap(page); | 
|  | if (result) { | 
|  | result = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  | ubytes -= uchunk; | 
|  | maddr  += mchunk; | 
|  | if (image->file_mode) | 
|  | kbuf += mchunk; | 
|  | else | 
|  | buf += mchunk; | 
|  | mbytes -= mchunk; | 
|  |  | 
|  | cond_resched(); | 
|  | } | 
|  | out: | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static int kimage_load_crash_segment(struct kimage *image, | 
|  | struct kexec_segment *segment) | 
|  | { | 
|  | /* For crash dumps kernels we simply copy the data from | 
|  | * user space to it's destination. | 
|  | * We do things a page at a time for the sake of kmap. | 
|  | */ | 
|  | unsigned long maddr; | 
|  | size_t ubytes, mbytes; | 
|  | int result; | 
|  | unsigned char __user *buf = NULL; | 
|  | unsigned char *kbuf = NULL; | 
|  |  | 
|  | result = 0; | 
|  | if (image->file_mode) | 
|  | kbuf = segment->kbuf; | 
|  | else | 
|  | buf = segment->buf; | 
|  | ubytes = segment->bufsz; | 
|  | mbytes = segment->memsz; | 
|  | maddr = segment->mem; | 
|  | while (mbytes) { | 
|  | struct page *page; | 
|  | char *ptr; | 
|  | size_t uchunk, mchunk; | 
|  |  | 
|  | page = boot_pfn_to_page(maddr >> PAGE_SHIFT); | 
|  | if (!page) { | 
|  | result  = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | arch_kexec_post_alloc_pages(page_address(page), 1, 0); | 
|  | ptr = kmap(page); | 
|  | ptr += maddr & ~PAGE_MASK; | 
|  | mchunk = min_t(size_t, mbytes, | 
|  | PAGE_SIZE - (maddr & ~PAGE_MASK)); | 
|  | uchunk = min(ubytes, mchunk); | 
|  | if (mchunk > uchunk) { | 
|  | /* Zero the trailing part of the page */ | 
|  | memset(ptr + uchunk, 0, mchunk - uchunk); | 
|  | } | 
|  |  | 
|  | /* For file based kexec, source pages are in kernel memory */ | 
|  | if (image->file_mode) | 
|  | memcpy(ptr, kbuf, uchunk); | 
|  | else | 
|  | result = copy_from_user(ptr, buf, uchunk); | 
|  | kexec_flush_icache_page(page); | 
|  | kunmap(page); | 
|  | arch_kexec_pre_free_pages(page_address(page), 1); | 
|  | if (result) { | 
|  | result = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  | ubytes -= uchunk; | 
|  | maddr  += mchunk; | 
|  | if (image->file_mode) | 
|  | kbuf += mchunk; | 
|  | else | 
|  | buf += mchunk; | 
|  | mbytes -= mchunk; | 
|  |  | 
|  | cond_resched(); | 
|  | } | 
|  | out: | 
|  | return result; | 
|  | } | 
|  |  | 
|  | int kimage_load_segment(struct kimage *image, | 
|  | struct kexec_segment *segment) | 
|  | { | 
|  | int result = -ENOMEM; | 
|  |  | 
|  | switch (image->type) { | 
|  | case KEXEC_TYPE_DEFAULT: | 
|  | result = kimage_load_normal_segment(image, segment); | 
|  | break; | 
|  | case KEXEC_TYPE_CRASH: | 
|  | result = kimage_load_crash_segment(image, segment); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | struct kimage *kexec_image; | 
|  | struct kimage *kexec_crash_image; | 
|  | int kexec_load_disabled; | 
|  |  | 
|  | /* | 
|  | * No panic_cpu check version of crash_kexec().  This function is called | 
|  | * only when panic_cpu holds the current CPU number; this is the only CPU | 
|  | * which processes crash_kexec routines. | 
|  | */ | 
|  | void __noclone __crash_kexec(struct pt_regs *regs) | 
|  | { | 
|  | /* Take the kexec_mutex here to prevent sys_kexec_load | 
|  | * running on one cpu from replacing the crash kernel | 
|  | * we are using after a panic on a different cpu. | 
|  | * | 
|  | * If the crash kernel was not located in a fixed area | 
|  | * of memory the xchg(&kexec_crash_image) would be | 
|  | * sufficient.  But since I reuse the memory... | 
|  | */ | 
|  | if (mutex_trylock(&kexec_mutex)) { | 
|  | if (kexec_crash_image) { | 
|  | struct pt_regs fixed_regs; | 
|  |  | 
|  | crash_setup_regs(&fixed_regs, regs); | 
|  | crash_save_vmcoreinfo(); | 
|  | machine_crash_shutdown(&fixed_regs); | 
|  | machine_kexec(kexec_crash_image); | 
|  | } | 
|  | mutex_unlock(&kexec_mutex); | 
|  | } | 
|  | } | 
|  | STACK_FRAME_NON_STANDARD(__crash_kexec); | 
|  |  | 
|  | void crash_kexec(struct pt_regs *regs) | 
|  | { | 
|  | int old_cpu, this_cpu; | 
|  |  | 
|  | /* | 
|  | * Only one CPU is allowed to execute the crash_kexec() code as with | 
|  | * panic().  Otherwise parallel calls of panic() and crash_kexec() | 
|  | * may stop each other.  To exclude them, we use panic_cpu here too. | 
|  | */ | 
|  | this_cpu = raw_smp_processor_id(); | 
|  | old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu); | 
|  | if (old_cpu == PANIC_CPU_INVALID) { | 
|  | /* This is the 1st CPU which comes here, so go ahead. */ | 
|  | printk_safe_flush_on_panic(); | 
|  | __crash_kexec(regs); | 
|  |  | 
|  | /* | 
|  | * Reset panic_cpu to allow another panic()/crash_kexec() | 
|  | * call. | 
|  | */ | 
|  | atomic_set(&panic_cpu, PANIC_CPU_INVALID); | 
|  | } | 
|  | } | 
|  |  | 
|  | size_t crash_get_memory_size(void) | 
|  | { | 
|  | size_t size = 0; | 
|  |  | 
|  | mutex_lock(&kexec_mutex); | 
|  | if (crashk_res.end != crashk_res.start) | 
|  | size = resource_size(&crashk_res); | 
|  | mutex_unlock(&kexec_mutex); | 
|  | return size; | 
|  | } | 
|  |  | 
|  | void __weak crash_free_reserved_phys_range(unsigned long begin, | 
|  | unsigned long end) | 
|  | { | 
|  | unsigned long addr; | 
|  |  | 
|  | for (addr = begin; addr < end; addr += PAGE_SIZE) | 
|  | free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT)); | 
|  | } | 
|  |  | 
|  | int crash_shrink_memory(unsigned long new_size) | 
|  | { | 
|  | int ret = 0; | 
|  | unsigned long start, end; | 
|  | unsigned long old_size; | 
|  | struct resource *ram_res; | 
|  |  | 
|  | mutex_lock(&kexec_mutex); | 
|  |  | 
|  | if (kexec_crash_image) { | 
|  | ret = -ENOENT; | 
|  | goto unlock; | 
|  | } | 
|  | start = crashk_res.start; | 
|  | end = crashk_res.end; | 
|  | old_size = (end == 0) ? 0 : end - start + 1; | 
|  | if (new_size >= old_size) { | 
|  | ret = (new_size == old_size) ? 0 : -EINVAL; | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL); | 
|  | if (!ram_res) { | 
|  | ret = -ENOMEM; | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | start = roundup(start, KEXEC_CRASH_MEM_ALIGN); | 
|  | end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN); | 
|  |  | 
|  | crash_free_reserved_phys_range(end, crashk_res.end); | 
|  |  | 
|  | if ((start == end) && (crashk_res.parent != NULL)) | 
|  | release_resource(&crashk_res); | 
|  |  | 
|  | ram_res->start = end; | 
|  | ram_res->end = crashk_res.end; | 
|  | ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM; | 
|  | ram_res->name = "System RAM"; | 
|  |  | 
|  | crashk_res.end = end - 1; | 
|  |  | 
|  | insert_resource(&iomem_resource, ram_res); | 
|  |  | 
|  | unlock: | 
|  | mutex_unlock(&kexec_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void crash_save_cpu(struct pt_regs *regs, int cpu) | 
|  | { | 
|  | struct elf_prstatus prstatus; | 
|  | u32 *buf; | 
|  |  | 
|  | if ((cpu < 0) || (cpu >= nr_cpu_ids)) | 
|  | return; | 
|  |  | 
|  | /* Using ELF notes here is opportunistic. | 
|  | * I need a well defined structure format | 
|  | * for the data I pass, and I need tags | 
|  | * on the data to indicate what information I have | 
|  | * squirrelled away.  ELF notes happen to provide | 
|  | * all of that, so there is no need to invent something new. | 
|  | */ | 
|  | buf = (u32 *)per_cpu_ptr(crash_notes, cpu); | 
|  | if (!buf) | 
|  | return; | 
|  | memset(&prstatus, 0, sizeof(prstatus)); | 
|  | prstatus.pr_pid = current->pid; | 
|  | elf_core_copy_kernel_regs(&prstatus.pr_reg, regs); | 
|  | buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, | 
|  | &prstatus, sizeof(prstatus)); | 
|  | final_note(buf); | 
|  | } | 
|  |  | 
|  | static int __init crash_notes_memory_init(void) | 
|  | { | 
|  | /* Allocate memory for saving cpu registers. */ | 
|  | size_t size, align; | 
|  |  | 
|  | /* | 
|  | * crash_notes could be allocated across 2 vmalloc pages when percpu | 
|  | * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc | 
|  | * pages are also on 2 continuous physical pages. In this case the | 
|  | * 2nd part of crash_notes in 2nd page could be lost since only the | 
|  | * starting address and size of crash_notes are exported through sysfs. | 
|  | * Here round up the size of crash_notes to the nearest power of two | 
|  | * and pass it to __alloc_percpu as align value. This can make sure | 
|  | * crash_notes is allocated inside one physical page. | 
|  | */ | 
|  | size = sizeof(note_buf_t); | 
|  | align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE); | 
|  |  | 
|  | /* | 
|  | * Break compile if size is bigger than PAGE_SIZE since crash_notes | 
|  | * definitely will be in 2 pages with that. | 
|  | */ | 
|  | BUILD_BUG_ON(size > PAGE_SIZE); | 
|  |  | 
|  | crash_notes = __alloc_percpu(size, align); | 
|  | if (!crash_notes) { | 
|  | pr_warn("Memory allocation for saving cpu register states failed\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | subsys_initcall(crash_notes_memory_init); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Move into place and start executing a preloaded standalone | 
|  | * executable.  If nothing was preloaded return an error. | 
|  | */ | 
|  | int kernel_kexec(void) | 
|  | { | 
|  | int error = 0; | 
|  |  | 
|  | if (!mutex_trylock(&kexec_mutex)) | 
|  | return -EBUSY; | 
|  | if (!kexec_image) { | 
|  | error = -EINVAL; | 
|  | goto Unlock; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_KEXEC_JUMP | 
|  | if (kexec_image->preserve_context) { | 
|  | lock_system_sleep(); | 
|  | pm_prepare_console(); | 
|  | error = freeze_processes(); | 
|  | if (error) { | 
|  | error = -EBUSY; | 
|  | goto Restore_console; | 
|  | } | 
|  | suspend_console(); | 
|  | error = dpm_suspend_start(PMSG_FREEZE); | 
|  | if (error) | 
|  | goto Resume_console; | 
|  | /* At this point, dpm_suspend_start() has been called, | 
|  | * but *not* dpm_suspend_end(). We *must* call | 
|  | * dpm_suspend_end() now.  Otherwise, drivers for | 
|  | * some devices (e.g. interrupt controllers) become | 
|  | * desynchronized with the actual state of the | 
|  | * hardware at resume time, and evil weirdness ensues. | 
|  | */ | 
|  | error = dpm_suspend_end(PMSG_FREEZE); | 
|  | if (error) | 
|  | goto Resume_devices; | 
|  | error = disable_nonboot_cpus(); | 
|  | if (error) | 
|  | goto Enable_cpus; | 
|  | local_irq_disable(); | 
|  | error = syscore_suspend(); | 
|  | if (error) | 
|  | goto Enable_irqs; | 
|  | } else | 
|  | #endif | 
|  | { | 
|  | kexec_in_progress = true; | 
|  | kernel_restart_prepare(NULL); | 
|  | migrate_to_reboot_cpu(); | 
|  |  | 
|  | /* | 
|  | * migrate_to_reboot_cpu() disables CPU hotplug assuming that | 
|  | * no further code needs to use CPU hotplug (which is true in | 
|  | * the reboot case). However, the kexec path depends on using | 
|  | * CPU hotplug again; so re-enable it here. | 
|  | */ | 
|  | cpu_hotplug_enable(); | 
|  | pr_emerg("Starting new kernel\n"); | 
|  | machine_shutdown(); | 
|  | } | 
|  |  | 
|  | machine_kexec(kexec_image); | 
|  |  | 
|  | #ifdef CONFIG_KEXEC_JUMP | 
|  | if (kexec_image->preserve_context) { | 
|  | syscore_resume(); | 
|  | Enable_irqs: | 
|  | local_irq_enable(); | 
|  | Enable_cpus: | 
|  | enable_nonboot_cpus(); | 
|  | dpm_resume_start(PMSG_RESTORE); | 
|  | Resume_devices: | 
|  | dpm_resume_end(PMSG_RESTORE); | 
|  | Resume_console: | 
|  | resume_console(); | 
|  | thaw_processes(); | 
|  | Restore_console: | 
|  | pm_restore_console(); | 
|  | unlock_system_sleep(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | Unlock: | 
|  | mutex_unlock(&kexec_mutex); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Protection mechanism for crashkernel reserved memory after | 
|  | * the kdump kernel is loaded. | 
|  | * | 
|  | * Provide an empty default implementation here -- architecture | 
|  | * code may override this | 
|  | */ | 
|  | void __weak arch_kexec_protect_crashkres(void) | 
|  | {} | 
|  |  | 
|  | void __weak arch_kexec_unprotect_crashkres(void) | 
|  | {} |