blob: 0a8569594fc3d35e2f961d26b38de1858f757049 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
//! String representations.
use alloc::alloc::AllocError;
use alloc::vec::Vec;
use core::fmt::{self, Write};
use core::ops::{self, Deref, Index};
use crate::{
bindings,
error::{code::*, Error},
};
/// Byte string without UTF-8 validity guarantee.
///
/// `BStr` is simply an alias to `[u8]`, but has a more evident semantical meaning.
pub type BStr = [u8];
/// Creates a new [`BStr`] from a string literal.
///
/// `b_str!` converts the supplied string literal to byte string, so non-ASCII
/// characters can be included.
///
/// # Examples
///
/// ```
/// # use kernel::b_str;
/// # use kernel::str::BStr;
/// const MY_BSTR: &BStr = b_str!("My awesome BStr!");
/// ```
#[macro_export]
macro_rules! b_str {
($str:literal) => {{
const S: &'static str = $str;
const C: &'static $crate::str::BStr = S.as_bytes();
C
}};
}
/// Possible errors when using conversion functions in [`CStr`].
#[derive(Debug, Clone, Copy)]
pub enum CStrConvertError {
/// Supplied bytes contain an interior `NUL`.
InteriorNul,
/// Supplied bytes are not terminated by `NUL`.
NotNulTerminated,
}
impl From<CStrConvertError> for Error {
#[inline]
fn from(_: CStrConvertError) -> Error {
EINVAL
}
}
/// A string that is guaranteed to have exactly one `NUL` byte, which is at the
/// end.
///
/// Used for interoperability with kernel APIs that take C strings.
#[repr(transparent)]
pub struct CStr([u8]);
impl CStr {
/// Returns the length of this string excluding `NUL`.
#[inline]
pub const fn len(&self) -> usize {
self.len_with_nul() - 1
}
/// Returns the length of this string with `NUL`.
#[inline]
pub const fn len_with_nul(&self) -> usize {
// SAFETY: This is one of the invariant of `CStr`.
// We add a `unreachable_unchecked` here to hint the optimizer that
// the value returned from this function is non-zero.
if self.0.is_empty() {
unsafe { core::hint::unreachable_unchecked() };
}
self.0.len()
}
/// Returns `true` if the string only includes `NUL`.
#[inline]
pub const fn is_empty(&self) -> bool {
self.len() == 0
}
/// Wraps a raw C string pointer.
///
/// # Safety
///
/// `ptr` must be a valid pointer to a `NUL`-terminated C string, and it must
/// last at least `'a`. When `CStr` is alive, the memory pointed by `ptr`
/// must not be mutated.
#[inline]
pub unsafe fn from_char_ptr<'a>(ptr: *const core::ffi::c_char) -> &'a Self {
// SAFETY: The safety precondition guarantees `ptr` is a valid pointer
// to a `NUL`-terminated C string.
let len = unsafe { bindings::strlen(ptr) } + 1;
// SAFETY: Lifetime guaranteed by the safety precondition.
let bytes = unsafe { core::slice::from_raw_parts(ptr as _, len as _) };
// SAFETY: As `len` is returned by `strlen`, `bytes` does not contain interior `NUL`.
// As we have added 1 to `len`, the last byte is known to be `NUL`.
unsafe { Self::from_bytes_with_nul_unchecked(bytes) }
}
/// Creates a [`CStr`] from a `[u8]`.
///
/// The provided slice must be `NUL`-terminated, does not contain any
/// interior `NUL` bytes.
pub const fn from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, CStrConvertError> {
if bytes.is_empty() {
return Err(CStrConvertError::NotNulTerminated);
}
if bytes[bytes.len() - 1] != 0 {
return Err(CStrConvertError::NotNulTerminated);
}
let mut i = 0;
// `i + 1 < bytes.len()` allows LLVM to optimize away bounds checking,
// while it couldn't optimize away bounds checks for `i < bytes.len() - 1`.
while i + 1 < bytes.len() {
if bytes[i] == 0 {
return Err(CStrConvertError::InteriorNul);
}
i += 1;
}
// SAFETY: We just checked that all properties hold.
Ok(unsafe { Self::from_bytes_with_nul_unchecked(bytes) })
}
/// Creates a [`CStr`] from a `[u8]` without performing any additional
/// checks.
///
/// # Safety
///
/// `bytes` *must* end with a `NUL` byte, and should only have a single
/// `NUL` byte (or the string will be truncated).
#[inline]
pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr {
// SAFETY: Properties of `bytes` guaranteed by the safety precondition.
unsafe { core::mem::transmute(bytes) }
}
/// Returns a C pointer to the string.
#[inline]
pub const fn as_char_ptr(&self) -> *const core::ffi::c_char {
self.0.as_ptr() as _
}
/// Convert the string to a byte slice without the trailing 0 byte.
#[inline]
pub fn as_bytes(&self) -> &[u8] {
&self.0[..self.len()]
}
/// Convert the string to a byte slice containing the trailing 0 byte.
#[inline]
pub const fn as_bytes_with_nul(&self) -> &[u8] {
&self.0
}
/// Yields a [`&str`] slice if the [`CStr`] contains valid UTF-8.
///
/// If the contents of the [`CStr`] are valid UTF-8 data, this
/// function will return the corresponding [`&str`] slice. Otherwise,
/// it will return an error with details of where UTF-8 validation failed.
///
/// # Examples
///
/// ```
/// # use kernel::str::CStr;
/// let cstr = CStr::from_bytes_with_nul(b"foo\0").unwrap();
/// assert_eq!(cstr.to_str(), Ok("foo"));
/// ```
#[inline]
pub fn to_str(&self) -> Result<&str, core::str::Utf8Error> {
core::str::from_utf8(self.as_bytes())
}
/// Unsafely convert this [`CStr`] into a [`&str`], without checking for
/// valid UTF-8.
///
/// # Safety
///
/// The contents must be valid UTF-8.
///
/// # Examples
///
/// ```
/// # use kernel::c_str;
/// # use kernel::str::CStr;
/// // SAFETY: String literals are guaranteed to be valid UTF-8
/// // by the Rust compiler.
/// let bar = c_str!("ツ");
/// assert_eq!(unsafe { bar.as_str_unchecked() }, "ツ");
/// ```
#[inline]
pub unsafe fn as_str_unchecked(&self) -> &str {
unsafe { core::str::from_utf8_unchecked(self.as_bytes()) }
}
/// Convert this [`CStr`] into a [`CString`] by allocating memory and
/// copying over the string data.
pub fn to_cstring(&self) -> Result<CString, AllocError> {
CString::try_from(self)
}
}
impl fmt::Display for CStr {
/// Formats printable ASCII characters, escaping the rest.
///
/// ```
/// # use kernel::c_str;
/// # use kernel::fmt;
/// # use kernel::str::CStr;
/// # use kernel::str::CString;
/// let penguin = c_str!("🐧");
/// let s = CString::try_from_fmt(fmt!("{}", penguin)).unwrap();
/// assert_eq!(s.as_bytes_with_nul(), "\\xf0\\x9f\\x90\\xa7\0".as_bytes());
///
/// let ascii = c_str!("so \"cool\"");
/// let s = CString::try_from_fmt(fmt!("{}", ascii)).unwrap();
/// assert_eq!(s.as_bytes_with_nul(), "so \"cool\"\0".as_bytes());
/// ```
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
for &c in self.as_bytes() {
if (0x20..0x7f).contains(&c) {
// Printable character.
f.write_char(c as char)?;
} else {
write!(f, "\\x{:02x}", c)?;
}
}
Ok(())
}
}
impl fmt::Debug for CStr {
/// Formats printable ASCII characters with a double quote on either end, escaping the rest.
///
/// ```
/// # use kernel::c_str;
/// # use kernel::fmt;
/// # use kernel::str::CStr;
/// # use kernel::str::CString;
/// let penguin = c_str!("🐧");
/// let s = CString::try_from_fmt(fmt!("{:?}", penguin)).unwrap();
/// assert_eq!(s.as_bytes_with_nul(), "\"\\xf0\\x9f\\x90\\xa7\"\0".as_bytes());
///
/// // Embedded double quotes are escaped.
/// let ascii = c_str!("so \"cool\"");
/// let s = CString::try_from_fmt(fmt!("{:?}", ascii)).unwrap();
/// assert_eq!(s.as_bytes_with_nul(), "\"so \\\"cool\\\"\"\0".as_bytes());
/// ```
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("\"")?;
for &c in self.as_bytes() {
match c {
// Printable characters.
b'\"' => f.write_str("\\\"")?,
0x20..=0x7e => f.write_char(c as char)?,
_ => write!(f, "\\x{:02x}", c)?,
}
}
f.write_str("\"")
}
}
impl AsRef<BStr> for CStr {
#[inline]
fn as_ref(&self) -> &BStr {
self.as_bytes()
}
}
impl Deref for CStr {
type Target = BStr;
#[inline]
fn deref(&self) -> &Self::Target {
self.as_bytes()
}
}
impl Index<ops::RangeFrom<usize>> for CStr {
type Output = CStr;
#[inline]
fn index(&self, index: ops::RangeFrom<usize>) -> &Self::Output {
// Delegate bounds checking to slice.
// Assign to _ to mute clippy's unnecessary operation warning.
let _ = &self.as_bytes()[index.start..];
// SAFETY: We just checked the bounds.
unsafe { Self::from_bytes_with_nul_unchecked(&self.0[index.start..]) }
}
}
impl Index<ops::RangeFull> for CStr {
type Output = CStr;
#[inline]
fn index(&self, _index: ops::RangeFull) -> &Self::Output {
self
}
}
mod private {
use core::ops;
// Marker trait for index types that can be forward to `BStr`.
pub trait CStrIndex {}
impl CStrIndex for usize {}
impl CStrIndex for ops::Range<usize> {}
impl CStrIndex for ops::RangeInclusive<usize> {}
impl CStrIndex for ops::RangeToInclusive<usize> {}
}
impl<Idx> Index<Idx> for CStr
where
Idx: private::CStrIndex,
BStr: Index<Idx>,
{
type Output = <BStr as Index<Idx>>::Output;
#[inline]
fn index(&self, index: Idx) -> &Self::Output {
&self.as_bytes()[index]
}
}
/// Creates a new [`CStr`] from a string literal.
///
/// The string literal should not contain any `NUL` bytes.
///
/// # Examples
///
/// ```
/// # use kernel::c_str;
/// # use kernel::str::CStr;
/// const MY_CSTR: &CStr = c_str!("My awesome CStr!");
/// ```
#[macro_export]
macro_rules! c_str {
($str:expr) => {{
const S: &str = concat!($str, "\0");
const C: &$crate::str::CStr = match $crate::str::CStr::from_bytes_with_nul(S.as_bytes()) {
Ok(v) => v,
Err(_) => panic!("string contains interior NUL"),
};
C
}};
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_cstr_to_str() {
let good_bytes = b"\xf0\x9f\xa6\x80\0";
let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap();
let checked_str = checked_cstr.to_str().unwrap();
assert_eq!(checked_str, "🦀");
}
#[test]
#[should_panic]
fn test_cstr_to_str_panic() {
let bad_bytes = b"\xc3\x28\0";
let checked_cstr = CStr::from_bytes_with_nul(bad_bytes).unwrap();
checked_cstr.to_str().unwrap();
}
#[test]
fn test_cstr_as_str_unchecked() {
let good_bytes = b"\xf0\x9f\x90\xA7\0";
let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap();
let unchecked_str = unsafe { checked_cstr.as_str_unchecked() };
assert_eq!(unchecked_str, "🐧");
}
}
/// Allows formatting of [`fmt::Arguments`] into a raw buffer.
///
/// It does not fail if callers write past the end of the buffer so that they can calculate the
/// size required to fit everything.
///
/// # Invariants
///
/// The memory region between `pos` (inclusive) and `end` (exclusive) is valid for writes if `pos`
/// is less than `end`.
pub(crate) struct RawFormatter {
// Use `usize` to use `saturating_*` functions.
beg: usize,
pos: usize,
end: usize,
}
impl RawFormatter {
/// Creates a new instance of [`RawFormatter`] with an empty buffer.
fn new() -> Self {
// INVARIANT: The buffer is empty, so the region that needs to be writable is empty.
Self {
beg: 0,
pos: 0,
end: 0,
}
}
/// Creates a new instance of [`RawFormatter`] with the given buffer pointers.
///
/// # Safety
///
/// If `pos` is less than `end`, then the region between `pos` (inclusive) and `end`
/// (exclusive) must be valid for writes for the lifetime of the returned [`RawFormatter`].
pub(crate) unsafe fn from_ptrs(pos: *mut u8, end: *mut u8) -> Self {
// INVARIANT: The safety requirements guarantee the type invariants.
Self {
beg: pos as _,
pos: pos as _,
end: end as _,
}
}
/// Creates a new instance of [`RawFormatter`] with the given buffer.
///
/// # Safety
///
/// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
/// for the lifetime of the returned [`RawFormatter`].
pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
let pos = buf as usize;
// INVARIANT: We ensure that `end` is never less then `buf`, and the safety requirements
// guarantees that the memory region is valid for writes.
Self {
pos,
beg: pos,
end: pos.saturating_add(len),
}
}
/// Returns the current insert position.
///
/// N.B. It may point to invalid memory.
pub(crate) fn pos(&self) -> *mut u8 {
self.pos as _
}
/// Returns the number of bytes written to the formatter.
pub(crate) fn bytes_written(&self) -> usize {
self.pos - self.beg
}
}
impl fmt::Write for RawFormatter {
fn write_str(&mut self, s: &str) -> fmt::Result {
// `pos` value after writing `len` bytes. This does not have to be bounded by `end`, but we
// don't want it to wrap around to 0.
let pos_new = self.pos.saturating_add(s.len());
// Amount that we can copy. `saturating_sub` ensures we get 0 if `pos` goes past `end`.
let len_to_copy = core::cmp::min(pos_new, self.end).saturating_sub(self.pos);
if len_to_copy > 0 {
// SAFETY: If `len_to_copy` is non-zero, then we know `pos` has not gone past `end`
// yet, so it is valid for write per the type invariants.
unsafe {
core::ptr::copy_nonoverlapping(
s.as_bytes().as_ptr(),
self.pos as *mut u8,
len_to_copy,
)
};
}
self.pos = pos_new;
Ok(())
}
}
/// Allows formatting of [`fmt::Arguments`] into a raw buffer.
///
/// Fails if callers attempt to write more than will fit in the buffer.
pub(crate) struct Formatter(RawFormatter);
impl Formatter {
/// Creates a new instance of [`Formatter`] with the given buffer.
///
/// # Safety
///
/// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
/// for the lifetime of the returned [`Formatter`].
pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
// SAFETY: The safety requirements of this function satisfy those of the callee.
Self(unsafe { RawFormatter::from_buffer(buf, len) })
}
}
impl Deref for Formatter {
type Target = RawFormatter;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl fmt::Write for Formatter {
fn write_str(&mut self, s: &str) -> fmt::Result {
self.0.write_str(s)?;
// Fail the request if we go past the end of the buffer.
if self.0.pos > self.0.end {
Err(fmt::Error)
} else {
Ok(())
}
}
}
/// An owned string that is guaranteed to have exactly one `NUL` byte, which is at the end.
///
/// Used for interoperability with kernel APIs that take C strings.
///
/// # Invariants
///
/// The string is always `NUL`-terminated and contains no other `NUL` bytes.
///
/// # Examples
///
/// ```
/// use kernel::{str::CString, fmt};
///
/// let s = CString::try_from_fmt(fmt!("{}{}{}", "abc", 10, 20)).unwrap();
/// assert_eq!(s.as_bytes_with_nul(), "abc1020\0".as_bytes());
///
/// let tmp = "testing";
/// let s = CString::try_from_fmt(fmt!("{tmp}{}", 123)).unwrap();
/// assert_eq!(s.as_bytes_with_nul(), "testing123\0".as_bytes());
///
/// // This fails because it has an embedded `NUL` byte.
/// let s = CString::try_from_fmt(fmt!("a\0b{}", 123));
/// assert_eq!(s.is_ok(), false);
/// ```
pub struct CString {
buf: Vec<u8>,
}
impl CString {
/// Creates an instance of [`CString`] from the given formatted arguments.
pub fn try_from_fmt(args: fmt::Arguments<'_>) -> Result<Self, Error> {
// Calculate the size needed (formatted string plus `NUL` terminator).
let mut f = RawFormatter::new();
f.write_fmt(args)?;
f.write_str("\0")?;
let size = f.bytes_written();
// Allocate a vector with the required number of bytes, and write to it.
let mut buf = Vec::try_with_capacity(size)?;
// SAFETY: The buffer stored in `buf` is at least of size `size` and is valid for writes.
let mut f = unsafe { Formatter::from_buffer(buf.as_mut_ptr(), size) };
f.write_fmt(args)?;
f.write_str("\0")?;
// SAFETY: The number of bytes that can be written to `f` is bounded by `size`, which is
// `buf`'s capacity. The contents of the buffer have been initialised by writes to `f`.
unsafe { buf.set_len(f.bytes_written()) };
// Check that there are no `NUL` bytes before the end.
// SAFETY: The buffer is valid for read because `f.bytes_written()` is bounded by `size`
// (which the minimum buffer size) and is non-zero (we wrote at least the `NUL` terminator)
// so `f.bytes_written() - 1` doesn't underflow.
let ptr = unsafe { bindings::memchr(buf.as_ptr().cast(), 0, (f.bytes_written() - 1) as _) };
if !ptr.is_null() {
return Err(EINVAL);
}
// INVARIANT: We wrote the `NUL` terminator and checked above that no other `NUL` bytes
// exist in the buffer.
Ok(Self { buf })
}
}
impl Deref for CString {
type Target = CStr;
fn deref(&self) -> &Self::Target {
// SAFETY: The type invariants guarantee that the string is `NUL`-terminated and that no
// other `NUL` bytes exist.
unsafe { CStr::from_bytes_with_nul_unchecked(self.buf.as_slice()) }
}
}
impl<'a> TryFrom<&'a CStr> for CString {
type Error = AllocError;
fn try_from(cstr: &'a CStr) -> Result<CString, AllocError> {
let mut buf = Vec::new();
buf.try_extend_from_slice(cstr.as_bytes_with_nul())
.map_err(|_| AllocError)?;
// INVARIANT: The `CStr` and `CString` types have the same invariants for
// the string data, and we copied it over without changes.
Ok(CString { buf })
}
}
impl fmt::Debug for CString {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
/// A convenience alias for [`core::format_args`].
#[macro_export]
macro_rules! fmt {
($($f:tt)*) => ( core::format_args!($($f)*) )
}